-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain_training.py
171 lines (148 loc) · 4.79 KB
/
main_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import argparse
from train_FNN_DTI import five_fold_training, training_test, training, test
from extract_features import extract_features, extract_features_train_test
parser = argparse.ArgumentParser(description='FNN arguments')
parser.add_argument(
'--train',
type=str,
default=1,
metavar='TRAIN',
help='train(1) or(0) extract(default: 1)')
parser.add_argument(
'--chln',
type=str,
default="1200_300",
metavar='CHLN',
help='number of neurons in hidden layers of compound(default: 1200_300)')
parser.add_argument(
'--lr',
type=float,
default=0.0001,
metavar='LR',
help='learning rate (default: 0.0001)')
parser.add_argument(
'--bs',
type=int,
default=256,
metavar='BS',
help='batch size (default: 256)')
parser.add_argument(
'--td',
type=str,
default="transporter",
metavar='TD',
help='the name of the target dataset (default: transporter)')
parser.add_argument(
'--sd',
type=str,
default="kinase",
metavar='SD',
help='the name of the source dataset (default: kinase)')
parser.add_argument(
'--do',
type=float,
default=0.1,
metavar='DO',
help='dropout rate (default: 0.1)')
parser.add_argument(
'--en',
type=str,
default="my_experiments",
metavar='EN',
help='the name of the experiment (default: my_experiment)')
parser.add_argument(
'--model',
type=str,
default="fc_2_layer",
metavar='mn',
help='model name (default: fc_2_layer)')
parser.add_argument(
'--epoch',
type=int,
default=100,
metavar='EPOCH',
help='Number of epochs (default: 100)')
parser.add_argument(
'--sf',
type=int,
default=0,
metavar='SF',
help='subset flag (default: 0)')
parser.add_argument(
'--tlf',
type=int,
default=0,
metavar='TLF',
help='transfer learning flag (default: 0)')
parser.add_argument(
'--ff',
type=int,
default=0,
metavar='FF',
help='freeze flag (default: 0)')
parser.add_argument(
'--fl',
type=str,
default="1",
metavar='FL',
help='hidden layers to be frozen (default: 1)')
parser.add_argument(
'--el',
type=str,
default="1",
metavar='EL',
help='layer to be extracted (default: 0)')
parser.add_argument(
'--ss',
type=int,
default=10,
metavar='SS',
help='subset size (default: 10)')
parser.add_argument(
'--cf',
type=str,
default="chemprop",
metavar='CF',
help='compound features separated by underscore character (default: chemprop)')
parser.add_argument(
'--setting',
type=int,
default=1,
metavar='SETTING',
help='Determines the setting (1: train_val_test, 2:extract layer train_val_test, 3:training_test, 4:only training, '
'5:extract layer train and test, 6:only test) (default: 1)')
parser.add_argument(
'--et',
type=str,
default="-",
metavar='ET',
help='external test dataset (default: -)')
parser.add_argument(
'--nc',
type=int,
default=2,
metavar='NC',
help='number of result classes (default: 2)')
if __name__ == "__main__":
args = parser.parse_args()
print(args)
comp_hidden_layer_neurons = [int(num) for num in args.chln.split("_")]
if args.setting == 3:
training_test(args.td, args.sd, args.cf.split("-"), comp_hidden_layer_neurons, args.lr, args.bs,
args.model, args.do, args.en, args.epoch, args.sf, args.tlf, args.ff, args.fl, args.ss, args.setting, args.nc)
elif args.setting == 4:
training(args.td, args.sd, args.cf.split("-"), comp_hidden_layer_neurons, args.lr, args.bs,
args.model, args.do, args.en, args.epoch, args.sf, args.tlf, args.ff, args.fl, args.ss, args.et, args.nc)
elif args.setting == 5:
extract_features_train_test(args.td, args.sd, args.cf.split("-"), comp_hidden_layer_neurons, args.lr, args.bs, args.model, args.do, args.en, args.epoch,
args.sf, args.tlf, args.ff, args.fl, args.el, args.ss, args.setting, args.nc)
elif args.setting == 6:
test(args.td, args.sd, args.cf.split("-"), comp_hidden_layer_neurons, args.lr, args.bs,
args.model, args.do, args.en, args.epoch, args.sf, args.tlf, args.ff, args.fl, args.ss, args.et, args.nc)
else:
if args.train == 1:
five_fold_training(args.td, args.sd, args.cf.split("-"), comp_hidden_layer_neurons, args.lr, args.bs,
args.model, args.do, args.en, args.epoch, args.sf, args.tlf, args.ff, args.fl, args.ss, args.setting, args.nc)
else:
extract_features(args.td, args.sd, args.cf.split("-"), comp_hidden_layer_neurons, args.lr, args.bs,
args.model, args.do, args.en, args.epoch, args.sf, args.tlf, args.ff, args.fl, args.el, args.ss, args.setting)