|
3 | 3 | import importlib
|
4 | 4 | import re
|
5 | 5 | import warnings
|
6 |
| -from collections.abc import Hashable, Iterable, Mapping |
| 6 | +from collections.abc import Callable, Hashable, Iterable, Mapping |
7 | 7 | from copy import deepcopy
|
8 |
| -from typing import TYPE_CHECKING, Any, Callable, Optional, TypeVar, Union |
| 8 | +from typing import TYPE_CHECKING, Any, TypeVar |
9 | 9 |
|
10 | 10 | import numpy as np
|
11 | 11 | import xarray as xr
|
|
24 | 24 | def generate_dims_coords(
|
25 | 25 | shape: Iterable[int],
|
26 | 26 | var_name: Hashable,
|
27 |
| - dims: Optional[Iterable[Hashable]] = None, |
28 |
| - coords: Optional[CoordSpec] = None, |
29 |
| - index_origin: Optional[int] = None, |
| 27 | + dims: Iterable[Hashable] | None = None, |
| 28 | + coords: CoordSpec | None = None, |
| 29 | + index_origin: int | None = None, |
30 | 30 | skip_event_dims: bool = False,
|
31 | 31 | check_conventions: bool = True,
|
32 | 32 | ) -> tuple[list[Hashable], CoordSpec]:
|
@@ -216,12 +216,12 @@ def ndarray_to_dataarray(
|
216 | 216 | def dict_to_dataset(
|
217 | 217 | data: DictData,
|
218 | 218 | *,
|
219 |
| - attrs: Optional[Mapping[Any, Any]] = None, |
220 |
| - inference_library: Optional[str] = None, |
221 |
| - coords: Optional[CoordSpec] = None, |
222 |
| - dims: Optional[DimSpec] = None, |
223 |
| - sample_dims: Optional[Iterable[Hashable]] = None, |
224 |
| - index_origin: Optional[int] = None, |
| 219 | + attrs: Mapping[Any, Any] | None = None, |
| 220 | + inference_library: str | None = None, |
| 221 | + coords: CoordSpec | None = None, |
| 222 | + dims: DimSpec | None = None, |
| 223 | + sample_dims: Iterable[Hashable] | None = None, |
| 224 | + index_origin: int | None = None, |
225 | 225 | skip_event_dims: bool = False,
|
226 | 226 | check_conventions: bool = True,
|
227 | 227 | ):
|
@@ -377,15 +377,15 @@ class requires: # pylint: disable=invalid-name
|
377 | 377 | See https://github.com/arviz-devs/arviz/pull/1504 for more discussion.
|
378 | 378 | """
|
379 | 379 |
|
380 |
| - def __init__(self, *props: Union[str, list[str]]) -> None: |
381 |
| - self.props: tuple[Union[str, list[str]], ...] = props |
| 380 | + def __init__(self, *props: str | list[str]) -> None: |
| 381 | + self.props: tuple[str | list[str], ...] = props |
382 | 382 |
|
383 | 383 | def __call__(
|
384 | 384 | self, func: Callable[[RequiresArgTypeT], RequiresReturnTypeT]
|
385 |
| - ) -> Callable[[RequiresArgTypeT], Optional[RequiresReturnTypeT]]: # noqa: D202 |
| 385 | + ) -> Callable[[RequiresArgTypeT], RequiresReturnTypeT | None]: # noqa: D202 |
386 | 386 | """Wrap the decorated function."""
|
387 | 387 |
|
388 |
| - def wrapped(cls: RequiresArgTypeT) -> Optional[RequiresReturnTypeT]: |
| 388 | + def wrapped(cls: RequiresArgTypeT) -> RequiresReturnTypeT | None: |
389 | 389 | """Return None if not all props are available."""
|
390 | 390 | for prop in self.props:
|
391 | 391 | prop_list = [prop] if isinstance(prop, str) else prop
|
|
0 commit comments