-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathspirl_agent.py
426 lines (373 loc) · 14 KB
/
spirl_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
from pathlib import Path
import copy
import torch
from spirl.rl.components.agent import FixedIntervalHierarchicalAgent
from spirl.rl.components.replay_buffer import UniformReplayBuffer
from spirl.rl.components.critic import SplitObsMLPCritic
from spirl.rl.agents.ac_agent import SACAgent
from spirl.utils.general_utils import AttrDict
from spirl.models.closed_loop_spirl_mdl import ClSPiRLMdl
from spirl.rl.policies.cl_model_policies import ClModelPolicy
from spirl.rl.policies.prior_policies import LearnedPriorAugmentedPIPolicy
from spirl.rl.agents.prior_sac_agent import ActionPriorSACAgent
from spirl.rl.components.critic import MLPCritic
from spirl.models.skill_prior_mdl import SkillPriorMdl
from spirl.components.data_loader import GlobalSplitVideoDataset
from rolf.rolf.utils import Logger
from rolf.rolf.utils.pytorch import count_parameters
class SPiRLAgent(FixedIntervalHierarchicalAgent):
def __init__(self, cfg, ob_space, ac_space):
self._cfg = cfg
self._ob_space = ob_space
self._ac_space = ac_space
self._device = torch.device(cfg.device)
self._buffer = None
# set up configuration
agent_config = self.setup_configs()
agent_config.device = cfg.device
FixedIntervalHierarchicalAgent.__init__(self, agent_config)
self.to(self._device)
self._log_creation()
@property
def ac_space(self):
return self._ac_space
def _log_creation(self):
Logger.info("Creating a SPiRL agent")
Logger.info(f"The hl agent has {count_parameters(self.hl_agent)} parameters")
Logger.info(f"The ll agent has {count_parameters(self.ll_agent)} parameters")
def setup_configs(self):
if self._cfg.env == "maze":
return self.maze_configs()
elif self._cfg.env == "kitchen":
return self.kitchen_configs()
elif self._cfg.env == "calvin":
return self.calvin_configs()
def maze_configs(self):
from spirl.configs.default_data_configs.maze import data_spec
# Replay Buffer
replay_params = AttrDict(capacity=1e5, dump_replay=False)
base_agent_params = AttrDict(
batch_size=128,
replay=UniformReplayBuffer,
replay_params=replay_params,
clip_q_target=False,
)
###### Low-Level ######
# LL Policy Model
ll_model_params = AttrDict(
state_dim=data_spec.state_dim,
action_dim=data_spec.n_actions,
n_rollout_steps=10,
kl_div_weight=1e-3,
nz_vae=10,
nz_enc=128,
nz_mid=128,
n_processing_layers=5,
cond_decode=True,
)
# LL Policy
ll_policy_params = AttrDict(
policy_model=ClSPiRLMdl,
policy_model_params=ll_model_params,
policy_model_checkpoint=Path(
"log/skill_prior_learning/maze/hierarchical_cl/maze_TA_prior"
),
)
ll_policy_params.update(ll_model_params)
# LL Critic
ll_critic_params = AttrDict(
action_dim=data_spec.n_actions,
input_dim=data_spec.state_dim,
output_dim=1,
action_input=True,
unused_obs_size=ll_model_params.nz_vae, # ignore HL policy z output in observation for LL critic
)
# LL Agent
ll_agent_config = copy.deepcopy(base_agent_params)
ll_agent_config.update(
AttrDict(
policy=ClModelPolicy,
policy_params=ll_policy_params,
critic=SplitObsMLPCritic,
critic_params=ll_critic_params,
)
)
###### High-Level ########
# HL Policy
hl_policy_params = AttrDict(
action_dim=ll_model_params.nz_vae, # z-dimension of the skill VAE
input_dim=data_spec.state_dim,
squash_output_dist=True,
max_action_range=2.0, # prior is Gaussian with unit variance
prior_model=ll_policy_params.policy_model,
prior_model_params=ll_policy_params.policy_model_params,
prior_model_checkpoint=ll_policy_params.policy_model_checkpoint,
)
# HL Critic
hl_critic_params = AttrDict(
