-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathsintel_io.py
193 lines (150 loc) · 5.92 KB
/
sintel_io.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#! /usr/bin/env python2
"""
I/O script to save and load the data coming with the MPI-Sintel low-level
computer vision benchmark.
For more details about the benchmark, please visit www.mpi-sintel.de
CHANGELOG:
v1.0 (2015/02/03): First release
Copyright (c) 2015 Jonas Wulff
Max Planck Institute for Intelligent Systems, Tuebingen, Germany
"""
# Requirements: Numpy as PIL/Pillow
import numpy as np
from PIL import Image
# Check for endianness, based on Daniel Scharstein's optical flow code.
# Using little-endian architecture, these two should be equal.
TAG_FLOAT = 202021.25
TAG_CHAR = 'PIEH'
def flow_read(filename):
""" Read optical flow from file, return (U,V) tuple.
Original code by Deqing Sun, adapted from Daniel Scharstein.
"""
f = open(filename,'rb')
check = np.fromfile(f,dtype=np.float32,count=1)[0]
assert check == TAG_FLOAT, ' flow_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check)
width = np.fromfile(f,dtype=np.int32,count=1)[0]
height = np.fromfile(f,dtype=np.int32,count=1)[0]
size = width*height
assert width > 0 and height > 0 and size > 1 and size < 100000000, ' flow_read:: Wrong input size (width = {0}, height = {1}).'.format(width,height)
tmp = np.fromfile(f,dtype=np.float32,count=-1).reshape((height,width*2))
u = tmp[:,np.arange(width)*2]
v = tmp[:,np.arange(width)*2 + 1]
return u,v
def flow_write(filename,uv,v=None):
""" Write optical flow to file.
If v is None, uv is assumed to contain both u and v channels,
stacked in depth.
Original code by Deqing Sun, adapted from Daniel Scharstein.
"""
nBands = 2
if v is None:
assert(uv.ndim == 3)
assert(uv.shape[2] == 2)
u = uv[:,:,0]
v = uv[:,:,1]
else:
u = uv
assert(u.shape == v.shape)
height,width = u.shape
f = open(filename,'wb')
# write the header
f.write(TAG_CHAR)
np.array(width).astype(np.int32).tofile(f)
np.array(height).astype(np.int32).tofile(f)
# arrange into matrix form
tmp = np.zeros((height, width*nBands))
tmp[:,np.arange(width)*2] = u
tmp[:,np.arange(width)*2 + 1] = v
tmp.astype(np.float32).tofile(f)
f.close()
def depth_read(filename):
""" Read depth data from file, return as numpy array. """
f = open(filename,'rb')
check = np.fromfile(f,dtype=np.float32,count=1)[0]
assert check == TAG_FLOAT, ' depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check)
width = np.fromfile(f,dtype=np.int32,count=1)[0]
height = np.fromfile(f,dtype=np.int32,count=1)[0]
size = width*height
assert width > 0 and height > 0 and size > 1 and size < 100000000, ' depth_read:: Wrong input size (width = {0}, height = {1}).'.format(width,height)
depth = np.fromfile(f,dtype=np.float32,count=-1).reshape((height,width))
return depth
def depth_write(filename, depth):
""" Write depth to file. """
height,width = depth.shape[:2]
f = open(filename,'wb')
# write the header
f.write(TAG_CHAR)
np.array(width).astype(np.int32).tofile(f)
np.array(height).astype(np.int32).tofile(f)
depth.astype(np.float32).tofile(f)
f.close()
def disparity_write(filename,disparity,bitdepth=16):
""" Write disparity to file.
bitdepth can be either 16 (default) or 32.
The maximum disparity is 1024, since the image width in Sintel
is 1024.
"""
d = disparity.copy()
# Clip disparity.
d[d>1024] = 1024
d[d<0] = 0
d_r = (d / 4.0).astype('uint8')
d_g = ((d * (2.0**6)) % 256).astype('uint8')
out = np.zeros((d.shape[0],d.shape[1],3),dtype='uint8')
out[:,:,0] = d_r
out[:,:,1] = d_g
if bitdepth > 16:
d_b = (d * (2**14) % 256).astype('uint8')
out[:,:,2] = d_b
Image.fromarray(out,'RGB').save(filename,'PNG')
def disparity_read(filename):
""" Return disparity read from filename. """
f_in = np.array(Image.open(filename))
d_r = f_in[:,:,0].astype('float64')
d_g = f_in[:,:,1].astype('float64')
d_b = f_in[:,:,2].astype('float64')
depth = d_r * 4 + d_g / (2**6) + d_b / (2**14)
return depth
def cam_read(filename, pose_only=False):
""" Read camera data, return (M,N) tuple.
M is the intrinsic matrix, N is the extrinsic matrix, so that
x = M*N*X,
with x being a point in homogeneous image pixel coordinates, X being a
point in homogeneous world coordinates.
"""
f = open(filename,'rb')
check = np.fromfile(f,dtype=np.float32,count=1)[0]
assert check == TAG_FLOAT, ' cam_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check)
M = np.fromfile(f,dtype='float64',count=9).reshape((3,3))
N = np.fromfile(f,dtype='float64',count=12).reshape((3,4))
if pose_only:
return N
else:
return M,N
def cam_write(filename, M, N):
""" Write intrinsic matrix M and extrinsic matrix N to file. """
f = open(filename,'wb')
# write the header
f.write(TAG_CHAR)
M.astype('float64').tofile(f)
N.astype('float64').tofile(f)
f.close()
def segmentation_write(filename,segmentation):
""" Write segmentation to file. """
segmentation_ = segmentation.astype('int32')
seg_r = np.floor(segmentation_ / (256**2)).astype('uint8')
seg_g = np.floor((segmentation_ % (256**2)) / 256).astype('uint8')
seg_b = np.floor(segmentation_ % 256).astype('uint8')
out = np.zeros((segmentation.shape[0],segmentation.shape[1],3),dtype='uint8')
out[:,:,0] = seg_r
out[:,:,1] = seg_g
out[:,:,2] = seg_b
Image.fromarray(out,'RGB').save(filename,'PNG')
def segmentation_read(filename):
""" Return disparity read from filename. """
f_in = np.array(Image.open(filename))
seg_r = f_in[:,:,0].astype('int32')
seg_g = f_in[:,:,1].astype('int32')
seg_b = f_in[:,:,2].astype('int32')
segmentation = (seg_r * 256 + seg_g) * 256 + seg_b
return segmentation