Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Nov 10, 2025

📄 6% (0.06x) speedup for _get_tick_info in optuna/visualization/_rank.py

⏱️ Runtime : 2.75 milliseconds 2.59 milliseconds (best of 250 runs)

📝 Explanation and details

The optimization eliminates a redundant sorting operation by removing the np.sort(target_values) call. The key insight is that np.quantile() internally sorts the input data when computing quantiles, making the explicit pre-sorting unnecessary.

What was optimized:

  • Removed sorted_target_values = np.sort(target_values)
  • Changed np.quantile(sorted_target_values, coloridxs) to np.quantile(target_values, coloridxs)

Why this improves performance:

  • Eliminates duplicate sorting work - the original code sorted the array twice (once explicitly, once inside np.quantile)
  • Reduces memory allocation by not creating the intermediate sorted_target_values array
  • The line profiler shows the explicit sort took ~7% of execution time in the original version

Performance characteristics:

  • Provides consistent 4-14% speedups across most test cases, with larger improvements on bigger arrays (up to 14.5% on 1000-element arrays)
  • Particularly effective for large datasets where sorting overhead is more significant
  • Maintains identical functionality and output format
  • Some edge cases with special values (NaN, random data) show minimal or slightly negative impact, but overall trend is positive

The optimization is especially valuable since this function appears to be in a visualization pipeline where it may be called frequently on varying dataset sizes.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 35 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime

from typing import List

function to test

import numpy as np

imports

import pytest # used for our unit tests
from optuna.visualization._rank import _get_tick_info

Define the _TickInfo dataclass as it's required for the function's output

class _TickInfo:
def init(self, coloridxs: List[float], text: List[str]):
self.coloridxs = coloridxs
self.text = text

def __eq__(self, other):
    if not isinstance(other, _TickInfo):
        return False
    return self.coloridxs == other.coloridxs and self.text == other.text

def __repr__(self):
    return f"_TickInfo(coloridxs={self.coloridxs}, text={self.text})"

from optuna.visualization._rank import _get_tick_info

unit tests

----------------- Basic Test Cases -----------------

def test_basic_integers():
# Test with a simple increasing integer array
arr = np.array([1, 2, 3, 4, 5])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 74.1μs -> 70.3μs (5.41% faster)
# Quantiles for [1,2,3,4,5]: 0:1, 0.25:2, 0.5:3, 0.75:4, 1:5
expected = _TickInfo(
coloridxs=[0, 0.25, 0.5, 0.75, 1],
text=["min. (1)", "25% (2)", "50% (3)", "75% (4)", "max. (5)"]
)

def test_basic_floats():
# Test with a float array
arr = np.array([0.0, 1.0, 2.0, 3.0, 4.0])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 75.4μs -> 69.3μs (8.82% faster)
expected = _TickInfo(
coloridxs=[0, 0.25, 0.5, 0.75, 1],
text=["min. (0)", "25% (1)", "50% (2)", "75% (3)", "max. (4)"]
)

def test_basic_unsorted():
# Test with an unsorted array
arr = np.array([5, 1, 3, 2, 4])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 73.5μs -> 69.3μs (6.14% faster)
expected = _TickInfo(
coloridxs=[0, 0.25, 0.5, 0.75, 1],
text=["min. (1)", "25% (2)", "50% (3)", "75% (4)", "max. (5)"]
)

def test_basic_duplicates():
# Test with duplicate values
arr = np.array([1, 2, 2, 3, 4])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 72.3μs -> 67.2μs (7.50% faster)
# Quantiles: 0:1, 0.25:2, 0.5:2, 0.75:3, 1:4
expected = _TickInfo(
coloridxs=[0, 0.25, 0.5, 0.75, 1],
text=["min. (1)", "25% (2)", "50% (2)", "75% (3)", "max. (4)"]
)

----------------- Edge Test Cases -----------------

def test_edge_all_same_value():
# All elements are the same
arr = np.array([7, 7, 7, 7, 7])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 72.5μs -> 68.2μs (6.39% faster)
expected = _TickInfo(
coloridxs=[0, 0.25, 0.5, 0.75, 1],
text=["min. (7)", "25% (7)", "50% (7)", "75% (7)", "max. (7)"]
)

def test_edge_two_values():
# Only two values
arr = np.array([1, 9])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 72.4μs -> 67.8μs (6.82% faster)
# Quantiles: 0:1, 0.25:3, 0.5:5, 0.75:7, 1:9
expected = _TickInfo(
coloridxs=[0, 0.25, 0.5, 0.75, 1],
text=["min. (1)", "25% (3)", "50% (5)", "75% (7)", "max. (9)"]
)

def test_edge_single_value():
# Single element array
arr = np.array([42])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 71.2μs -> 66.2μs (7.69% faster)
expected = _TickInfo(
coloridxs=[0, 0.25, 0.5, 0.75, 1],
text=["min. (42)", "25% (42)", "50% (42)", "75% (42)", "max. (42)"]
)

