Tensorium is still in the early development phase, and many of its features work, but I'm not yet convinced of the solidity of some of them (especially the tensor manipulations). The python binding is usable without any other python librairy, but I'm still working on it to make it all clean and usable using a simple pip3 install (see the Jupiter Notebook).
Tensorium_lib is a high-performance scientific C++ library designed for demanding computational domains such as numerical relativity, machine learning (ML), deep learning (DL) and general scientific simulations.
Here is the full documentation : https://at0m741.github.io/Tensorium_lib/
It provides a modern, extensible infrastructure for efficient vector, matrix, and tensor computations by leveraging:
- SIMD acceleration (SSE, AVX2, AVX512),
- Multithreading with OpenMP,
- And soon, distributed computing via MPI.
The core philosophy of Tensorium_lib is to combine:
- Raw performance, through low-level SIMD optimization,
- Modularity and clarity, using a modern, header-only C++17 design,
- Python interoperability, via PyBind11, for seamless integration with scientific Python workflows.
This library is built with the goal of empowering projects that require both speed and flexibility, such as:
- Simulating curved spacetime and relativistic matter (e.g. BSSN formalism, GRHD, GRMHD),
- Custom neural network training and inference on CPU (not really atm),
- Fast manipulation of large scientific datasets and image matrices (not atm),
- Research and education projects needing intuitive yet high-performance numerical tools.
- Optimized
Tensor
,Vector
andMatrix
classes with aligned memory - AVX2/FMA SIMD acceleration (fallback on SSE when needed)
- Custom allocator using
posix_memalign
for proper vectorization - OpenMP and MPI support
- Matrix/Tensor multiplication optimized with blocking, unrolling, and OpenMP
- Python bindings using
pybind11
for seamless integration with Python - A symbolic parser to compute problems with a LaTex structure (in comming)
- Optional benchmark against BLAS (OpenBLAS, MKL)
- Symbolic LaTeX parser
- Tensor operators
- Multiple kernels for Tensors/Matrix (optimized for severql sizes)
- LLVM passe to check user code and analyse LLVM_IR to improve performance
- (!!! NOT AT THE MOMENT) MLIR dialect to auto-translate CPU code to a GPU friendly kernel
- General relativity / differential geometry classes dans methods (BSSN)
- CUDA runtime kernels for critical kernels and operators
- Full MPI support (maybe Intel-TBB routines
- Spectral Methdods (Chebychev/Fourrier)
- Backward FDM
- Some (severak) optimizations
- C++17 compiler with AVX2/FMA support or AVX512 if avalaible on your plateform (Intel compilers will be added later)
- fopenmp
- MPI
- libmemkind-dev (if you are using Xeon Phi knight landing CPU)
- CMake ≥ 3.16
- Python ≥ 3.10 (for Python bindings)
pybind11
installed (pacman -S python-pybind11
on Arch, orpip install pybind11 --user
)- OpenBLAS (optional, for benchmarking with BLAS)
./build_linux.sh && pip install --user -e .
if you are on Macos :
nix --extra-experimental-features 'nix-command flakes' develop && ./build_macos && pip install --user -e .
Then you can use it as the .ipynb show
make # Default AVX2
make help # Show differents compile options
make AVX512=true # AVX512
make USE_KNL=true # MCDRAM Memkind HBW (Xeon phi KNL)
make DEBUG=true # debug symbols
make VERBOSE=true # VERBOSE log
make benchmark # BLAS vs Tensorium mat_mult benchmark
The Python module will be created as a .so file in the pybuild/ directory.
#include "Tensorium.hpp"
int main() {
#pragma tensorium dispatch
Vector<float> v1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
Vector<float> v2 = {16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
std::cout << "\n[v1] + [v2]:\n";
tensorium::add_vec(v1, v2).print();
std::cout << "\n[v1] - [v2]:\n";
tensorium::sub_vec(v1, v2).print();
std::cout << "\n[v1] * 0.5:\n";
tensorium::scl_vec(v1, 0.5f).print();
Matrix<float> m1(2, 8);
Matrix<float> m2(2, 8);
for (size_t i = 0; i < m1.rows; ++i)
for (size_t j = 0; j < m1.cols; ++j) {
m1(i, j) = i * 10 + j;
m2(i, j) = 1.0f;
}
std::cout << "\n[m1] + [m2]:\n";
tensorium::add_mat(m1, m2).print();
std::cout << "\n[m1] - [m2]:\n";
tensorium::sub_mat(m1, m2).print();
std::cout << "\n[m1] * 2.0:\n";
tensorium::scl_mat(m1, 2.0f).print();
}
from tensorium import *
matA = Matrix(2, 3)
matA.fill([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
matB = Matrix(2, 3)
matB.fill([[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]])
print("matA + matB =")
tns.add_mat(matA, matB).print()
print("matA - matB =")
tns.sub_mat(matA, matB).print()
print("matA * 2.0 =")
tns.scl_mat(matA, 2.0).print()
v = Vector([1.0, 2.0, 3.0])
v2 = Vector([4.0, 5.0, 6.0])
print("v =", v)
print("len(v) =", len(v))
print("v + v2 =", tns.add_vec(v, v2))
print("v - v2 =", tns.sub_vec(v, v2))
print("v * 2.0 =", tns.scl_vec(v, 2.0))
print("dot(v, v2) =", tns.dot_vec(v, v2))
print("norm_1(v) =", tns.norm_1(v))
print("norm_2(v) =", tns.norm_2(v))
print("norm_inf(v) =", tns.norm_inf(v))
print("cosine(v, v2) =", tns.cosine(v, v2))
print("lerp(v, v2, 0.5) =", tns.lerp(v, v2, 0.5))