-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathhash.go
522 lines (465 loc) · 13.6 KB
/
hash.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
package xmssmt
// The various hashes used by WOTS+, XMSS and XMSSMT.
import (
"crypto/sha256"
"crypto/sha512"
"encoding/binary"
"hash"
"io"
"reflect"
"github.com/bwesterb/go-xmssmt/internal/f1600x4"
"github.com/templexxx/xorsimd"
"golang.org/x/crypto/sha3"
)
const (
HASH_PADDING_F = 0
HASH_PADDING_H = 1
HASH_PADDING_HASH = 2
HASH_PADDING_PRF = 3
HASH_PADDING_PRF_KEYGEN = 4
)
// Many of the hashes that we compute share the same prefix. If this prefix
// is longer than the "rate" of the hash, then we can reduce the compution
// by precomputing the state of the hashes after consuming these common
// prefixes. This struct contains the functions that encapsulate the
// precomputed hashes.
type precomputedHashes struct {
// Precomputed prfAddrInto for the current pubSeed
prfAddrPubSeedInto func(pad scratchPad, addr address, out []byte)
// Precomputed prfAddrInto for the current skSeed
prfAddrSkSeedInto func(pad scratchPad, addr address, out []byte)
pubSeed []byte
skSeed []byte
}
// Contains preallocated hashes to prevent allocation. See scratchPad.
type hashScratchPad struct {
h hash.Hash
hV reflect.Value
shake sha3.ShakeHash
shakeX4 *f1600x4.State
shakeX4A []uint64
}
func (ctx *Context) precomputeHashes(pubSeed, skSeed []byte) (
ph precomputedHashes) {
ph.pubSeed = pubSeed
ph.skSeed = skSeed
switch ctx.p.Func {
case SHA2:
var hPrfSk, hPrfPub hash.Hash
switch ctx.p.N {
case 16, 24, 32:
hPrfSk = sha256.New()
hPrfPub = sha256.New()
case 64:
hPrfSk = sha512.New()
hPrfPub = sha512.New()
}
if skSeed != nil {
hPrfSk.Write(encodeUint64(HASH_PADDING_PRF, int(ctx.prefixLen)))
hPrfSk.Write(skSeed)
}
hPrfPub.Write(encodeUint64(HASH_PADDING_PRF, int(ctx.prefixLen)))
hPrfPub.Write(pubSeed)
// This might break if sha{256,512}.digest is changed in the future,
// but it's much better than using the encoding.Binary(Un)marshaler
// interface as that forces allocations.
// See https://stackoverflow.com/questions/45385707/
hVprfPub := reflect.ValueOf(hPrfPub).Elem()
hVskPub := reflect.ValueOf(hPrfSk).Elem()
ph.prfAddrPubSeedInto = func(pad scratchPad, addr address, out []byte) {
pad.hash.hV.Set(hVprfPub)
addrBuf := pad.prfAddrBuf()
addr.writeInto(addrBuf)
pad.hash.h.Write(addrBuf)
if ctx.p.N >= 32 {
// hash.Sum append()s the hash to the input byte slice. As our
// input byte slice has enough capacity, it will write it in out.
pad.hash.h.Sum(out[:0])
} else {
pad.hash.h.Sum(addrBuf[:0])
copy(out[:], addrBuf[:ctx.p.N])
}
}
if skSeed == nil {
return
}
ph.prfAddrSkSeedInto = func(pad scratchPad, addr address, out []byte) {
pad.hash.hV.Set(hVskPub)
addrBuf := pad.prfAddrBuf()
addr.writeInto(addrBuf)
pad.hash.h.Write(addrBuf)
if ctx.p.N >= 32 {
pad.hash.h.Sum(out[:0]) // see above
} else {
pad.hash.h.Sum(addrBuf[:0])
copy(out[:], addrBuf[:ctx.p.N])
}
}
case SHAKE, SHAKE256:
// The rates of Shake128 and Shake256 are so high (136 resp. 168)
// that precomputing does not have merit.
ph.prfAddrPubSeedInto = func(pad scratchPad, addr address, out []byte) {
h := pad.hash.shake
addrBuf := pad.prfAddrBuf()
h.Reset()
prefBuf := pad.prfBuf()[:ctx.prefixLen]
encodeUint64Into(HASH_PADDING_PRF, prefBuf)
addr.writeInto(addrBuf)
h.Write(prefBuf)
h.Write(pubSeed)
h.Write(addrBuf)
h.Read(out[:pad.n])
}
if skSeed == nil {
return
}
ph.prfAddrSkSeedInto = func(pad scratchPad, addr address, out []byte) {
h := pad.hash.shake
addrBuf := pad.prfAddrBuf()
h.Reset()
prefBuf := pad.prfBuf()[:ctx.prefixLen]
encodeUint64Into(HASH_PADDING_PRF, prefBuf)
addr.writeInto(addrBuf)
h.Write(prefBuf)
h.Write(skSeed)
h.Write(addrBuf)
h.Read(out[:pad.n])
}
default:
panic("not implemented")
}
return
}
// Compute the hash of in. out must be a n-byte slice.
