-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathget_results.py
51 lines (34 loc) · 1.54 KB
/
get_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
import os
import copy
import threading
import argparse
from results import get_runs
##############################################
runs = get_runs()
##############################################
results = {}
num_runs = len(runs)
for ii in range(num_runs):
param = runs[ii]
name = '%s_%f_%f_%s_%f_%f_%d_%d_%s.npy' % (param['benchmark'],
param['lr'],
param['eps'],
param['act'],
param['bias'],
param['dropout'],
param['dfa'],
param['sparse'],
param['init']
)
res = np.load(name, allow_pickle=True).item()
key = (param['benchmark'], param['dfa'], param['sparse'])
val = max(res['test_acc'])
print (name, val)
if key in results.keys():
if results[key][0] < val:
results[key] = (val, param['benchmark'], param['lr'], param['eps'], param['act'], param['bias'], param['dfa'], param['sparse'], param['init'], name)
else:
results[key] = (val, param['benchmark'], param['lr'], param['eps'], param['act'], param['bias'], param['dfa'], param['sparse'], param['init'], name)
for key in sorted(results.keys()):
print (key, results[key])