|
| 1 | +"""Methods to integrate with AI Agents built using the OpenAI Agents SDK.""" |
| 2 | + |
| 3 | +from __future__ import annotations |
| 4 | + |
| 5 | +from typing import TYPE_CHECKING, Any, Optional |
| 6 | + |
| 7 | +if TYPE_CHECKING: |
| 8 | + from agents.items import ModelResponse, TResponseInputItem |
| 9 | + from codex.types.project_validate_response import ProjectValidateResponse |
| 10 | + from openai.types.chat import ChatCompletionMessageParam |
| 11 | + |
| 12 | + from cleanlab_codex import Project |
| 13 | + |
| 14 | +import secrets |
| 15 | + |
| 16 | +from agents import FunctionTool |
| 17 | +from agents.lifecycle import RunHooks |
| 18 | +from agents.models.chatcmpl_converter import Converter |
| 19 | +from agents.run_context import RunContextWrapper, TContext |
| 20 | +from openai.types.responses import ResponseOutputMessage, ResponseOutputText |
| 21 | + |
| 22 | +from cleanlab_codex.experimental.openai_agents.utils import ( |
| 23 | + form_response_string_responses_api_from_response, |
| 24 | + get_tool_result_as_text, |
| 25 | +) |
| 26 | + |
| 27 | + |
| 28 | +def _cleanlab_string_to_response_output_message(text: str, message_id: str | None = None) -> ResponseOutputMessage: |
| 29 | + """Convert text to OpenAI response output message format.""" |
| 30 | + if message_id is None: |
| 31 | + message_id = f"msg_cleanlab{secrets.token_hex(16)}" # TODO: Add support for marking cleanlab responses beyond adding cleanlab to ID |
| 32 | + return ResponseOutputMessage( |
| 33 | + id=message_id, |
| 34 | + content=[ResponseOutputText(text=text, type="output_text", annotations=[])], |
| 35 | + role="assistant", |
| 36 | + type="message", |
| 37 | + status="completed", |
| 38 | + ) |
| 39 | + |
| 40 | + |
| 41 | +def _rewrite_response_content_inplace(response: ModelResponse, new_content: str) -> None: |
| 42 | + """Rewrite the response content and remove tool calls.""" |
| 43 | + response.output.clear() |
| 44 | + new_message_raw = _cleanlab_string_to_response_output_message(new_content) |
| 45 | + response.output.append(new_message_raw) |
| 46 | + |
| 47 | + |
| 48 | +class CleanlabHook(RunHooks[TContext]): |
| 49 | + """V3 hook with comprehensive text extraction for all OpenAI response types.""" |
| 50 | + |
| 51 | + def __init__( |
| 52 | + self, |
| 53 | + *, |
| 54 | + cleanlab_project: Project, |
| 55 | + fallback_response: str = "Sorry I am unsure. You can try rephrasing your request.", |
| 56 | + skip_validating_tool_calls: bool = False, |
| 57 | + context_retrieval_tools: list[str] | None = None, |
| 58 | + validate_every_response: bool = True, |
| 59 | + ) -> None: |
| 60 | + """Initialize Cleanlab response rewriter hook V3.""" |
| 61 | + super().__init__() |
| 62 | + self.cleanlab_project = cleanlab_project |
| 63 | + self.fallback_response = fallback_response |
| 64 | + self.skip_validating_tool_calls = skip_validating_tool_calls |
| 65 | + self.context_retrieval_tools = context_retrieval_tools or [] |
| 66 | + self.validate_every_response = validate_every_response |
| 67 | + |
| 68 | + # Populated by on_llm_start with actual conversation history |
| 69 | + self._conversation_history: list[ChatCompletionMessageParam] = [] |
| 70 | + self._system_prompt: Optional[str] = None |
| 71 | + self._latest_response_text: Optional[str] = None |
| 72 | + |
| 73 | + async def on_llm_start( |
| 74 | + self, |
| 75 | + context: RunContextWrapper[TContext], |
| 76 | + agent: Any, # noqa: ARG002 |
| 77 | + system_prompt: str | None, |
| 78 | + input_items: list[TResponseInputItem], |
| 79 | + ) -> None: |
| 80 | + """Capture the conversation history being sent to the LLM and set up context for storing results.""" |