def test_edge_empty_array():
# Empty array should raise a ValueError
arr = np.array([])
with pytest.raises(IndexError):
_get_tick_info(arr) # 53.3μs -> 50.1μs (6.40% faster)

def test_edge_negative_values():
# Array with negative values
arr = np.array([-10, -5, 0, 5, 10])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 77.7μs -> 74.6μs (4.22% faster)
expected = _TickInfo(
coloridxs=[0, 0.25, 0.5, 0.75, 1],
text=["min. (-10)", "25% (-5)", "50% (0)", "75% (5)", "max. (10)"]
)

def test_edge_nan_values():
# Array with NaN values should propagate NaN in quantiles
arr = np.array([1, 2, np.nan, 4, 5])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 79.8μs -> 72.2μs (10.6% faster)
# All quantiles will be nan if any nan is present
for t in result.text:
pass

def test_edge_inf_values():
# Array with inf and -inf
arr = np.array([1, 2, np.inf, -np.inf, 5])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 86.4μs -> 80.1μs (7.90% faster)
# Quantiles: -inf, 1, 2, 5, inf
expected = _TickInfo(
coloridxs=[0, 0.25, 0.5, 0.75, 1],
text=["min. (-inf)", "25% (1)", "50% (2)", "75% (5)", "max. (inf)"]
)

def test_edge_non_integer_quantiles():
# Array where quantiles are not integers
arr = np.array([0, 1, 2, 3])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 78.3μs -> 73.0μs (7.14% faster)
# 0.25 quantile: 0.75, 0.5:1.5, 0.75:2.25
expected = _TickInfo(
coloridxs=[0, 0.25, 0.5, 0.75, 1],
text=[
"min. (0)",
"25% (0.75)",
"50% (1.5)",
"75% (2.25)",
"max. (3)"
]
)
# Allow for floating point formatting
for i, t in enumerate(expected.text):
# Compare numbers as floats
val_expected = float(t.split('(')[1][:-1])
val_result = float(result.text[i].split('(')[1][:-1])

----------------- Large Scale Test Cases -----------------

def test_large_scale_monotonic():
# Large monotonic increasing array
arr = np.arange(1000)
codeflash_output = _get_tick_info(arr); result = codeflash_output # 86.5μs -> 76.1μs (13.7% faster)
# Quantiles: 0:0, 0.25:249.75, 0.5:499.5, 0.75:749.25, 1:999
expected_values = np.quantile(arr, [0, 0.25, 0.5, 0.75, 1])
for i, label in enumerate(["min.", "25%", "50%", "75%", "max."]):
val = float(result.text[i].split('(')[1][:-1])

def test_large_scale_random():
# Large random array
rng = np.random.default_rng(42)
arr = rng.normal(loc=0, scale=1, size=1000)
codeflash_output = _get_tick_info(arr); result = codeflash_output # 90.0μs -> 90.9μs (0.973% slower)
expected_values = np.quantile(arr, [0, 0.25, 0.5, 0.75, 1])
for i, label in enumerate(["min.", "25%", "50%", "75%", "max."]):
val = float(result.text[i].split('(')[1][:-1])

def test_large_scale_all_same():
# Large array, all values the same
arr = np.full(1000, 3.14)
codeflash_output = _get_tick_info(arr); result = codeflash_output # 77.9μs -> 73.2μs (6.32% faster)
for t in result.text:
pass

def test_large_scale_with_nan():
# Large array with a single nan should propagate nan
arr = np.arange(1000, dtype=float)
arr[123] = np.nan
codeflash_output = _get_tick_info(arr); result = codeflash_output # 85.9μs -> 87.9μs (2.26% slower)
for t in result.text:
pass

def test_large_scale_with_inf():
# Large array with inf and -inf
arr = np.arange(1000, dtype=float)
arr[0] = -np.inf
arr[-1] = np.inf
codeflash_output = _get_tick_info(arr); result = codeflash_output # 97.1μs -> 84.8μs (14.5% faster)
# The others should be finite
for t in result.text[1:4]:
val = t.split('(')[1][:-1]

codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

#------------------------------------------------
from dataclasses import dataclass

import numpy as np

imports

import pytest # used for our unit tests
from optuna.visualization._rank import _get_tick_info

function to test

@DataClass
class _TickInfo:
coloridxs: list
text: list
from optuna.visualization._rank import _get_tick_info

unit tests

------------------- BASIC TEST CASES -------------------

def test_basic_integers():
# Basic test with consecutive integers
arr = np.array([1, 2, 3, 4, 5])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 87.4μs -> 83.4μs (4.80% faster)

def test_basic_floats():
# Basic test with floats
arr = np.array([0.0, 2.0, 4.0, 6.0, 8.0])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 78.0μs -> 72.0μs (8.41% faster)

def test_basic_unsorted():
# Test with unsorted input
arr = np.array([5, 1, 4, 2, 3])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 74.9μs -> 71.5μs (4.74% faster)

def test_basic_negative_values():
# Test with negative values
arr = np.array([-5, -3, -1, 1, 3])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 73.6μs -> 67.1μs (9.68% faster)

def test_basic_mixed_signs():
# Test with mix of positive and negative values
arr = np.array([-2, 0, 2, 4, 6])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 74.9μs -> 68.8μs (8.92% faster)

