-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
213 lines (193 loc) · 8.45 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import time
import logging
import random
from collections import Counter
import pickle
import torch
import tqdm
import numpy as np
import multiprocessing as mp
from multiprocessing import Value, Lock
import torch.distributed as dist
import torch.utils.data.distributed
import torch.multiprocessing as mp
from transformers import HfArgumentParser
from utilis.mixTool import log_wrapper, to_device
from pipeline.BatchEditor import CollateFn, CollateFnLight
from pipeline.pre_training import PreTraining, PreTrainingLight
from pipeline.arguments import TrainArguments, LongFormerArguments
from pipeline.evaluate import evaluate
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '9091'
best_f1 = Value('d', -1.0)
best_f1_lock = Lock()
stop_flag = Value('i', 0)
def init_args():
parser = HfArgumentParser((TrainArguments, LongFormerArguments))
train_arguments, model_argument = parser.parse_args_into_dataclasses()
return train_arguments, model_argument
def fix_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = False
def trainer(
model,
loaders,
optimizer,
scheduler,
loss_fn,
train_config,
device,
rank
):
train_loader, val_loader, test_loader = loaders
all_steps = len(train_loader) * train_config.epoch
train_loss_trend = []
global_step = 1
eval_f1_trend = []
patience_counter = 0
previous_model, best_model_path = None, None
for epoch_idx in range(train_config.epoch):
p_bar = tqdm.tqdm(train_loader)
epoch_step = len(train_loader)
local_step = 0
all_num, correct_num = 0, 0
model.train()
for batch_data in p_bar:
to_device(batch_data, device)
# convert label ( batch_size, num_span) to
labels = batch_data['label']
logit = model(**batch_data)
pred_ = torch.argmax(logit, dim=-1)
if train_config.task_type == 'doc-span':
labels = labels.view(-1) # change labels from (batch_size, num_span) t0 (bach_size)
correct_num += torch.sum(labels == pred_).item()
all_num += pred_.size(0)
loss = loss_fn(logit, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
if global_step % 10 == 0 and (rank == -1 or rank == 0):
train_loss_trend.append(loss.item())
global_step += 1
local_step += 1
p_bar.set_description(f'Epoch: {epoch_idx + 1},'
f' Percentage: {local_step}/{epoch_step},'
f' Loss: {round(loss.item(), 2)},'
f' Accuracy: {round(correct_num / all_num, 2)}')
print(f'number of correct: {correct_num}; number of samples: {all_num}')
model.eval()
pred_report = evaluate(model=model,
loader=val_loader,
device=device,
idx2label=train_config.idx2label
)
over_acc = pred_report['overall accuracy']
if rank == -1 or rank == 0:
logger.info('-' * 50)
logger.info(f'Epoch: {epoch_idx + 1}/{train_config.epoch} \t'
f' Global step: {global_step}/{all_steps}')
logger.info(f"Overall accuracy: {round(over_acc, 2)}")
logger.info(f"accuracy for each class: ")
class_report = pred_report['inner_report']
for label_name, value in class_report.items():
logger.info(f"class: {label_name} accuracy: {round(value, 2)}")
with best_f1_lock:
if over_acc > best_f1.value:
logger.info(
f'Epoch {epoch_idx + 1} has better accuracy {over_acc} than previous best {best_f1.value}')
model_name = train_config.model_path.split('/')[-1]
model_save_name = f'{model_name}_{epoch_idx}.pth'
best_model_path = os.path.join(train_config.save_to, model_save_name)
if not os.path.exists(train_config.save_to):
os.makedirs(train_config.save_to)
torch.save(model, best_model_path)
if previous_model:
os.remove(previous_model)
previous_model = best_model_path
best_f1.value = over_acc
patience_counter = 0
else:
patience_counter += 1
model_name_ = train_config.model_path.split('/')[-1]
if patience_counter > train_config.patience:
train_loss_file = os.path.join(train_config.save_to, f'{model_name_}.bin')
pickle.dump(train_loss_trend, open(train_loss_file, 'wb'))
stop_flag.value = 1
if stop_flag.value == 1:
break
return best_model_path
def train(rank, train_argument, model_argument, logger_):
fix_seed(train_argument.seed)
if train_argument.is_light:
prepare = PreTrainingLight(train_argument, model_argument)
else:
prepare = PreTraining(train_argument, model_argument)
if rank != -1:
dist.init_process_group(backend='nccl', rank=rank, world_size=train_argument.nproc)
device = torch.device('cuda')
data_sampler = torch.utils.data.distributed.DistributedSampler(dataset=prepare.train,
num_replicas=train_argument.nproc,
rank=rank)
else:
device = torch.device(train_argument.device)
data_sampler = None
tokenizer, model = prepare.prepare_model()
if train_argument.is_light:
collate_fn = CollateFnLight(tokenizer, prepare.label2idx, task_type=prepare.task_type)
else:
collate_fn = CollateFn(tokenizer, prepare.label2idx, task_type=prepare.task_type)
train_loader, val_loader, test_loader = prepare.create_loader(collate_fn=collate_fn,
data_sampler=data_sampler)
model.to(device=device)
optimizer, scheduler, loss_fn = prepare.prepare_optimizer(model, train_loader)
if train_argument.given_best_model:
best_model_path = train_argument.best_model_path
else:
best_model_path = trainer(model=model,
loaders=(train_loader, val_loader, test_loader),
optimizer=optimizer,
scheduler=scheduler,
loss_fn=loss_fn,
train_config=prepare,
device=device,
rank=rank
)
if rank == 0 or rank == -1:
time_start = time.time()
logger.info(f'loading model from best model path: {best_model_path}')
best_model = torch.load(best_model_path)
# best_model = torch.quantization.quantize_dynamic(best_model, {torch.nn.Linear}, dtype=torch.qint8)
best_model.eval()
test_report = evaluate(
model=best_model,
loader=test_loader,
idx2label=prepare.idx2label,
device=device,
task_type=train_argument.task_type
)
time_eps = time.time() - time_start
logger_.info(f'Inference time: {time_eps}s')
over_acc = test_report['overall accuracy']
logger.info(f"Overall accuracy: {round(over_acc, 4)}")
logger.info(f"accuracy for each class: ")
class_report = test_report['inner_report']
for label_name, value in class_report.items():
logger.info(f"class: {label_name} accuracy: {round(value, 4)}")
def main():
train_argument, model_argument = init_args()
log_wrapper(logger, base_dir=train_argument.log_dir)
if torch.cuda.is_available() and train_argument.nproc > 1:
mp.spawn(train,
args=(train_argument, model_argument, logger,),
nprocs=train_argument.nproc)
else:
train(-1, train_argument, model_argument, logger)
if __name__ == "__main__":
main()