-
Notifications
You must be signed in to change notification settings - Fork 446
/
Copy pathChunked.swift
874 lines (758 loc) · 27.2 KB
/
Chunked.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift Algorithms open source project
//
// Copyright (c) 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//
/// A collection wrapper that breaks a collection into chunks based on a
/// predicate.
///
/// Call `lazy.chunked(by:)` on a collection to create an instance of this type.
public struct ChunkedByCollection<Base: Collection, Subject> {
/// The collection that this instance provides a view onto.
@usableFromInline
internal let base: Base
/// The projection function.
@usableFromInline
internal let projection: (Base.Element) -> Subject
/// The predicate.
@usableFromInline
internal let belongInSameGroup: (Subject, Subject) -> Bool
/// The end index of the first chunk.
@usableFromInline
internal var endOfFirstChunk: Base.Index
@inlinable
internal init(
base: Base,
projection: @escaping (Base.Element) -> Subject,
belongInSameGroup: @escaping (Subject, Subject) -> Bool
) {
self.base = base
self.projection = projection
self.belongInSameGroup = belongInSameGroup
self.endOfFirstChunk = base.startIndex
if !base.isEmpty {
endOfFirstChunk = endOfChunk(startingAt: base.startIndex)
}
}
}
extension ChunkedByCollection: Collection {
/// A position in a chunked collection.
public struct Index: Comparable {
/// The range corresponding to the chunk at this position.
@usableFromInline
internal var baseRange: Range<Base.Index>
@inlinable
internal init(_ baseRange: Range<Base.Index>) {
self.baseRange = baseRange
}
@inlinable
public static func == (lhs: Index, rhs: Index) -> Bool {
// Since each index represents the range of a disparate chunk, no two
// unique indices will have the same lower bound.
lhs.baseRange.lowerBound == rhs.baseRange.lowerBound
}
@inlinable
public static func < (lhs: Index, rhs: Index) -> Bool {
// Only use the lower bound to test for ordering, as above.
lhs.baseRange.lowerBound < rhs.baseRange.lowerBound
}
}
/// Returns the index in the base collection of the end of the chunk starting
/// at the given index.
@inlinable
internal func endOfChunk(startingAt start: Base.Index) -> Base.Index {
var subject = projection(base[start])
return base[base.index(after: start)...].endOfPrefix(while: { element in
let nextSubject = projection(element)
defer { subject = nextSubject }
return belongInSameGroup(subject, nextSubject)
})
}
@inlinable
public var startIndex: Index {
Index(base.startIndex..<endOfFirstChunk)
}
@inlinable
public var endIndex: Index {
Index(base.endIndex..<base.endIndex)
}
@inlinable
public func index(after i: Index) -> Index {
precondition(i != endIndex, "Can't advance past endIndex")
let upperBound = i.baseRange.upperBound
guard upperBound != base.endIndex else { return endIndex }
let end = endOfChunk(startingAt: upperBound)
return Index(upperBound..<end)
}
@inlinable
public subscript(position: Index) -> Base.SubSequence {
precondition(position != endIndex, "Can't subscript using endIndex")
return base[position.baseRange]
}
}
extension ChunkedByCollection.Index: Hashable where Base.Index: Hashable {}
extension ChunkedByCollection: BidirectionalCollection
where Base: BidirectionalCollection
{
/// Returns the index in the base collection of the start of the chunk ending
/// at the given index.
@inlinable
internal func startOfChunk(endingAt end: Base.Index) -> Base.Index {
let indexBeforeEnd = base.index(before: end)
var subject = projection(base[indexBeforeEnd])
return base[..<indexBeforeEnd].startOfSuffix(while: { element in
let nextSubject = projection(element)
defer { subject = nextSubject }
return belongInSameGroup(nextSubject, subject)
})
}
@inlinable
public func index(before i: Index) -> Index {
precondition(i != startIndex, "Can't advance before startIndex")
let start = startOfChunk(endingAt: i.baseRange.lowerBound)
return Index(start..<i.baseRange.lowerBound)
}
}
extension ChunkedByCollection: LazyCollectionProtocol {}
/// A collection wrapper that breaks a collection into chunks based on a
/// predicate.
