-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathaxmap.c
454 lines (375 loc) · 11.9 KB
/
axmap.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
/*
* Bitmap of bitmaps, where each layer is number-of-bits-per-word smaller than
* the previous. Hence an 'axmap', since we axe each previous layer into a
* much smaller piece. I swear, that is why it's named like that. It has
* nothing to do with anything remotely narcissistic.
*
* A set bit at layer N indicates a full word at layer N-1, and so forth. As
* the bitmap becomes progressively more full, checking for existence
* becomes cheaper (since fewer layers are walked, making it a lot more
* cache friendly) and locating the next free space likewise.
*
* Axmaps get pretty close to optimal (1 bit per block) space usage, since
* layers quickly diminish in size. Doing the size math is straight forward,
* since we have log64(blocks) layers of maps. For 20000 blocks, overhead
* is roughly 1.9%, or 1.019 bits per block. The number quickly converges
* towards 1.0158, or 1.58% of overhead.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "../arch/arch.h"
#include "axmap.h"
#include "../minmax.h"
#if BITS_PER_LONG == 64
#define UNIT_SHIFT 6
#elif BITS_PER_LONG == 32
#define UNIT_SHIFT 5
#else
#error "Number of arch bits unknown"
#endif
#define BLOCKS_PER_UNIT (1U << UNIT_SHIFT)
#define BLOCKS_PER_UNIT_MASK (BLOCKS_PER_UNIT - 1)
static const unsigned long bit_masks[] = {
0x0000000000000000, 0x0000000000000001, 0x0000000000000003, 0x0000000000000007,
0x000000000000000f, 0x000000000000001f, 0x000000000000003f, 0x000000000000007f,
0x00000000000000ff, 0x00000000000001ff, 0x00000000000003ff, 0x00000000000007ff,
0x0000000000000fff, 0x0000000000001fff, 0x0000000000003fff, 0x0000000000007fff,
0x000000000000ffff, 0x000000000001ffff, 0x000000000003ffff, 0x000000000007ffff,
0x00000000000fffff, 0x00000000001fffff, 0x00000000003fffff, 0x00000000007fffff,
0x0000000000ffffff, 0x0000000001ffffff, 0x0000000003ffffff, 0x0000000007ffffff,
0x000000000fffffff, 0x000000001fffffff, 0x000000003fffffff, 0x000000007fffffff,
0x00000000ffffffff,
#if BITS_PER_LONG == 64
0x00000001ffffffff, 0x00000003ffffffff, 0x00000007ffffffff, 0x0000000fffffffff,
0x0000001fffffffff, 0x0000003fffffffff, 0x0000007fffffffff, 0x000000ffffffffff,
0x000001ffffffffff, 0x000003ffffffffff, 0x000007ffffffffff, 0x00000fffffffffff,
0x00001fffffffffff, 0x00003fffffffffff, 0x00007fffffffffff, 0x0000ffffffffffff,
0x0001ffffffffffff, 0x0003ffffffffffff, 0x0007ffffffffffff, 0x000fffffffffffff,
0x001fffffffffffff, 0x003fffffffffffff, 0x007fffffffffffff, 0x00ffffffffffffff,
0x01ffffffffffffff, 0x03ffffffffffffff, 0x07ffffffffffffff, 0x0fffffffffffffff,
0x1fffffffffffffff, 0x3fffffffffffffff, 0x7fffffffffffffff, 0xffffffffffffffff
#endif
};
/**
* struct axmap_level - a bitmap used to implement struct axmap
* @level: Level index. Each map has at least one level with index zero. The
* higher the level index, the fewer bits a struct axmap_level contains.
* @map_size: Number of elements of the @map array.
* @map: A bitmap with @map_size elements.
*/
struct axmap_level {
int level;
unsigned long map_size;
unsigned long *map;
};
/**
* struct axmap - a set that can store numbers 0 .. @nr_bits - 1
* @nr_level: Number of elements of the @levels array.
* @levels: struct axmap_level array in which lower levels contain more bits
* than higher levels.
* @nr_bits: One more than the highest value stored in the set.
