|  | 
|  | 1 | +# | 
|  | 2 | +# Licensed to the Apache Software Foundation (ASF) under one or more | 
|  | 3 | +# contributor license agreements.  See the NOTICE file distributed with | 
|  | 4 | +# this work for additional information regarding copyright ownership. | 
|  | 5 | +# The ASF licenses this file to You under the Apache License, Version 2.0 | 
|  | 6 | +# (the "License"); you may not use this file except in compliance with | 
|  | 7 | +# the License.  You may obtain a copy of the License at | 
|  | 8 | +# | 
|  | 9 | +#    http://www.apache.org/licenses/LICENSE-2.0 | 
|  | 10 | +# | 
|  | 11 | +# Unless required by applicable law or agreed to in writing, software | 
|  | 12 | +# distributed under the License is distributed on an "AS IS" BASIS, | 
|  | 13 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | 14 | +# See the License for the specific language governing permissions and | 
|  | 15 | +# limitations under the License. | 
|  | 16 | +# | 
|  | 17 | + | 
|  | 18 | +import tempfile | 
|  | 19 | +import unittest | 
|  | 20 | + | 
|  | 21 | +import numpy as np | 
|  | 22 | + | 
|  | 23 | +from pyspark.ml.linalg import Vectors | 
|  | 24 | +from pyspark.sql import SparkSession | 
|  | 25 | +from pyspark.ml.regression import ( | 
|  | 26 | +    LinearRegression, | 
|  | 27 | +    LinearRegressionModel, | 
|  | 28 | +    LinearRegressionSummary, | 
|  | 29 | +    LinearRegressionTrainingSummary, | 
|  | 30 | +) | 
|  | 31 | + | 
|  | 32 | + | 
|  | 33 | +class RegressionTestsMixin: | 
|  | 34 | +    @property | 
|  | 35 | +    def df(self): | 
|  | 36 | +        return ( | 
|  | 37 | +            self.spark.createDataFrame( | 
|  | 38 | +                [ | 
|  | 39 | +                    (1.0, 1.0, Vectors.dense(0.0, 5.0)), | 
|  | 40 | +                    (0.0, 2.0, Vectors.dense(1.0, 2.0)), | 
|  | 41 | +                    (1.5, 3.0, Vectors.dense(2.0, 1.0)), | 
|  | 42 | +                    (0.7, 4.0, Vectors.dense(1.5, 3.0)), | 
|  | 43 | +                ], | 
|  | 44 | +                ["label", "weight", "features"], | 
|  | 45 | +            ) | 
|  | 46 | +            .coalesce(1) | 
|  | 47 | +            .sortWithinPartitions("weight") | 
|  | 48 | +        ) | 
|  | 49 | + | 
|  | 50 | +    def test_linear_regression(self): | 
|  | 51 | +        df = self.df | 
|  | 52 | +        lr = LinearRegression( | 
|  | 53 | +            regParam=0.0, | 
|  | 54 | +            maxIter=2, | 
|  | 55 | +            solver="normal", | 
|  | 56 | +            weightCol="weight", | 
|  | 57 | +        ) | 
|  | 58 | +        self.assertEqual(lr.getRegParam(), 0) | 
|  | 59 | +        self.assertEqual(lr.getMaxIter(), 2) | 
|  | 60 | +        self.assertEqual(lr.getSolver(), "normal") | 
|  | 61 | +        self.assertEqual(lr.getWeightCol(), "weight") | 
|  | 62 | + | 
|  | 63 | +        # Estimator save & load | 
|  | 64 | +        with tempfile.TemporaryDirectory(prefix="linear_regression") as d: | 
|  | 65 | +            lr.write().overwrite().save(d) | 
|  | 66 | +            lr2 = LinearRegression.load(d) | 
|  | 67 | +            self.assertEqual(str(lr), str(lr2)) | 
|  | 68 | + | 
|  | 69 | +        model = lr.fit(df) | 
