-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKrivine.agda
129 lines (98 loc) · 8.97 KB
/
Krivine.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
module Krivine (Atom Const : Set) where
open import Data.Nat
open import Data.Sum
open import Data.Vec as Vec using (Vec; _∷_; [])
data Type : Set where
atom : Atom → Type
_⇒_ : Type → Type → Type
Basis : ℕ → Set
Basis = Vec Type
data Var : ∀ {n} → Basis n → Type → Set where
vzero : ∀ {n} {Γ : Basis n} {τ} → Var (τ ∷ Γ) τ
vsuc : ∀ {n} {Γ : Basis n} {σ τ} → Var Γ τ → Var (σ ∷ Γ) τ
data Term (Σ : Const → Type) {n} (Γ : Basis n) : Type → Set where
app : ∀ {σ τ} → Term Σ Γ (σ ⇒ τ) → Term Σ Γ σ → Term Σ Γ τ
lam : ∀ {σ τ} → Term Σ (σ ∷ Γ) τ → Term Σ Γ (σ ⇒ τ)
var : ∀ {τ} → Var Γ τ → Term Σ Γ τ
mutual
data Subst (A : ∀ {n} (Γ : Basis n) → Type → Set) : ∀ {n₁} (Γ₁ : Basis n₁) {n₂} (Γ₂ : Basis n₂) → Set where
comp : ∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {n₃} {Γ₃ : Basis n₃} → Subst A Γ₁ Γ₂ → Subst A Γ₂ Γ₃ → Subst A Γ₁ Γ₃
cons : ∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {τ} → A Γ₂ τ → Subst A Γ₁ Γ₂ → Subst A (τ ∷ Γ₁) Γ₂
id : ∀ {n} {Γ : Basis n} → Subst A Γ Γ
lift : ∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {τ} → Subst A Γ₁ Γ₂ → Subst A (τ ∷ Γ₁) (τ ∷ Γ₂)
shift : ∀ {n} {Γ : Basis n} {τ} → Subst A Γ (τ ∷ Γ)
data Thunk (A : ∀ {n} (Γ : Basis n) → Type → Set) {n} (Γ : Basis n) τ : Set where
thunk : ∀ {n'} {Γ' : Basis n'} → A Γ' τ → Subst (Thunk A) Γ' Γ → Thunk A Γ τ
lookup : ∀ {A : ∀ {n} (Γ : Basis n) → Type → Set} → (∀ {n} {Γ : Basis n} {σ} → Var Γ σ → Thunk A Γ σ) → (∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {τ}
→ Thunk A Γ₁ τ → Subst (Thunk A) Γ₁ Γ₂ → Thunk A Γ₂ τ) → ∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {τ} → Var Γ₁ τ → Subst (Thunk A) Γ₁ Γ₂ → Thunk A Γ₂ τ
lookup {A} box under = lookup'
where
lookup' : ∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {τ} → Var Γ₁ τ → Subst (Thunk A) Γ₁ Γ₂ → Thunk A Γ₂ τ
lookup' v (comp ρ σ) = under (lookup' v ρ) σ
lookup' vzero (cons x _) = x
lookup' (vsuc v) (cons _ σ) = lookup' v σ
lookup' v id = box v
lookup' vzero (lift _) = box vzero
lookup' (vsuc v) (lift σ) = under (lookup' v σ) shift
lookup' v shift = box (vsuc v)
boxvar : ∀ {Σ : Const → Type} {n} {Γ : Basis n} {τ} → Var Γ τ → Thunk (Term Σ) Γ τ
boxvar v = thunk (var v) id
close : ∀ {Σ : Const → Type} {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {τ} → Thunk (Term Σ) Γ₁ τ → Subst (Thunk (Term Σ)) Γ₁ Γ₂ → Thunk (Term Σ) Γ₂ τ
close (thunk t ρ) σ = thunk t (comp ρ σ)
mutual
subst : ∀ {Σ : Const → Type} {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {τ} → Term Σ Γ₁ τ → Subst (Thunk (Term Σ)) Γ₁ Γ₂ → Term Σ Γ₂ τ
subst (app s t) σ = app (subst s σ) (subst t σ)
subst (lam t) σ = lam (subst t (lift σ))
subst (var v) id = var v
subst (var v) σ = force (lookup boxvar close v σ)
force : ∀ {Σ : Const → Type} {n} {Γ : Basis n} {τ} → Thunk (Term Σ) Γ τ → Term Σ Γ τ
force (thunk t ρ) = subst t ρ
data Context (A : ∀ {n} (Γ : Basis n) → Type → Set) : ∀ {n₁} (Γ₁ : Basis n₁) {n₂} (Γ₂ : Basis n₂) → Type → Type → Set where
app₁ : ∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {ρ σ τ} → Context A Γ₁ Γ₂ σ τ → A Γ₁ ρ → Context A Γ₁ Γ₂ (ρ ⇒ σ) τ
app₂ : ∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {ρ σ τ} → A Γ₁ (ρ ⇒ σ) → Context A Γ₁ Γ₂ σ τ → Context A Γ₁ Γ₂ ρ τ
lam₁ : ∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {ρ σ τ} → Context A Γ₁ Γ₂ (ρ ⇒ σ) τ → Context A (ρ ∷ Γ₁) Γ₂ σ τ
top : ∀ {n} {Γ : Basis n} {τ} → Context A Γ Γ τ τ
