-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathllms_train.py
249 lines (222 loc) · 10.1 KB
/
llms_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import json
import random
from dataclasses import dataclass, field
from typing import Optional
import argparse
import jieba
import torch
import torch.nn as nn
from rouge_chinese import Rouge
import numpy as np
from loguru import logger
import bitsandbytes as bnb
from datasets import Dataset
from peft import prepare_model_for_kbit_training, LoraConfig, get_peft_model
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from transformers import HfArgumentParser
from trl import SFTTrainer, get_kbit_device_map, SFTConfig
from PipeLine.llms_pipeline import jsonl_data_gen
@dataclass
class CustomizedArguments:
"""
一些自定义参数
"""
train_file: str = field(metadata={"help": "训练集。如果task_type=pretrain,请指定文件夹,将扫描其下面的所有jsonl文件"})
model_name_or_path: str = field(metadata={"help": "预训练权重路径"})
eval_file: Optional[str] = field(default="", metadata={"help": "验证集"})
max_prompt_length: int = field(default=512, metadata={"help": "dpo时,prompt的最大长度"})
beta: float = field(default=0.1, metadata={"help": "The beta factor in DPO loss"})
tokenize_num_workers: int = field(default=10, metadata={"help": "预训练时tokenize的线程数量"})
task_type: str = field(default="sft", metadata={"help": "预训练任务:[pretrain, sft]"})
train_mode: str = field(default="lora", metadata={"help": "训练方式:[full, qlora]"})
lora_rank: Optional[int] = field(default=64, metadata={"help": "lora rank"})
lora_alpha: Optional[int] = field(default=16, metadata={"help": "lora alpha"})
lora_dropout: Optional[float] = field(default=0.05, metadata={"help": "lora dropout"})
def set_seed(seed: int, deterministic: bool = False):
"""
Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch` and/or `tf` (if installed).
Args:
seed (`int`):
The seed to set.
deterministic (`bool`, *optional*, defaults to `False`):
Whether to use deterministic algorithms where available. Can slow down training.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
torch.use_deterministic_algorithms(True)
def init_args():
argument = argparse.ArgumentParser()
argument.add_argument('--train_args_file', type=str, default='config/llama3.1_lora.json')
argument.add_argument('--local_rank', type=int, default=0)
args_cmd = argument.parse_args()
hug_args_parser = HfArgumentParser((CustomizedArguments, SFTConfig))
args, training_args = hug_args_parser.parse_json_file(json_file=args_cmd.train_args_file)
setattr(training_args, 'packing', True)
logger.info("train_args:{}".format(training_args))
if not os.path.exists(training_args.output_dir):
os.makedirs(training_args.output_dir)
logger.add(os.path.join(training_args.output_dir, 'train.log'))
logger.info("train_args:{}".format(training_args))
# 加载训练配置文件
with open(args_cmd.train_args_file, "r") as f:
train_args = json.load(f)
# 保存训练参数到输出目录
with open(os.path.join(training_args.output_dir, 'train_args.json'), "w") as f:
json.dump(train_args, f, indent=4)
# 设置随机种子
set_seed(training_args.seed)
return args, training_args
def find_all_linear_names(model, train_mode):
assert train_mode in ['lora', 'qlora']
cls = bnb.nn.Linear4bit if train_mode == 'qlora' else nn.Linear
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
lora_module_names = list(lora_module_names)
logger.info(f'LoRA target module names: {lora_module_names}')
return lora_module_names
def init_train_components(args, train_args):
assert train_args.bf16 or train_args.fp16, 'bf16 or fp16 should be True'
logger.info(f'Loading model from base model: {args.model_name_or_path}')
logger.info(f'Train model with {args.train_mode}')
torch_dtype = torch.float16 if train_args.fp16 else torch.bfloat16
if args.train_mode == 'qlora':
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16 if train_args.fp16 else torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
)
else:
quantization_config = None
