-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathstrip-cluster.cc
250 lines (216 loc) · 10.5 KB
/
strip-cluster.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#include <fstream>
#include <iostream>
#include <cstring>
#include <memory>
#include <functional>
#if _OPENMP
#include <omp.h>
#endif
#include <cuda_runtime.h>
#include <cuda_profiler_api.h>
#include "clusterGPU.cuh"
#include "cluster.h"
int main()
{
const int max_strips = MAX_STRIPS;
const int max_seedstrips = MAX_SEEDSTRIPS;
const int nStreams = omp_get_max_threads();
const int nIter = 840/nStreams;
// const int nIter = 840;
const int totalEvents = nIter*nStreams;
cudaStream_t stream[nStreams];
sst_data_t *sst_data[nStreams];
clust_data_t *clust_data[nStreams];
calib_data_t *calib_data[nStreams];
cpu_timing_t *cpu_timing[nStreams];
for (int i=0; i<nStreams; i++) {
CUDA_RT_CALL(cudaStreamCreate(&stream[i]));
sst_data[i] = (sst_data_t *)malloc(sizeof(sst_data_t));
clust_data[i] = (clust_data_t *)malloc(sizeof(clust_data_t));
calib_data[i] = (calib_data_t *)malloc(sizeof(calib_data_t));
cpu_timing[i] = (cpu_timing_t *)malloc(sizeof(cpu_timing_t));
}
// memory allocation
#ifdef NUMA_FT
#pragma omp parallel for num_threads(nStreams)
#endif
for (int i=0; i<nStreams; i++) {
// print_binding_info();
allocateSSTData(max_strips, sst_data[i], stream[i]);
allocateClustData(max_seedstrips, clust_data[i], stream[i]);
allocateCalibData(max_strips, calib_data[i], stream[i]);
}
// read in calibration data (only once)
std::string condfilename("stripcond.bin");
auto conditions = std::make_unique<SiStripConditions>(condfilename);
// option 1: readin strip info
//#ifdef ACTIVE_STRIPS
//std::string digifilename("digidata.bin");
//#else
//std::string digifilename("digidata_all.bin");
//#endif
//readin_raw_digidata(digifilename, conditions.get(), sst_data[0], calib_data[0]);
// option 2: read in raw data and convert to strip info
/*
std::string datafilename("stripdata.bin");
readin_raw_data(datafilename, conditions.get(), sst_data[0], calib_data[0], stream[0]);
// copy data to other streams
for (int i=1; i<nStreams; i++) {
std::memcpy(sst_data[i]->detId, sst_data[0]->detId, sizeof(detId_t)*sst_data[0]->nStrips);
std::memcpy(sst_data[i]->stripId, sst_data[0]->stripId, sizeof(uint16_t)*sst_data[0]->nStrips);
std::memcpy(sst_data[i]->fedId, sst_data[0]->fedId, sizeof(fedId_t)*sst_data[0]->nStrips);
std::memcpy(sst_data[i]->fedCh, sst_data[0]->fedCh, sizeof(fedCh_t)*sst_data[0]->nStrips);
std::memcpy(sst_data[i]->adc, sst_data[0]->adc, sizeof(uint8_t)*sst_data[0]->nStrips);
sst_data[i]->nStrips = sst_data[0]->nStrips;
std::memcpy(calib_data[i]->noise, calib_data[0]->noise, sizeof(float)*sst_data[0]->nStrips);
std::memcpy(calib_data[i]->gain, calib_data[0]->gain, sizeof(float)*sst_data[0]->nStrips);
std::memcpy(calib_data[i]->bad, calib_data[0]->bad, sizeof(bool)*sst_data[0]->nStrips);
}
*/
// option 3: read in raw data only (conversion will be done in the loop)
std::vector<std::vector<FEDRawData>> fedRawDataAll(nStreams);
std::vector<std::vector<FEDBuffer>> fedBufferAll(nStreams);
std::vector<std::vector<fedId_t>> fedIndexAll(nStreams);
std::vector<FEDReadoutMode> modeAll(nStreams);
//std::vector<ChannelLocs> chanlocsAll;
//std::vector<cudautils::host::unique_ptr<uint8_t[]>> fedRawDataHostAll(nStreams);
for (auto i=0; i<nStreams; i++) {
std::string datafilename("stripdata.bin");