|  | 70 | +        self.assertEqual(model.numFeatures, 2) | 
|  | 71 | +        self.assertTrue(np.allclose(model.scale, 1.0, atol=1e-4)) | 
|  | 72 | +        self.assertTrue(np.allclose(model.intercept, -0.35, atol=1e-4)) | 
|  | 73 | +        self.assertTrue(np.allclose(model.coefficients, [0.65, 0.1125], atol=1e-4)) | 
|  | 74 | + | 
|  | 75 | +        output = model.transform(df) | 
|  | 76 | +        expected_cols = [ | 
|  | 77 | +            "label", | 
|  | 78 | +            "weight", | 
|  | 79 | +            "features", | 
|  | 80 | +            "prediction", | 
|  | 81 | +        ] | 
|  | 82 | +        self.assertEqual(output.columns, expected_cols) | 
|  | 83 | +        self.assertEqual(output.count(), 4) | 
|  | 84 | + | 
|  | 85 | +        self.assertTrue( | 
|  | 86 | +            np.allclose(model.predict(Vectors.dense(0.0, 5.0)), 0.21249999999999963, atol=1e-4) | 
|  | 87 | +        ) | 
|  | 88 | + | 
|  | 89 | +        # Model summary | 
|  | 90 | +        summary = model.summary | 
|  | 91 | +        self.assertTrue(isinstance(summary, LinearRegressionSummary)) | 
|  | 92 | +        self.assertTrue(isinstance(summary, LinearRegressionTrainingSummary)) | 
|  | 93 | +        self.assertEqual(summary.predictions.columns, expected_cols) | 
|  | 94 | +        self.assertEqual(summary.predictions.count(), 4) | 
|  | 95 | +        self.assertEqual(summary.residuals.columns, ["residuals"]) | 
|  | 96 | +        self.assertEqual(summary.residuals.count(), 4) | 
|  | 97 | + | 
|  | 98 | +        self.assertEqual(summary.degreesOfFreedom, 1) | 
|  | 99 | +        self.assertEqual(summary.numInstances, 4) | 
|  | 100 | +        self.assertEqual(summary.objectiveHistory, [0.0]) | 
|  | 101 | +        self.assertTrue( | 
|  | 102 | +            np.allclose( | 
|  | 103 | +                summary.coefficientStandardErrors, | 
|  | 104 | +                [1.2859821149611763, 0.6248749874975031, 3.1645497310044184], | 
|  | 105 | +                atol=1e-4, | 
|  | 106 | +            ) | 
|  | 107 | +        ) | 
|  | 108 | +        self.assertTrue( | 
|  | 109 | +            np.allclose( | 
|  | 110 | +                summary.devianceResiduals, [-0.7424621202458727, 0.7875000000000003], atol=1e-4 | 
|  | 111 | +            ) | 
|  | 112 | +        ) | 
|  | 113 | +        self.assertTrue( | 
|  | 114 | +            np.allclose( | 
|  | 115 | +                summary.pValues, | 
|  | 116 | +                [0.7020630236843428, 0.8866003086182783, 0.9298746994547682], | 
|  | 117 | +                atol=1e-4, | 
|  | 118 | +            ) | 
|  | 119 | +        ) | 
|  | 120 | +        self.assertTrue( | 
|  | 121 | +            np.allclose( | 
|  | 122 | +                summary.tValues, | 
|  | 123 | +                [0.5054502643838291, 0.1800360108036021, -0.11060025272186746], | 
|  | 124 | +                atol=1e-4, | 
|  | 125 | +            ) | 
|  | 126 | +        ) | 
|  | 127 | +        self.assertTrue(np.allclose(summary.explainedVariance, 0.07997500000000031, atol=1e-4)) | 
|  | 128 | +        self.assertTrue(np.allclose(summary.meanAbsoluteError, 0.4200000000000002, atol=1e-4)) | 