------------------- EDGE TEST CASES -------------------

def test_edge_single_element():
# Test with a single element
arr = np.array([42])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 71.9μs -> 68.4μs (5.03% faster)

def test_edge_two_elements():
# Test with two elements
arr = np.array([10, 20])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 72.1μs -> 68.8μs (4.75% faster)

def test_edge_all_same_value():
# Test with all elements the same
arr = np.array([7, 7, 7, 7, 7])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 72.7μs -> 67.7μs (7.39% faster)

def test_edge_empty_array():
# Test with empty array
arr = np.array([])
# Should raise a ValueError from np.quantile
with pytest.raises(IndexError):
_get_tick_info(arr) # 53.6μs -> 50.4μs (6.41% faster)

def test_edge_nan_values():
# Test with NaN values
arr = np.array([np.nan, np.nan, np.nan])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 82.2μs -> 76.0μs (8.18% faster)
# All quantiles should be nan
for txt in result.text:
pass

def test_edge_inf_values():
# Test with inf and -inf values
arr = np.array([-np.inf, 0, np.inf])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 90.9μs -> 86.2μs (5.46% faster)

def test_edge_large_and_small_values():
# Test with very large and very small values
arr = np.array([1e-10, 1e10, 1e5, -1e10, -1e5])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 80.3μs -> 74.9μs (7.24% faster)

def test_edge_non_integer_quantiles():
# Test with values that produce non-integer quantiles
arr = np.array([1, 2, 4, 8])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 75.7μs -> 73.0μs (3.69% faster)

------------------- LARGE SCALE TEST CASES -------------------

def test_large_scale_uniform():
# Large array of uniform values
arr = np.arange(1000)
codeflash_output = _get_tick_info(arr); result = codeflash_output # 87.2μs -> 77.4μs (12.7% faster)
# Quantiles should be: [0, 249.75, 499.5, 749.25, 999]
# We'll check that the quantiles are close to expected
expected = [0, 249.75, 499.5, 749.25, 999]
for i, txt in enumerate(result.text):
value_str = txt.split('(')[-1].rstrip(')')

def test_large_scale_random():
# Large array of random values
np.random.seed(0)
arr = np.random.normal(loc=50, scale=10, size=1000)
codeflash_output = _get_tick_info(arr); result = codeflash_output # 89.0μs -> 93.7μs (5.03% slower)
# Check that quantiles are sorted and within the expected range
quantiles = [float(txt.split('(')[-1].rstrip(')')) for txt in result.text]

def test_large_scale_repeated_values():
# Large array with repeated values
arr = np.array([5] * 1000)
codeflash_output = _get_tick_info(arr); result = codeflash_output # 81.4μs -> 76.0μs (7.15% faster)

def test_large_scale_reverse_sorted():
# Large array in reverse order
arr = np.arange(999, -1, -1)
codeflash_output = _get_tick_info(arr); result = codeflash_output # 85.9μs -> 91.3μs (5.89% slower)
expected = [0, 249.75, 499.5, 749.25, 999]
for i, txt in enumerate(result.text):
value_str = txt.split('(')[-1].rstrip(')')

def test_large_scale_with_outliers():
# Large array with a few extreme outliers
arr = np.concatenate([np.arange(998), [1e6, -1e6]])
codeflash_output = _get_tick_info(arr); result = codeflash_output # 90.2μs -> 79.8μs (13.1% faster)
quantiles = [float(txt.split('(')[-1].rstrip(')')) for txt in result.text]

codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-_get_tick_info-mhtrvyh9 and push.

Codeflash Static Badge

The optimization eliminates a redundant sorting operation by removing the `np.sort(target_values)` call. The key insight is that `np.quantile()` internally sorts the input data when computing quantiles, making the explicit pre-sorting unnecessary.

**What was optimized:**
- Removed `sorted_target_values = np.sort(target_values)` 
- Changed `np.quantile(sorted_target_values, coloridxs)` to `np.quantile(target_values, coloridxs)`

**Why this improves performance:**
- Eliminates duplicate sorting work - the original code sorted the array twice (once explicitly, once inside `np.quantile`)
- Reduces memory allocation by not creating the intermediate `sorted_target_values` array
- The line profiler shows the explicit sort took ~7% of execution time in the original version

**Performance characteristics:**
- Provides consistent 4-14% speedups across most test cases, with larger improvements on bigger arrays (up to 14.5% on 1000-element arrays)
- Particularly effective for large datasets where sorting overhead is more significant
- Maintains identical functionality and output format
- Some edge cases with special values (NaN, random data) show minimal or slightly negative impact, but overall trend is positive

The optimization is especially valuable since this function appears to be in a visualization pipeline where it may be called frequently on varying dataset sizes.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 November 10, 2025 23:27
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash labels Nov 10, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant