-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSCSR_train.py
391 lines (308 loc) · 16.4 KB
/
SCSR_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import os
import shutil
import yaml
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import numpy as np
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
import wandb
import joblib
import argparse
import time
# Function to load configuration files
def load_config(file_path):
with open(file_path, 'r') as file:
config = yaml.safe_load(file)
return config
def save_config_res_to_csv(config, best_loss_checkpoint, csv_filepath):
# Select only the relevant training parameters
training_params = {
'epoch': best_loss_checkpoint['epoch'],
'test_loss': best_loss_checkpoint['test_loss']
}
# Merge the config dictionary and training parameters into a single dictionary
combined_dict = {**config, **training_params}
df = pd.DataFrame([combined_dict])
df.to_csv(csv_filepath, index=False)
# Function to build the model from configuration
def build_model_from_config(config):
layers = []
last_out_features = None
for layer in config['layers']:
if layer['type'] == 'Linear':
linear_layer = nn.Linear(layer['in_features'], layer['out_features'])
layers.append(linear_layer)
last_out_features = layer['out_features'] # Track the last layer's output features
elif layer['type'] == 'BatchNorm1d':
layers.append(nn.BatchNorm1d(last_out_features)) # Apply to the last output features
elif layer['type'] == 'SiLU':
layers.append(nn.SiLU())
elif layer['type'] == 'Dropout':
layers.append(nn.Dropout(p=layer.get('p', 0.5))) # Use .get for optional parameters
return nn.Sequential(*layers)
def corrupt_data(data, corruption_rate, use_region, region_indices, always_mask_indices):
"""Corrupts data by masking a portion of it with zeros."""
corrupted = data.clone()
# Either region-wise corruption or random corruption
if use_region:
# initialize mask with size of data as binary
mask = torch.zeros_like(data, dtype=torch.bool, device=data.device)
#unique_region_indices = np.unique(region_indices)
num_regions_to_corrupt = int(len(unique_region_indices) * corruption_rate) - len(always_mask_indices)
possible_indices_to_corrupt = np.setdiff1d(unique_region_indices, always_mask_indices)
for i in range(data.shape[0]): # Iterate over rows
indices_to_corrupt = np.random.choice(possible_indices_to_corrupt, num_regions_to_corrupt, replace=False)
final_indices_to_corrupt = np.union1d(indices_to_corrupt, always_mask_indices)
mask[i,] = torch.tensor(np.isin(region_indices, final_indices_to_corrupt)) #.to(device)
else:
if len(always_mask_indices) > 0: # always mask AD regions
always_mask = torch.tensor(np.isin(region_indices, always_mask_indices)).to(device)
replicated_mask = always_mask.repeat(data.shape[0], 1)
mask = (torch.rand(corrupted.shape, device=device) < corruption_rate) | replicated_mask
else:
#mask = torch.rand(corrupted.shape) < corruption_rate
mask = (torch.rand(corrupted.shape, device=device) < corruption_rate)
corrupted[mask] = 0
return corrupted, mask
def add_jitter(inputs, std_dev=0.01):
""" Adds Gaussian noise (jitter) to the inputs."""
noise = torch.randn_like(inputs) * std_dev
return inputs + noise
def train(model, train_loader, test_loader, num_epochs, region_indices, always_mask_indices):
criterion = nn.MSELoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=wandb.config.learning_rate, weight_decay=wandb.config.weight_decay)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=wandb.config.T_max)
best_auc = 0.0
best_loss = 10.0
best_loss_ukb = 10.0
best_auc_checkpoint = {}
best_loss_ukb_checkpoint = {}
model.train()
for epoch in range(num_epochs):
epoch_start_time = time.time()
train_loss = 0.0
for data in train_loader:
full_inputs = data[0].to(device)
age_sex = full_inputs[:, :2]
thickness_data = full_inputs[:, 2:]
jittered_inputs = add_jitter(thickness_data, wandb.config.jitter_sd)
corrupted_inputs, mask = corrupt_data(jittered_inputs, wandb.config.corruption_rate_train, wandb.config.use_region, region_indices, always_mask_indices)
final_inputs = torch.cat([age_sex, corrupted_inputs], dim=1)
optimizer.zero_grad()
outputs = model(final_inputs)
full_mask = torch.cat([torch.ones(age_sex.shape[0], 2).bool().to(device), mask], dim=1)
#full_mask = torch.cat([torch.zeros(age_sex.shape[0], 2).bool().to(device), mask], dim=1) # ignores age and sex in loss
loss = criterion(outputs[full_mask], full_inputs[full_mask])
loss.backward()
optimizer.step()
train_loss += loss.item()
scheduler.step()
train_loss /= len(train_loader)
test_loss = evaluate_test_loss(model, criterion, test_loader, device, region_indices, always_mask_indices)
epoch_duration = time.time() - epoch_start_time
if test_loss < best_loss_ukb:
best_loss_ukb = test_loss
best_loss_ukb_checkpoint = {'epoch': epoch + 1,'state_dict': model.state_dict(),'optimizer': optimizer.state_dict(),'scheduler': scheduler.state_dict(),
'test_loss': test_loss}
print(f"Saved new best model with UKB test Loss: {best_loss_ukb:.4f}")
if (epoch % 50 == 0 and epoch > 1) or (epoch == num_epochs - 1): # Save every 50 epochs and the last epoch
torch.save(best_loss_ukb_checkpoint, f'checkpoints/{wandb.run.name}_bestLossUKB.pth')
save_config_res_to_csv(training_config,best_loss_ukb_checkpoint, f'checkpoints/{wandb.run.name}_bestLossUKB.csv')
print("Saving best models to disk.")
def save_checkpoint(state, filename='checkpoint.pth'):
torch.save(state, filename)
def evaluate_test_loss(model, criterion, data_loader, device, region_indices, always_mask_indices):
model.eval() # Set model to evaluation mode
total_loss = 0.0
total_count = 0
with torch.no_grad():
for data in data_loader:
full_inputs = data[0].to(device)
age_sex = full_inputs[:, :2]
thickness_data = full_inputs[:, 2:]
corrupted_inputs, mask = corrupt_data(thickness_data, wandb.config.corruption_rate_test, wandb.config.use_region, region_indices, always_mask_indices)
final_inputs = torch.cat([age_sex, corrupted_inputs], dim=1)
outputs = model(final_inputs)
full_mask = torch.cat([torch.ones(age_sex.shape[0], 2).bool().to(device), mask], dim=1)
loss = criterion(outputs[full_mask], full_inputs[full_mask])
total_loss += loss.item() * thickness_data.size(0)
total_count += thickness_data.size(0)
average_loss = total_loss / total_count
return average_loss
def evaluate(model, test_loader, scaler):
model.eval()
predictions, actuals = [], []
with torch.no_grad():
for data in test_loader:
inputs = data[0].to(device)
outputs = model(inputs)
predictions.append(outputs.cpu().numpy())
actuals.append(data[1].cpu().numpy())
# Concatenate all batches
predictions = np.concatenate(predictions, axis=0)
actuals = np.concatenate(actuals, axis=0)
# Inverse transform to original scale
predictions_original = scaler.inverse_transform(predictions)
actuals_original = scaler.inverse_transform(actuals)
# Calculate metrics, e.g., MSE
mse = np.mean((predictions_original - actuals_original)**2)
print(f'Test MSE: {mse}')
def evaluate_with_masking(model, test_loader, scaler, device, num_predictions, region_indices, always_mask_indices):
model.eval()
final_predictions = []
actuals = []
with torch.no_grad():
for data in test_loader:
inputs, labels = data
age_sex = inputs[:, :2].to(device)
thickness_data = inputs[:, 2:].to(device)
# Store predictions for each sample across 30 random masks
sample_predictions_tensors = []
