|
| 1 | +// Licensed to the Apache Software Foundation (ASF) under one |
| 2 | +// or more contributor license agreements. See the NOTICE file |
| 3 | +// distributed with this work for additional information |
| 4 | +// regarding copyright ownership. The ASF licenses this file |
| 5 | +// to you under the Apache License, Version 2.0 (the |
| 6 | +// "License"); you may not use this file except in compliance |
| 7 | +// with the License. You may obtain a copy of the License at |
| 8 | +// |
| 9 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +// |
| 11 | +// Unless required by applicable law or agreed to in writing, |
| 12 | +// software distributed under the License is distributed on an |
| 13 | +// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 14 | +// KIND, either express or implied. See the License for the |
| 15 | +// specific language governing permissions and limitations |
| 16 | +// under the License. |
| 17 | + |
| 18 | +//! Benchmarks of benchmark for extracting arrow statistics from parquet |
| 19 | +
|
| 20 | +use arrow::array::{ArrayRef, DictionaryArray, Float64Array, StringArray, UInt64Array}; |
| 21 | +use arrow_array::{Int32Array, Int64Array, RecordBatch}; |
| 22 | +use arrow_schema::{ |
| 23 | + DataType::{self, *}, |
| 24 | + Field, Schema, |
| 25 | +}; |
| 26 | +use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion}; |
| 27 | +use parquet::{arrow::arrow_reader::ArrowReaderOptions, file::properties::WriterProperties}; |
| 28 | +use parquet::{ |
| 29 | + arrow::{arrow_reader::ArrowReaderBuilder, ArrowWriter}, |
| 30 | + file::properties::EnabledStatistics, |
| 31 | +}; |
| 32 | +use std::sync::Arc; |
| 33 | +use tempfile::NamedTempFile; |
| 34 | +#[derive(Debug, Clone)] |
| 35 | +enum TestTypes { |
| 36 | + UInt64, |
| 37 | + Int64, |
| 38 | + F64, |
| 39 | + String, |
| 40 | + Dictionary, |
| 41 | +} |
| 42 | + |
| 43 | +use parquet::arrow::arrow_reader::statistics::StatisticsConverter; |
| 44 | +use std::fmt; |
| 45 | + |
| 46 | +impl fmt::Display for TestTypes { |
| 47 | + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 48 | + match self { |
| 49 | + TestTypes::UInt64 => write!(f, "UInt64"), |
| 50 | + TestTypes::Int64 => write!(f, "Int64"), |
| 51 | + TestTypes::F64 => write!(f, "F64"), |
| 52 | + TestTypes::String => write!(f, "String"), |
| 53 | + TestTypes::Dictionary => write!(f, "Dictionary(Int32, String)"), |
| 54 | + } |
| 55 | + } |
| 56 | +} |
| 57 | + |
| 58 | +fn create_parquet_file( |
| 59 | + dtype: TestTypes, |
| 60 | + row_groups: usize, |
| 61 | + data_page_row_count_limit: &Option<usize>, |
| 62 | +) -> NamedTempFile { |
| 63 | + let schema = match dtype { |
| 64 | + TestTypes::UInt64 => Arc::new(Schema::new(vec![Field::new("col", DataType::UInt64, true)])), |
| 65 | + TestTypes::Int64 => Arc::new(Schema::new(vec![Field::new("col", DataType::Int64, true)])), |
| 66 | + TestTypes::F64 => Arc::new(Schema::new(vec![Field::new( |
| 67 | + "col", |
| 68 | + DataType::Float64, |
| 69 | + true, |
| 70 | + )])), |
| 71 | + TestTypes::String => Arc::new(Schema::new(vec![Field::new("col", DataType::Utf8, true)])), |
| 72 | + TestTypes::Dictionary => Arc::new(Schema::new(vec![Field::new( |
| 73 | + "col", |
| 74 | + DataType::Dictionary(Box::new(Int32), Box::new(Utf8)), |
| 75 | + true, |
| 76 | + )])), |
| 77 | + }; |
| 78 | + |
| 79 | + let mut props = WriterProperties::builder().set_max_row_group_size(row_groups); |
