-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdata_processing.py
242 lines (192 loc) · 10.1 KB
/
data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import pandas as pd
from torch.utils.data import Dataset
import torch
import numpy as np
from torch.utils.data.sampler import SubsetRandomSampler, SequentialSampler
from rdkit import Chem
from rdkit.Chem import AllChem
import json
def get_ecfp4_features_given_smiles_dict(smiles_dict):
compound_smile_dict = {}
for comp_id in smiles_dict:
m = Chem.MolFromSmiles(smiles_dict[comp_id])
fp = AllChem.GetMorganFingerprintAsBitVect(m, 2, nBits=1024)
feature_list = []
for dim in fp:
feature_list.append(float(dim))
compound_smile_dict[comp_id] = feature_list
return compound_smile_dict
def read_smiles(file_name):
compound_smile_dict = {}
with open(file_name) as f:
lines = f.readlines()
for line in lines:
compound_smile_pair = line.rstrip('\n').split("\t")
compound_smile_dict[compound_smile_pair[0]] = compound_smile_pair[1]
return compound_smile_dict
def get_target_dict_feature_vector(training_dataset_path, feature_lst):
tar_feature_vector_path = "{}/target_feature_vectors".format(training_dataset_path)
feat_vec_path = tar_feature_vector_path
features_dict = dict()
feature_fl_path = "{}/{}.tsv".format(feat_vec_path, feature_lst[0])
with open(feature_fl_path) as f:
for line in f:
line = line.split("\n")[0]
line = line.split("\t")
target_id = line[0]
feat_vec = line[1:]
features_dict[target_id] = torch.tensor(np.asarray(feat_vec, dtype=float)).type(torch.FloatTensor)
return features_dict
def get_compound_dict_feature_vector(training_dataset_path, feature_lst):
comp_feature_vector_path = "{}/compound_feature_vectors".format(training_dataset_path)
feat_vec_path = comp_feature_vector_path
features_dict = dict()
feature_fl_path = "{}/{}.tsv".format(feat_vec_path, feature_lst[0])
if feature_lst[0] == "ecfp4" or feature_lst[0] == "chemprop":
with open(feature_fl_path) as f:
for line in f:
line = line.split("\n")[0]
line = line.split("\t")
compound_id = line[0]
feat_vec = line[1:]
features_dict[compound_id] = torch.tensor(np.asarray(feat_vec, dtype=float)).type(torch.FloatTensor)
return features_dict
def get_test_compound_dict_feature_vector(training_dataset_path, feature_lst):
if feature_lst[0] == "chemprop":
print(feature_lst)
features_dict = dict()
feature_fl_path = training_dataset_path
with open(feature_fl_path) as f:
compound_list = []
for line in f:
line = line.split("\n")[0]
line = line.split("\t")
compound_id = line[0]
feat_vec = line[1:]
compound_list.append(compound_id)
features_dict[compound_id] = torch.tensor(np.asarray(feat_vec, dtype=float)).type(torch.FloatTensor)
return features_dict, compound_list
elif feature_lst[0] == "ecfp4":
compound_smile_dict = read_smiles(training_dataset_path)
compound_features = get_ecfp4_features_given_smiles_dict(compound_smile_dict)
features_dict = dict()
compound_list = []
for compound, feat_vec in compound_features.items():
features_dict[compound] = torch.tensor(np.asarray(feat_vec, dtype=float)).type(torch.FloatTensor)
compound_list.append(compound)
return features_dict, compound_list
class BioactivityDataset(Dataset):
def __init__(self, training_dataset_path, comp_target_pair_dataset, compound_feature_list):
self.training_dataset_path = training_dataset_path
self.compound_feature_list = compound_feature_list
comp_target_pair_dataset_path = "{}/{}".format(training_dataset_path, comp_target_pair_dataset)
self.dict_compound_features = get_compound_dict_feature_vector(training_dataset_path, compound_feature_list)
self.training_dataset = pd.read_csv(comp_target_pair_dataset_path, header=None, sep='\t')
self.num_of_train_test_val = len(self.training_dataset)
def get_num_of_train_test_val(self):
return self.num_of_train_test_val
def __len__(self):
return len(self.training_dataset)
def __getitem__(self, idx):
row = self.training_dataset.iloc[idx]
tar_id, comp_id, bio_act_val = str(row[0]), str(row[1]), str(row[2])
comp_feats = self.dict_compound_features[comp_id]
label = torch.tensor(float(bio_act_val)).type(torch.FloatTensor)
return comp_feats, label, comp_id, tar_id
class BioactivityTestDataset(Dataset):
def __init__(self, training_dataset_path, compound_feature_list):
self.training_dataset_path = training_dataset_path
self.compound_feature_list = compound_feature_list
