-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinteract.py
89 lines (73 loc) · 2.03 KB
/
interact.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from nltk.stem.snowball import SnowballStemmer
import pickle
import numpy as np
import math
def magnitude_normalize_columns(matrix):
for j in range(len(matrix[0])):
sum1=0
for i in range(len(matrix)):
sum1=sum1+((matrix[i][j])**2)
sum1=math.sqrt(sum1)
if(sum1==0):
continue
else:
for i in range(len(matrix)):
matrix[i][j]=float(matrix[i][j])/sum1
def magnitude_normalize_rows(matrix):
for i in range(len(matrix)):
sum1=0
for j in range(len(matrix[0])):
sum1=sum1+((matrix[i][j])**2)
sum1=math.sqrt(sum1)
if(sum1==0):
continue
else:
for j in range(len(matrix[0])):
matrix[i][j]=float(matrix[i][j])/sum1
stemmer=SnowballStemmer('english')
#Load the distinct words list
print("Please wait while initialization happens......")
with open('distinct.pkl','rb') as f:
distinct_words=pickle.load(f)
#Load the TF_IDF vector
with open('tf_idf.pkl','rb') as f:
TF_IDF_VECTOR=pickle.load(f)
magnitude_normalize_columns(TF_IDF_VECTOR)
print("Please enter the statement/tweet")
print()
###################################################################
testing=raw_input()
special_characters=['[',']','\\','/',',','"','@','#','.']
for i in special_characters:
testing=testing.replace(i,"")
testing=testing.split(" ")
testing1=[]
for i in range(len(testing)):
testing1.append(stemmer.stem(testing[i]))
#print(testing1[i])
testing_row=[]
for i in range(len(distinct_words)):
if(distinct_words[i] in testing1):
testing_row.append(1)
else:
testing_row.append(0)
magnitude_normalize_rows([testing_row])
####################################################################
ans=np.matmul(testing_row,TF_IDF_VECTOR)
print(ans)
emotions=['Joy','Fear','Anger','Sadness','Disgust','Shame','Guilt']
mx=max(ans)
#print(ans)
#print(mx)
if(mx==0):
print("No results found. Sorry, I think we are short on data.")
else:
for i in range(len(ans)):
ans[i]=ans[i]/(float)(mx)
results=[]
for i in range(len(ans)):
results.append((ans[i],emotions[i]))
results.sort()
results=results[::-1]
for i in results[:3]:
print(i[1])