-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.go
81 lines (71 loc) · 1.94 KB
/
main.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
package main
import (
"fmt"
"log"
"github.com/conacts/goten/dataloader"
"github.com/conacts/goten/engine"
"github.com/conacts/goten/nn"
)
func main() {
// hyper parameters
lr := 0.0001
net, err := nn.NewMLP([]int{2, 1})
if err != nil {
log.Fatalf("Failed to create new MLP: %v", err)
}
loss := nn.NewLoss(nn.LogLoss, nn.Backward)
optimizer := nn.NewSGD(net.GetParameters(), lr)
X, err := dataloader.LoadData("./data/xs.csv")
if err != nil {
log.Fatalf("Failed to load data: %v", err)
}
Y, err := dataloader.LoadData("./data/ys.csv")
if err != nil {
log.Fatalf("Failed to load data: %v", err)
}
Xs, err := dataloader.EncodeCSVToTensorList(X)
if err != nil {
log.Fatalf("Failed to encode CSV to tensor: %v", err)
}
Ys, err := dataloader.EncodeCSVToTensorList(Y)
if err != nil {
log.Fatalf("Failed to encode CSV to tensor: %v", err)
}
for i := 0; i < 100000; i++ {
totaloutloss, _ := engine.NewZeroTensor([]int{1, 1})
accuracy := 0.0
net.ZeroGrad()
for j := 0; j < len(Xs); j++ {
out, err := net.Forward(Xs[j])
if err != nil {
log.Fatalf("Forward pass failed: %v", err)
}
out, err = engine.Sigmoid(out)
if err != nil {
log.Fatalf("Forward pass failed: %v", err)
}
// accuracy
if out.GetData()[0] > .5 && Ys[j].GetData()[0] == 1. {
accuracy += 1
} else if out.GetData()[0] <= .5 && Ys[j].GetData()[0] == 0. {
accuracy += 1
}
outloss, err := loss.Criterion(out, Ys[j])
if err != nil {
log.Fatalf("Loss computation failed: %v", err)
}
totaloutloss, _ = engine.Add(totaloutloss, outloss)
// Backward pass
dout, err := loss.Backward(out, Ys[j])
if err != nil {
log.Fatalf("Backward pass failed: %v", err)
}
net.Backward(dout)
optimizer.Step()
}
if (i+1)%100 == 0 {
fmt.Printf("Epoch: %d, accuracy: %.1f%% loss: %.4f\n", i+1, accuracy, totaloutloss.GetData()[0]/float64(len(Xs)))
}
totaloutloss.SetData([]float64{0})
}
}