///
/// Call `lazy.chunked(on:)` on a collection to create an instance of this type.
public struct ChunkedOnCollection<Base: Collection, Subject: Equatable> {
@usableFromInline
internal var chunked: ChunkedByCollection<Base, Subject>
@inlinable
internal init(
base: Base,
projection: @escaping (Base.Element) -> Subject
) {
self.chunked = ChunkedByCollection(
base: base,
projection: projection,
belongInSameGroup: ==)
}
}
extension ChunkedOnCollection: Collection {
public typealias Index = ChunkedByCollection<Base, Subject>.Index
@inlinable
public var startIndex: Index {
chunked.startIndex
}
@inlinable
public var endIndex: Index {
chunked.endIndex
}
@inlinable
public subscript(position: Index) -> (Subject, Base.SubSequence) {
let subsequence = chunked[position]
let subject = chunked.projection(subsequence.first!)
return (subject, subsequence)
}
@inlinable
public func index(after i: Index) -> Index {
chunked.index(after: i)
}
}
extension ChunkedOnCollection: BidirectionalCollection
where Base: BidirectionalCollection
{
@inlinable
public func index(before i: Index) -> Index {
chunked.index(before: i)
}
}
extension ChunkedOnCollection: LazyCollectionProtocol {}
/// A collection wrapper that evenly breaks a collection into a given number of
/// chunks.
public struct EvenlyChunkedCollection<Base: Collection> {
/// The base collection.
@usableFromInline
internal let base: Base
/// The number of equal chunks the base collection is divided into.
@usableFromInline
internal let numberOfChunks: Int
/// The count of the base collection.
@usableFromInline
internal let baseCount: Int
/// The upper bound of the first chunk.
@usableFromInline
internal var firstUpperBound: Base.Index
@inlinable
internal init(base: Base, numberOfChunks: Int) {
self.base = base
self.numberOfChunks = numberOfChunks
self.baseCount = base.count
self.firstUpperBound = base.startIndex
if numberOfChunks > 0 {
firstUpperBound = endOfChunk(startingAt: base.startIndex, offset: 0)
}
}
}
extension EvenlyChunkedCollection {
/// Returns the number of chunks with size `smallChunkSize + 1` at the start
/// of this collection.
@inlinable
internal var numberOfLargeChunks: Int {
baseCount % numberOfChunks
}
/// Returns the size of a chunk at a given offset.
@inlinable
internal func sizeOfChunk(offset: Int) -> Int {
let isLargeChunk = offset < numberOfLargeChunks
return baseCount / numberOfChunks + (isLargeChunk ? 1 : 0)
}
/// Returns the index in the base collection of the end of the chunk starting
/// at the given index.
@inlinable
internal func endOfChunk(startingAt start: Base.Index, offset: Int) -> Base.Index {
base.index(start, offsetBy: sizeOfChunk(offset: offset))
}
/// Returns the index in the base collection of the start of the chunk ending
/// at the given index.
@inlinable
internal func startOfChunk(endingAt end: Base.Index, offset: Int) -> Base.Index {
base.index(end, offsetBy: -sizeOfChunk(offset: offset))
}
/// Returns the index that corresponds to the chunk that starts at the given
/// base index.
@inlinable
internal func indexOfChunk(startingAt start: Base.Index, offset: Int) -> Index {
guard offset != numberOfChunks else { return endIndex }
let end = endOfChunk(startingAt: start, offset: offset)
return Index(start..<end, offset: offset)
}
/// Returns the index that corresponds to the chunk that ends at the given
/// base index.
@inlinable
internal func indexOfChunk(endingAt end: Base.Index, offset: Int) -> Index {
let start = startOfChunk(endingAt: end, offset: offset)
return Index(start..<end, offset: offset)
}
}
extension EvenlyChunkedCollection: Collection {
public struct Index: Comparable {
/// The range corresponding to the chunk at this position.
@usableFromInline
internal var baseRange: Range<Base.Index>
/// The offset corresponding to the chunk at this position. The first chunk
/// has offset `0` and all other chunks have an offset `1` greater than the
/// previous.
