-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathevaluate.py
executable file
·127 lines (105 loc) · 4.72 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import argparse
import os
import torch
import yaml
import torch.nn as nn
from utils.model import get_model
from utils.tools import to_device, to_device_inference, log, plot_spectrogram_to_numpy, plot_alignment_to_numpy
from model import CVAEJETSLoss
from data_utils import AudioTextDataset, AudioTextCollate, DataLoader
from mel_processing import mel_spectrogram_torch
def evaluate(models, step, configs, device, logger=None):
model, discriminator = models
preprocess_config, model_config, train_config = configs
hop_size = preprocess_config["preprocessing"]["stft"]["hop_length"]
sampling_rate = preprocess_config["preprocessing"]["audio"]["sampling_rate"]
# Get dataset
dataset = AudioTextDataset(
preprocess_config['path']['validation_files'], preprocess_config)
batch_size = train_config["optimizer"]["batch_size"]
collate_fn = AudioTextCollate()
loader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=collate_fn,
num_workers=8,
pin_memory=True,
drop_last=False
)
# Get loss function
Loss = CVAEJETSLoss(preprocess_config, model_config, train_config).to(device)
# Evaluation
loss_sums_disc = [0 for _ in range(1)] # + total
loss_sums_model = [0 for _ in range(12)] # + total
for batch in loader:
batch = to_device(batch, device)
with torch.no_grad():
output = model(*(batch[:-1]), step=step, gen=False)
wav_predictions, indices = output[0], output[7]
wav_targets = batch[-1][...,indices[0]*hop_size:indices[1]*hop_size]
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = discriminator(wav_targets.unsqueeze(1), wav_predictions)
loss_disc, losses_disc = Loss.disc_loss_fn(
disc_real_outputs=y_d_hat_r,
disc_generated_outputs=y_d_hat_g)
loss_model, losses_model = Loss.gen_loss_fn(
inputs=batch,
predictions=output,
step=step,
disc_outputs=y_d_hat_g,
fmap_r=fmap_r,
fmap_g=fmap_g)
for i in range(len(losses_disc)):
loss_sums_disc[i] += list(losses_disc.values())[i].item() * len(batch[0])
for i in range(len(losses_model)):
loss_sums_model[i] += list(losses_model.values())[i].item() * len(batch[0])
# get scalars
loss_means_disc = [loss_sum / len(dataset) for loss_sum in loss_sums_disc]
loss_means_model = [loss_sum / len(dataset) for loss_sum in loss_sums_model]
scalars_disc = {k:v for k,v in zip(losses_disc.keys(), loss_means_disc)}
scalars_model = {k:v for k,v in zip(losses_model.keys(), loss_means_model)}
message1 = f"Discriminator Validation Step {step}, " + " ".join([str(round(l.item(), 4)) for l in losses_disc.values()]).strip()
message2 = f"Model Validation Step {step}, " + " ".join([str(round(l.item(), 4)) for l in losses_model.values()]).strip()
message = f"{message1}\n{message2}"
# synthesis one sample
with torch.no_grad():
# segmented output
for i in range(len(batch)-1):
try:
batch[i] = batch[i][:1]
except:
pass
output = model(*(batch[:-1]), step=step)
wav = output[0]
mel = Loss.synthesizer_loss.get_mel(wav)
wav_len = output[9][0].item() * hop_size
attn_h = output[10]
attn_s = output[11]
# total output
pairs = to_device_inference(
[batch[0][:1], batch[1][:1], batch[2][:1], None], device)
output_gen = model(*(pairs), gen=True)
wav_gen = output_gen[0]
mel_gen = Loss.synthesizer_loss.get_mel(wav_gen)
wav_gen_len = output_gen[9][0].item() * hop_size
image_dict = {
"gen/mel": plot_spectrogram_to_numpy(mel[0].cpu().numpy()),
"gen/mel_gen": plot_spectrogram_to_numpy(mel_gen[0].cpu().numpy()),
"all/attn_h": plot_alignment_to_numpy(attn_h[0,0].data.cpu().numpy()),
"all/attn_s": plot_alignment_to_numpy(attn_s[0,0].data.cpu().numpy())
}
audio_dict = {
"gen/audio": wav[0,:,:wav_len],
"gen/audio_gen": wav_gen[0,:,:wav_gen_len]
}
scalar_dict = {}
scalar_dict.update(scalars_disc)
scalar_dict.update(scalars_model)
if logger is not None:
log(writer=logger,
global_step=step,
images=image_dict,
audios=audio_dict,
scalars=scalar_dict,
audio_sampling_rate=sampling_rate)
return message