-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
136 lines (118 loc) · 4.85 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
''' Feature Selection Methods '''
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<liberaries:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from sklearn.utils import shuffle
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.ensemble import ExtraTreesClassifier
from univariant_method import*
from model_based_method import*
from changing_lasso_method import*
from recursive_feature_elimination import*
from sequentialfeatureselector_method import*
from Random_Forest import*
from sklearn.utils import shuffle
import seaborn as sns
from unsupervised_pca import*
#----------------------------------------
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<Load cancer dataset:
df = pd.read_csv('Bc.csv')
print(df)
#----------------------------------------
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<Statistics analysis:
print('\n dataset description\n')
print(df.describe())
print(df.info())
print(df.isnull().sum())
column_headers = list(df.columns)
feature_len = len(column_headers)-1
print('\n')
print('\n Features name:\n')
print(column_headers)
#matrix covariance:
correlation_matrix = df.corr().round(2)
sns.heatmap(data=correlation_matrix, annot=True)
print('\n dataset description\n')
print(df.describe())
plt.show()
fig = plt.figure(figsize =(5, 5))
# Creating plot
plt.boxplot(df)
hist = df.hist(bins=3)
# show plot
plt.show()
#----------------------------------------
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<Datset normalization:
# copy the data
df_max_scaled = df.copy()
# apply normalization techniques
for column in df_max_scaled.columns:
df_max_scaled[column] = df_max_scaled[column]/df_max_scaled[column].abs().max()
df_max_scaled.plot(kind = 'bar')
df = df_max_scaled
#----------------------------------------
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<Dataset seperation to X and Y
X = df.iloc[:, :-1].values
Y = df.iloc[:, 9].values
#----------------------------------------
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<Feature selection methods:
print()
print()
print('\n *****************Univarint method resuls*****************\n')
univariant(df)
print()
print('\n *****************Model based (single fit) methods resuls*****************\n')
model_based(df)
print()
print('\n *****************changing_Lasso_alpha methods resuls*****************\n')
changing_Lasso_alpha(df)
print()
print('\n *****************recursive_feature_elimination methods resuls*****************\n')
ref(df)
print()
print('\n *****************sequentialfeatureselector methods resuls*****************\n')
print(sequentialfeatureselector(df))
print()
print('\n *****************PCA Unsupervised methods resuls*****************\n')
pca(df)
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<TEST Feature selection by Random Forest
print()
print()
df = shuffle(df)
comparison = []
print('\n *****************Original data set prediction*****************\n')
X = df.iloc[:, :-1].values
y = df.iloc[:, 9].values
print('\n *****************Univarint Test prediction*****************\n')
X = df[[ 'Cl.thickness','Cell.size','Cell.shape','Bl.cromatin','Normal.nucleoli']]
comparison.append(RF(X,y))
print('\n *****************Model based (single fit) Test prediction*****************\n')
X = df[[ 'Cl.thickness','Cell.size','Cell.shape','Bl.cromatin','Marg.adhesion']]
comparison.append(RF(X,y))
print('\n *****************changing_Lasso_alpha methods Test prediction*****************\n')
X = df[['Id','Cl.thickness','Cell.size','Cell.shape','Bl.cromatin','Marg.adhesion','Normal.nucleoli','Epith.c.size']]
comparison.append(RF(X,y))
print('\n *****************recursive_feature_elimination methods Test prediction*****************\n')
X = df[['Id','Marg.adhesion','Normal.nucleoli','Epith.c.size','Mitoses']]
comparison.append(RF(X,y))
print('\n *****************sequential featureselector methods Test prediction*****************\n')
X = df[['Bl.cromatin','Normal.nucleoli','Epith.c.size','Mitoses']]
comparison.append(RF(X,y))
print('\n ***************** PCA methods Test prediction*****************\n')
X = df[['Cl.thickness','Cell.size','Epith.c.size','Marg.adhesion','Cell.shape']]
comparison.append(RF(X,y))
plt.show()
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<SHOW the pichart comparison>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
c = ['Univarint','Model based','changing_Lasso_alpha ','recursive_feature_elimination ','sequential featureselector','PCA']
y =np.array(comparison)
plt.pie(y, labels = c)
plt.show()