foldctx : ∀ {A : ∀ {n} (Γ : Basis n) → Type → Set} {Σ : Const → Type} {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {σ τ}
→ (∀ {n} {Γ : Basis n} {ρ} → A Γ ρ → Term Σ Γ ρ) → Term Σ Γ₁ σ → Context A Γ₁ Γ₂ σ τ → Term Σ Γ₂ τ
foldctx f z (app₁ ctx y) = foldctx f (app z (f y)) ctx
foldctx f z (app₂ x ctx) = foldctx f (app (f x) z) ctx
foldctx f z (lam₁ ctx) = foldctx f (lam z) ctx
foldctx _ z top = z
data Head (Σ : Const → Type) {n} (Γ : Basis n) : Type → Set where
var : ∀ {τ} → Var Γ τ → Head Σ Γ τ
data Spine (Σ : Const → Type) (A : (∀ {n} (Γ : Basis n) → Type → Set) → ∀ {n} (Γ : Basis n) → Type → Set) {n} (Γ : Basis n) τ : Set where
spine : ∀ {n'} {Γ' : Basis n'} {σ} → Head Σ Γ' σ → Context (A (Term Σ)) Γ' Γ σ τ → Spine Σ A Γ τ
eval : ∀ {Σ : Const → Type} {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {σ τ} → Thunk (Term Σ) Γ₁ σ → Context (Thunk (Term Σ)) Γ₁ Γ₂ σ τ → Spine Σ Thunk Γ₂ τ
eval (thunk (app s t) σ) ctx = eval (thunk s σ) (app₁ ctx (thunk t σ))
eval (thunk (lam t) σ) (app₁ ctx x) = eval (thunk t (cons x σ)) ctx
eval (thunk (lam t) σ) ctx = eval (thunk t (lift σ)) (lam₁ ctx)
eval (thunk (var v) id) ctx = spine (var v) ctx
eval (thunk (var v) σ) ctx = eval (lookup boxvar close v σ) ctx
data Subst' (A : ∀ {n} (Γ : Basis n) → Type → Set) : ∀ {n₁} (Γ₁ : Basis n₁) {n₂} (Γ₂ : Basis n₂) → Set where
comp : ∀ {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} {n₃} {Γ₃ : Basis n₃} → Subst A Γ₁ Γ₂ → Subst' A Γ₂ Γ₃ → Subst' A Γ₁ Γ₃
id : ∀ {n} {Γ : Basis n} → Subst' A Γ Γ
data Thunk' (A : ∀ {n} (Γ : Basis n) → Type → Set) {n} (Γ : Basis n) τ : Set where
thunk : ∀ {n'} {Γ' : Basis n'} → A Γ' τ → Subst' (Thunk' A) Γ' Γ → Thunk' A Γ τ
data Machine (Σ : Const → Type) {n} (Γ : Basis n) τ : Set where
machine : ∀ {n'} {Γ' : Basis n'} {σ} → Thunk' (Term Σ) Γ' σ → Context (Thunk' (Term Σ)) Γ' Γ σ τ → Machine Σ Γ τ
coerce : ∀ {A : ∀ {n} (Γ : Basis n) → Type → Set} {n₁} {Γ₁ : Basis n₁} {n₂} {Γ₂ : Basis n₂} → Subst' A Γ₁ Γ₂ → Subst A Γ₁ Γ₂
coerce (comp ρ σ) = comp ρ (coerce σ)
coerce id = id
step : ∀ {Σ : Const → Type} {n} {Γ : Basis n} {τ} → Machine Σ Γ τ → Spine Σ Thunk' Γ τ ⊎ Machine Σ Γ τ
step (machine (thunk (var v) (comp shift σ)) ctx) = inj₂ (machine (thunk (var (vsuc v)) σ) ctx)
step (machine (thunk (var vzero) (comp (cons (thunk u π) _) σ)) ctx) = inj₂ (machine (thunk u (comp (coerce π) σ)) ctx)
step (machine (thunk (var vzero) (comp (lift _) σ)) ctx) = inj₂ (machine (thunk (var vzero) σ) ctx)
step (machine (thunk (var (vsuc v)) (comp (cons (thunk _ _) ρ) σ)) ctx) = inj₂ (machine (thunk (var v) (comp ρ σ)) ctx)
step (machine (thunk (var (vsuc v)) (comp (lift ρ) σ)) ctx) = inj₂ (machine (thunk (var v) (comp ρ (comp shift σ))) ctx)
step (machine (thunk t (comp (comp π ρ) σ)) ctx) = inj₂ (machine (thunk t (comp π (comp ρ σ))) ctx)
step (machine (thunk t (comp id σ)) ctx) = inj₂ (machine (thunk t σ) ctx)
step (machine (thunk t σ) (app₂ (thunk s ρ) ctx)) = inj₂ (machine (thunk s ρ) (app₁ ctx (thunk t σ)))
step (machine (thunk (app s (var v)) σ) ctx) = inj₂ (machine (thunk (var v) σ) (app₂ (thunk s σ) ctx))
step (machine (thunk (app s t) σ) ctx) = inj₂ (machine (thunk s σ) (app₁ ctx (thunk t σ)))
step (machine (thunk (lam t) σ) (app₁ ctx x)) = inj₂ (machine (thunk t (comp (cons x (coerce σ)) id)) ctx)
step (machine (thunk (lam t) σ) ctx) = inj₂ (machine (thunk t (comp (lift (coerce σ)) id)) (lam₁ ctx))
step (machine (thunk (var v) id) ctx) = inj₁ (spine (var v) ctx)
reduce : ∀ {Σ : Const → Type} {n} {Γ : Basis n} {τ} → Machine Σ Γ τ → Spine Σ Thunk' Γ τ
reduce m with step m
... | inj₁ x = x
... | inj₂ m' = reduce m'