for _ in range(num_predictions):
corrupted_thickness, mask = corrupt_data(thickness_data, wandb.config.corruption_rate_test, wandb.config.use_region, region_indices, always_mask_indices)
full_corrupted_inputs = torch.cat([age_sex, corrupted_thickness], dim=1)
outputs = model(full_corrupted_inputs)
thickness_outputs = outputs[:, 2:]
thickness_outputs[~mask] = float('nan')
sample_predictions_tensors.append(thickness_outputs)
predictions_tensor = torch.stack(sample_predictions_tensors)
quantile_predictions = torch.nanquantile(predictions_tensor, wandb.config.percentile, dim=0, keepdim=False)
final_predictions.append(quantile_predictions)
actuals.append(labels[:, 2:].to(device))
final_predictions_tensor = torch.cat(final_predictions, dim=0)
actuals_tensor = torch.cat(actuals, dim=0)
# Move the final predictions tensor to CPU and convert to NumPy for inverse transform
final_predictions_np = final_predictions_tensor.cpu().numpy()
final_predictions_inv = scaler.inverse_transform(final_predictions_np)
# Also prepare the actuals for comparison
actuals_np = actuals_tensor.cpu().numpy()
actuals_original = scaler.inverse_transform(actuals_np)
residuals = actuals_original - final_predictions_inv
mse = np.mean((residuals)**2)
print(f'Test MSE: {mse}')
return final_predictions, mse, residuals
parser = argparse.ArgumentParser(description='Load a YAML configuration file.')
parser.add_argument('config_file', type=str, help='Name of the YAML configuration file.')
parser.add_argument('--gpu', type=int, default=0, help='GPU ID to use. Default is 0.')
args = parser.parse_args()
training_config = load_config('training_configs/' + args.config_file)
print(f"Loaded configuration from {args.config_file}")
# Load training configuration and network configuration
#training_config = load_config('training_configs/' + 'training_config1.yaml')
network_config = load_config('model/' + training_config['network_config_file'])
os.environ['WANDB_MODE'] = 'online'
#os.environ['WANDB_MODE'] = 'disabled'
wandb.init(project="DAE_MLP", config=training_config)
config_copy = f'checkpoints/{wandb.run.name}_conf.yaml'
shutil.copy('training_configs/' + args.config_file, config_copy)
with open(config_copy, 'a') as f:
f.write(f'orig_conf_file: {args.config_file}')
print(training_config)
harmonization = training_config['harmonization']
if harmonization:
table_path = 'XXX.feather'
print('Harmonized data loaded')
scaler_name = 'UKB_stdScaler_10K_harmonized.joblib'
else:
table_path = 'XXX.feather'
scaler_name = 'UKB_stdScaler_10K.joblib'
data_matrix = pd.read_feather(table_path).values
aparc_names = np.load('tables/aparc_labels_10K.npy', allow_pickle=True)
print(data_matrix.shape)
# regions that are ignored in the reconstruction (entirely removed)
aparc_ignore = ['unknown','isthmuscingulate','rostralanteriorcingulate','caudalanteriorcingulate','posteriorcingulate','corpuscallosum']
#aparc_ignore = []
unique_regions, region_indices = np.unique(aparc_names, return_inverse=True)
remove_mask = np.array([name in aparc_ignore for name in aparc_names])
aparc_names = aparc_names[~remove_mask]
region_indices = region_indices[~remove_mask]
unique_region_indices = np.unique(region_indices)
print(f"removed: {remove_mask.sum()}")
# regions that never serve as predictors
# NOTE: ensure that corruption_rate is high enough to have enough parcels remaining for random selection
if training_config['mask_AD_ROI'] == True:
aparc_always_masked = ['entorhinal', 'inferiortemporal', 'middletemporal', 'inferiorparietal', 'fusiform']
else:
aparc_always_masked = []
#aparc_always_masked = training_config['aparc_always_masked']
print(aparc_always_masked)
always_mask_indices = np.array([np.where(unique_regions == region)[0][0] for region in aparc_always_masked if region in unique_regions])
num_remaining_parcels = len(unique_region_indices)
num_parcels_to_mask = int(num_remaining_parcels * wandb.config.corruption_rate_train)
num_rand_parcels = num_parcels_to_mask - len(always_mask_indices)
print(f"Total parcels: {num_remaining_parcels}. Parcels to mask: {num_parcels_to_mask}. Always masked: {len(always_mask_indices)}. Randomly pick {num_rand_parcels} from {num_remaining_parcels-len(always_mask_indices)}.")
