-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbuild_decoder.py
538 lines (432 loc) · 17.4 KB
/
build_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import logging
import math
import torch
import torch.nn as nn
from sam2rad.models.sam.modeling.mask_decoder import (
MaskDecoder as SAMMaskDecoderImpl,
)
from sam2rad.models.sam.modeling.transformer import TwoWayTransformer
from .base import MaskDecoder, MaskDecoderFactory
from .registry import register_mask_decoder
logger = logging.getLogger("sam2rad")
class LoRAqkv(nn.Module):
"""
Applies low-rank adaptation to a linear projection.
"""
def __init__(self, proj: nn.Module, w_a: nn.Module, w_b: nn.Module):
super().__init__()
self.proj = proj
self.w_a = w_a
self.w_b = w_b
def forward(self, x):
x = self.proj(x) + self.w_b(self.w_a(x))
return x
# Mask decoder variants
class SAMMaskDecoder(MaskDecoder):
"""
SAM mask decoder for full-finetuning or frozen evaluation.
"""
def __init__(self, net: nn.Module):
super().__init__()
self.net = net
self.freeze_pretrained_parameters()
def freeze_pretrained_parameters(self):
trainable_modules = []
for name, param in self.net.named_parameters():
if any((_train in name) for _train in trainable_modules):
param.requires_grad = True
else:
param.requires_grad = False
def forward(self, *args, **kwargs):
return self.net(*args, **kwargs)
def predict_masks(self, *args, **kwargs):
return self.net.predict_masks(*args, **kwargs)
def load_checkpoint(self, checkpoint_path: str):
state_dict = torch.load(checkpoint_path, map_location="cpu")
# Extract the mask decoder state dict from model checkpoint
state_dict = {
k.replace("mask_decoder.", ""): v
for k, v in state_dict.items()
if "mask_decoder" in k
}
ignore_keys = [
"obj_score_token",
"pred_obj_score_head",
] # Parameters not present in SAM mask decoder
missing_keys, unexpected_keys = self.net.load_state_dict(
state_dict, strict=False
)
missing_keys = {
k for k in missing_keys if not any([key in k for key in ignore_keys])
}
if missing_keys:
logger.error(missing_keys)
raise RuntimeError()
if unexpected_keys:
logger.error(unexpected_keys)
raise RuntimeError()
logger.info(
"%s loaded checkpoint from %s successfully.",
self.net.__class__.__name__,
checkpoint_path,
)
class LoRAMaskDecoder(MaskDecoder):
"""Applies low-rank adaptation to a SAM's mask decoder."""
def __init__(self, net: nn.Module):
super().__init__()
self.net = net
self.freeze_pretrained_parameters()
def freeze_pretrained_parameters(self):
trainable_modules = [
"q_proj.w_a.weight",
"q_proj.w_b.weight",
"v_proj.w_a.weight",
"v_proj.w_b.weight",
"pred_obj_score_head",
"obj_score_token",
"mask_tokens",
"output_upscaling",
"output_hypernetworks_mlps",
]
for name, param in self.net.named_parameters():
if any((_train in name) for _train in trainable_modules):
param.requires_grad = True
else:
param.requires_grad = False
def load_checkpoint(self, checkpoint_path: str):
state_dict = torch.load(checkpoint_path, map_location="cpu") # ["model"]
# Extract the mask decoder state dict from model checkpoint
state_dict = {
k.replace("mask_decoder.", ""): v
for k, v in state_dict.items()
if "mask_decoder" in k
}
new_state_dict = {}
for k in state_dict:
# remap keys '.....q_proj....' -> '.....q_proj.proj....'
# '.....v_proj....' -> '.....v_proj.proj....'
if "q_proj" in k:
new_state_dict[k.replace("q_proj", "q_proj.proj")] = state_dict[k]
elif "v_proj" in k:
new_state_dict[k.replace("v_proj", "v_proj.proj")] = state_dict[k]
else:
new_state_dict[k] = state_dict[k]
state_dict = new_state_dict
# Sanity check
for k in state_dict:
if k not in self.net.state_dict().keys():
logger.error(f"Key {k} not found in model state_dict.")
