08:18:33 WARNING The cthreeML package is not installed. You will not be able to use plugins which __init__.py:94\n",
+ "require the C/C++ interface (currently HAWC) \n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m08:18:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=715257;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=987849;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
WARNING Could not import plugin HAWCLike.py. Do you have the relative instrument __init__.py:144\n",
+ "software installed and configured? \n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=492316;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=11302;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
WARNING Could not import plugin FermiLATLike.py. Do you have the relative instrument __init__.py:144\n",
+ "software installed and configured? \n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=165679;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=429629;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
10:03:51 WARNING The cthreeML package is not installed. You will not be able to use plugins which __init__.py:94\n",
+ "require the C/C++ interface (currently HAWC) \n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m10:03:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=547017;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=330393;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
WARNING Could not import plugin HAWCLike.py. Do you have the relative instrument __init__.py:144\n",
+ "software installed and configured? \n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=488942;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=189638;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
WARNING Could not import plugin FermiLATLike.py. Do you have the relative instrument __init__.py:144\n",
+ "software installed and configured? \n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=730881;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=319851;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
desc: peak in the x * x * N (nuFnu if x is a energy)
\n",
+ "\n",
+ "
min_value: 10.0
\n",
+ "\n",
+ "
max_value: None
\n",
+ "\n",
+ "
unit:
\n",
+ "\n",
+ "
is_normalization: False
\n",
+ "\n",
+ "
delta: 50.0
\n",
+ "\n",
+ "
free: True
\n",
+ "\n",
+ "
\n",
+ "\n",
+ "
\n",
+ "\n",
+ "
beta: \n",
+ "
\n",
+ "\n",
+ "
value: -2.0
\n",
+ "\n",
+ "
desc: high-energy photon index
\n",
+ "\n",
+ "
min_value: -5.0