action_dim=hl_policy_params.action_dim,
input_dim=hl_policy_params.input_dim,
output_dim=1,
n_layers=2, # number of policy network layers
nz_mid=256,
action_input=True,
)
# HL Agent
hl_agent_config = copy.deepcopy(base_agent_params)
hl_agent_config.update(
AttrDict(
policy=LearnedPriorAugmentedPIPolicy,
policy_params=hl_policy_params,
critic=MLPCritic,
critic_params=hl_critic_params,
td_schedule_params=AttrDict(p=10.0),
)
)
##### Joint Agent #######
agent_config = AttrDict(
hl_agent=ActionPriorSACAgent,
hl_agent_params=hl_agent_config,
ll_agent=SACAgent,
ll_agent_params=ll_agent_config,
hl_interval=ll_model_params.n_rollout_steps,
log_videos=False,
update_hl=True,
update_ll=False,
)
return agent_config
def kitchen_configs(self):
from spirl.configs.default_data_configs.kitchen import data_spec
# Replay Buffer
replay_params = AttrDict()
base_agent_params = AttrDict(
batch_size=256,
replay=UniformReplayBuffer,
replay_params=replay_params,
clip_q_target=False,
)
###### Low-Level ######
# LL Policy
ll_model_params = AttrDict(
state_dim=data_spec.state_dim,
action_dim=data_spec.n_actions,
kl_div_weight=5e-4,
nz_enc=128,
nz_mid=128,
n_processing_layers=5,
nz_vae=10,
n_rollout_steps=10,
cond_decode=True,
)
# create LL closed-loop policy
ll_policy_params = AttrDict(
policy_model=ClSPiRLMdl,
policy_model_params=ll_model_params,
policy_model_checkpoint=Path(
"log/skill_prior_learning/kitchen/hierarchical_cl"
),
)
ll_policy_params.update(ll_model_params)
# LL Agent
ll_agent_config = copy.deepcopy(base_agent_params)
ll_agent_config.update(
AttrDict(
model=SkillPriorMdl,
model_params=ll_model_params,
model_checkpoint=Path(
"log/skill_prior_learning/kitchen/hierarchical_cl"
),
)
)
###### High-Level ########
# HL Policy
hl_policy_params = AttrDict(
action_dim=ll_model_params.nz_vae, # z-dimension of the skill VAE
input_dim=data_spec.state_dim,
max_action_range=2.0, # prior is Gaussian with unit variance
nz_mid=256,
n_layers=5,
prior_model=ll_policy_params.policy_model,
prior_model_params=ll_policy_params.policy_model_params,
prior_model_checkpoint=ll_policy_params.policy_model_checkpoint,
)
# HL Critic
hl_critic_params = AttrDict(
action_dim=hl_policy_params.action_dim,
input_dim=hl_policy_params.input_dim,
output_dim=1,
n_layers=5, # number of policy network laye
nz_mid=256,
action_input=True,
)
# HL Agent
hl_agent_config = copy.deepcopy(base_agent_params)
hl_agent_config.update(
AttrDict(
policy=LearnedPriorAugmentedPIPolicy,
policy_params=hl_policy_params,
critic=MLPCritic,
critic_params=hl_critic_params,
td_schedule_params=AttrDict(p=5.0),
)
)
# create LL SAC agent (by default we will only use it for rolling out decoded skills, not finetuning skill decoder)
ll_agent_config = AttrDict(
policy=ClModelPolicy,
policy_params=ll_policy_params,
critic=MLPCritic, # LL critic is not used since we are not finetuning LL
critic_params=hl_critic_params,
)
##### Joint Agent #######
agent_config = AttrDict(
hl_agent=ActionPriorSACAgent,
hl_agent_params=hl_agent_config,
ll_agent=SACAgent,
ll_agent_params=ll_agent_config,
hl_interval=ll_model_params.n_rollout_steps,
log_video_caption=True,
update_ll=False,
)
return agent_config
def calvin_configs(self):
data_spec = AttrDict(
dataset_class=GlobalSplitVideoDataset,
n_actions=7,
state_dim=21,
env_name="calvin",
res=64,
use_rel_action=1,
split=AttrDict(train=0.99, val=0.01, test=0.0),
crop_rand_subseq=True,
)
data_spec.max_seq_len = 360
# Replay Buffer
replay_params = AttrDict()
base_agent_params = AttrDict(
batch_size=256,
replay=UniformReplayBuffer,
replay_params=replay_params,