@usableFromInline
internal var offset: Int
@inlinable
internal init(_ baseRange: Range<Base.Index>, offset: Int) {
self.baseRange = baseRange
self.offset = offset
}
@inlinable
public static func == (lhs: Self, rhs: Self) -> Bool {
lhs.offset == rhs.offset
}
@inlinable
public static func < (lhs: Self, rhs: Self) -> Bool {
lhs.offset < rhs.offset
}
}
public typealias Element = Base.SubSequence
@inlinable
public var startIndex: Index {
Index(base.startIndex..<firstUpperBound, offset: 0)
}
@inlinable
public var endIndex: Index {
Index(base.endIndex..<base.endIndex, offset: numberOfChunks)
}
@inlinable
public func index(after i: Index) -> Index {
precondition(i != endIndex, "Can't advance past endIndex")
let start = i.baseRange.upperBound
return indexOfChunk(startingAt: start, offset: i.offset + 1)
}
@inlinable
public subscript(position: Index) -> Element {
precondition(position != endIndex)
return base[position.baseRange]
}
@inlinable
public func index(_ i: Index, offsetBy distance: Int) -> Index {
/// Returns the base distance between two `EvenChunksCollection` indices
/// from the end of one to the start of the other, when given their offsets.
func baseDistance(from offsetA: Int, to offsetB: Int) -> Int {
let smallChunkSize = baseCount / numberOfChunks
let numberOfChunks = (offsetB - offsetA) - 1
let largeChunksEnd = Swift.min(self.numberOfLargeChunks, offsetB)
let largeChunksStart = Swift.min(self.numberOfLargeChunks, offsetA + 1)
let numberOfLargeChunks = largeChunksEnd - largeChunksStart
return smallChunkSize * numberOfChunks + numberOfLargeChunks
}
if distance == 0 {
return i
} else if distance > 0 {
let offset = i.offset + distance
let baseOffset = baseDistance(from: i.offset, to: offset)
let start = base.index(i.baseRange.upperBound, offsetBy: baseOffset)
return indexOfChunk(startingAt: start, offset: offset)
} else {
let offset = i.offset + distance
let baseOffset = baseDistance(from: offset, to: i.offset)
let end = base.index(i.baseRange.lowerBound, offsetBy: -baseOffset)
return indexOfChunk(endingAt: end, offset: offset)
}
}
@inlinable
public func index(_ i: Index, offsetBy distance: Int, limitedBy limit: Index) -> Index? {
if distance >= 0 {
if (0..<distance).contains(self.distance(from: i, to: limit)) {
return nil
}
} else {
if (0..<(-distance)).contains(self.distance(from: limit, to: i)) {
return nil
}
}
return index(i, offsetBy: distance)
}
@inlinable
public func distance(from start: Index, to end: Index) -> Int {
end.offset - start.offset
}
}
extension EvenlyChunkedCollection.Index: Hashable where Base.Index: Hashable {}
extension EvenlyChunkedCollection: BidirectionalCollection
where Base: BidirectionalCollection
{
@inlinable
public func index(before i: Index) -> Index {
precondition(i != startIndex, "Can't advance before startIndex")
return indexOfChunk(endingAt: i.baseRange.lowerBound, offset: i.offset - 1)
}
}
extension EvenlyChunkedCollection: RandomAccessCollection
where Base: RandomAccessCollection {}
extension EvenlyChunkedCollection: LazySequenceProtocol
where Base: LazySequenceProtocol {}
extension EvenlyChunkedCollection: LazyCollectionProtocol
where Base: LazyCollectionProtocol {}
//===----------------------------------------------------------------------===//
// lazy.chunked(by:) / lazy.chunked(on:)
//===----------------------------------------------------------------------===//
extension LazySequenceProtocol where Self: Collection, Elements: Collection {
/// Returns a lazy collection of subsequences of this collection, chunked by
/// the given predicate.
///
/// - Parameter belongInSameGroup: A closure that takes two adjacent elements
/// of the sequence and returns whether or not they belong in the same group.
///
/// - Complexity: O(*n*), because the start index is pre-computed.
@inlinable
public func chunked(
by belongInSameGroup: @escaping (Element, Element) -> Bool
) -> ChunkedByCollection<Elements, Element> {
ChunkedByCollection(
base: elements,
projection: { $0 },
belongInSameGroup: belongInSameGroup)
}
/// Returns a lazy collection of subsequences of this collection, chunked by
/// grouping elements that project to equal values.
///
/// - Parameter projection: A closure that takes an element in the sequence
/// and returns an `Equatable` value that can be used to determine if adjacent
/// elements belong in the same group.
///
/// - Complexity: O(*n*), because the start index is pre-computed.
