-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathprobmodels.py
221 lines (186 loc) · 6.4 KB
/
probmodels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from md5 import md5
import math
import pickle
import pystan
import numpy
import logging
from google.appengine.ext import db
from models import *
def mean(l):
return float(numpy.mean(l))
def stan_cache(model_name, **kwargs):
f=open(model_name, 'rb')
model_code=f.read()
f.close()
code_hash = md5(model_code.encode('ascii')).hexdigest()
cache_fn = 'cached-{}-{}.pkl'.format(model_name, code_hash)
try:
sm = pickle.load(open(cache_fn, 'rb'))
except:
sm = pystan.StanModel(file=model_name)
with open(cache_fn, 'wb') as f:
pickle.dump(sm, f)
else:
logging.info("Using cached StanModel")
return sm.sampling(**kwargs)
class Normal(db.Model):
mean=db.FloatProperty(required=True)
sd=db.FloatProperty(required=True)
class Multinomial(db.Model):
distribution=db.ListProperty(float)
class Exponential(db.Model):
parameter=db.FloatProperty(required=True)
class Poisson(db.Model):
parameter=db.FloatProperty(required=True)
class LengthModel(db.Model):
distribution=db.ReferenceProperty(Normal, required=True)
class DurationModel(db.Model):
distribution=db.ReferenceProperty(Exponential, required=True)
class EntropyModel(db.Model):
distribution=db.ReferenceProperty(Normal, required=True)
class FlowModel(db.Model):
distribution=db.ReferenceProperty(Poisson, required=True)
class ContentModel(db.Model):
distribution=db.ReferenceProperty(Multinomial, required=True)
class ProtocolModel(db.Model):
protocol=db.ReferenceProperty(Protocol, required=True)
dataset=db.ReferenceProperty(Dataset, required=True)
outgoing=db.BooleanProperty(required=True)
length=db.ReferenceProperty(LengthModel, required=False)
entropy=db.ReferenceProperty(EntropyModel, required=False)
flow=db.ReferenceProperty(FlowModel, required=False)
content=db.ReferenceProperty(ContentModel, required=False)
duration=db.ReferenceProperty(DurationModel, required=False)
class AdversaryProtocolModel(db.Model):
adversary=db.ReferenceProperty(AdversaryModel, required=True)
label=db.BooleanProperty(required=True)
outgoing=db.BooleanProperty(required=True)
length=db.ReferenceProperty(LengthModel, required=False)
entropy=db.ReferenceProperty(EntropyModel, required=False)
flow=db.ReferenceProperty(FlowModel, required=False)
content=db.ReferenceProperty(ContentModel, required=False)
duration=db.ReferenceProperty(DurationModel, required=False)
class PositionModel(db.Model):
model=db.ReferenceProperty(ProtocolModel, required=True)
position=db.IntegerProperty(required=True)
previous=db.IntegerProperty(required=True)
distribution=db.ReferenceProperty(Multinomial, required=True)
class Fit(db.Model):
conn=db.ReferenceProperty(Connection, required=True)
model=db.ReferenceProperty(AdversaryProtocolModel, required=True)
length=db.FloatProperty(required=True)
entropy=db.FloatProperty(required=True)
flow=db.FloatProperty(required=True)
content=db.FloatProperty(required=True)
duration=db.FloatProperty(required=True)
def fitLengthModel(lengths):
if not lengths:
return None
lengths=filter(lambda x: x<=1440, lengths)
if len(lengths)<3:
return None
logging.info("fitting length with %d samples" % (len(lengths)))
data={'samples': lengths, 'N': len(lengths)}
fit=stan_cache('length.stan', data=data, iter=1000, chains=4)
logging.info(fit)
samples=fit.extract(permuted=True)
logging.info(samples)
theta1=mean(samples['theta'])
sigma1=mean(samples['sigma'])
logging.info((theta1, sigma1))
logging.info('Length results:')
logging.info(list((theta1, sigma1)))
normal=Normal(mean=theta1, sd=sigma1)
normal.save()
logging.info(normal)
model=LengthModel(distribution=normal)
model.save()
logging.info(model)
return model
def fitDurationModel(lengths):
lengths=filter(checkEntropy, lengths)
if not lengths or len(lengths)<3:
logging.error("Not enough samples for duration model")
return None
data={'samples': lengths, 'N': len(lengths)}
fit=stan_cache('duration.stan', data=data, iter=1000, chains=4)
logging.info(fit)
samples=fit.extract(permuted=True)
logging.info(samples)
l=mean(samples['lambda'])
logging.info(l)
exp=Exponential(parameter=l)
exp.save()
model=DurationModel(distribution=exp)
model.save()
return model
def fitEntropyModel(samples):
logging.info("Not enough samples for entropy model")
if not samples or len(samples)<3:
return None
samples=filter(checkEntropy, samples)
logging.info('Fitting entropy:')
logging.info(samples)
data={'samples': samples, 'N': len(samples)}
fit=stan_cache('entropy.stan', data=data, iter=1000, chains=4)
logging.info(fit)
samples=fit.extract(permuted=True)
logging.info(samples)
theta1=mean(samples['theta'])
sigma1=mean(samples['sigma'])
logging.info((theta1, sigma1))
logging.info(list((theta1, sigma1)))
normal=Normal(mean=theta1, sd=sigma1)
normal.save()
model=EntropyModel(distribution=normal)
model.save()
return model
def checkEntropy(sample):
return sample>0
def fitFlowModel(samples):
if not samples or len(samples)<3:
return None
data={'samples': samples, 'N': len(samples)}
fit=stan_cache('flow.stan', data=data, iter=1000, chains=4)
logging.info(fit)
samples=fit.extract(permuted=True)
logging.info(samples)
l=mean(samples['lambda'])
logging.info(l)
pois=Poisson(parameter=l)
pois.save()
model=FlowModel(distribution=pois)
model.save()
return model
def fitContentModel(counts):
if not counts or len(counts)!=256:
return None
logging.info('Fitting content model:')
logging.info(counts)
data={'counts': counts}
fit=stan_cache('content.stan', data=data, iter=1000, chains=2)
logging.info('Loaded model')
samples=fit.extract(permuted=True)
thetas=samples['theta']
theta=map(float, list(thetas[0])) # FIXME - This is a bad way to generate a summary statistic for theta
logging.info(theta)
multi=Multinomial(distribution=theta)
multi.save()
model=ContentModel(distribution=multi)
model.save()
return model
def fitPositionModel(model, counts):
if not counts or len(counts)<256:
return None
data={'L': 1440, 'B': 256, 'counts': counts}
fit=stan_cache('position.stan', data=data, iter=1000, chains=4)
logging.info(fit)
samples=fit.extract(permuted=True)
logging.info(samples)
thetas=samples['theta']
logging.info(theta)
for l in range(1440):
for b in range(256):
theta=thetas[l][b]
model=PositionModel(model=model, position=l, previous=b, distribution=theta)
model.save()