clip_q_target=False,
)
###### Low-Level ######
# LL Policy
ll_model_params = AttrDict(
state_dim=data_spec.state_dim,
action_dim=data_spec.n_actions,
kl_div_weight=5e-4,
nz_enc=128,
nz_mid=128,
n_processing_layers=5,
nz_vae=10,
n_rollout_steps=10,
cond_decode=True,
)
# create LL closed-loop policy
ll_policy_params = AttrDict(
policy_model=ClSPiRLMdl,
policy_model_params=ll_model_params,
policy_model_checkpoint=Path(
"log/skill_prior_learning/calvin/skill_prior_21"
),
)
ll_policy_params.update(ll_model_params)
# LL Agent
ll_agent_config = copy.deepcopy(base_agent_params)
ll_agent_config.update(
AttrDict(
model=SkillPriorMdl,
model_params=ll_model_params,
model_checkpoint=ll_policy_params.policy_model_checkpoint,
)
)
###### High-Level ########
# HL Policy
hl_policy_params = AttrDict(
action_dim=ll_model_params.nz_vae, # z-dimension of the skill VAE
input_dim=data_spec.state_dim,
max_action_range=2.0, # prior is Gaussian with unit variance
nz_mid=256,
n_layers=5,
prior_model=ll_policy_params.policy_model,
prior_model_params=ll_policy_params.policy_model_params,
prior_model_checkpoint=ll_policy_params.policy_model_checkpoint,
)
# HL Critic
hl_critic_params = AttrDict(
action_dim=hl_policy_params.action_dim,
input_dim=hl_policy_params.input_dim,
output_dim=1,
n_layers=5, # number of policy network laye
nz_mid=256,
action_input=True,
)
# HL Agent
hl_agent_config = copy.deepcopy(base_agent_params)
hl_agent_config.update(
AttrDict(
policy=LearnedPriorAugmentedPIPolicy,
policy_params=hl_policy_params,
critic=MLPCritic,
critic_params=hl_critic_params,
td_schedule_params=AttrDict(p=5.0),
)
)
# create LL SAC agent (by default we will only use it for rolling out decoded skills, not finetuning skill decoder)
ll_agent_config = AttrDict(
policy=ClModelPolicy,
policy_params=ll_policy_params,
critic=MLPCritic, # LL critic is not used since we are not finetuning LL
critic_params=hl_critic_params,
)
##### Joint Agent #######
agent_config = AttrDict(
hl_agent=ActionPriorSACAgent,
hl_agent_params=hl_agent_config,
ll_agent=SACAgent,
ll_agent_params=ll_agent_config,
hl_interval=ll_model_params.n_rollout_steps,
log_video_caption=True,
update_ll=False,
)
return agent_config
def is_off_policy(self):
return True
@property
def buffer(self):
return self._buffer
def set_buffer(self, buffer):
self._buffer = buffer
def buffer_state_dict(self):
if self._buffer is not None:
return self._buffer.state_dict()
return None
def load_buffer_state_dict(self, state_dict):
if self._buffer is not None:
self._buffer.load_state_dict(state_dict)
def save_replay_buffer(self, replay_dir, ckpt_num):
"""Saves new experience in replay buffer to a file."""
if self._buffer is None:
return
if not hasattr(self, "_last_ckpt_num"):
self._last_ckpt_num = -1
replay_path = (
Path(replay_dir) / f"replay_{self._last_ckpt_num+1:011d}_{ckpt_num:011d}.pt"
)
torch.save(self.buffer_state_dict(), replay_path)
Logger.warning(f"Save replay buffer: {replay_path}")
self._last_ckpt_num = ckpt_num
def load_replay_buffer(self, replay_dir, ckpt_num):
"""Loads replay buffer files up to `ckpt_num`."""
if self._buffer is None:
return
replay_paths = sorted(Path(replay_dir).glob("replay_*.pt"))
for replay_path in replay_paths:
replay_path = str(replay_path)
if ckpt_num < int(replay_path.split(".")[-2].split("_")[-2]):
continue
Logger.warning(f"Load replay_buffer {replay_path}")
state_dict = torch.load(replay_path)
self.load_buffer_state_dict(state_dict)
self._last_ckpt_num = int(replay_path.split(".")[-2].split("_")[-1])
""" Dummy methods """
def get_runner(self, cfg, env, env_eval):
return