*/
struct axmap {
unsigned int nr_levels;
struct axmap_level *levels;
uint64_t nr_bits;
};
/* Remove all elements from the @axmap set */
void axmap_reset(struct axmap *axmap)
{
int i;
for (i = 0; i < axmap->nr_levels; i++) {
struct axmap_level *al = &axmap->levels[i];
memset(al->map, 0, al->map_size * sizeof(unsigned long));
}
}
void axmap_free(struct axmap *axmap)
{
unsigned int i;
if (!axmap)
return;
for (i = 0; i < axmap->nr_levels; i++)
free(axmap->levels[i].map);
free(axmap->levels);
free(axmap);
}
/* Allocate memory for a set that can store the numbers 0 .. @nr_bits - 1. */
struct axmap *axmap_new(uint64_t nr_bits)
{
struct axmap *axmap;
unsigned int i, levels;
axmap = malloc(sizeof(*axmap));
if (!axmap)
return NULL;
levels = 1;
i = (nr_bits + BLOCKS_PER_UNIT - 1) >> UNIT_SHIFT;
while (i > 1) {
i = (i + BLOCKS_PER_UNIT - 1) >> UNIT_SHIFT;
levels++;
}
axmap->nr_levels = levels;
axmap->levels = calloc(axmap->nr_levels, sizeof(struct axmap_level));
if (!axmap->levels)
goto free_axmap;
axmap->nr_bits = nr_bits;
for (i = 0; i < axmap->nr_levels; i++) {
struct axmap_level *al = &axmap->levels[i];
nr_bits = (nr_bits + BLOCKS_PER_UNIT - 1) >> UNIT_SHIFT;
al->level = i;
al->map_size = nr_bits;
al->map = malloc(al->map_size * sizeof(unsigned long));
if (!al->map)
goto free_levels;
}
axmap_reset(axmap);
return axmap;
free_levels:
for (i = 0; i < axmap->nr_levels; i++)
free(axmap->levels[i].map);
free(axmap->levels);
free_axmap:
free(axmap);
return NULL;
}
/*
* Call @func for each level, starting at level zero, until a level is found
* for which @func returns true. Return false if none of the @func calls
* returns true.
*/
static bool axmap_handler(struct axmap *axmap, uint64_t bit_nr,
bool (*func)(struct axmap_level *, uint64_t, unsigned int,
void *), void *data)
{
struct axmap_level *al;
uint64_t index = bit_nr;
int i;
for (i = 0; i < axmap->nr_levels; i++) {
unsigned long offset = index >> UNIT_SHIFT;
unsigned int bit = index & BLOCKS_PER_UNIT_MASK;
al = &axmap->levels[i];
if (func(al, offset, bit, data))
return true;
if (index)
index >>= UNIT_SHIFT;
}
return false;
}
/*
* Call @func for each level, starting at the highest level, until a level is
* found for which @func returns true. Return false if none of the @func calls
* returns true.
*/
static bool axmap_handler_topdown(struct axmap *axmap, uint64_t bit_nr,
bool (*func)(struct axmap_level *, uint64_t, unsigned int, void *))
{
int i;
for (i = axmap->nr_levels - 1; i >= 0; i--) {
uint64_t index = bit_nr >> (UNIT_SHIFT * i);
unsigned long offset = index >> UNIT_SHIFT;
unsigned int bit = index & BLOCKS_PER_UNIT_MASK;
if (func(&axmap->levels[i], offset, bit, NULL))
return true;
}
return false;
}
struct axmap_set_data {
unsigned int nr_bits;
unsigned int set_bits;
};
/*
* Set at most @__data->nr_bits bits in @al at offset @offset. Do not exceed
* the boundary of the element at offset @offset. Return the number of bits
* that have been set in @__data->set_bits if @al->level == 0.
*/
static bool axmap_set_fn(struct axmap_level *al, uint64_t offset,
unsigned int bit, void *__data)
{
struct axmap_set_data *data = __data;
unsigned long mask, overlap;
unsigned int nr_bits;
nr_bits = min(data->nr_bits, BLOCKS_PER_UNIT - bit);
mask = bit_masks[nr_bits] << bit;
/*
* Mask off any potential overlap, only sets contig regions
*/
overlap = al->map[offset] & mask;
if (overlap == mask) {
data->set_bits = 0;
return true;
}
if (overlap) {
nr_bits = ffz(~overlap) - bit;
if (!nr_bits)
return true;
mask = bit_masks[nr_bits] << bit;
}
assert(mask);
assert(!(al->map[offset] & mask));
al->map[offset] |= mask;
if (!al->level)
data->set_bits = nr_bits;
/* For the next level */
data->nr_bits = 1;
return al->map[offset] != -1UL;
}
/*
* Set up to @data->nr_bits starting from @bit_nr in @axmap. Start at
* @bit_nr. If that bit has not yet been set then set it and continue until
* either @data->nr_bits have been set or a 1 bit is found. Store the number
* of bits that have been set in @data->set_bits. It is guaranteed that all
* bits that have been requested to set fit in the same unsigned long word of
* level 0 of @axmap.
