-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathParser.hs
312 lines (284 loc) · 10.8 KB
/
Parser.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
module Parser where
import Debug
import Expr
import Builtins
import PrattParser
import DecompressString
import Codepage
import Text.Parsec
import Text.Parsec.Char
import Control.Monad (forM, foldM)
import qualified Data.Map as Map
import Data.List (elemIndex)
import Data.Maybe (catMaybes)
-- Parser state
data PState = PState {varStack :: [(Maybe ELabel, Maybe ELabel)],
varSupply :: Int,
numLines :: Int,
unmarked :: [Int]}
-- Parser type
type Parser = Parsec String PState
-- Unwrapped parser, giving strings for errors
parseExpr :: String -> Either String [Exp [Lit Scheme]]
parseExpr str = case runParser multiline initState "" str of
Left err -> Left $ show err
Right val -> Right val
where initState = PState [] 0 0 []
-- Generate a new expression variable
genVar :: String -> Parser ELabel
genVar s = do
stat <- getState
let var = s ++ show (varSupply stat)
putState stat{varSupply = varSupply stat + 1}
return $ trace' 2 ("created " ++ var) var
-- Push a block, possibly with generated expression variables
pushBlock :: (Bool, Bool) -> Parser ()
pushBlock (gen1, gen2) = do
var1 <- if gen1
then Just <$> genVar "x"
else return Nothing
var2 <- if gen2
then Just <$> genVar "x"
else return Nothing
stat <- getState
putState stat{varStack = trace' 2 ("pushed " ++ show var1 ++ ", " ++ show var2) $ (var1, var2) : varStack stat}
-- Append a block, possibly with generated expression variables
appendBlock :: (Bool, Bool) -> Parser (Maybe ELabel, Maybe ELabel)
appendBlock (gen1, gen2) = do
var1 <- if gen1
then Just <$> genVar "y"
else return Nothing
var2 <- if gen2
then Just <$> genVar "y"
else return Nothing
stat <- getState
putState stat{varStack = varStack stat ++ [(var1, var2)]}
return $ trace' 2 ("appended " ++ show var1 ++ ", " ++ show var2) (var1, var2)
-- Create a variable at a specific stack index
putVarAt :: Int -> Parser ELabel
putVarAt ix = do
newVar <- genVar "z"
stat <- getState
let (before, (var1, var2) : after) = splitAt (div ix 2) $ varStack stat
putState $ if even ix
then stat{varStack = before ++ (Just newVar, var2) : after}
else stat{varStack = before ++ (var1, Just newVar) : after}
return newVar
-- Peek at a variable from the stack; extend stack if necessary
peekVar :: Int -> Parser ELabel
peekVar ix = do
stack <- varStack <$> getState
let len = length stack
if ix >= 2 * len
then do
vars <- forM [0 .. div ix 2 - len - 1] $ const $ appendBlock (False, False)
newVar <-
if even ix
then do
(Just var, Nothing) <- appendBlock (True, False)
return var
else do
(Nothing, Just var) <- appendBlock (False, True)
return var
return $ message stack newVar
else
let (var1, var2) = stack !! div ix 2
maybeVar = if even ix then var1 else var2
in case maybeVar of
Just var -> return $ message stack var
Nothing -> do
var <- putVarAt ix
return $ message stack var
where message stack var = trace' 2 ("peeked " ++ show ix ++ " from " ++ show stack ++ ", got " ++ show var) var
-- Pop a 2-variable block off the stack
popBlock :: Parser (Maybe ELabel, Maybe ELabel)
popBlock = do
stat <- getState
let stack = varStack stat
putState stat{varStack = trace' 2 ("popping from " ++ show stack) $ tail stack}
return $ head stack
-- Parse a right paren or be at end of line
rParen :: Parser ()
rParen = (char ')' >> return ()) <|> (lookAhead endOfLine >> return ()) <|> lookAhead eof