func (ctx *Context) hashInto(pad scratchPad, in, out []byte) {
switch ctx.p.Func {
case SHA2:
switch ctx.p.N {
case 16, 24, 32:
ret := sha256.Sum256(in)
copy(out, ret[:ctx.p.N])
case 64:
ret := sha512.Sum512(in)
copy(out, ret[:])
}
case SHAKE, SHAKE256:
h := pad.hash.shake
h.Reset()
h.Write(in)
h.Read(out[:ctx.p.N])
}
}
func (ctx *Context) prfKeyGenInto(pad scratchPad, ph precomputedHashes,
addr address, out []byte) {
n := ctx.p.N
pl := ctx.prefixLen
buf := pad.prfKeyGenBuf()
encodeUint64Into(HASH_PADDING_PRF_KEYGEN, buf[:pl])
copy(buf[pl:pl+n], ph.skSeed)
copy(buf[pl+n:pl+2*n], ph.pubSeed)
addr.writeInto(buf[pl+2*n : pl+2*n+32])
ctx.hashInto(pad, buf[:pl+2*n+32], out)
}
// Compute PRF(key, i)
func (ctx *Context) prfUint64(pad scratchPad, i uint64, key []byte) []byte {
ret := make([]byte, ctx.p.N)
ctx.prfUint64Into(pad, i, key, ret)
return ret
}
// Compute PRF(key, i)
func (ctx *Context) prfUint64Into(pad scratchPad, i uint64, key, out []byte) {
buf := pad.prfBuf()
pl := ctx.prefixLen
n := ctx.p.N
encodeUint64Into(HASH_PADDING_PRF, buf[:pl])
copy(buf[pl:pl+n], key)
encodeUint64Into(i, buf[n+pl:n+pl+32])
ctx.hashInto(pad, buf[:n+pl+32], out)
}
// Compute PRF(key, addr)
func (ctx *Context) prfAddr(pad scratchPad, addr address, key []byte) []byte {
ret := make([]byte, ctx.p.N)
ctx.prfAddrInto(pad, addr, key, ret)
return ret
}
// Compute PRF(key, addr) and store into out
func (ctx *Context) prfAddrInto(pad scratchPad, addr address, key, out []byte) {
buf := pad.prfBuf()
pl := ctx.prefixLen
n := ctx.p.N
encodeUint64Into(HASH_PADDING_PRF, buf[:pl])
copy(buf[pl:pl+n], key)
addr.writeInto(buf[n+pl : n+pl+32])
ctx.hashInto(pad, buf[:n+pl+32], out)
}
// Set out[i] = PRF(key, addr[i]) for i=0,1,2,3.
//
// Assumes SHAKE with N either 16 or 32 and f1600x4.Available is true.
func (ctx *Context) prfAddrX4Into(pad scratchPad, addr [4]address, key []byte,
out [4][]byte) {
// We're computing hash( HASH_PADDING_PRF ‖ key ‖ addr ).
a := pad.hash.shakeX4A
pad.hash.shakeX4.Zero()
if ctx.p.N == 16 {
for j := 0; j < 4; j++ {
if out[j] == nil {
continue
}
a[4+j] = HASH_PADDING_PRF << 56
a[4*2+j] = binary.LittleEndian.Uint64(key[:8])
a[4*3+j] = binary.LittleEndian.Uint64(key[8:])
var buf [8]byte
for i := 0; i < 4; i++ {
binary.BigEndian.PutUint32(buf[:4], addr[j][2*i])
binary.BigEndian.PutUint32(buf[4:], addr[j][2*i+1])
a[4*(4+i)+j] = binary.LittleEndian.Uint64(buf[:])
}
// SHAKE128 domain separator (0b1111) and padding (0b100...001).
a[4*8+j] = 0x1f
a[4*20+j] = 0x80 << 56
}
pad.hash.shakeX4.Permute()
for j := 0; j < 4; j++ {
if out[j] == nil {
continue
}
binary.LittleEndian.PutUint64(out[j][0:8], a[j])
binary.LittleEndian.PutUint64(out[j][8:16], a[4+j])
}
} else if ctx.p.N == 32 {
for j := 0; j < 4; j++ {
if out[j] == nil {
continue
}
a[4*3+j] = HASH_PADDING_PRF << 56
a[4*4+j] = binary.LittleEndian.Uint64(key[:8])
a[4*5+j] = binary.LittleEndian.Uint64(key[8:16])
a[4*6+j] = binary.LittleEndian.Uint64(key[16:24])
a[4*7+j] = binary.LittleEndian.Uint64(key[24:32])
var buf [8]byte
for i := 0; i < 4; i++ {
binary.BigEndian.PutUint32(buf[:4], addr[j][2*i])
binary.BigEndian.PutUint32(buf[4:], addr[j][2*i+1])
a[4*(8+i)+j] = binary.LittleEndian.Uint64(buf[:])
}
// SHAKE128 domain separator (0b1111) and padding (0b100...001).