@inlinable
public func chunked<Subject>(
on projection: @escaping (Element) -> Subject
) -> ChunkedOnCollection<Elements, Subject> {
ChunkedOnCollection(
base: elements,
projection: projection)
}
}
//===----------------------------------------------------------------------===//
// chunked(by:) / chunked(on:)
//===----------------------------------------------------------------------===//
extension Collection {
/// Returns a collection of subsequences of this collection, chunked by the
/// given predicate.
///
/// - Parameter belongInSameGroup: A closure that takes two adjacent elements
/// of the collection and returns whether or not they belong in the same
/// group.
///
/// - Complexity: O(*n*), where *n* is the length of this collection.
@inlinable
public func chunked(
by belongInSameGroup: (Element, Element) throws -> Bool
) rethrows -> [SubSequence] {
guard !isEmpty else { return [] }
var result: [SubSequence] = []
var start = startIndex
var current = self[start]
for (index, element) in indexed().dropFirst() {
if try !belongInSameGroup(current, element) {
result.append(self[start..<index])
start = index
}
current = element
}
if start != endIndex {
result.append(self[start...])
}
return result
}
/// Returns a collection of subsequences of this collection, chunked by
/// grouping elements that project to equal values.
///
/// - Parameter projection: A closure that takes an element in the collection
/// and returns an `Equatable` value that can be used to determine if adjacent
/// elements belong in the same group.
///
/// - Complexity: O(*n*), where *n* is the length of this collection.
@inlinable
public func chunked<Subject: Equatable>(
on projection: (Element) throws -> Subject
) rethrows -> [(Subject, SubSequence)] {
guard !isEmpty else { return [] }
var result: [(Subject, SubSequence)] = []
var start = startIndex
var subject = try projection(self[start])
for (index, element) in indexed().dropFirst() {
let nextSubject = try projection(element)
if subject != nextSubject {
result.append((subject, self[start..<index]))
start = index
subject = nextSubject
}
}
if start != endIndex {
result.append((subject, self[start...]))
}
return result
}
}
//===----------------------------------------------------------------------===//
// chunks(ofCount:)
//===----------------------------------------------------------------------===//
/// A collection that presents the elements of its base collection in
/// `SubSequence` chunks of any given count.
///
/// A `ChunksOfCountCollection` is a lazy view on the base `Collection`, but it
/// does not implicitly confer laziness on algorithms applied to its result. In
/// other words, for ordinary collections `c`:
///
/// * `c.chunks(ofCount: 3)` does not create new storage
/// * `c.chunks(ofCount: 3).map(f)` maps eagerly and returns a new array
/// * `c.lazy.chunks(ofCount: 3).map(f)` maps lazily and returns a
/// `LazyMapCollection`
public struct ChunksOfCountCollection<Base: Collection> {
public typealias Element = Base.SubSequence
@usableFromInline
internal let base: Base
@usableFromInline
internal let chunkCount: Int
@usableFromInline
internal var endOfFirstChunk: Base.Index
/// Creates a view instance that presents the elements of `base` in
/// `SubSequence` chunks of the given count.
///
/// - Complexity: O(*n*), because the start index is pre-computed.
@inlinable
internal init(_base: Base, _chunkCount: Int) {
self.base = _base
self.chunkCount = _chunkCount
// Compute the start index upfront in order to make start index a O(1)
// lookup.