| 80 | + if let Some(limit) = data_page_row_count_limit { |
| 81 | + props = props |
| 82 | + .set_data_page_row_count_limit(*limit) |
| 83 | + .set_statistics_enabled(EnabledStatistics::Page); |
| 84 | + }; |
| 85 | + let props = props.build(); |
| 86 | + |
| 87 | + let file = tempfile::Builder::new() |
| 88 | + .suffix(".parquet") |
| 89 | + .tempfile() |
| 90 | + .unwrap(); |
| 91 | + let mut writer = |
| 92 | + ArrowWriter::try_new(file.reopen().unwrap(), schema.clone(), Some(props)).unwrap(); |
| 93 | + |
| 94 | + for _ in 0..row_groups { |
| 95 | + let batch = match dtype { |
| 96 | + TestTypes::UInt64 => make_uint64_batch(), |
| 97 | + TestTypes::Int64 => make_int64_batch(), |
| 98 | + TestTypes::F64 => make_f64_batch(), |
| 99 | + TestTypes::String => make_string_batch(), |
| 100 | + TestTypes::Dictionary => make_dict_batch(), |
| 101 | + }; |
| 102 | + if data_page_row_count_limit.is_some() { |
| 103 | + // Send batches one at a time. This allows the |
| 104 | + // writer to apply the page limit, that is only |
| 105 | + // checked on RecordBatch boundaries. |
| 106 | + for i in 0..batch.num_rows() { |
| 107 | + writer.write(&batch.slice(i, 1)).unwrap(); |
| 108 | + } |
| 109 | + } else { |
| 110 | + writer.write(&batch).unwrap(); |
| 111 | + } |
| 112 | + } |
| 113 | + writer.close().unwrap(); |
| 114 | + file |
| 115 | +} |
| 116 | + |
| 117 | +fn make_uint64_batch() -> RecordBatch { |
| 118 | + let array: ArrayRef = Arc::new(UInt64Array::from(vec![ |
| 119 | + Some(1), |
| 120 | + Some(2), |
| 121 | + Some(3), |
| 122 | + Some(4), |
| 123 | + Some(5), |
| 124 | + ])); |
| 125 | + RecordBatch::try_new( |
| 126 | + Arc::new(arrow::datatypes::Schema::new(vec![ |
| 127 | + arrow::datatypes::Field::new("col", UInt64, false), |
| 128 | + ])), |
| 129 | + vec![array], |
| 130 | + ) |
| 131 | + .unwrap() |
| 132 | +} |
| 133 | + |
| 134 | +fn make_int64_batch() -> RecordBatch { |
| 135 | + let array: ArrayRef = Arc::new(Int64Array::from(vec![ |
| 136 | + Some(1), |
| 137 | + Some(2), |
| 138 | + Some(3), |
| 139 | + Some(4), |
| 140 | + Some(5), |
| 141 | + ])); |
| 142 | + RecordBatch::try_new( |
| 143 | + Arc::new(arrow::datatypes::Schema::new(vec![ |
| 144 | + arrow::datatypes::Field::new("col", Int64, false), |
| 145 | + ])), |
| 146 | + vec![array], |
| 147 | + ) |
| 148 | + .unwrap() |
| 149 | +} |
| 150 | + |
| 151 | +fn make_f64_batch() -> RecordBatch { |
| 152 | + let array: ArrayRef = Arc::new(Float64Array::from(vec![1.0, 2.0, 3.0, 4.0, 5.0])); |
| 153 | + RecordBatch::try_new( |
| 154 | + Arc::new(arrow::datatypes::Schema::new(vec![ |
| 155 | + arrow::datatypes::Field::new("col", Float64, false), |
| 156 | + ])), |
| 157 | + vec![array], |
| 158 | + ) |
| 159 | + .unwrap() |
| 160 | +} |
| 161 | + |
| 162 | +fn make_string_batch() -> RecordBatch { |
| 163 | + let array: ArrayRef = Arc::new(StringArray::from(vec!["a", "b", "c", "d", "e"])); |
| 164 | + RecordBatch::try_new( |
| 165 | + Arc::new(arrow::datatypes::Schema::new(vec![ |
| 166 | + arrow::datatypes::Field::new("col", Utf8, false), |
| 167 | + ])), |
| 168 | + vec![array], |
| 169 | + ) |
| 170 | + .unwrap() |
| 171 | +} |
| 172 | + |
| 173 | +fn make_dict_batch() -> RecordBatch { |
| 174 | + let keys = Int32Array::from(vec![0, 1, 2, 3, 4]); |
| 175 | + let values = StringArray::from(vec!["a", "b", "c", "d", "e"]); |
| 176 | + let array: ArrayRef = Arc::new(DictionaryArray::try_new(keys, Arc::new(values)).unwrap()); |