a[4*12+j] = 0x1f
a[4*20+j] = 0x80 << 56
}
pad.hash.shakeX4.Permute()
for j := 0; j < 4; j++ {
if out[j] == nil {
continue
}
binary.LittleEndian.PutUint64(out[j][0:8], a[j])
binary.LittleEndian.PutUint64(out[j][8:16], a[4+j])
binary.LittleEndian.PutUint64(out[j][16:24], a[8+j])
binary.LittleEndian.PutUint64(out[j][24:32], a[12+j])
}
} else {
panic("not implemented")
}
}
// Compute hash of a message and put it into out
func (ctx *Context) hashMessage(pad scratchPad, msg io.Reader,
R, root []byte, idx uint64) ([]byte, error) {
ret := make([]byte, ctx.p.N)
err := ctx.hashMessageInto(pad, msg, R, root, idx, ret)
if err != nil {
return nil, err
}
return ret, nil
}
// Compute hash of a message and put it into out
func (ctx *Context) hashMessageInto(pad scratchPad, msg io.Reader,
R, root []byte, idx uint64, out []byte) error {
var h io.Writer
switch ctx.p.Func {
case SHA2:
switch ctx.p.N {
case 16, 24, 32:
h = sha256.New()
case 64:
h = sha512.New()
}
case SHAKE, SHAKE256:
h2 := pad.hash.shake
h2.Reset()
h = h2
}
h.Write(encodeUint64(HASH_PADDING_HASH, int(ctx.prefixLen)))
h.Write(R)
h.Write(root)
h.Write(encodeUint64(idx, int(ctx.p.N)))
_, err := io.Copy(h, msg)
if err != nil {
return err
}
switch ctx.p.Func {
case SHA2:
if ctx.p.N >= 32 {
(h.(hash.Hash)).Sum(out[:0])
} else {
var buf [32]byte
(h.(hash.Hash)).Sum(buf[:0])
copy(out[:], buf[:ctx.p.N])
}
case SHAKE, SHAKE256:
(h.(io.Reader)).Read(out)
}
return nil
}
// Compute the hash f used in WOTS+
func (ctx *Context) f(in, pubSeed []byte, addr address) []byte {
ret := make([]byte, ctx.p.N)
ctx.fInto(ctx.newScratchPad(), in, ctx.precomputeHashes(pubSeed, nil),
addr, ret)
return ret
}
// Set out[i] = f(addr[i], key, in[i]) for i=0,1,2,3.
//
// Assumes SHAKE with N either 16 or 32 and f1600x4.Available is true.
func (ctx *Context) fX4Into(pad scratchPad, in [4][]byte, key []byte,
addr [4]address, out [4][]byte) {
buf := pad.fX4Buf()
n := ctx.p.N
for j := 0; j < 4; j++ {
addr[j].setKeyAndMask(0)
}
ctx.prfAddrX4Into(pad, addr, key, [4][]byte{
buf[0:n], buf[n : 2*n],
buf[2*n : 3*n], buf[3*n : 4*n],
})
for j := 0; j < 4; j++ {
addr[j].setKeyAndMask(1)
}
ctx.prfAddrX4Into(pad, addr, key, [4][]byte{
buf[4*n : 5*n], buf[5*n : 6*n],
buf[6*n : 7*n], buf[7*n : 8*n],
})
a := pad.hash.shakeX4A
pad.hash.shakeX4.Zero()
if ctx.p.N == 16 {
for j := 0; j < 4; j++ {
if in[j] == nil {
continue
}
a[4*2+j] = binary.LittleEndian.Uint64(buf[j*16 : j*16+8])
a[4*3+j] = binary.LittleEndian.Uint64(buf[j*16+8 : j*16+16])
a[4*4+j] = (binary.LittleEndian.Uint64(buf[j*16+64:j*16+72]) ^
binary.LittleEndian.Uint64(in[j][:8]))
a[4*5+j] = (binary.LittleEndian.Uint64(buf[j*16+72:j*16+80]) ^
binary.LittleEndian.Uint64(in[j][8:]))
// SHAKE128 domain separator (0b1111) and padding (0b100...001).