self.endOfFirstChunk = _base.index(
_base.startIndex, offsetBy: _chunkCount,
limitedBy: _base.endIndex
) ?? _base.endIndex
}
}
extension ChunksOfCountCollection: Collection {
public struct Index {
@usableFromInline
internal let baseRange: Range<Base.Index>
@inlinable
internal init(_baseRange: Range<Base.Index>) {
self.baseRange = _baseRange
}
}
/// - Complexity: O(1)
@inlinable
public var startIndex: Index {
Index(_baseRange: base.startIndex..<endOfFirstChunk)
}
@inlinable
public var endIndex: Index {
Index(_baseRange: base.endIndex..<base.endIndex)
}
/// - Complexity: O(1)
@inlinable
public subscript(i: Index) -> Element {
precondition(i != endIndex, "Index out of range")
return base[i.baseRange]
}
@inlinable
public func index(after i: Index) -> Index {
precondition(i != endIndex, "Advancing past end index")
let baseIdx = base.index(
i.baseRange.upperBound, offsetBy: chunkCount,
limitedBy: base.endIndex
) ?? base.endIndex
return Index(_baseRange: i.baseRange.upperBound..<baseIdx)
}
}
extension ChunksOfCountCollection.Index: Comparable {
@inlinable
public static func == (lhs: ChunksOfCountCollection.Index,
rhs: ChunksOfCountCollection.Index) -> Bool {
lhs.baseRange.lowerBound == rhs.baseRange.lowerBound
}
@inlinable
public static func < (lhs: ChunksOfCountCollection.Index,
rhs: ChunksOfCountCollection.Index) -> Bool {
lhs.baseRange.lowerBound < rhs.baseRange.lowerBound
}
}
extension ChunksOfCountCollection:
BidirectionalCollection, RandomAccessCollection
where Base: RandomAccessCollection {
@inlinable
public func index(before i: Index) -> Index {
precondition(i != startIndex, "Advancing past start index")
var offset = chunkCount
if i.baseRange.lowerBound == base.endIndex {
let remainder = base.count % chunkCount
if remainder != 0 {
offset = remainder
}
}
let baseIdx = base.index(
i.baseRange.lowerBound, offsetBy: -offset,
limitedBy: base.startIndex
) ?? base.startIndex
return Index(_baseRange: baseIdx..<i.baseRange.lowerBound)
}
}
extension ChunksOfCountCollection {
@inlinable
public func distance(from start: Index, to end: Index) -> Int {
let distance =
base.distance(from: start.baseRange.lowerBound,
to: end.baseRange.lowerBound)
let (quotient, remainder) =
distance.quotientAndRemainder(dividingBy: chunkCount)
return quotient + remainder.signum()
}
@inlinable
public var count: Int {
let (quotient, remainder) =
base.count.quotientAndRemainder(dividingBy: chunkCount)
return quotient + remainder.signum()
}
@inlinable
public func index(
_ i: Index, offsetBy offset: Int, limitedBy limit: Index
) -> Index? {
guard offset != 0 else { return i }
guard limit != i else { return nil }
if offset > 0 {
return limit > i
? offsetForward(i, offsetBy: offset, limit: limit)
: offsetForward(i, offsetBy: offset)
} else {
return limit < i
? offsetBackward(i, offsetBy: offset, limit: limit)
: offsetBackward(i, offsetBy: offset)
}
}
@inlinable
public func index(_ i: Index, offsetBy distance: Int) -> Index {
guard distance != 0 else { return i }
let idx = distance > 0
? offsetForward(i, offsetBy: distance)
: offsetBackward(i, offsetBy: distance)
guard let index = idx else {
fatalError("Out of bounds")
}
return index
}
@inlinable
internal func offsetForward(
_ i: Index, offsetBy distance: Int, limit: Index? = nil
) -> Index? {
assert(distance > 0)
return makeOffsetIndex(
from: i, baseBound: base.endIndex,
distance: distance, baseDistance: distance * chunkCount,
limit: limit, by: >
)
}
// Convenience to compute offset backward base distance.
@inlinable
internal func computeOffsetBackwardBaseDistance(
_ i: Index, _ distance: Int
) -> Int {
if i == endIndex {
let remainder = base.count % chunkCount
// We have to take it into account when calculating offsets.
if remainder != 0 {
// Distance "minus" one (at this point distance is negative) because we
// need to adjust for the last position that have a variadic (remainder)
// number of elements.
return ((distance + 1) * chunkCount) - remainder
}
}
return distance * chunkCount
}
@inlinable
internal func offsetBackward(
_ i: Index, offsetBy distance: Int, limit: Index? = nil
) -> Index? {
assert(distance < 0)
let baseDistance =
computeOffsetBackwardBaseDistance(i, distance)
return makeOffsetIndex(
from: i, baseBound: base.startIndex,
distance: distance, baseDistance: baseDistance,
limit: limit, by: <
)
}
// Helper to compute `index(offsetBy:)` index.
