-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
73 lines (66 loc) · 2.87 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from pre_processing.pre_process import pre_process
from pre_processing.world_tokenize import word_tokenize
from count import count
from create_dict import create_dict_bigram, crete_dict_unigram
from compute_probabillity import probability_unigram, probability_bigram, interpolation
from naive_bayes import naive_bayes_classifier
from evaluate import evaluating_model, evaluating_unigram
from unigram_model import unigram_model
from utils import save_model, load_model, create_train_test_set
if __name__ == '__main__':
create = 0
save = 0
if create:
# Creating train and test set
create_train_test_set('rt-polarity.pos', 'pos')
create_train_test_set('rt-polarity.neg', 'neg')
if save:
# Creating dictionary
pos_dict_unigram = crete_dict_unigram('train_set/train.pos')
neg_dict_unigram = crete_dict_unigram('train_set/train.neg')
pos_dict_bigram = create_dict_bigram('train_set/train.pos')
neg_dict_bigram = create_dict_bigram('train_set/train.neg')
# Save models
save_model(pos_dict_unigram,'models/pos_dict_unigram')
save_model(neg_dict_unigram,'models/neg_dict_unigram')
save_model(pos_dict_bigram, 'models/pos_dict_bigram')
save_model(neg_dict_bigram, 'models/neg_dict_bigram')
pos_dict_unigram = load_model('models/pos_dict_unigram')
pos_dict_bigram = load_model('models/pos_dict_bigram')
neg_dict_unigram = load_model('models/neg_dict_unigram')
neg_dict_bigram = load_model('models/neg_dict_bigram')
λ3, λ2, λ1, ε = 0.75, 0.15, 0.1, 0.1
eval = evaluating_model(pos_dict_unigram,
neg_dict_unigram,
pos_dict_bigram,
neg_dict_bigram,
λ3, λ2, λ1, ε)
print('*** Result of evaluating bigram model***')
print(f'F1-Score: {eval[4]}')
print(f'Accuracy: {eval[0]}')
print(f'Precision: {eval[1]}')
print(f'Recall: {eval[2]}')
print(f'specificity: {eval[3]}')
print('#####################################')
eval = evaluating_unigram(pos_dict_unigram,neg_dict_unigram)
print('*** Result of evaluating unigram model***')
print(f'F1-Score: {eval[4]}')
print(f'Accuracy: {eval[0]}')
print(f'Precision: {eval[1]}')
print(f'Recall: {eval[2]}')
print(f'specificity: {eval[3]}')
print('#####################################')
while True:
text = input()
res = naive_bayes_classifier(pos_dict_unigram,
neg_dict_unigram,
pos_dict_bigram,
neg_dict_bigram,
text,
λ3, λ2, λ1, ε)
if text == '!q':
break
if res:
print('not filter this')
else:
print('filter this')