raise RuntimeError()
lora_params = (
"w_a",
"w_b",
"obj_score_token", # Parameters not present in SAM mask decoder
"pred_obj_score_head", # Parameters not present in SAM mask decoder
)
missing_keys, unexpected_keys = self.net.load_state_dict(
state_dict, strict=False
)
missing_keys = [
k for k in missing_keys if not any([key in k for key in lora_params])
]
if missing_keys:
logger.error(missing_keys)
raise RuntimeError()
if unexpected_keys:
logger.error(unexpected_keys)
raise RuntimeError()
logger.info(
"%s loaded checkpoint from %s successfully.",
self.net.__class__.__name__,
checkpoint_path,
)
def forward(self, *args, **kwargs):
return self.net(*args, **kwargs)
# Mask decoder factory classes
@register_mask_decoder("sam_mask_decoder")
class SAMMaskDecoderFactory(MaskDecoderFactory):
"""
Factory class SAM mask decoder.
"""
def build(self, args) -> SAMMaskDecoder:
return SAMMaskDecoder(
SAMMaskDecoderImpl(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=args.prompt_embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=args.prompt_embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
pred_obj_scores=args.get("pred_obj_scores", True),
pred_obj_scores_mlp=args.get("pred_obj_scores_mlp", False),
)
)
@register_mask_decoder("lora_mask_decoder")
class LoRAMaskDecoderFactory(MaskDecoderFactory):
"""
Factory class for LoRA mask decoders.
"""
def _apply_lora(self, attn_block, r):
"""Helper method to apply LoRA to attention blocks."""
input_dim = attn_block.embedding_dim
output_dim = attn_block.internal_dim
q_proj = attn_block.q_proj
v_proj = attn_block.v_proj
w_a_q = nn.Linear(input_dim, r, bias=False)
w_b_q = nn.Linear(r, output_dim, bias=False)
w_a_v = nn.Linear(input_dim, r, bias=False)
w_b_v = nn.Linear(r, output_dim, bias=False)
# initialize parameters
self.reset_parameters(w_a_q, w_b_q)
self.reset_parameters(w_a_v, w_b_v)
attn_block.q_proj = LoRAqkv(q_proj, w_a_q, w_b_q)
attn_block.v_proj = LoRAqkv(v_proj, w_a_v, w_b_v)
def reset_parameters(self, w_a, w_b) -> None:
nn.init.kaiming_uniform_(w_a.weight, a=math.sqrt(5))
nn.init.zeros_(w_b.weight)
def build(self, args) -> LoRAMaskDecoder:
mask_decoder = SAMMaskDecoderImpl(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=args.prompt_embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=args.prompt_embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
pred_obj_scores=args.get("pred_obj_scores", True),
pred_obj_scores_mlp=args.get("pred_obj_scores_mlp", True),
)
assert args.r > 0, "r must be a positive integer."
for param in mask_decoder.transformer.parameters():
param.requires_grad = False
decoder_transformer = mask_decoder.transformer
for _, blk in enumerate(decoder_transformer.layers):
self._apply_lora(blk.self_attn, args.r)
self._apply_lora(blk.cross_attn_token_to_image, args.r)
self._apply_lora(blk.cross_attn_image_to_token, args.r)
# Apply LoRA to the final attention token to image block
final_block = decoder_transformer.final_attn_token_to_image
self._apply_lora(final_block, args.r)
return LoRAMaskDecoder(mask_decoder)
class SAM2MaskDecoder(MaskDecoder):
"""
SAM mask decoder for full-finetuning.