-- Eat a lone space character (not followed by sub- or superscipt)
soleSpace :: Parser ()
soleSpace = try $ char ' ' >> notFollowedBy (oneOf "⁰¹²³⁴⁵⁶⁷⁸⁹₀₁₂₃₄₅₆₇₈₉")
-- List of builtins applied to overflowing line numbers
lineFuncs :: [Exp [Lit Scheme]]
lineFuncs = [bins "argdup",
bins "flip",
bins "map",
bins "zip",
bins "hook"]
-- Parse a multiline expression, where some lines are marked with a leading space
multiline :: Parser [Exp [Lit Scheme]]
multiline = do
lineExprs <- sepBy1 (try markedLine <|> unmarkedLine) endOfLine
numLn <- numLines <$> getState
unmarkeds <- unmarked <$> getState
return $ map (updateLineNums numLn unmarkeds) lineExprs
where markedLine = do
soleSpace
expr <- lineExpr
stat <- getState
putState stat{numLines = numLines stat + 1}
return (True, expr)
unmarkedLine = do
expr <- lineExpr
stat <- getState
putState stat{unmarked = unmarked stat ++ [numLines stat],
numLines = numLines stat + 1}
return (False, expr)
updateLineNums numLn unmark (marked, expr) = go expr
where numUnmark = length unmark
go (ELine n)
| marked, lNum <- mod n numLn, rounds <- div n numLn =
case rounds of 0 -> ELine lNum
k -> EApp (lineFuncs !! (k-1)) $ ELine lNum
| lNum <- mod n numUnmark, rounds <- div n numUnmark =
case rounds of 0 -> ELine (unmark !! lNum)
k -> EApp (lineFuncs !! (k-1)) $ ELine (unmark !! lNum)
go (EApp e1 e2) = EApp (go e1) (go e2)
go (EOp e1 e2 e3) = EOp (go e1) (go e2) (go e3)
go (EAbs name exp) = EAbs name (go exp)
go (ELet name exp body) = ELet name (go exp) (go body)
go e = e
-- Parse a line of Husk code
lineExpr :: Parser (Exp [Lit Scheme])
lineExpr = do
state <- getState
putState state{varStack = []}
expr <- expression
overflowVars <- varStack <$> getState
lambdified <- lambdify expr $ trace' 2 ("lambdifying " ++ show expr ++ " with " ++ show overflowVars) overflowVars
return $ trace' 2 (show lambdified) lambdified
-- Add blocks of lambdas to an expression
lambdify :: Exp [Lit Scheme] -> [(Maybe String, Maybe String)] -> Parser (Exp [Lit Scheme])
lambdify expr pairs = go expr (reverse pairs) []
where go expr ((Just var1, Just var2) : rest) vars = do
innerExpr <- go expr rest (vars ++ [EVar var2])
return $ EAbs var2 $ ELet var1 (EApp (bins "flipap") $ EVar var2) innerExpr
go expr ((Just var1, Nothing) : rest) vars = do
innerExpr <- go expr rest vars
return $ EAbs var1 innerExpr
go expr ((Nothing, Just var2) : rest) vars = do
innerExpr <- go expr rest (vars ++ [EVar var2])
return $ EAbs var2 innerExpr
go expr ((Nothing, Nothing) : rest) vars = do
var <- genVar "c"
innerExpr <- go expr rest vars
return $ EAbs (var ++ "_") innerExpr
go expr [] vars = return $ foldl EApp expr vars
-- Parse an expression
expression :: Parser (Exp [Lit Scheme])
expression = mkPrattParser opTable term
where term = between (char '(') rParen expression <|> builtin <|> try float <|> integer <|> character <|> str <|> comprstr <|> intseq <|> lambda <|> try lambdaArg <|> subscript
opTable = [[InfixL $ optional soleSpace >> return (EOp invisibleOp)]]
invisibleOp = bins "com4 com3 com2 com app"
-- Parse a builtin
builtin :: Parser (Exp [Lit Scheme])
builtin = do
label <- oneOf commands
return $ cmd label
-- Parse an integer
integer :: Parser (Exp [Lit Scheme])
integer = do
digits <- many1 digit
return $ ELit [Value digits numType]
where numType = Scheme [] $ CType [] $ TConc TNum
-- Parse a float
float :: Parser (Exp [Lit Scheme])
float = do
prefix <- many digit
char '.'
