You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Cortex makes deploying, scaling, and managing machine learning systems in production simple. We believe that developers in any organization should be able to add natural language processing, computer vision, and other machine learning capabilities to their applications without having to worry about infrastructure.
See our [installation guide](https://docs.cortex.dev/install), then deploy one of our [examples](https://github.com/cortexlabs/cortex/tree/0.18/examples) or bring your own models to build [custom APIs](https://docs.cortex.dev/guides/exporting).
48
+
See our [installation guide](https://docs.cortex.dev/install), then deploy one of our [examples](https://github.com/cortexlabs/cortex/tree/0.19/examples) or bring your own models to build [realtime APIs](https://docs.cortex.dev/deployments/realtime-api) and [batch APIs](https://docs.cortex.dev/deployments/batch-api).
Copy file name to clipboardExpand all lines: docs/cluster-management/config.md
+21-21Lines changed: 21 additions & 21 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -47,7 +47,7 @@ instance_volume_type: gp2
47
47
48
48
# whether the subnets used for EC2 instances should be public or private (default: "public")
49
49
# if "public", instances will be assigned public IP addresses; if "private", instances won't have public IPs and a NAT gateway will be created to allow outgoing network requests
50
-
# see https://docs.cortex.dev/v/master/miscellaneous/security#private-cluster for more information
50
+
# see https://docs.cortex.dev/v/0.19/miscellaneous/security#private-cluster for more information
51
51
subnet_visibility: public # must be "public" or "private"
52
52
53
53
# whether to include a NAT gateway with the cluster (a NAT gateway is necessary when using private subnets)
@@ -56,12 +56,12 @@ nat_gateway: none # must be "none", "single", or "highly_available" (highly_ava
56
56
57
57
# whether the API load balancer should be internet-facing or internal (default: "internet-facing")
58
58
# note: if using "internal", APIs will still be accessible via the public API Gateway endpoint unless you also disable API Gateway in your API's configuration (if you do that, you must configure VPC Peering to connect to your APIs)
59
-
# see https://docs.cortex.dev/v/master/miscellaneous/security#private-cluster for more information
59
+
# see https://docs.cortex.dev/v/0.19/miscellaneous/security#private-cluster for more information
60
60
api_load_balancer_scheme: internet-facing # must be "internet-facing" or "internal"
61
61
62
62
# whether the operator load balancer should be internet-facing or internal (default: "internet-facing")
63
-
# note: if using "internal", you must configure VPC Peering to connect your CLI to your cluster operator (https://docs.cortex.dev/v/master/guides/vpc-peering)
64
-
# see https://docs.cortex.dev/v/master/miscellaneous/security#private-cluster for more information
63
+
# note: if using "internal", you must configure VPC Peering to connect your CLI to your cluster operator (https://docs.cortex.dev/v/0.19/guides/vpc-peering)
64
+
# see https://docs.cortex.dev/v/0.19/miscellaneous/security#private-cluster for more information
65
65
operator_load_balancer_scheme: internet-facing # must be "internet-facing" or "internal"
66
66
67
67
# whether to disable API gateway cluster-wide
@@ -76,10 +76,10 @@ log_group: cortex
76
76
tags: # <string>: <string> map of key/value pairs
77
77
78
78
# whether to use spot instances in the cluster (default: false)
79
-
# see https://docs.cortex.dev/v/master/cluster-management/spot-instances for additional details on spot configuration
79
+
# see https://docs.cortex.dev/v/0.19/cluster-management/spot-instances for additional details on spot configuration
80
80
spot: false
81
81
82
-
# see https://docs.cortex.dev/v/master/guides/custom-domain for instructions on how to set up a custom domain
82
+
# see https://docs.cortex.dev/v/0.19/guides/custom-domain for instructions on how to set up a custom domain
83
83
ssl_certificate_arn:
84
84
```
85
85
@@ -90,19 +90,19 @@ The docker images used by the Cortex cluster can also be overridden, although th
Copy file name to clipboardExpand all lines: docs/deployments/batch-api/predictors.md
+8-8Lines changed: 8 additions & 8 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -79,7 +79,7 @@ For proper separation of concerns, it is recommended to use the constructor's `c
79
79
### Examples
80
80
81
81
<!-- CORTEX_VERSION_MINOR -->
82
-
You can find an example of a BatchAPI using a PythonPredictor in [examples/batch/image-classifier](https://github.com/cortexlabs/cortex/tree/master/examples/batch/image-classifier).
82
+
You can find an example of a BatchAPI using a PythonPredictor in [examples/batch/image-classifier](https://github.com/cortexlabs/cortex/tree/0.19/examples/batch/image-classifier).
