-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathDESCRIPTION
44 lines (44 loc) · 1.52 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
Package: promor
Type: Package
Title: Proteomics Data Analysis and Modeling Tools
Version: 0.2.1
Authors@R: person(given = "Chathurani",
family = "Ranathunge",
role = c("aut", "cre", "cph"),
email = "[email protected]",
comment = c(ORCID = "0000-0003-1901-2119"))
Description: A comprehensive, user-friendly package for label-free proteomics data analysis and machine learning-based modeling. Data generated from 'MaxQuant' can be easily used to conduct differential expression analysis, build predictive models with top protein candidates, and assess model performance. promor includes a suite of tools for quality control, visualization, missing data imputation (Lazar et. al. (2016) <doi:10.1021/acs.jproteome.5b00981>), differential expression analysis (Ritchie et. al. (2015) <doi:10.1093/nar/gkv007>), and machine learning-based modeling (Kuhn (2008) <doi:10.18637/jss.v028.i05>).
License: LGPL (>= 2.1)
Encoding: UTF-8
Language: en-US
RoxygenNote: 7.2.2
Roxygen: list(markdown = TRUE)
VignetteBuilder: knitr
Suggests:
covr,
knitr,
rmarkdown,
testthat (>= 3.0.0)
Depends: R (>= 3.5.0)
URL: https://github.com/caranathunge/promor,
https://caranathunge.github.io/promor/
biocViews:
Imports:
reshape2,
ggplot2,
ggrepel,
gridExtra,
limma,
statmod,
pcaMethods,
VIM,
missForest,
caret,
kernlab,
xgboost,
naivebayes,
viridis,
pROC
LazyData: true
Config/testthat/edition: 3
BugReports: https://github.com/caranathunge/promor/issues