| 81 | + raw_messages = Converter.items_to_messages(input_items) |
| 82 | + self._conversation_history = raw_messages |
| 83 | + self._system_prompt = system_prompt |
| 84 | + if context.context is None: |
| 85 | + context.context = type("CleanlabContext", (), {})() |
| 86 | + |
| 87 | + async def on_llm_end(self, context: RunContextWrapper[TContext], agent: Any, response: ModelResponse) -> None: |
| 88 | + """Intercept and potentially rewrite model response before tool execution.""" |
| 89 | + # Perform Cleanlab validation with actual conversation history |
| 90 | + validation_result = await self._cleanlab_validate(response, context, agent) |
| 91 | + |
| 92 | + # Rewrite response if validation indicates we should |
| 93 | + await self.cleanlab_get_final_response(response, validation_result) |
| 94 | + |
| 95 | + # Store validation result in context |
| 96 | + context.context.latest_cleanlab_validation_result = validation_result # type: ignore[attr-defined] |
| 97 | + context.context.latest_initial_response_text = self._get_latest_response_text(response) # type: ignore[attr-defined] |
| 98 | + |
| 99 | + # Clear state vars |
| 100 | + self._latest_response_text = None |
| 101 | + |
| 102 | + def _should_validate_response(self, response: ModelResponse) -> bool: |
| 103 | + """Determine if this response should be validated with Cleanlab.""" |
| 104 | + if self.skip_validating_tool_calls and self._response_has_tool_calls(response): |
| 105 | + return False |
| 106 | + return self._response_has_content(response) |
| 107 | + |
| 108 | + def _response_has_tool_calls(self, response: ModelResponse) -> bool: |
| 109 | + """Check if model response contains tool calls.""" |
| 110 | + for item in response.output: |
| 111 | + # Check for tool calls in various formats |
| 112 | + if hasattr(item, "tool_calls") and item.tool_calls: |
| 113 | + return True |
| 114 | + if hasattr(item, "type") and "function_call" in str(item.type).lower(): |
| 115 | + return True |
| 116 | + if "FunctionToolCall" in type(item).__name__: |
| 117 | + return True |
| 118 | + return False |
| 119 | + |
| 120 | + def _response_has_content(self, response: ModelResponse) -> bool: |
| 121 | + """Check if response has content that can be validated.""" |
| 122 | + return bool(self._get_latest_response_text(response).strip()) |
| 123 | + |
| 124 | + def _get_latest_response_text(self, response: ModelResponse) -> str: |
| 125 | + """Extract text content from model response.""" |
| 126 | + if self._latest_response_text is None: |
| 127 | + self._latest_response_text = form_response_string_responses_api_from_response(response) |
| 128 | + return self._latest_response_text |
| 129 | + |
| 130 | + def _get_latest_user_query(self) -> str: |
| 131 | + """Extract the most recent user query from the actual conversation history.""" |
| 132 | + for item in reversed(self._conversation_history): |
| 133 | + if isinstance(item, dict) and item.get("role") == "user": |
| 134 | + content = item.get("content", "") |
| 135 | + if isinstance(content, str): |
| 136 | + return content |
| 137 | + return "" |
| 138 | + |
| 139 | + def _get_context_as_string(self, messages: list[ChatCompletionMessageParam]) -> str: |
| 140 | + """Extract context from tool results in the agent's messages.""" |
| 141 | + context_parts = "" |
| 142 | + for tool_name in self.context_retrieval_tools: |
| 143 | + tool_result_text = get_tool_result_as_text(messages, tool_name) |
| 144 | + if tool_result_text: |
| 145 | + context_parts += f"Context from tool {tool_name}:\n{tool_result_text}\n\n" |
| 146 | + |
| 147 | + return context_parts |
| 148 | + |
| 149 | + async def _cleanlab_validate( |