|  | 129 | +        self.assertTrue(np.allclose(summary.meanSquaredError, 0.20212500000000005, atol=1e-4)) | 
|  | 130 | +        self.assertTrue(np.allclose(summary.rootMeanSquaredError, 0.44958314025327956, atol=1e-4)) | 
|  | 131 | +        self.assertTrue(np.allclose(summary.r2, 0.4427212572373862, atol=1e-4)) | 
|  | 132 | +        self.assertTrue(np.allclose(summary.r2adj, -0.6718362282878414, atol=1e-4)) | 
|  | 133 | + | 
|  | 134 | +        summary2 = model.evaluate(df) | 
|  | 135 | +        self.assertTrue(isinstance(summary2, LinearRegressionSummary)) | 
|  | 136 | +        self.assertFalse(isinstance(summary2, LinearRegressionTrainingSummary)) | 
|  | 137 | +        self.assertEqual(summary2.predictions.columns, expected_cols) | 
|  | 138 | +        self.assertEqual(summary2.predictions.count(), 4) | 
|  | 139 | +        self.assertEqual(summary2.residuals.columns, ["residuals"]) | 
|  | 140 | +        self.assertEqual(summary2.residuals.count(), 4) | 
|  | 141 | + | 
|  | 142 | +        self.assertEqual(summary2.degreesOfFreedom, 1) | 
|  | 143 | +        self.assertEqual(summary2.numInstances, 4) | 
|  | 144 | +        self.assertTrue( | 
|  | 145 | +            np.allclose( | 
|  | 146 | +                summary2.devianceResiduals, [-0.7424621202458727, 0.7875000000000003], atol=1e-4 | 
|  | 147 | +            ) | 
|  | 148 | +        ) | 
|  | 149 | +        self.assertTrue(np.allclose(summary2.explainedVariance, 0.07997500000000031, atol=1e-4)) | 
|  | 150 | +        self.assertTrue(np.allclose(summary2.meanAbsoluteError, 0.4200000000000002, atol=1e-4)) | 
|  | 151 | +        self.assertTrue(np.allclose(summary2.meanSquaredError, 0.20212500000000005, atol=1e-4)) | 
|  | 152 | +        self.assertTrue(np.allclose(summary2.rootMeanSquaredError, 0.44958314025327956, atol=1e-4)) | 
|  | 153 | +        self.assertTrue(np.allclose(summary2.r2, 0.4427212572373862, atol=1e-4)) | 
|  | 154 | +        self.assertTrue(np.allclose(summary2.r2adj, -0.6718362282878414, atol=1e-4)) | 
|  | 155 | + | 
|  | 156 | +        # Model save & load | 
|  | 157 | +        with tempfile.TemporaryDirectory(prefix="linear_regression_model") as d: | 
|  | 158 | +            model.write().overwrite().save(d) | 
|  | 159 | +            model2 = LinearRegressionModel.load(d) | 
|  | 160 | +            self.assertEqual(str(model), str(model2)) | 
|  | 161 | + | 
|  | 162 | + | 
|  | 163 | +class RegressionTests(RegressionTestsMixin, unittest.TestCase): | 
|  | 164 | +    def setUp(self) -> None: | 
|  | 165 | +        self.spark = SparkSession.builder.master("local[4]").getOrCreate() | 
|  | 166 | + | 
|  | 167 | +    def tearDown(self) -> None: | 
|  | 168 | +        self.spark.stop() | 
|  | 169 | + | 
|  | 170 | + | 
|  | 171 | +if __name__ == "__main__": | 
|  | 172 | +    from pyspark.ml.tests.test_regression import *  # noqa: F401,F403 | 
|  | 173 | + | 
|  | 174 | +    try: | 
|  | 175 | +        import xmlrunner  # type: ignore[import] | 
|  | 176 | + | 
|  | 177 | +        testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) | 
|  | 178 | +    except ImportError: | 
|  | 179 | +        testRunner = None | 
|  | 180 | +    unittest.main(testRunner=testRunner, verbosity=2) | 
0 commit comments