83
83
84
84
### Pre-installed packages
85
85
@@ -148,7 +148,7 @@ torchvision==0.4.2
148
148
```
149
149
150
150
<!-- CORTEX_VERSION_MINOR x3 -->
151
-
The pre-installed system packages are listed in [images/python-predictor-cpu/Dockerfile](https://github.com/cortexlabs/cortex/tree/master/images/python-predictor-cpu/Dockerfile) (for CPU), [images/python-predictor-gpu/Dockerfile](https://github.com/cortexlabs/cortex/tree/master/images/python-predictor-gpu/Dockerfile) (for GPU), or [images/python-predictor-inf/Dockerfile](https://github.com/cortexlabs/cortex/tree/master/images/python-predictor-inf/Dockerfile) (for Inferentia).
151
+
The pre-installed system packages are listed in [images/python-predictor-cpu/Dockerfile](https://github.com/cortexlabs/cortex/tree/0.19/images/python-predictor-cpu/Dockerfile) (for CPU), [images/python-predictor-gpu/Dockerfile](https://github.com/cortexlabs/cortex/tree/0.19/images/python-predictor-gpu/Dockerfile) (for GPU), or [images/python-predictor-inf/Dockerfile](https://github.com/cortexlabs/cortex/tree/0.19/images/python-predictor-inf/Dockerfile) (for Inferentia).
152
152
153
153
If your application requires additional dependencies, you can install additional [Python packages](../python-packages.md) and [system packages](../system-packages.md).
154
154
@@ -187,7 +187,7 @@ class TensorFlowPredictor:
187
187
```
188
188
189
189
<!-- CORTEX_VERSION_MINOR -->
190
-
Cortex provides a `tensorflow_client` to your Predictor's constructor. `tensorflow_client` is an instance of [TensorFlowClient](https://github.com/cortexlabs/cortex/tree/master/pkg/workloads/cortex/lib/client/tensorflow.py) that manages a connection to a TensorFlow Serving container to make predictions using your model. It should be saved as an instance variable in your Predictor, and your `predict()` function should call `tensorflow_client.predict()` to make an inference with your exported TensorFlow model. Preprocessing of the JSON payload and postprocessing of predictions can be implemented in your `predict()` function as well.
190
+
Cortex provides a `tensorflow_client` to your Predictor's constructor. `tensorflow_client` is an instance of [TensorFlowClient](https://github.com/cortexlabs/cortex/tree/0.19/pkg/workloads/cortex/lib/client/tensorflow.py) that manages a connection to a TensorFlow Serving container to make predictions using your model. It should be saved as an instance variable in your Predictor, and your `predict()` function should call `tensorflow_client.predict()` to make an inference with your exported TensorFlow model. Preprocessing of the JSON payload and postprocessing of predictions can be implemented in your `predict()` function as well.
191
191
192
192
When multiple models are defined using the Predictor's `models` field, the `tensorflow_client.predict()` method expects a second argument `model_name` which must hold the name of the model that you want to use for inference (for example: `self.client.predict(payload, "text-generator")`). See the [multi model guide](../../guides/multi-model.md#tensorflow-predictor) for more information.
193
193
@@ -196,7 +196,7 @@ For proper separation of concerns, it is recommended to use the constructor's `c
196
196
### Examples
197
197
198
198
<!-- CORTEX_VERSION_MINOR -->
199
-
You can find an example of a BatchAPI using a TensorFlowPredictor in [examples/batch/tensorflow](https://github.com/cortexlabs/cortex/tree/master/examples/batch/tensorflow).
199
+
You can find an example of a BatchAPI using a TensorFlowPredictor in [examples/batch/tensorflow](https://github.com/cortexlabs/cortex/tree/0.19/examples/batch/tensorflow).
200
200
201
201
### Pre-installed packages
202
202
@@ -217,7 +217,7 @@ tensorflow==2.1.0
217
217
```
218
218
219
219
<!-- CORTEX_VERSION_MINOR -->
220
-
The pre-installed system packages are listed in [images/tensorflow-predictor/Dockerfile](https://github.com/cortexlabs/cortex/tree/master/images/tensorflow-predictor/Dockerfile).
220
+
The pre-installed system packages are listed in [images/tensorflow-predictor/Dockerfile](https://github.com/cortexlabs/cortex/tree/0.19/images/tensorflow-predictor/Dockerfile).
221
221
222
222
If your application requires additional dependencies, you can install additional [Python packages](../python-packages.md) and [system packages](../system-packages.md).
