CLIP-CLIP
python main_nrp.py \
--model_type "clip-clip" \
--dialog_data_dir "." \
--dialog_image_data_dir "./images/dialog/" \
--persona_image_data_dir "./images/persona/" \
--output_dir "outputs/clip-clip/nrp/full_inputs" \
--seed 202 \
--sum_persona_images \
--remove_empty_images \
--do_train \
--do_test \
--per_gpu_train_batch_size 8 \
--per_gpu_eval_batch_size 4 \
--max_num_responses 100 \
--learning_rate 3e-06 \
--weight_decay 0.05 \
--num_train_epochs 5 \
--save_epoch 1 \
--num_workers 12
CLIP-SBERT
python main_nrp.py \
--model_type "clip-sbert" \
--dialog_data_dir "." \
--dialog_image_data_dir "./images/dialog/" \
--persona_image_data_dir "./images/persona/" \
--output_dir "outputs/clip-sbert/nrp/full_inputs" \
--seed 202 \
--freeze_image_encoder \
--sum_persona_images \
--remove_empty_images \
--do_train \
--do_test \
--per_gpu_train_batch_size 8 \
--per_gpu_eval_batch_size 4 \
--max_num_responses 100 \
--learning_rate 1e-05 \
--max_seq_length 128 \
--weight_decay 0.05 \
--num_train_epochs 5 \
--save_epoch 1 \
--num_workers 12
CLIP-CLIP (no-response)
python main_gpp.py \
--model_type "clip-clip" \
--dialog_data_dir "." \
--dialog_image_data_dir "./images/dialog/" \
--persona_image_data_dir "./images/persona/" \
--output_dir "outputs/clip-clip/gpp-context/full_inputs" \
--seed 202 \
--sum_persona_images \
--remove_empty_images \
--do_train \
--do_test \
--per_gpu_train_batch_size 8 \
--per_gpu_eval_batch_size 4 \
--max_num_candidate_persona_elements 100 \
--learning_rate 3e-06 \
--weight_decay 0.05 \
--num_train_epochs 5 \
--save_epoch 1 \
--num_workers 12
CLIP-CLIP (response)
python main_gpp.py \
--model_type "clip-clip" \
--dialog_data_dir "." \
--dialog_image_data_dir "./images/dialog/" \
--persona_image_data_dir "./images/persona/" \
--output_dir "outputs/clip-clip/gpp-response/full_inputs" \
--seed 202 \
--sum_persona_images \
--remove_empty_images \
--use_response \
--do_train \
--do_test \
--per_gpu_train_batch_size 8 \
--per_gpu_eval_batch_size 4 \
--max_num_candidate_persona_elements 100 \
--learning_rate 3e-06 \
--weight_decay 0.05 \
--num_train_epochs 5 \
--save_epoch 1 \
--num_workers 12
CLIP-SBERT (no-response)
python main_gpp.py \
--model_type "clip-sbert" \
--dialog_data_dir "." \
--dialog_image_data_dir "./images/dialog/" \
--persona_image_data_dir "./images/persona/" \
--output_dir "outputs/clip-sbert/gpp-context/full_inputs" \
--seed 202 \
--freeze_image_encoder \
--sum_persona_images \
--remove_empty_images \
--do_train \
--do_test \
--per_gpu_train_batch_size 8 \
--per_gpu_eval_batch_size 4 \
--max_num_candidate_persona_elements 100 \
--learning_rate 1e-05 \
--max_seq_length 128 \
--weight_decay 0.05 \
--num_train_epochs 5 \
--save_epoch 1 \
--num_workers 12
CLIP-SBERT (response)
python main_gpp.py \
--model_type "clip-sbert" \
--dialog_data_dir "." \
--dialog_image_data_dir "./images/dialog/" \
--persona_image_data_dir "./images/persona/" \
--output_dir "outputs/clip-sbert/gpp-response/full_inputs" \
--seed 202 \
--freeze_image_encoder \
--sum_persona_images \
--remove_empty_images \
--use_response \
--do_train \
--do_test \
--per_gpu_train_batch_size 8 \
--per_gpu_eval_batch_size 4 \
--max_num_candidate_persona_elements 100 \
--learning_rate 1e-05 \
--max_seq_length 128 \
--weight_decay 0.05 \
--num_train_epochs 5 \
--save_epoch 1 \
--num_workers 12
CLIP-CLIP
python main_si.py \
--model_type "clip-clip" \
--dialog_data_dir "." \
--dialog_image_data_dir "./images/dialog/" \
--persona_image_data_dir "./images/persona/" \
--output_dir "outputs/clip-clip/si/full_inputs" \
--seed 202 \
--sum_persona_images \
--remove_empty_images \
--do_train \
--do_test \
--per_gpu_train_batch_size 8 \
--per_gpu_eval_batch_size 4 \
--max_num_candidate_authors 100 \
--learning_rate 3e-06 \
--weight_decay 0.05 \
--num_train_epochs 5 \
--save_epoch 1 \
--num_workers 12
CLIP-SBERT
python main_si.py \
--model_type "clip-sbert" \
--dialog_data_dir "." \
--dialog_image_data_dir "./images/dialog/" \
--persona_image_data_dir "./images/persona/" \
--output_dir "outputs/clip-sbert/si/full_inputs" \
--seed 202 \
--freeze_image_encoder \
--sum_persona_images \
--remove_empty_images \
--do_train \
--do_test \
--per_gpu_train_batch_size 8 \
--per_gpu_eval_batch_size 4 \
--max_num_candidate_authors 100 \
--learning_rate 2e-05 \
--max_seq_length 128 \
--weight_decay 0.05 \
--num_train_epochs 5 \
--save_epoch 1 \
--num_workers 12