"""
def __init__(self, net: nn.Module):
super().__init__()
self.net = net
self.freeze_pretrained_parameters()
def freeze_pretrained_parameters(self):
trainable_modules = []
for name, param in self.net.named_parameters():
if any((_train in name) for _train in trainable_modules):
param.requires_grad = True
else:
param.requires_grad = False
def forward(self, *args, **kwargs):
return self.net(*args, **kwargs)
def predict_masks(self, *args, **kwargs):
return self.net.predict_masks(*args, **kwargs)
def load_checkpoint(self, checkpoint_path: str):
state_dict = torch.load(checkpoint_path, map_location="cpu")["model"]
# Extract the mask decoder state dict from model checkpoint
state_dict = {
k.replace("sam_mask_decoder.", ""): v
for k, v in state_dict.items()
if "sam_mask_decoder" in k
}
self.net.load_state_dict(state_dict)
logger.info(
"%s loaded from checkpoint %s successfully.",
self.net.__class__.__name__,
checkpoint_path,
)
def build_decoder_mlp(decoder_config):
"""
Build heads for mask decoder.
- Object prediction head
- Object pointer projection
"""
from sam2rad.models.sam2.modeling.sam2_utils import MLP
if decoder_config.use_obj_ptrs_in_encoder:
# a linear projection on SAM output tokens to turn them into object pointers
obj_ptr_proj = torch.nn.Linear(
decoder_config.hidden_dim, decoder_config.hidden_dim
)
if decoder_config.use_mlp_for_obj_ptr_proj:
obj_ptr_proj = MLP(
decoder_config.hidden_dim,
decoder_config.hidden_dim,
decoder_config.hidden_dim,
3,
)
else:
obj_ptr_proj = torch.nn.Identity()
if decoder_config.proj_tpos_enc_in_obj_ptrs:
# a linear projection on temporal positional encoding in object pointers to
# avoid potential interference with spatial positional encoding
obj_ptr_tpos_proj = torch.nn.Linear(
decoder_config.hidden_dim, decoder_config.mem_dim
)
else:
obj_ptr_tpos_proj = torch.nn.Identity()
return obj_ptr_proj, obj_ptr_tpos_proj
@register_mask_decoder("sam2_mask_decoder")
class SAM2MaskDecoderFactory(MaskDecoderFactory):
"""
Factory class SAM mask decoder.
"""
def build(self, args) -> SAM2MaskDecoder:
"""Build SAM-style mask decoder."""
from sam2rad.models.sam2.modeling.sam.mask_decoder import (
MaskDecoder as SAM2MaskDecoderImpl,
)
from sam2rad.models.sam2.modeling.sam.transformer import TwoWayTransformer
decoder_config = args
sam_prompt_embed_dim = decoder_config.hidden_dim
sam_mask_decoder = SAM2MaskDecoderImpl(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=sam_prompt_embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=sam_prompt_embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
use_high_res_features=decoder_config.use_high_res_features_in_sam,
iou_prediction_use_sigmoid=decoder_config.iou_prediction_use_sigmoid,
pred_obj_scores=decoder_config.pred_obj_scores,
pred_obj_scores_mlp=decoder_config.pred_obj_scores_mlp,
use_multimask_token_for_obj_ptr=decoder_config.use_multimask_token_for_obj_ptr,
**(decoder_config.sam_mask_decoder_extra_args or {}),
)
return SAM2MaskDecoder(sam_mask_decoder)
class SAM2LoRAMaskDecoder(SAM2MaskDecoder):
def freeze_pretrained_parameters(self):
trainable_modules = [
"q_proj.w_a.weight",
"q_proj.w_b.weight",
"v_proj.w_a.weight",
"v_proj.w_b.weight",
"pred_obj_score_head",
"obj_score_token",
"mask_tokens",
"output_upscaling",
"output_hypernetworks_mlps",
]
for name, param in self.net.named_parameters():
if any((_train in name) for _train in trainable_modules):
param.requires_grad = True
else:
param.requires_grad = False
def load_checkpoint(self, checkpoint_path: str):
state_dict = torch.load(checkpoint_path, map_location="cpu")["model"]
# Extract the mask decoder state dict from model checkpoint
state_dict = {
k.replace("sam_mask_decoder.", ""): v
for k, v in state_dict.items()
if "sam_mask_decoder" in k
}
new_state_dict = {}
for k in state_dict:
# remap keys '.....q_proj....' -> '.....q_proj.proj....'
# '.....v_proj....' -> '.....v_proj.proj....'
if "q_proj" in k:
new_state_dict[k.replace("q_proj", "q_proj.proj")] = state_dict[k]
elif "v_proj" in k:
new_state_dict[k.replace("v_proj", "v_proj.proj")] = state_dict[k]
else:
new_state_dict[k] = state_dict[k]
state_dict = new_state_dict
# Sanity check
for k in state_dict:
if k not in self.net.state_dict().keys():
logger.error(f"Key {k} not found in model state_dict.")