| 150 | + self, response: ModelResponse, context: RunContextWrapper[TContext], agent: Any |
| 151 | + ) -> ProjectValidateResponse: |
| 152 | + """Validate the model response using Cleanlab with actual conversation history.""" |
| 153 | + # Step 1 - Convert hook items to Cleanlab format |
| 154 | + tools_dict = ( |
| 155 | + [Converter.tool_to_openai(tool) for tool in agent.tools if isinstance(tool, FunctionTool)] |
| 156 | + if agent.tools |
| 157 | + else None |
| 158 | + ) |
| 159 | + cleanlab_messages = list(self._conversation_history) |
| 160 | + if self._system_prompt: |
| 161 | + cleanlab_messages.insert( |
| 162 | + 0, |
| 163 | + { |
| 164 | + "content": self._system_prompt, |
| 165 | + "role": "system", |
| 166 | + }, |
| 167 | + ) |
| 168 | + |
| 169 | + session_id = getattr(context, "session_id", None) or "unknown" |
| 170 | + |
| 171 | + # Step 2 - Get additional validation fields |
| 172 | + validate_fields = self.cleanlab_get_validate_fields(cleanlab_messages) |
| 173 | + eval_scores = None |
| 174 | + if not self._should_validate_response(response): |
| 175 | + eval_scores = { |
| 176 | + "trustworthiness": 1.0, |
| 177 | + "response_helpfulness": 1.0, |
| 178 | + "context_sufficiency": 1.0, |
| 179 | + "query_ease": 1.0, |
| 180 | + "response_groundedness": 1.0, |
| 181 | + } |
| 182 | + |
| 183 | + # Step 3 - Run validation |
| 184 | + return self.cleanlab_project.validate( |
| 185 | + response=self._get_latest_response_text(response), |
| 186 | + messages=cleanlab_messages, |
| 187 | + tools=tools_dict, |
| 188 | + metadata={ |
| 189 | + "thread_id": session_id, |
| 190 | + "agent_name": getattr(agent, "name", "unknown"), |
| 191 | + }, |
| 192 | + eval_scores=eval_scores, |
| 193 | + **validate_fields, |
| 194 | + ) |
| 195 | + |
| 196 | + def cleanlab_get_validate_fields(self, messages: list[ChatCompletionMessageParam]) -> dict[str, Any]: |
| 197 | + """ |
| 198 | + Extract query and context fields from Strands messages for cleanlab validation. |
| 199 | +
|
| 200 | + Processes conversation messages to extract the user query and any |
| 201 | + contextual information from specified tool results. |
| 202 | +
|
| 203 | + Args: |
| 204 | + messages: Conversation messages to process |
| 205 | +
|
| 206 | + Returns: |
| 207 | + Dictionary with 'query' and 'context' fields for validation |
| 208 | + """ |
| 209 | + user_message = self._get_latest_user_query() |
| 210 | + context = self._get_context_as_string(messages) |
| 211 | + return { |
| 212 | + "query": user_message, |
| 213 | + "context": context, |
| 214 | + } |
| 215 | + |
| 216 | + async def cleanlab_get_final_response( |
| 217 | + self, response: ModelResponse, validation_result: ProjectValidateResponse |
| 218 | + ) -> None: |
| 219 | + """ |
| 220 | + Determine the final response content based on cleanlab validation results. |
| 221 | +
|
| 222 | + Checks validation results for expert answers or guardrail triggers, |
| 223 | + returning either the original response or a replacement. |
| 224 | +
|
| 225 | + Args: |
| 226 | + results: Validation results from cleanlab |
| 227 | + initial_response: Original model response content |
| 228 | + fallback_response: Fallback text for guardrailed responses |
| 229 | +
|
| 230 | + Returns: |
| 231 | + Tuple of (final_content, was_replaced_flag) |
| 232 | + """ |
| 233 | + replacement_text = None |
| 234 | + if validation_result.expert_answer: |
| 235 | + replacement_text = validation_result.expert_answer |
| 236 | + elif validation_result.should_guardrail: |
| 237 | + replacement_text = self.fallback_response |
| 238 | + |
| 239 | + if replacement_text: |
| 240 | + _rewrite_response_content_inplace(response, replacement_text) |
0 commit comments