if harmonization:
age = data_matrix[:, 1].reshape(-1, 1).astype(np.float32)
sex = data_matrix[:, 2].reshape(-1, 1)
X_train, X_test, as_train, as_test = train_test_split(data_matrix[:, 4:].astype(np.float32), np.hstack((age, sex)), test_size=0.2, random_state=42)
else:
age = data_matrix[:, 0].reshape(-1, 1).astype(np.float32)
sex = data_matrix[:, 1].reshape(-1, 1)
X_train, X_test, as_train, as_test = train_test_split(data_matrix[:, 5:].astype(np.float32), np.hstack((age, sex)), test_size=0.2, random_state=42)
# Remove regions from aparc_ignore
X_train = X_train[:, ~remove_mask]
X_test = X_test[:, ~remove_mask]
del data_matrix
print(X_train.shape)
# Combine preprocessing for age normalization and sex encoding
preprocessor = ColumnTransformer(
transformers=[
('age', StandardScaler(), [0]), # Normalize age
('sex', OneHotEncoder(drop='if_binary'), [1]) # Convert sex to binary format
])
as_train_normalized = preprocessor.fit_transform(as_train)
as_test_normalized = preprocessor.transform(as_test)
as_scaler_name = scaler_name.replace('UKB_', 'UKB_AS_')
joblib.dump(preprocessor, as_scaler_name)
if training_config['use_age_sex'] == False:
as_train_normalized = np.zeros(as_train_normalized.shape)
as_test_normalized = np.zeros(as_test_normalized.shape)
# Fit the scaler on the training data and transform both training and testing data
scaler = StandardScaler()
X_train_normalized = scaler.fit_transform(X_train)
X_test_normalized = scaler.transform(X_test)
joblib.dump(scaler, scaler_name)
print('scaler saved')
del X_train, X_test
# Combine Age & Sex with thickness data
X_train_normalized = np.hstack((as_train_normalized, X_train_normalized))
X_test_normalized = np.hstack((as_test_normalized, X_test_normalized))
# Convert to PyTorch tensors
X_train_tensor = torch.tensor(X_train_normalized, dtype=torch.float32)
X_test_tensor = torch.tensor(X_test_normalized, dtype=torch.float32)
input_dim = X_train_normalized.shape[1]
del X_train_normalized, X_test_normalized
# Create datasets
train_dataset = TensorDataset(X_train_tensor, X_train_tensor)
test_dataset = TensorDataset(X_test_tensor, X_test_tensor)
# Create data loaders
train_loader = DataLoader(train_dataset, batch_size=wandb.config.batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=wandb.config.batch_size, shuffle=False)
# Define the model based on the loaded network configuration
network_config['layers'][0]['in_features'] = input_dim
network_config['layers'][-1]['out_features'] = input_dim
model = build_model_from_config(network_config)
print(model)
wandb.watch(model, log_freq=2)
# Device configuration for CUDA or CPU
#device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
device = torch.device(f"cuda:{args.gpu}" if torch.cuda.is_available() else "cpu")
model.to(device)
train(model, train_loader, test_loader, wandb.config.epochs,region_indices, always_mask_indices)
# Calculate the total number of parameters and trainable params
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Total Parameters: {total_params}")
print(f"Trainable Parameters: {trainable_params}")
del X_train_tensor, train_dataset, train_loader
torch.cuda.empty_cache() # Frees up unused memory from PyTorch's allocator (for GPU)
sd_pop = np.nanstd(res_test, axis=0)
sd_pop_name = f'{wandb.run.name}_sd_pop.npy'
np.save('variances/' + sd_pop_name, sd_pop)
mse_sd = np.mean((res_test / sd_pop)**2)