suffix <- many digit
case (prefix,suffix) of
("","") -> return $ ELit [Value "0.5" numType]
(_ ,"") -> return $ ELit [Value (prefix ++ ".5") numType]
("", _) -> return $ ELit [Value ("0." ++ suffix) numType]
(_ , _) -> return $ ELit [Value (prefix ++ "." ++ suffix) numType]
where numType = Scheme [] $ CType [] $ TConc TNum
-- Parse a character
character :: Parser (Exp [Lit Scheme])
character = do
quote <- char '\''
coded <- anyChar
let c :: Char
c = toEnum $ findByte coded
return $ ELit [Value (show c) $ Scheme [] $ CType [] $ TConc TChar]
-- Parse a string
str :: Parser (Exp [Lit Scheme])
str = do
quote <- char '"'
s <- content
quote2 <- (char '"' >> return ()) <|> (lookAhead endOfLine >> return ()) <|> lookAhead eof
return $ ELit [Value (show s) $ Scheme [] $ CType [] $ TList (TConc TChar)]
where
content = do
codedText <- many $ noneOf "\"\n\\"
plainText <- return $ map decode codedText
maybeEscape <- optionMaybe $ char '\\' >> anyChar
case maybeEscape of
Nothing -> return plainText
Just c -> do plainText2 <- content; return $ plainText ++ toEnum (findByte c) : plainText2
decode '¶' = '\n'
decode '¨' = '"'
decode '¦' = '\\'
decode c = toEnum $ findByte c
-- Parse a compressed string
comprstr :: Parser (Exp [Lit Scheme])
comprstr = do
quote <- char '¨'
s <- content
quote2 <- (char '¨' >> return ()) <|> (lookAhead endOfLine >> return ()) <|> lookAhead eof
return $ ELit [Value (show $ s) $ Scheme [] $CType [] $ TList (TConc TChar)]
where
content = do
comprText <- many $ noneOf "¨\n"
decomprText <- return $ decompressString comprText
return $ map decode decomprText
decode '¶' = '\n'
decode c = c
-- Parse an integer sequence
intseq :: Parser (Exp [Lit Scheme])
intseq = do
iseqCommand <- char 'İ'
seqId <- anyChar
return $ EApp (bins "intseq") $ ELit [Value (show seqId) $ Scheme [] $ CType [] $ TConc TChar]
-- Parse a generalized lambda
lambda :: Parser (Exp [Lit Scheme])
lambda = do
lam <- oneOf "λμξφψχ"
let blocks = case lam of
'λ' -> 1
'μ' -> 2
'ξ' -> 3
'φ' -> 1
'ψ' -> 2
'χ' -> 3
expr <- wrap expression blocks
rParen
return $ if lam `elem` "φψχ" then EApp (bins "fix") expr else expr
where
wrap parser blocks = do
sequence $ replicate blocks $ pushBlock (False, False)
expr <- parser
vars <- sequence $ replicate blocks popBlock
lambdify expr vars
-- Parse a lambda argument
lambdaArg :: Parser (Exp [Lit Scheme])
lambdaArg = do
supStr <- try (pure <$> oneOf sups) <|> (char ' ' >> many1 (oneOf sups))
let digits = catMaybes $ (`elemIndex` sups) <$> supStr
supNum = foldl1 (\n d -> 10*n + d) digits
var <- peekVar supNum
return $ EVar var
where sups = "⁰¹²³⁴⁵⁶⁷⁸⁹"
-- Parse a subscript; used as line numbers
subscript :: Parser (Exp [Lit Scheme])
subscript = do
subStr <- try (pure <$> oneOf subs) <|> (char ' ' >> many1 (oneOf subs))
let digits = catMaybes $ (`elemIndex` subs) <$> subStr
subNum = foldl1 (\n d -> 10*n + d) digits
return $ ELine subNum
where subs = "₀₁₂₃₄₅₆₇₈₉"