223
223
@@ -256,7 +256,7 @@ class ONNXPredictor:
256
256
```
257
257
258
258
<!-- CORTEX_VERSION_MINOR -->
259
-
Cortex provides an `onnx_client` to your Predictor's constructor. `onnx_client` is an instance of [ONNXClient](https://github.com/cortexlabs/cortex/tree/master/pkg/workloads/cortex/lib/client/onnx.py) that manages an ONNX Runtime session to make predictions using your model. It should be saved as an instance variable in your Predictor, and your `predict()` function should call `onnx_client.predict()` to make an inference with your exported ONNX model. Preprocessing of the JSON payload and postprocessing of predictions can be implemented in your `predict()` function as well.
259
+
Cortex provides an `onnx_client` to your Predictor's constructor. `onnx_client` is an instance of [ONNXClient](https://github.com/cortexlabs/cortex/tree/0.19/pkg/workloads/cortex/lib/client/onnx.py) that manages an ONNX Runtime session to make predictions using your model. It should be saved as an instance variable in your Predictor, and your `predict()` function should call `onnx_client.predict()` to make an inference with your exported ONNX model. Preprocessing of the JSON payload and postprocessing of predictions can be implemented in your `predict()` function as well.
260
260
261
261
When multiple models are defined using the Predictor's `models` field, the `onnx_client.predict()` method expects a second argument `model_name` which must hold the name of the model that you want to use for inference (for example: `self.client.predict(model_input, "text-generator")`). See the [multi model guide](../../guides/multi-model.md#onnx-predictor) for more information.
262
262
@@ -265,7 +265,7 @@ For proper separation of concerns, it is recommended to use the constructor's `c
265
265
### Examples
266
266
267
267
<!-- CORTEX_VERSION_MINOR -->
268
-
You can find an example of a BatchAPI using an ONNXPredictor in [examples/batch/onnx](https://github.com/cortexlabs/cortex/tree/master/examples/batch/onnx).
268
+
You can find an example of a BatchAPI using an ONNXPredictor in [examples/batch/onnx](https://github.com/cortexlabs/cortex/tree/0.19/examples/batch/onnx).
269
269
270
270
### Pre-installed packages
271
271
@@ -283,6 +283,6 @@ requests==2.23.0
283
283
```
284
284
285
285
<!-- CORTEX_VERSION_MINOR x2 -->
286
-
The pre-installed system packages are listed in [images/onnx-predictor-cpu/Dockerfile](https://github.com/cortexlabs/cortex/tree/master/images/onnx-predictor-cpu/Dockerfile) (for CPU) or [images/onnx-predictor-gpu/Dockerfile](https://github.com/cortexlabs/cortex/tree/master/images/onnx-predictor-gpu/Dockerfile) (for GPU).
286
+
The pre-installed system packages are listed in [images/onnx-predictor-cpu/Dockerfile](https://github.com/cortexlabs/cortex/tree/0.19/images/onnx-predictor-cpu/Dockerfile) (for CPU) or [images/onnx-predictor-gpu/Dockerfile](https://github.com/cortexlabs/cortex/tree/0.19/images/onnx-predictor-gpu/Dockerfile) (for GPU).
287
287
288
288
If your application requires additional dependencies, you can install additional [Python packages](../python-packages.md) and [system packages](../system-packages.md).
Copy file name to clipboardExpand all lines: docs/deployments/inferentia.md
+2-2Lines changed: 2 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -67,8 +67,8 @@ The versions of `tensorflow-neuron` and `torch-neuron` that are used by Cortex a
67
67
See AWS's [TensorFlow](https://github.com/aws/aws-neuron-sdk/blob/master/docs/tensorflow-neuron/tutorial-compile-infer.md#step-3-compile-on-compilation-instance) and [PyTorch](https://github.com/aws/aws-neuron-sdk/blob/master/docs/pytorch-neuron/tutorial-compile-infer.md#step-3-compile-on-compilation-instance) guides on how to compile models for Inferentia. Here are 2 examples implemented with Cortex:
68
68
69
69
<!-- CORTEX_VERSION_MINOR x2 -->
70
-
1.[ResNet50 in TensorFlow](https://github.com/cortexlabs/cortex/tree/master/examples/tensorflow/image-classifier-resnet50)
71
-
1.[ResNet50 in PyTorch](https://github.com/cortexlabs/cortex/tree/master/examples/pytorch/image-classifier-resnet50)
70
+
1.[ResNet50 in TensorFlow](https://github.com/cortexlabs/cortex/tree/0.19/examples/tensorflow/image-classifier-resnet50)
71
+
1.[ResNet50 in PyTorch](https://github.com/cortexlabs/cortex/tree/0.19/examples/pytorch/image-classifier-resnet50)
0 commit comments