if quantization_config:
model_kwargs = dict(
trust_remote_code=True,
# attn_implementation=attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if train_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
else:
model_kwargs = dict(
trust_remote_code=True,
# attn_implementation=attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if train_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
)
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, **model_kwargs)
model_tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
if args.train_mode == 'qlora':
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=train_args.gradient_checkpointing)
if args.train_mode == 'lora' and args.task_type in ['pretrain', 'sft']:
# For backward compatibility
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
if args.train_mode == 'full':
pref_config = None
else:
target_modules = find_all_linear_names(model, args.train_mode)
peft_config = LoraConfig(
r=args.lora_rank,
lora_alpha=args.lora_alpha,
target_modules=target_modules,
lora_dropout=args.lora_dropout,
bias="none",
task_type='CAUSAL_LM'
)
if args.train_mode in ['lora', 'qlora'] and args.task_type in ['pretrain', 'sft']:
model = get_peft_model(model, peft_config)
logger.info(f'memory footprint of model: {model.get_memory_footprint() / (1024 * 1024 * 1024)} GB')
model.print_trainable_parameters()
total = sum(p.numel() for p in model.parameters())
logger.info("Total model params: %.2fM" % (total / 1e6))
return {
'model': model,
'peft_config': peft_config,
'tokenizer': model_tokenizer
}
def load_dataset(args, train_args, tokenizer):
train_file = args.train_file
eval_file = args.eval_file
train_dataset_generator = jsonl_data_gen(train_file)
train_dataset = Dataset.from_generator(train_dataset_generator)
eval_dataset_generator = jsonl_data_gen(eval_file)
eval_dataset = Dataset.from_generator(eval_dataset_generator)
return train_dataset, eval_dataset
def main():
args, train_arguments = init_args()
components = init_train_components(args, train_arguments)
components['tokenizer'].pad_token = components['tokenizer'].eos_token
train_dataset, eval_dataset = load_dataset(args, train_arguments, components['tokenizer'])
tokenizer = components['tokenizer']
def compute_metric(eval_data):
preds, golds = eval_data
print(preds.size(), golds.size())
if isinstance(preds, tuple):
preds = preds[0]
pred_tokens = tokenizer.batch_decode(preds, skip_special_tokens=True)
golds = np.where(golds != -100, golds, tokenizer.pad_token_id)
gold_tokens = tokenizer.batch_decode(golds, skip_special_tokens=True)
score_dict = {
"rouge-1": [],
"rouge-2": [],
"rouge-l": [],
}
for pred_item, gold_item in zip(pred_tokens, gold_tokens):
pred_sent = list(jieba.cut(pred_item))
gold_sent = list(jieba.cut(gold_item))
rogue = Rouge()
pred_sent_rogue = ' '.join(pred_sent)
gold_sent_rogue = ' '.join(gold_sent)
if not pred_sent_rogue:
pred_sent_rogue = '-'
scores = rogue.get_scores(pred_sent_rogue, gold_sent_rogue)
desire_result = scores[0]
for k, v in desire_result.items():
score_dict[k].append(round(v["f"] * 100, 4))
for k, v in score_dict.items():
score_dict[k] = float(np.mean(v))
return score_dict
trainer = SFTTrainer(
model=components['model'],
args=train_arguments,
tokenizer=components['tokenizer'],
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metric
)
if train_arguments.do_train:
# 开始训练
logger.info("*** starting training ***")
train_result = trainer.train()
# 保存最好的checkpoint
final_save_path = os.path.join(train_arguments.output_dir)
trainer.save_model(final_save_path) # Saves the tokenizer too
# 保存训练指标
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
if train_arguments.do_eval:
logger.info("*** starting evaluating ***")
metrics = trainer.evaluate(metric_key_prefix="eval", top_p=0.7, max_length=512, temperature=0.95)
trainer.log_metrics('eval', metrics)
trainer.save_metrics('eval', metrics)
if __name__ == "__main__":
main()