lora_params = ("w_a", "w_b")
missing_keys, unexpected_keys = self.net.load_state_dict(
state_dict, strict=False
)
missing_keys = {
k for k in missing_keys if not any([key in k for key in lora_params])
}
if missing_keys:
logger.error(missing_keys)
raise RuntimeError()
if unexpected_keys:
logger.error(unexpected_keys)
raise RuntimeError()
logger.info(
"%s loaded checkpoint from %s successfully.",
self.net.__class__.__name__,
checkpoint_path,
)
@register_mask_decoder("sam2_lora_mask_decoder")
class SAM2LoRAMaskDecoderFactory(MaskDecoderFactory):
"""
Factory class for sam-like LoRA mask decoders.
"""
def _apply_lora(self, attn_block, r):
"""Helper method to apply LoRA to attention blocks."""
input_dim = attn_block.embedding_dim
output_dim = attn_block.internal_dim
q_proj = attn_block.q_proj
v_proj = attn_block.v_proj
w_a_q = nn.Linear(input_dim, r, bias=False)
w_b_q = nn.Linear(r, output_dim, bias=False)
w_a_v = nn.Linear(input_dim, r, bias=False)
w_b_v = nn.Linear(r, output_dim, bias=False)
# initialize parameters
self.reset_parameters(w_a_q, w_b_q)
self.reset_parameters(w_a_v, w_b_v)
attn_block.q_proj = LoRAqkv(q_proj, w_a_q, w_b_q)
attn_block.v_proj = LoRAqkv(v_proj, w_a_v, w_b_v)
def reset_parameters(self, w_a, w_b) -> None:
nn.init.kaiming_uniform_(w_a.weight, a=math.sqrt(5))
nn.init.zeros_(w_b.weight)
def build(self, args) -> SAM2LoRAMaskDecoder:
"""Build SAM-style LoRA mask decoder."""
from sam2rad.models.sam2.modeling.sam.mask_decoder import (
MaskDecoder as SAM2MaskDecoderImpl,
)
from sam2rad.models.sam2.modeling.sam.transformer import TwoWayTransformer
decoder_config = args
sam_prompt_embed_dim = decoder_config.hidden_dim
sam_mask_decoder = SAM2MaskDecoderImpl(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=sam_prompt_embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=sam_prompt_embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
use_high_res_features=decoder_config.use_high_res_features_in_sam,
iou_prediction_use_sigmoid=decoder_config.iou_prediction_use_sigmoid,
pred_obj_scores=decoder_config.pred_obj_scores,
pred_obj_scores_mlp=decoder_config.pred_obj_scores_mlp,
use_multimask_token_for_obj_ptr=decoder_config.use_multimask_token_for_obj_ptr,
**(decoder_config.sam_mask_decoder_extra_args or {}),
)
assert args.r > 0, "r must be a positive integer."
for param in sam_mask_decoder.parameters():
param.requires_grad = False
decoder_transformer = sam_mask_decoder.transformer
for _, blk in enumerate(decoder_transformer.layers):
self._apply_lora(blk.self_attn, args.r)
self._apply_lora(blk.cross_attn_token_to_image, args.r)
self._apply_lora(blk.cross_attn_image_to_token, args.r)
# Apply LoRA to the final attention token to image block
final_block = decoder_transformer.final_attn_token_to_image
self._apply_lora(final_block, args.r)
return SAM2LoRAMaskDecoder(sam_mask_decoder)