readinRawData(datafilename, conditions.get(), fedRawDataAll[i], fedBufferAll[i], fedIndexAll[i], modeAll[i], sst_data[i]);
//chanlocsAll.emplace_back(conditions->detToFeds().size(), stream[i]);
//fedRawDataHostAll[i] = cudautils::make_host_unique<uint8_t[]>(sst_data[i]->totalRawSize, stream[i]);
}
double t0 = omp_get_wtime();
#ifdef USE_GPU
sst_data_t *sst_data_d[nStreams], *pt_sst_data_d[nStreams];
calib_data_t *calib_data_d[nStreams], *pt_calib_data_d[nStreams];
clust_data_t *clust_data_d[nStreams], *pt_clust_data_d[nStreams];
//std::vector<ChannelLocsGPU> chanlocsAllGPU;
//std::vector<cudautils::device::unique_ptr<uint8_t[]>> fedRawDataGPUAll(nStreams);
for (int i=0; i<nStreams; i++) {
sst_data_d[i] = (sst_data_t *)malloc(sizeof(sst_data_t));
sst_data_d[i]->nStrips = sst_data[i]->nStrips;
sst_data_d[i]->totalRawSize = sst_data[i]->totalRawSize;
clust_data_d[i] = (clust_data_t *)malloc(sizeof(clust_data_t));
calib_data_d[i] = (calib_data_t *)malloc(sizeof(calib_data_t));
//chanlocsAllGPU.emplace_back(chanlocsAll[i].size(), stream[i]);
//fedRawDataGPUAll[i] = cudautils::make_device_unique<uint8_t[]>(sst_data_d[i]->totalRawSize, stream[i]);
}
gpu_timing_t *gpu_timing[nStreams];
for (int i=0; i<nStreams; i++) {
gpu_timing[i] = (gpu_timing_t *)malloc(sizeof(gpu_timing_t));
gpu_timing[i]->memTransDHTime = 0.0;
gpu_timing[i]->memTransHDTime = 0.0;
gpu_timing[i]->memAllocTime = 0.0;
gpu_timing[i]->memFreeTime = 0.0;
}
int gpu_device = 0;
CUDA_RT_CALL(cudaSetDevice(gpu_device));
CUDA_RT_CALL(cudaGetDevice(&gpu_device));
std::unique_ptr<SiStripConditionsGPU, std::function<void(SiStripConditionsGPU*)>> condGPU(conditions->toGPU(), [](SiStripConditionsGPU* p) { cudaFree(p); });
cudaProfilerStart();
for (int iter=0; iter<nIter; iter++) {
#pragma omp parallel for num_threads(nStreams)
for (int i=0; i<nStreams; i++) {
#ifdef CALIB_1D
allocateCalibDataGPU(max_strips, calib_data_d[i], &pt_calib_data_d[i], gpu_timing[i], gpu_device, stream[i]);
#endif
allocateSSTDataGPU(max_strips, sst_data_d[i], &pt_sst_data_d[i], gpu_timing[i], gpu_device, stream[i]);
//unpackRawData(conditions.get(), fedRawDataAll[i], fedBufferAll[i], fedIndexAll[i], sst_data[i], calib_data[i], modeAll[i], cpu_timing[i], stream[i]);
//cpySSTDataToGPU(sst_data[i], sst_data_d[i], gpu_timing[i], stream[i]);
//cpyCalibDataToGPU(calib_data[i], calib_data_d[i], gpu_timing[i], stream[i]);
unpackRawDataGPU(conditions.get(), condGPU.get(), fedRawDataAll[i], fedBufferAll[i], fedIndexAll[i], sst_data_d[i], pt_sst_data_d[i], calib_data_d[i], pt_calib_data_d[i], modeAll[i], gpu_timing[i], stream[i]);
setSeedStripsNCIndexGPU(sst_data_d[i], pt_sst_data_d[i], calib_data_d[i], pt_calib_data_d[i], condGPU.get(), gpu_timing[i], stream[i]);
allocateClustDataGPU(max_seedstrips, clust_data_d[i], &pt_clust_data_d[i], gpu_timing[i], gpu_device, stream[i]);
findClusterGPU(sst_data_d[i], pt_sst_data_d[i], calib_data_d[i], pt_calib_data_d[i], condGPU.get(), clust_data_d[i], pt_clust_data_d[i], gpu_timing[i], stream[i]);
cpyGPUToCPU(sst_data_d[i], pt_sst_data_d[i], clust_data[i], clust_data_d[i], gpu_timing[i], stream[i]);
freeClustDataGPU(clust_data_d[i], pt_clust_data_d[i], gpu_timing[i], gpu_device, stream[i]);
freeSSTDataGPU(sst_data_d[i], pt_sst_data_d[i], gpu_timing[i], gpu_device, stream[i]);
#ifdef CALIB_1D
freeCalibDataGPU(calib_data_d[i], pt_calib_data_d[i], gpu_timing[i], gpu_device, stream[i]);
#endif
}
}
#ifdef USE_GPU
CUDA_RT_CALL(cudaDeviceSynchronize());
#endif
cudaProfilerStop();
#else
for (int iter=0; iter<nIter; iter++) {
#pragma omp parallel for num_threads(nStreams)
for (int i=0; i<nStreams; i++) {
unpackRawData(conditions.get(), fedRawDataAll[i], fedBufferAll[i], fedIndexAll[i], sst_data[i], calib_data[i], modeAll[i], cpu_timing[i], stream[i]);
setSeedStripsNCIndex(sst_data[i], calib_data[i], conditions.get(), cpu_timing[i]);
findCluster(sst_data[i], calib_data[i], conditions.get(), clust_data[i], cpu_timing[i]);
}
}
#endif
double t1 = omp_get_wtime();
// print out the result
#ifdef OUTPUT
for (int i=0; i<nStreams; i++) {
#ifdef USE_GPU
sst_data[i]->nSeedStripsNC = sst_data_d[i]->nSeedStripsNC;
#endif
std::cout<<" Event "<<i<<" nSeedStripsNC "<<sst_data[i]->nSeedStripsNC<<std::endl;
for (int j=0; j<sst_data[i]->nSeedStripsNC; j++) {
if (clust_data[i]->trueCluster[j]){
int index = clust_data[i]->clusterLastIndexLeft[j];
// std::cout<<" det id "<<sst_data[i]->detId[index]<<" strip "<<sst_data[i]->stripId[index]
std::cout<<" bary center "<<clust_data[i]->barycenter[j]<<": ";
int right=clust_data[i]->clusterLastIndexRight[j];
int size=right-index+1;
for (int k=0; k<size; k++){
std::cout<<(unsigned int)clust_data[i]->clusterADCs[k*sst_data[i]->nSeedStripsNC+j]<<" ";
}
std::cout<<std::endl;
}
}
}
#endif
#ifdef USE_GPU
std::cout<<" GPU Memory Transfer Host to Device Time: "<<gpu_timing[0]->memTransHDTime<<std::endl;
std::cout<<" GPU Memory Transfer Device to Host Time: "<<gpu_timing[0]->memTransDHTime<<std::endl;
std::cout<<" GPU Memory Allocation Time: "<<gpu_timing[0]->memAllocTime<<std::endl;
std::cout<<" GPU Memory Free Time: "<<gpu_timing[0]->memFreeTime<<std::endl;
std::cout<<" GPU Kernel Time "<<std::endl;
std::cout<<" --unpackRawData kernel Time: "<<gpu_timing[0]->unpackRawDataTime<<std::endl;
std::cout<<" --setSeedStrips kernel Time: "<<gpu_timing[0]->setSeedStripsTime<<std::endl;
std::cout<<" --setNCSeedStrips kernel Time: "<<gpu_timing[0]->setNCSeedStripsTime<<std::endl;
std::cout<<" --setStripIndex kernel Time: "<<gpu_timing[0]->setStripIndexTime<<std::endl;
std::cout<<" --findBoundary GPU Kernel Time: "<<gpu_timing[0]->findBoundaryTime<<std::endl;
std::cout<<" --checkCluster GPU Kernel Time: "<<gpu_timing[0]->checkClusterTime<<std::endl;
std::cout<<" Total Time (including data allocation, transfer and kernel cost): "<<t1-t0<<" Throughput: "<<totalEvents/(t1-t0)<<std::endl;
#else
std::cout<<" setSeedStrips function Time: "<<cpu_timing[0]->setSeedStripsTime<<std::endl;
std::cout<<" setNCSeedStrips function Time: "<<cpu_timing[0]->setNCSeedStripsTime<<std::endl;
std::cout<<" setStripIndex function Time: "<<cpu_timing[0]->setStripIndexTime<<std::endl;
std::cout<<" findBoundary function Time: "<<cpu_timing[0]->findBoundaryTime<<std::endl;
std::cout<<" checkCluster function Time: "<<cpu_timing[0]->checkClusterTime<<std::endl;
std::cout<<" Total Time: "<<t1-t0<<" Throughput: "<<totalEvents/(t1-t0)<<std::endl;
std::cout<<"nested? "<<omp_get_nested()<<std::endl;
#endif
#ifdef USE_GPU
//chanlocsAllGPU.clear();
//fedRawDataGPUAll.clear();
for (int i=0; i<nStreams; i++) {
free(sst_data_d[i]);
free(clust_data_d[i]);
free(calib_data_d[i]);
free(gpu_timing[i]);
}
#endif
//fedRawDataHostAll.clear();
//chanlocsAll.clear();
for (int i=0; i<nStreams; i++) {
freeSSTData(sst_data[i]);
free(sst_data[i]);
freeClustData(clust_data[i]);
free(clust_data[i]);
freeCalibData(calib_data[i]);
free(calib_data[i]);
free(cpu_timing[i]);
CUDA_RT_CALL(cudaStreamDestroy(stream[i]));
}
return 0;
}