@inlinable
internal func makeOffsetIndex(
from i: Index, baseBound: Base.Index, distance: Int, baseDistance: Int,
limit: Index?, by limitFn: (Base.Index, Base.Index) -> Bool
) -> Index? {
let baseIdx = base.index(
i.baseRange.lowerBound, offsetBy: baseDistance,
limitedBy: baseBound
)
if let limit = limit {
if baseIdx == nil {
// If we passed the bounds while advancing forward, and the limit is the
// `endIndex`, since the computation on `base` don't take into account
// the remainder, we have to make sure that passing the bound was
// because of the distance not just because of a remainder. Special
// casing is less expensive than always using `count` (which could be
// O(n) for non-random access collection base) to compute the base
// distance taking remainder into account.
if baseDistance > 0 && limit == endIndex {
if self.distance(from: i, to: limit) < distance {
return nil
}
} else {
return nil
}
}
// Checks for the limit.
let baseStartIdx = baseIdx ?? baseBound
if limitFn(baseStartIdx, limit.baseRange.lowerBound) {
return nil
}
}
let baseStartIdx = baseIdx ?? baseBound
let baseEndIdx = base.index(
baseStartIdx, offsetBy: chunkCount, limitedBy: base.endIndex
) ?? base.endIndex
return Index(_baseRange: baseStartIdx..<baseEndIdx)
}
}
extension Collection {
/// Returns a collection of subsequences, each with up to the specified
/// length.
///
/// If the number of elements in the collection is evenly divided by `count`,
/// then every chunk will have a length equal to `count`. Otherwise, every
/// chunk but the last will have a length equal to `count`, with the
/// remaining elements in the last chunk.
///
/// let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
/// for chunk in numbers.chunks(ofCount: 5) {
/// print(chunk)
/// }
/// // [1, 2, 3, 4, 5]
/// // [6, 7, 8, 9, 10]
///
/// for chunk in numbers.chunks(ofCount: 3) {
/// print(chunk)
/// }
/// // [1, 2, 3]
/// // [4, 5, 5]
/// // [7, 8, 9]
/// // [10]
///
/// - Parameter count: The desired size of each chunk.
/// - Returns: A collection of consescutive, non-overlapping subseqeunces of
/// this collection, where each subsequence (except possibly the last) has
/// the length `count`.
///
/// - Complexity: O(1) if the collection conforms to `RandomAccessCollection`;
/// otherwise, O(*k*), where *k* is equal to `count`.
///
@inlinable
public func chunks(ofCount count: Int) -> ChunksOfCountCollection<Self> {
precondition(count > 0, "Cannot chunk with count <= 0!")
return ChunksOfCountCollection(_base: self, _chunkCount: count)
}
}
extension ChunksOfCountCollection.Index: Hashable where Base.Index: Hashable {}
extension ChunksOfCountCollection: LazySequenceProtocol
where Base: LazySequenceProtocol {}
extension ChunksOfCountCollection: LazyCollectionProtocol
where Base: LazyCollectionProtocol {}
//===----------------------------------------------------------------------===//
// evenlyChunked(in:)
//===----------------------------------------------------------------------===//
extension Collection {
/// Returns a collection of evenly divided consecutive subsequences of this
/// collection.
///
/// This method divides the collection into a given number of evenly sized
/// chunks. If the length of the collection is not divisible by `count`, the
/// chunks at the start will be longer than the chunks at the end, like in
/// this example:
///
/// for chunk in "Hello, world!".evenlyChunked(in: 5) {
/// print(chunk)
/// }
/// // "Hel"
/// // "lo,"
/// // " wo"
/// // "rl"
/// // "d!"
///
/// If the number passed as `count` is greater than the number of elements in
/// the collection, the result will include one or more empty subsequences.
///
/// for chunk in "Hi!".evenlyChunked(in: 5) {
/// print(chunk)
/// }
/// // "H"
/// // "i"
/// // "!"
/// // ""
/// // ""
///
/// - Parameter count: The number of chunks to evenly divide this collection
/// into. If this collection is non-empty, `count` must be greater than
/// zero; otherwise, `count` may be zero or greater.
/// - Returns: A collection of `count` subsequences of this collection,
/// divided as evenly as possible.
///
/// - Complexity: O(1) if the collection conforms to `RandomAccessCollection`;
/// otherwise, O(*n*), where *n* is the length of the collection.
@inlinable
public func evenlyChunked(in count: Int) -> EvenlyChunkedCollection<Self> {
precondition(count >= 0, "Can't divide into a negative number of chunks")
precondition(count > 0 || isEmpty, "Can't divide a non-empty collection into 0 chunks")
return EvenlyChunkedCollection(base: self, numberOfChunks: count)
}
}