|
| 1 | +import unittest |
| 2 | + |
| 3 | +import Mariana.layers as ML |
| 4 | +import Mariana.initializations as MI |
| 5 | +import Mariana.decorators as MD |
| 6 | +import Mariana.costs as MC |
| 7 | +import Mariana.regularizations as MR |
| 8 | +import Mariana.scenari as MS |
| 9 | +import Mariana.activations as MA |
| 10 | + |
| 11 | +import theano.tensor as tt |
| 12 | +import numpy |
| 13 | + |
| 14 | +class DecoratorTests(unittest.TestCase): |
| 15 | + |
| 16 | + def setUp(self) : |
| 17 | + pass |
| 18 | + |
| 19 | + def tearDown(self) : |
| 20 | + pass |
| 21 | + |
| 22 | + # @unittest.skip("skipping") |
| 23 | + def test_batch_norm(self) : |
| 24 | + import theano, numpy |
| 25 | + |
| 26 | + def batchnorm(W, b, data) : |
| 27 | + return numpy.asarray( W * ( (data-numpy.mean(data)) / numpy.std(data) ) + b, dtype= theano.config.floatX) |
| 28 | + |
| 29 | + data = numpy.random.randn(1, 100).astype(theano.config.floatX) |
| 30 | + |
| 31 | + inp = ML.Input(100, 'inp', decorators=[MD.BatchNormalization()]) |
| 32 | + |
| 33 | + model = inp.network |
| 34 | + m1 = numpy.mean( model.propagate(inp, inp=data)["outputs"]) |
| 35 | + m2 = numpy.mean( batchnorm(inp.batchnorm_W.get_value(), inp.batchnorm_b.get_value(), data) ) |
| 36 | + |
| 37 | + epsilon = 1e-6 |
| 38 | + self.assertTrue ( (m1 - m2) < epsilon ) |
| 39 | + |
| 40 | + # @unittest.skip("skipping") |
| 41 | + def test_mask(self) : |
| 42 | + import theano, numpy |
| 43 | + |
| 44 | + inp = ML.Input(100, 'inp', decorators=[MD.Mask(mask = numpy.zeros(100))]) |
| 45 | + model = inp.network |
| 46 | + |
| 47 | + data = numpy.random.randn(1, 100).astype(theano.config.floatX) |
| 48 | + out = model.propagate(inp, inp=data)["outputs"] |
| 49 | + |
| 50 | + self.assertEqual(sum(out[0]), 0) |
| 51 | + |
| 52 | +if __name__ == '__main__' : |
| 53 | + import Mariana.settings as MSET |
| 54 | + MSET.VERBOSE = False |
| 55 | + unittest.main() |
0 commit comments