*/
static void __axmap_set(struct axmap *axmap, uint64_t bit_nr,
struct axmap_set_data *data)
{
unsigned int nr_bits = data->nr_bits;
if (bit_nr > axmap->nr_bits)
return;
else if (bit_nr + nr_bits > axmap->nr_bits)
nr_bits = axmap->nr_bits - bit_nr;
assert(nr_bits <= BLOCKS_PER_UNIT);
axmap_handler(axmap, bit_nr, axmap_set_fn, data);
}
void axmap_set(struct axmap *axmap, uint64_t bit_nr)
{
struct axmap_set_data data = { .nr_bits = 1, };
__axmap_set(axmap, bit_nr, &data);
}
/*
* Set up to @nr_bits starting from @bit in @axmap. Start at @bit. If that
* bit has not yet been set then set it and continue until either @nr_bits
* have been set or a 1 bit is found. Return the number of bits that have been
* set.
*/
unsigned int axmap_set_nr(struct axmap *axmap, uint64_t bit_nr,
unsigned int nr_bits)
{
unsigned int set_bits = 0;
do {
struct axmap_set_data data = { .nr_bits = nr_bits, };
unsigned int max_bits, this_set;
max_bits = BLOCKS_PER_UNIT - (bit_nr & BLOCKS_PER_UNIT_MASK);
if (nr_bits > max_bits)
data.nr_bits = max_bits;
this_set = data.nr_bits;
__axmap_set(axmap, bit_nr, &data);
set_bits += data.set_bits;
if (data.set_bits != this_set)
break;
nr_bits -= data.set_bits;
bit_nr += data.set_bits;
} while (nr_bits);
return set_bits;
}
static bool axmap_isset_fn(struct axmap_level *al, uint64_t offset,
unsigned int bit, void *unused)
{
return (al->map[offset] & (1ULL << bit)) != 0;
}
bool axmap_isset(struct axmap *axmap, uint64_t bit_nr)
{
if (bit_nr <= axmap->nr_bits)
return axmap_handler_topdown(axmap, bit_nr, axmap_isset_fn);
return false;
}
/*
* Find the first free bit that is at least as large as bit_nr. Return
* -1 if no free bit is found before the end of the map.
*/
static uint64_t axmap_find_first_free(struct axmap *axmap, uint64_t bit_nr)
{
int i;
unsigned long temp;
unsigned int bit;
uint64_t offset, base_index, index;
struct axmap_level *al;
index = 0;
for (i = axmap->nr_levels - 1; i >= 0; i--) {
al = &axmap->levels[i];
/* Shift previously calculated index for next level */
index <<= UNIT_SHIFT;
/*
* Start from an index that's at least as large as the
* originally passed in bit number.
*/
base_index = bit_nr >> (UNIT_SHIFT * i);
if (index < base_index)
index = base_index;
/* Get the offset and bit for this level */
offset = index >> UNIT_SHIFT;
bit = index & BLOCKS_PER_UNIT_MASK;
/*
* If the previous level had unused bits in its last
* word, the offset could be bigger than the map at
* this level. That means no free bits exist before the
* end of the map, so return -1.
*/
if (offset >= al->map_size)
return -1ULL;
/* Check the first word starting with the specific bit */
temp = ~bit_masks[bit] & ~al->map[offset];
if (temp)
goto found;
/*
* No free bit in the first word, so iterate
* looking for a word with one or more free bits.
*/
for (offset++; offset < al->map_size; offset++) {
temp = ~al->map[offset];
if (temp)
goto found;
}
/* Did not find a free bit */
return -1ULL;
found:
/* Compute the index of the free bit just found */
index = (offset << UNIT_SHIFT) + ffz(~temp);
}
/* If found an unused bit in the last word of level 0, return -1 */
if (index >= axmap->nr_bits)
return -1ULL;
return index;
}
/*
* 'bit_nr' is already set. Find the next free bit after this one.
* Return -1 if no free bits found.
*/
uint64_t axmap_next_free(struct axmap *axmap, uint64_t bit_nr)
{
uint64_t ret;
uint64_t next_bit = bit_nr + 1;
unsigned long temp;
uint64_t offset;
unsigned int bit;
if (bit_nr >= axmap->nr_bits)
return -1ULL;
/* If at the end of the map, wrap-around */
if (next_bit == axmap->nr_bits)
next_bit = 0;
offset = next_bit >> UNIT_SHIFT;
bit = next_bit & BLOCKS_PER_UNIT_MASK;
/*
* As an optimization, do a quick check for a free bit
* in the current word at level 0. If not found, do
* a topdown search.
*/
temp = ~bit_masks[bit] & ~axmap->levels[0].map[offset];
if (temp) {
ret = (offset << UNIT_SHIFT) + ffz(~temp);
/* Might have found an unused bit at level 0 */
if (ret >= axmap->nr_bits)
ret = -1ULL;
} else
ret = axmap_find_first_free(axmap, next_bit);
/*
* If there are no free bits starting at next_bit and going
* to the end of the map, wrap around by searching again
* starting at bit 0.
*/
if (ret == -1ULL && next_bit != 0)
ret = axmap_find_first_free(axmap, 0);
return ret;
}