-
-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathparam_parser.py
95 lines (75 loc) · 3.28 KB
/
param_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
"""Parameter parsing."""
import argparse
def parameter_parser():
"""
A method to parse up command line parameters. By default it trains on the Cora dataset.
The default hyperparameters give a good quality representation without grid search.
"""
parser = argparse.ArgumentParser(description="Run MixHop/N-GCN.")
parser.add_argument("--edge-path",
nargs="?",
default="./input/cora_edges.csv",
help="Edge list csv.")
parser.add_argument("--features-path",
nargs="?",
default="./input/cora_features.json",
help="Features json.")
parser.add_argument("--target-path",
nargs="?",
default="./input/cora_target.csv",
help="Target classes csv.")
parser.add_argument("--model",
nargs="?",
default="mixhop",
help="Target classes csv.")
parser.add_argument("--epochs",
type=int,
default=2000,
help="Number of training epochs. Default is 2000.")
parser.add_argument("--seed",
type=int,
default=42,
help="Random seed for train-test split. Default is 42.")
parser.add_argument("--early-stopping",
type=int,
default=10,
help="Number of early stopping rounds. Default is 10.")
parser.add_argument("--training-size",
type=int,
default=1500,
help="Training set size. Default is 1500.")
parser.add_argument("--validation-size",
type=int,
default=500,
help="Validation set size. Default is 500.")
parser.add_argument("--dropout",
type=float,
default=0.5,
help="Dropout parameter. Default is 0.5.")
parser.add_argument("--learning-rate",
type=float,
default=0.01,
help="Learning rate. Default is 0.01.")
parser.add_argument("--cut-off",
type=float,
default=0.1,
help="Weight cut-off. Default is 0.1.")
parser.add_argument("--lambd",
type=float,
default=0.0005,
help="L2 regularization coefficient. Default is 0.0005.")
parser.add_argument("--layers-1",
nargs="+",
type=int,
help="Layer dimensions separated by space (top). E.g. 200 20.")
parser.add_argument("--layers-2",
nargs="+",
type=int,
help="Layer dimensions separated by space (bottom). E.g. 200 200.")
parser.add_argument("--budget",
type=int,
default=60,
help="Architecture neuron allocation budget. Default is 60.")
parser.set_defaults(layers_1=[200, 200, 200])
parser.set_defaults(layers_2=[200, 200, 200])
return parser.parse_args()