a[4*6+j] = 0x1f
a[4*20+j] = 0x80 << 56
}
pad.hash.shakeX4.Permute()
for j := 0; j < 4; j++ {
if in[j] == nil {
continue
}
binary.LittleEndian.PutUint64(out[j][0:8], a[j])
binary.LittleEndian.PutUint64(out[j][8:16], a[4+j])
}
} else if ctx.p.N == 32 {
for j := 0; j < 4; j++ {
if in[j] == nil {
continue
}
a[4*4+j] = binary.LittleEndian.Uint64(buf[j*32 : j*32+8])
a[4*5+j] = binary.LittleEndian.Uint64(buf[j*32+8 : j*32+16])
a[4*6+j] = binary.LittleEndian.Uint64(buf[j*32+16 : j*32+24])
a[4*7+j] = binary.LittleEndian.Uint64(buf[j*32+24 : j*32+32])
a[4*8+j] = (binary.LittleEndian.Uint64(buf[j*32+128:j*32+136]) ^
binary.LittleEndian.Uint64(in[j][:8]))
a[4*9+j] = (binary.LittleEndian.Uint64(buf[j*32+136:j*32+144]) ^
binary.LittleEndian.Uint64(in[j][8:16]))
a[4*10+j] = (binary.LittleEndian.Uint64(buf[j*32+144:j*32+152]) ^
binary.LittleEndian.Uint64(in[j][16:24]))
a[4*11+j] = (binary.LittleEndian.Uint64(buf[j*32+152:j*32+160]) ^
binary.LittleEndian.Uint64(in[j][24:32]))
// SHAKE128 domain separator (0b1111) and padding (0b100...001).
a[4*12+j] = 0x1f
a[4*20+j] = 0x80 << 56
}
pad.hash.shakeX4.Permute()
for j := 0; j < 4; j++ {
if in[j] == nil {
continue
}
binary.LittleEndian.PutUint64(out[j][0:8], a[j])
binary.LittleEndian.PutUint64(out[j][8:16], a[4+j])
binary.LittleEndian.PutUint64(out[j][16:24], a[8+j])
binary.LittleEndian.PutUint64(out[j][24:32], a[12+j])
}
} else {
panic("not implemented")
}
}
// Compute the hash f used in WOTS+ and put it into out
func (ctx *Context) fInto(pad scratchPad, in []byte, ph precomputedHashes,
addr address, out []byte) {
buf := pad.fBuf()
n := ctx.p.N
pl := ctx.prefixLen
encodeUint64Into(HASH_PADDING_F, buf[:pl])
addr.setKeyAndMask(0)
ph.prfAddrPubSeedInto(pad, addr, buf[pl:pl+n])
addr.setKeyAndMask(1)
ph.prfAddrPubSeedInto(pad, addr, buf[pl+n:pl+2*n])
xorsimd.Bytes(buf[pl+n:pl+2*n], in, buf[pl+n:pl+2*n])
ctx.hashInto(pad, buf[:pl+2*n], out)
}
// Compute RAND_HASH used to hash up various trees
func (ctx *Context) h(left, right, pubSeed []byte, addr address) []byte {
ret := make([]byte, ctx.p.N)
ctx.hInto(ctx.newScratchPad(), left, right,
ctx.precomputeHashes(pubSeed, nil), addr, ret)
return ret
}
// Compute RAND_HASH used to hash up various trees and put it into out
func (ctx *Context) hInto(pad scratchPad, left, right []byte,
ph precomputedHashes, addr address, out []byte) {
buf := pad.hBuf()
n := ctx.p.N
pl := ctx.prefixLen
encodeUint64Into(HASH_PADDING_H, buf[:pl])
addr.setKeyAndMask(0)
ph.prfAddrPubSeedInto(pad, addr, buf[pl:pl+n])
addr.setKeyAndMask(1)
ph.prfAddrPubSeedInto(pad, addr, buf[pl+n:pl+2*n])
addr.setKeyAndMask(2)
ph.prfAddrPubSeedInto(pad, addr, buf[2*n+pl:3*n+pl])
xorsimd.Bytes(buf[pl+n:pl+2*n], left, buf[pl+n:pl+2*n])
xorsimd.Bytes(buf[pl+2*n:pl+3*n], right, buf[pl+2*n:pl+3*n])
ctx.hashInto(pad, buf[:pl+3*n], out)
}
func (ctx *Context) newHashScratchPad() (pad hashScratchPad) {
switch ctx.p.Func {
case SHA2:
switch ctx.p.N {
case 16, 24, 32:
pad.h = sha256.New()
case 64:
pad.h = sha512.New()
}
pad.hV = reflect.ValueOf(pad.h).Elem()
case SHAKE:
switch ctx.p.N {
case 16, 24, 32:
pad.shake = sha3.NewShake128()
if f1600x4.Available {
pad.shakeX4 = new(f1600x4.State)
pad.shakeX4A = pad.shakeX4.Initialize()
}
case 64:
pad.shake = sha3.NewShake256()
}
case SHAKE256:
pad.shake = sha3.NewShake256()
default:
panic("Not implemented")
}
return
}