-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathself_attention.py
182 lines (146 loc) · 7.46 KB
/
self_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch.nn as nn
import math
import torch
from torch.autograd import Variable
from torch.nn import Module
from torch.nn.parameter import Parameter
class BertPooler(nn.Module):
def __init__(self, hidden_size):
super(BertPooler, self).__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertLayerNorm(nn.Module):
def __init__(self, hidden_size, variance_epsilon=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(BertLayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(hidden_size))
self.beta = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = variance_epsilon
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.gamma * x + self.beta
class BertSelfAttention(nn.Module):
"""
Extracted from
"""
def __init__(self, hidden_size):
super(BertSelfAttention, self).__init__()
self.num_attention_heads = 16
self.attention_head_size = int(hidden_size / self.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(hidden_size, self.all_head_size)
self.key = nn.Linear(hidden_size, self.all_head_size)
self.value = nn.Linear(hidden_size, self.all_head_size)
self.dropout = nn.Dropout(0.2)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask=None):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer, attention_probs
class SelfAttentive(nn.Module):
def __init__(self, hidden_size, att_hops=1, att_unit=200, dropout=0.2):
super(SelfAttentive, self).__init__()
self.drop = nn.Dropout(dropout)
self.ws1 = nn.Linear(hidden_size, att_unit, bias=False)
self.ws2 = nn.Linear(att_unit, att_hops, bias=False)
self.tanh = nn.Tanh()
self.softmax = nn.Softmax()
# self.dictionary = config['dictionary']
# self.init_weights()
self.attention_hops = att_hops
def forward(self, rnn_out, mask=None):
outp = rnn_out
size = outp.size() # [bsz, len, nhid]
compressed_embeddings = outp.reshape(-1, size[2]) # [bsz*len, nhid*2]
hbar = self.tanh(self.ws1(self.drop(compressed_embeddings))) # [bsz*len, attention-unit]
alphas = self.ws2(hbar).view(size[0], size[1], -1) # [bsz, len, hop]
alphas = torch.transpose(alphas, 1, 2).contiguous() # [bsz, hop, len]
if mask is not None:
mask = mask.squeeze(2)
concatenated_mask = [mask for i in range(self.attention_hops)]
concatenated_mask = torch.cat(concatenated_mask, 1) # [bsz, hop, len]
penalized_alphas = alphas + concatenated_mask
else:
penalized_alphas = alphas
alphas = self.softmax(penalized_alphas.view(-1, size[1])) # [bsz*hop, len]
alphas = alphas.view(size[0], self.attention_hops, size[1]) # [bsz, hop, len]
return torch.bmm(alphas, outp), alphas
class AttentionOneParaPerChan(Module):
"""
Computes a weighted average of the different channels across timesteps.
Uses 1 parameter pr. channel to compute the attention value for a single timestep.
"""
def __init__(self, attention_size, IS_HALF=False):
""" Initialize the attention layer
# Arguments:
attention_size: Size of the attention vector.
return_attention: If true, output will include the weight for each input token
used for the prediction
"""
super(AttentionOneParaPerChan, self).__init__()
self.attention_size = attention_size
self.attention_vector = Parameter(torch.FloatTensor(attention_size))
self.attention_vector.data.normal_(std=0.05) # Initialize attention vector
self.is_half = IS_HALF
def __repr__(self):
s = '{name}({attention_size}, return attention={return_attention})'
return s.format(name=self.__class__.__name__, **self.__dict__)
def forward(self, inputs, input_lengths):
""" Forward pass.
# Arguments:
inputs (Torch.Variable): Tensor of input sequences
input_lengths (torch.LongTensor): Lengths of the sequences
# Return:
Tuple with (representations and attentions if self.return_attention else None).
"""
logits = inputs.matmul(self.attention_vector)
unnorm_ai = (logits - logits.max()).exp()
# Compute a mask for the attention on the padded sequences
# See e.g. https://discuss.pytorch.org/t/self-attention-on-words-and-masking/5671/5
max_len = unnorm_ai.size(1)
idxes = torch.arange(0, max_len, out=torch.LongTensor(max_len)).unsqueeze(0)
if self.is_half:
mask = Variable((idxes < input_lengths.unsqueeze(1)).half()).cuda()
else:
mask = Variable((idxes < input_lengths.unsqueeze(1)).float()).cuda()
masked_weights = unnorm_ai * mask
# apply mask and renormalize attention scores (weights)
att_sums = masked_weights.sum(dim=1, keepdim=True) # sums per sequence
attentions = masked_weights.div(att_sums)
# apply attention weights
weighted = torch.mul(inputs, attentions.unsqueeze(-1).expand_as(inputs))
# get the final fixed vector representations of the sentences
representations = weighted.sum(dim=1)
return representations, attentions