self.dict_compound_features, self.compound_list = get_test_compound_dict_feature_vector(training_dataset_path,
compound_feature_list)
def __len__(self):
return len(self.dict_compound_features)
def __getitem__(self, idx):
comp_id = self.compound_list[idx]
comp_feats = self.dict_compound_features[comp_id]
return comp_feats, comp_id
def get_test_val_folds_train_data_loader(training_dataset_path, comp_feature_list, batch_size, subset_size, subset_flag):
compound_target_pair_dataset = "comp_targ_binary.tsv"
if subset_flag == 0:
folds = json.load(open(training_dataset_path + "/data/folds/train_fold_setting1.txt"))
else:
folds = json.load(
open(training_dataset_path + "/dataSubset" + str(subset_size) + "/folds/train_fold_setting1.txt"))
test_indices = json.load(open(training_dataset_path + "/data/folds/test_fold_setting1.txt"))
bioactivity_dataset = BioactivityDataset(training_dataset_path, compound_target_pair_dataset, comp_feature_list)
loader_fold_dict = dict()
for fold_id in range(len(folds)):
folds_id_list = list(range(len(folds)))
val_indices = folds[fold_id]
folds_id_list.remove(fold_id)
train_indices = []
for tr_fold_in in folds_id_list:
train_indices.extend(folds[tr_fold_in])
train_indices = train_indices # [:10]
val_indices = val_indices # [:10]
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(val_indices)
train_loader = torch.utils.data.DataLoader(bioactivity_dataset, batch_size=batch_size,
sampler=train_sampler)
valid_loader = torch.utils.data.DataLoader(bioactivity_dataset, batch_size=batch_size,
sampler=valid_sampler)
loader_fold_dict[fold_id] = [train_loader, valid_loader]
test_sampler = SubsetRandomSampler(test_indices)
test_loader = torch.utils.data.DataLoader(bioactivity_dataset, batch_size=batch_size,
sampler=test_sampler)
external_test_loader = None
return loader_fold_dict, test_loader, external_test_loader
def get_train_data_loader(training_dataset_path, comp_feature_list, batch_size, subset_size, subset_flag,
external_test):
import json
compound_target_pair_dataset = "comp_targ_binary.tsv"
if subset_flag == 0:
folds = json.load(open(training_dataset_path + "/data/folds/train_fold_setting1.txt"))
else:
folds = json.load(
open(training_dataset_path + "/dataSubset" + str(subset_size) + "/folds/train_fold_setting1.txt"))
bioactivity_dataset = BioactivityDataset(training_dataset_path, compound_target_pair_dataset, comp_feature_list)
train_indices = []
if len(folds) == 5:
for fold_id in range(len(folds)):
train_indices.extend(folds[fold_id])
test_indices = json.load(open(training_dataset_path + "/data/folds/test_fold_setting1.txt"))
train_indices.extend(test_indices)
else:
train_indices = folds
train_sampler = SequentialSampler(train_indices)
train_loader = torch.utils.data.DataLoader(bioactivity_dataset, batch_size=batch_size,
sampler=train_sampler)
external_test_loader = None
if external_test != "-":
bioactivity_dataset = BioactivityTestDataset(external_test, comp_feature_list)
external_indices = []
for i in range(bioactivity_dataset.__len__()):
external_indices.append(i)
external_sampler = SequentialSampler(external_indices)
external_test_loader = torch.utils.data.DataLoader(bioactivity_dataset, batch_size=batch_size,
sampler=external_sampler)
return train_loader, external_test_loader
def get_train_test_train_data_loader(training_dataset_path, comp_feature_list, batch_size, subset_size, subset_flag):
compound_target_pair_dataset = "comp_targ_binary.tsv"
if subset_flag == 0:
folds = json.load(open(training_dataset_path + "/data/folds/train_fold_setting1.txt"))
else:
folds = json.load(
open(training_dataset_path + "/dataSubset" + str(subset_size) + "/folds/train_fold_setting1.txt"))
test_indices = json.load(open(training_dataset_path + "/data/folds/test_fold_setting1.txt"))
bioactivity_dataset = BioactivityDataset(training_dataset_path, compound_target_pair_dataset, comp_feature_list)
train_indices = []
if subset_flag == 0:
for fold_id in range(len(folds)):
train_indices.extend(folds[fold_id])
else:
train_indices = folds
train_sampler = SubsetRandomSampler(train_indices)
train_loader = torch.utils.data.DataLoader(bioactivity_dataset, batch_size=batch_size,
sampler=train_sampler)
test_sampler = SubsetRandomSampler(test_indices)
test_loader = torch.utils.data.DataLoader(bioactivity_dataset, batch_size=batch_size,
sampler=test_sampler)
external_test_loader = None
return train_loader, test_loader, external_test_loader