| 177 | + RecordBatch::try_new( |
| 178 | + Arc::new(Schema::new(vec![Field::new( |
| 179 | + "col", |
| 180 | + Dictionary(Box::new(Int32), Box::new(Utf8)), |
| 181 | + false, |
| 182 | + )])), |
| 183 | + vec![array], |
| 184 | + ) |
| 185 | + .unwrap() |
| 186 | +} |
| 187 | + |
| 188 | +fn criterion_benchmark(c: &mut Criterion) { |
| 189 | + let row_groups = 100; |
| 190 | + use TestTypes::*; |
| 191 | + let types = vec![Int64, UInt64, F64, String, Dictionary]; |
| 192 | + let data_page_row_count_limits = vec![None, Some(1)]; |
| 193 | + |
| 194 | + for dtype in types { |
| 195 | + for data_page_row_count_limit in &data_page_row_count_limits { |
| 196 | + let file = create_parquet_file(dtype.clone(), row_groups, data_page_row_count_limit); |
| 197 | + let file = file.reopen().unwrap(); |
| 198 | + let options = ArrowReaderOptions::new().with_page_index(true); |
| 199 | + let reader = ArrowReaderBuilder::try_new_with_options(file, options).unwrap(); |
| 200 | + let metadata = reader.metadata(); |
| 201 | + let row_groups = metadata.row_groups(); |
| 202 | + let row_group_indices: Vec<_> = (0..row_groups.len()).collect(); |
| 203 | + |
| 204 | + let statistic_type = if data_page_row_count_limit.is_some() { |
| 205 | + "data page" |
| 206 | + } else { |
| 207 | + "row group" |
| 208 | + }; |
| 209 | + |
| 210 | + let mut group = c.benchmark_group(format!( |
| 211 | + "Extract {} statistics for {}", |
| 212 | + statistic_type, |
| 213 | + dtype.clone() |
| 214 | + )); |
| 215 | + group.bench_function(BenchmarkId::new("extract_statistics", dtype.clone()), |b| { |
| 216 | + b.iter(|| { |
| 217 | + let converter = StatisticsConverter::try_new( |
| 218 | + "col", |
| 219 | + reader.schema(), |
| 220 | + reader.parquet_schema(), |
| 221 | + ) |
| 222 | + .unwrap(); |
| 223 | + |
| 224 | + if data_page_row_count_limit.is_some() { |
| 225 | + let column_page_index = reader |
| 226 | + .metadata() |
| 227 | + .column_index() |
| 228 | + .expect("File should have column page indices"); |
| 229 | + |
| 230 | + let column_offset_index = reader |
| 231 | + .metadata() |
| 232 | + .offset_index() |
| 233 | + .expect("File should have column offset indices"); |
| 234 | + |
| 235 | + let _ = converter.data_page_mins( |
| 236 | + column_page_index, |
| 237 | + column_offset_index, |
| 238 | + &row_group_indices, |
| 239 | + ); |
| 240 | + let _ = converter.data_page_maxes( |
| 241 | + column_page_index, |
| 242 | + column_offset_index, |
| 243 | + &row_group_indices, |
| 244 | + ); |
| 245 | + let _ = converter.data_page_null_counts( |
| 246 | + column_page_index, |
| 247 | + column_offset_index, |
| 248 | + &row_group_indices, |
| 249 | + ); |
| 250 | + let _ = converter.data_page_row_counts( |
| 251 | + column_offset_index, |
| 252 | + row_groups, |
| 253 | + &row_group_indices, |
| 254 | + ); |
| 255 | + } else { |
| 256 | + let _ = converter.row_group_mins(row_groups.iter()).unwrap(); |
| 257 | + let _ = converter.row_group_maxes(row_groups.iter()).unwrap(); |
| 258 | + let _ = converter.row_group_null_counts(row_groups.iter()).unwrap(); |
| 259 | + let _ = converter.row_group_row_counts(row_groups.iter()).unwrap(); |
| 260 | + } |
| 261 | + }) |
| 262 | + }); |
| 263 | + group.finish(); |
| 264 | + } |
| 265 | + } |
| 266 | +} |
| 267 | + |
| 268 | +criterion_group!(benches, criterion_benchmark); |
| 269 | +criterion_main!(benches); |
0 commit comments