4949 "median_buffer_range_percentage_10" ,
5050 "skew" ,
5151 "stetson_K" ,
52+ 'percent_amplitude' ,
53+ 'linear_fit_reduced_chi2' ,
54+ 'inter_percentile_range_10' ,
55+ 'linear_trend' ,
56+ 'standard_deviation' ,
57+ 'weighted_mean' ,
58+ 'mean' ,
5259]
5360
5461ANOMALY_MODELS = ["_beta" , "_anais" , "_emille" , "_julien" , "_maria" , "_emille_30days" ] # noqa
@@ -183,12 +190,6 @@ def get_key(x: dict, band: int):
183190 path = os .path .dirname (os .path .abspath (__file__ ))
184191 model_path = f"{ path } /data/models/anomaly_detection"
185192
186- r_means = pd .read_csv (
187- f"{ model_path } /r_means.csv" , header = None , index_col = 0 , squeeze = True
188- )
189- g_means = pd .read_csv (
190- f"{ model_path } /g_means.csv" , header = None , index_col = 0 , squeeze = True
191- )
192193 data_r = lc_features .apply (lambda x : get_key (x , 1 ))[MODEL_COLUMNS ]
193194 data_g = lc_features .apply (lambda x : get_key (x , 2 ))[MODEL_COLUMNS ]
194195
@@ -200,12 +201,6 @@ def get_key(x: dict, band: int):
200201 else :
201202 model = ""
202203
203- for col in data_r .columns [data_r .isna ().any ()]:
204- data_r [col ].fillna (r_means [col ], inplace = True ) # noqa: PD002
205-
206- for col in data_g .columns [data_g .isna ().any ()]:
207- data_g [col ].fillna (g_means [col ], inplace = True ) # noqa: PD002
208-
209204 g_model_path_AAD = f"{ model_path } /forest_g_AAD{ model } .onnx"
210205 r_model_path_AAD = f"{ model_path } /forest_r_AAD{ model } .onnx"
211206 if not (os .path .exists (r_model_path_AAD ) and os .path .exists (g_model_path_AAD )):
0 commit comments