Skip to content

Commit 4494fd9

Browse files
Add console.png
1 parent e2a7c6b commit 4494fd9

File tree

2 files changed

+1
-1
lines changed

2 files changed

+1
-1
lines changed

README.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
keras-tqdm==========Keras integration with TQDM progress bars.* TQDM supports nested progress bars. If you have Keras fit and predict loops within an outer TQDM loop, the nested loops will display properly.* TQDM supports Jupyter/IPython notebooks.* TQDM looks great!With ``leave_inner=False`` (default).. figure:: https://github.com/bstriner/keras-tqdm/raw/master/docs/images/leave_inner_False.png :alt: Keras TQDMWith ``leave_inner=True``.. figure:: https://github.com/bstriner/keras-tqdm/raw/master/docs/images/leave_inner_True.png :alt: Keras TQDMInstallation------------Stable release:: pip install keras-tqdmDevelopment release:: git clone https://github.com/bstriner/keras-tqdm.git cd keras-tqdm python setup.py installKeras-----`Keras <https://github.com/fchollet/keras>`__ is an awesome machinelearning library for Theano or TensorFlow.TQDM----`TQDM <https://github.com/tqdm/tqdm>`__ is a progress bar library withgood support for nested loops and Jupyter/IPython notebooks.Basic TQDM Usage----------------Use TQDM to wrap enumerators within loops to create a progress bar.Review TQDM documentation for display options.:: from tqdm import tqdm import time for i in tqdm(range(10)): time.sleep(1)Keras TQDM----------Use ``keras_tqdm`` to utilize TQDM progress bars for Keras fit loops.``keras_tqdm`` loops can be nested inside TQDM loops to display nested progress bars (although you can use theminside ordinary for loops as well).Set ``verbose=0`` to suppress the default progress bar.:: from keras_tqdm import TQDMCallback from tqdm import tqdm for model in tqdm(models, desc="Training several models"): model.fit(x, y, verbose=0, callbacks=[TQDMCallback()])IPython and Jupyter----------Use ``TQDMNotebookCallback`` instead of ``TQDMCallback``. Use ``tqdm_notebook`` in your own code instead of ``tqdm``.Questions?----------Please feel free to submit PRs and issues. Comments, questions, andrequests are welcome. If you need more control, subclass``TQDMCallback`` and override the ``tqdm`` function.
1+
keras-tqdm==========Keras integration with TQDM progress bars.* TQDM supports nested progress bars. If you have Keras fit and predict loops within an outer TQDM loop, the nested loops will display properly.* TQDM supports Jupyter/IPython notebooks.* TQDM looks great!``TQDMNotebookCallback`` with ``leave_inner=False`` (default).. figure:: https://github.com/bstriner/keras-tqdm/raw/master/docs/images/leave_inner_False.png :alt: Keras TQDM leave_inner=False``TQDMNotebookCallback`` with ``leave_inner=True``.. figure:: https://github.com/bstriner/keras-tqdm/raw/master/docs/images/leave_inner_True.png :alt: Keras TQDM leave_inner=True``TQDMCallback`` for command-line scripts.. figure:: https://github.com/bstriner/keras-tqdm/raw/master/docs/images/console.png :alt: Keras TQDM CLI Installation------------Stable release:: pip install keras-tqdmDevelopment release:: git clone https://github.com/bstriner/keras-tqdm.git cd keras-tqdm python setup.py installKeras-----`Keras <https://github.com/fchollet/keras>`__ is an awesome machinelearning library for Theano or TensorFlow.TQDM----`TQDM <https://github.com/tqdm/tqdm>`__ is a progress bar library withgood support for nested loops and Jupyter/IPython notebooks.Basic TQDM Usage----------------Use TQDM to wrap enumerators within loops to create a progress bar.Review TQDM documentation for display options.:: from tqdm import tqdm import time for i in tqdm(range(10)): time.sleep(1)Keras TQDM----------Use ``keras_tqdm`` to utilize TQDM progress bars for Keras fit loops.``keras_tqdm`` loops can be nested inside TQDM loops to display nested progress bars (although you can use theminside ordinary for loops as well).Set ``verbose=0`` to suppress the default progress bar.:: from keras_tqdm import TQDMCallback from tqdm import tqdm for model in tqdm(models, desc="Training several models"): model.fit(x, y, verbose=0, callbacks=[TQDMCallback()])IPython and Jupyter----------Use ``TQDMNotebookCallback`` instead of ``TQDMCallback``. Use ``tqdm_notebook`` in your own code instead of ``tqdm``.Questions?----------Please feel free to submit PRs and issues. Comments, questions, andrequests are welcome. If you need more control, subclass``TQDMCallback`` and override the ``tqdm`` function.

docs/images/console.png

7.73 KB
Loading

0 commit comments

Comments
 (0)