this is the code I used for inference for SONICS model:
from sonics import HFAudioClassifier
model = HFAudioClassifier.from_pretrained("awsaf49/sonics-spectttra-gamma-5s")
audio_file = "audio2.mp3"; import torchaudio
waveform, sr = torchaudio.load(audio_file)
predictions = model(waveform)
import torch
probs = torch.sigmoid(predictions)
print("Probabilities:", probs)
pred_class = torch.argmax(predictions, dim=0) # or torch.argmax(probs, dim=0)
print("Predicted class index:", pred_class.item())
@awsaf49 is this the correct way of performing inference?