\n",
+ "\n",
+ "
max_value: -1.6
\n",
+ "\n",
+ "
unit:
\n",
+ "\n",
+ "
is_normalization: False
\n",
+ "\n",
+ "
delta: 0.2
\n",
+ "\n",
+ "
free: True
\n",
+ "\n",
+ "
\n",
+ "\n",
+ "
\n",
+ "\n",
+ "
piv: \n",
+ "
\n",
+ "\n",
+ "
value: 100.0
\n",
+ "\n",
+ "
desc: pivot energy
\n",
+ "\n",
+ "
min_value: None
\n",
+ "\n",
+ "
max_value: None
\n",
+ "\n",
+ "
unit:
\n",
+ "\n",
+ "
is_normalization: False
\n",
+ "\n",
+ "
delta: 10.0
\n",
+ "\n",
+ "
free: False
\n",
+ "\n",
+ "
\n",
+ "\n",
+ "
\n",
+ "\n",
+ "
\n",
+ "\n",
+ "
\n",
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "Band.info()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Read orientation file"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Read the 3-month orientation\n",
+ "# It is the pointing of the spacecraft during the the mock simlulation\n",
+ "ori = SpacecraftFile.parse_from_file(orientation_path)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Get the expected counts and save to a data file"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Define the coordinate of the point source\n",
+ "source_coord = SkyCoord(l = 184.5551, b = -05.7877, frame = \"galactic\", unit = \"deg\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Define an injector by the response\n",
+ "injector = SourceInjector(response_path=response_path) # XXX: Why does class constructor have this. Can't this be added as a parameter to the function inject_point_source()?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 3.02 s, sys: 1.05 s, total: 4.07 s\n",
+ "Wall time: 4.27 s\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG7CAYAAAAizIoLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxXElEQVR4nO3deXhUVZ7G8beyVLGkQCZggMRBWQTioKAi2LQID8WuQSGgNiqMsgmKaNts06HV4CCKgOCIA42TlhaBgCLagWAhi9IstkKzBNKsUUJYNekqkASSmj+c1BgDoVKpyq3ifj/Pk0fr3FP3/m7kPryee+65Fo/H4xEAAICJRRhdAAAAgNEIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRD64cOGCsrOzdeHCBaNLAQAAQUAg8kFOTo6GDx+unJwco0sBAABBQCACAACmRyACAACmF2V0AaHM6XTK6XTK7XYbXQoAAAgiAlEFHA6HHA6HsrOzNXz4cKPLAQAAQUIgAgAEhcfj0aVLl1RcXGx0KTCB6OhoRUZG+v19AhEAIOCKioqUl5en8+fPG10KTMJisSghIUExMTF+fZ9ABAAIqJKSEh05ckSRkZFq3LixrFarLBaL0WXhGubxeHT69GkdO3ZMLVq08GukiEAEAAiooqIilZSU6IYbblCtWrWMLgcm0aBBAx09elQXL170KxDx2D0AICgiIvgrBtWnqqOQ/GkFAACmRyACAJjCjTfeqJ07d16135QpU/T+++/7fZwNGzZozZo1fn13z549uvHGG/0+9uX06dNH2dnZV+23cuVKbd26NaDHDifMIQIA4GdefvnlKn1/w4YNys/PV69evQJUUdVkZGT41G/lypVq27atOnbsGOSKyrt06ZKiooyNJAQiAEDQ3Tn/Tp1wnwja/hvGNNTfRvzN5/5dunTRnXfeqW3btun48ePq3r273nnnHUnS0KFD1bZtW40bN04XL15USkqKPv/8cxUVFenmm2/Wf//3f6tevXoqKCjQb3/7W23dulWRkZG64447NHbsWL3zzjsqLi7Whg0b1L9/f02ZMkWZmZlKTU3Vjz/+qMjISE2fPl1du3aVJL344ot6//33VadOHfXu3fuKNQ8dOlQRERHav3+/zpw5o7vvvlvvvPOOatasqVOnTmnUqFE6cOCAPB6PnnnmGY0cOVLSTyNjpWHnSuedkZGhVatW6bPPPlNaWpqefvppDRs2rMzxp06dqvfff182m02S9PHHH6tJkybKzMzUpEmTdOnSJdWrV0/z5s1TYmKiNmzYoHHjxnlH5fbs2aP77rtPR48e1dGjR9W2bVuNHDlSn332mR5//HENHDhQzz77rLKzs2WxWNSvXz+lpqbK5XLp+eef19///ndduHBBHTt21FtvvSWr1erzf29fEIgAAEF3wn1Cua5co8so49ChQ1q/fr0uXryoxMREbdmyRXfffXeZPq+//rpq166t7du3S5JSU1P1+9//Xv/1X/+lcePGqWbNmtq1a5ciIiJ0+vRpNWjQQKNGjVJ+fr5mz54tSTp8+LBefPFFZWZmqk6dOjp48KDuueceHT16VE6nU+np6fr6669lt9v12GOPVVjztm3btHXrVtWqVUsPPPCAZs2apcmTJ+uZZ55Ry5Yt9eGHH+rUqVO64447dNttt112tOdy592nTx8lJSV5g+Av/fDDD5oxY4by8vJUs2ZNnT9/XhERETp16pR+85vfaMOGDWrTpo3ef/99JScna+/evVf9/RcUFOiWW27R9OnTJUldu3ZVjx49tHz5cknS6dOnJUm//e1vdc8992jBggXyeDwaPny43nzzTf3ud7+76jEqg0AEAAi6hjENQ27/Dz30kKKiohQVFaW2bdvq0KFD5QLRypUrVVBQoBUrVkj6aUmB0jk+n376qbZt2+Z9mq5BgwaXPc6aNWt08OBBde7c2dsWERGhb7/9VuvWrdOgQYNUp04dSdLIkSP15ZdfXrHmQYMGyW63S5KefPJJzZkzR5MnT5bT6dTXX38tSbr++uvVv39/OZ3OywYiX877l+rUqaMWLVro0UcfVY8ePdS3b18lJCTos88+U5s2bdSmTRtJ0uDBgzVmzBjl5l49/EZHR+vRRx+VJLndbn355ZfKzMz0bi/9fa5cuVJbtmzRzJkzJck7yhZoBCJUWvredE3ZMEWuQpfRpVSK3WZXatdUJScmG10KYDqVuZ1VXWrUqOH998jISF26dKlcH4/Ho7lz56pHjx5+H8fj8ah79+5avHjxVftW9tHxK/WvaD++nPcvRUZGauvWrfrrX/+qDRs2qGPHjvrggw8q/E5UVFSZ17ZcuHChzPZatWr5tDSDx+PRihUrdPPNN1+1b1XwlBkqbcqGKdp/Zr9yXblh9bP/zH6lrE8x+tcHIIyU3pYqfQXJ+fPnvbeDkpKSNGPGDJWUlEj6/1s8derUUUFBgXcfPXv2lNPp1K5du7xtpbfgHA6H0tPT5XK55PF4NH/+/ArrWb58udxut4qLi/U///M/cjgc3v0sWLDAW8eHH36o7t27V+pcf1n3z7lcLp08eVL33HOPUlJS9Otf/1o7duxQx44dtXv3bu3Zs0eStGTJEsXHxys+Pl5NmzZVTk6O9/eyaNGiKx47JiZGnTt31htvvOFtK/3eAw88oOnTp3uD2w8//KCDBw9W6tx8wQgRKq10ZCjCEqFGMY0MrsY3ee48lXhKwm5UC4AxSkdYJkyYoMLCQnXo0KFM2y233KJZs2bpueeeU5s2bRQdHa327dtrwYIFevDBB7Vo0SK1bdvWO6l68eLFGjlypM6fP6+ioiK1a9dOixcvVp8+fbR9+3bdfvvtV51ULUnt27dXz549dfr0ad19993e+T5z5szRU089pTZt2sjj8eg//uM/1KFDh0qd82OPPaahQ4dq5cqVGjNmTJlJ1QUFBUpOTta5c+dksVjUokULDRkyRHXr1tX777+vxx9/3DupOj09XRaLRY0bN9b48eN11113KS4u7qrntmjRIj3zzDO65ZZbFB0drX79+umll17SrFmzNHHiRLVt21YRERGKiorSa6+9pubNm1fq/K7G4vF4PAHd4zUoOztbw4cP14IFC9SyZUujyzFcwswE5bpyFW+P17Hnjxldjk/CsWYgXF24cEFHjhzRTTfdVOb2TLjo06ePBg8erMGDBxtdShk/f/oN5VX1zx0jRAAA/B+Hw6HCwkIlJSUZXQqqGYEIAID/43Q6jS7hitLS0owu4ZrGpGoAQFCUTjYGqkNVZwAxQgQACCir1aqIiAgdP35cDRo0kNVqrfKbyIGKeDwenT59WhaLRdHR0X7tg0AEAAioiIgI3XTTTcrLy9Px48eNLgcmYbFYlJCQ4PeijQSiCjidTjmdTrndbqNLAYCwYrVa9a//+q+6dOlSmcX5gGCJjo6u0grWBKIKOBwOORwO72P3AADfld6+8PcWBlCdmFQNAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj8fuYSp57jwlzEwwugyf2W12pXZNVXJistGlAMA1jUAEU7Db7JJLKvGUKNeVa3Q5vnNJKetTCEQAEGQEIphCatdUpaxPkavQZXQpPstz56nEUxJWNQNAuCIQwRSSE5PDbpQlYWZCeI1mAUAYY1I1AAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPVaqNlj63nRN2TAlrF7PkOfOM7oEAAACikBksCkbpmj/mf1Gl+EXu81udAkAAAQEgchgpSNDEZYINYppZHA1vrPb7Ertmmp0GQAABASBKEQ0immkY88fM7oMAABMiUnVAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9Ez1lNnixYu1YsUKud1uJSQkaO7cuapVq5bRZQEAAIOZJhB9+OGH2rZtm95++21df/31Onz4sKKiTHP6AACgAqZIBMXFxVq0aJHeeustxcXFSZKaNWtmcFUAACBUhGQgOn/+vJYsWaKsrCzt27dPLpdLkyZNUu/evcv1LSoq0sKFC7V27Vq5XC41a9ZMw4YNU/v27b19Tp8+rcLCQm3YsEHLli1TTEyMHn74Yd1///3VeVoAACBEheSk6oKCAqWlpSknJ0fNmzevsO+0adO0bNkyde/eXWPHjlVERITGjx+vXbt2efucPn1abrdb3333nZYtW6aXX35Z8+fP19///vdgnwoAAAgDIRmIYmNj9dFHHyk9PV1PPfXUFftlZWVp3bp1GjFihEaPHq2kpCTNnj1bDRs21Lx587z9bDabJGno0KGy2Wxq1qyZunXrpq1btwb9XAAAQOgLyUBktVoVGxt71X4bN25UZGSkkpKSvG02m019+/bV3r17dfLkSUnSDTfcoOjoaFksFm+/n/87AAAwt5AMRL46cOCAEhISVLt27TLtrVu3liQdPHhQklSzZk3de++9eu+991RUVKSjR4/q888/V8eOHS+73zNnzig7O9v7k5OTE9wTAQAAhgrJSdW+Onv27GVHkkrbzpw542177rnnNH36dN1///2qW7eunnzySd12222X3e+qVauUlpYWlJoBAEDoCetAVFhYqOjo6HLtVqvVu72U3W7X1KlTfdpvUlKSOnXq5P2ck5Pj83cBAED4CetAZLPZdPHixXLtRUVF3u3+qF+/vurXr1+l2gAAQPgI6zlEsbGxOnv2bLn20jZCDQAA8EVYB6LmzZvr2LFjOnfuXJn2rKws73YAAICrCetA1KVLFxUXF2vVqlXetqKiImVkZCgxMdH7mg5/OZ1OTZw4UXPnzq1qqQAAIISF7Byi0rfSl97+2rx5s06dOiVJGjBggGJiYpSYmKiuXbtq/vz5ys/PV3x8vNasWaMTJ05owoQJVa7B4XDI4XAoOztbw4cPr/L+AH/kufOUMDPB6DJ8ZrfZldo1VcmJyUaXAgA+C9lAtHTpUp04ccL7edOmTdq0aZMkqUePHoqJiZEkTZ48WXFxccrMzJTb7VbTpk01ffp0tW3b1oiygYCx2+ySSyrxlCjXlWt0Ob5zSSnrUwhEAMJKyAaiZcuW+dTPZrNp9OjRGj16dJArAqpXatdUpaxPkavQZXQpPstz56nEUxJWNQOAFMKBCDC75MTksBtlSZiZEF6jWQDwf8J6UjUAAEAgEIgAAIDpccusAk6nU06nU2632+hSAABAEBGIKsBj9wAAmAO3zAAAgOkRiAAAgOkRiAAAgOkRiAAAgOkRiAAAgOnxlFkFeOweAABzIBBVgMfuAQAwB26ZAQAA0yMQAQAA0yMQAQAA0yMQAQAA0yMQAQAA0yMQAQAA0+Ox+wqwDhEAAOZAIKoA6xABAGAO3DIDAACmRyACAACmRyACAACmRyACAACmRyACAACmRyACAACmRyACAACmRyACAACmx8KMFWClagAAzIFAVAFWqgYAwBy4ZQYAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPdYgABFyeO08JMxOMLsNndptdqV1TlZyYbHQpAAxCIAIQMHabXXJJJZ4S5bpyjS7Hdy4pZX0KgQgwMQIRgIBJ7ZqqlPUpchW6jC7FZ3nuPJV4SsKqZgCBRyCqAO8yAyonOTE57EZZEmYmhNdoFoCgIBBVgHeZAQBgDjxlBgAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATC/K6AJCmdPplNPplNvtNroUAAAQRASiCjgcDjkcDmVnZ2v48OFGlwMAAIKEW2YAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0oowuIJQ5nU45nU653W6jSwEQZHnuPCXMTDC6DJ/ZbXaldk1VcmKy0aUA1wQCUQUcDoccDoeys7M1fPhwo8sBEAR2m11ySSWeEuW6co0ux3cuKWV9CoEICBACEQBTS+2aqpT1KXIVuowuxWd57jyVeErCqmYg1BGIAJhacmJy2I2yJMxMCK/RLCAMMKkaAACYHoEIAACYnt+B6NChQ/rLX/6ic+fOedsKCwv1xhtvqH///nrkkUf08ccfB6RIAACAYPI7EL333ntauHChatWq5W2bP3++Vq1apfPnz+vUqVOaNWuWvvrqq4AUCgAAECx+B6J9+/apXbt2slgskqRLly5p9erVat26tT7++GMtXbpU1113nZYvXx6wYgEAAILB70BUUFCg66+/3vt5//79OnfunPr16yebzab69eurU6dOOnjwYEAKBQAACBa/A1FkZKQuXrzo/bxz505ZLBa1a9fO21a3bl0VFBRUrUIAAIAg8zsQNWzYUDt27PB+Xr9+vRo1aqSGDRt6206fPq26detWrUIAAIAg83thxh49emjevHkaOXKkoqOjdejQIT322GNl+hw+fFgJCeHzbiAAAGBOfo8Q9e/fX126dFF2drZ2796tDh066NFHH/VuP3LkiA4ePKjbb789IIUCAAAEi98jRFarVS+99JLOnTsni8VS5vF7SapXr54WLlxY5hYaAABAKPJ7hGjnzp06efKkateuXS4MSdJ1110nu93OU2YAACDk+R2Ixo0bp9WrV1fYJzMzU+PGjfP3EAAAANXC70Dk8Xh86lO6cCMAAECoCurLXY8dO6batWsH8xAAAABVVqlJ1a+++mqZz1988YVOnDhRrl9xcbFOnTqlXbt2qUOHDlWrEAAAIMgqFYh+PmfIYrHo4MGDV5w0bbFY1KpVKz399NNVqxAAACDIKhWIli5dKumnuUEPP/ywBg4cqOTk5HL9IiIiZLfbVbNmzcBUCQAAEESVCkQ/X1No4sSJuvnmm1lnCAAAhD2/F2bs3bt3IOsAAAAwjN+BqFRWVpb2798vt9utkpKSctstFouGDBlS1cMAAAAEjd+B6J///KcmT56sPXv2VLgmEYEIAACEOr8D0VtvvaXdu3erbdu26tWrl66//npFRkYGsjYAAIBq4Xcg2rJli1q3bq3Zs2ezGjUAAAhrfq9UXVhYqNtuu40wBAAAwp7fgah58+aXXaUaAAAg3Ph9y2zo0KGaPHmy9u7dq1tuuSWQNQXF2LFjlZWV5Z3ndOutt+r11183uCoAABAK/A5E33//vTp27KixY8eqe/fuatGixRVf5NqrVy+/Cwyk8ePHq0ePHkaXAQAAQozfgWjatGmyWCzyeDxavXq1Vq9eXW4+kcfjkcViCZlABAAAcDl+B6KJEycGso4yzp8/ryVLligrK0v79u2Ty+XSpEmTLrs6dlFRkRYuXKi1a9fK5XKpWbNmGjZsmNq3b1+u79y5czV37ly1aNFCY8aMUbNmzYJ2DgAAIHyE5Ks7CgoKlJaWpri4ODVv3lw7duy4Yt9p06Zpw4YNGjhwoBISErR69WqNHz9eb775pm699VZvv1GjRunGG29UZGSkVqxYod/97nf685//rFq1agXtPAAAQHjw+ymzYIqNjdVHH32k9PR0PfXUU1fsl5WVpXXr1mnEiBEaPXq0kpKSNHv2bDVs2FDz5s0r0zcxMVG1atWSzWbTb37zG9WqVUt79+4N9qkAAIAw4PcI0cmTJ33uGxcXV6l9W61WxcbGXrXfxo0bFRkZqaSkJG+bzWZT3759NX/+fJ08efKKxy6d/wQAAOB3IBo0aJBPizJaLBatX7/e38NU6MCBA0pISCj3dFvr1q0lSQcPHlRcXJxcLpf279/vXUjyo48+ksvlUmJi4mX3e+bMGZ09e9b7OScnJyj1AwCA0OB3IOrZs+dlA5Hb7dahQ4eUl5entm3bqmHDhlUqsCJnz5697EhSaduZM2ckScXFxZo/f76+/fZbRUVFqXnz5po+fbpiYmIuu99Vq1YpLS0taHUDAIDQ4ncgmjx58hW3eTweLVmyRB988IEmTJjg7yGuqrCwUNHR0eXarVard7skXXfddVqwYIHP+01KSlKnTp28n3NycjR16tQqVgsAAEJVUCZVWywWPfLII7rpppv09ttvB+MQkn6aL3Tx4sVy7UVFRd7t/qhfv75atmzp/WnSpEmV6gQAAKEtqE+ZtWzZUt98803Q9h8bG1tmrk+p0rb69esH7dgAAODa4fctM1/k5uaquLg4aPsvXaPo3LlzZSZWZ2VlebcDwLUqz52nhJkJRpfhM7vNrtSuqUpOTDa6FKCcgAeikpISnT59WmvWrNHmzZt1++23B/oQXl26dNGSJUu0atUqPfLII5J+ul2WkZGhxMTESj/uDwDhwG6zSy6pxFOiXFeu0eX4ziWlrE8hECEk+R2I7r333gofu/d4PLLb7RozZoxf+1+xYoXcbrf39tfmzZt16tQpSdKAAQMUExOjxMREde3aVfPnz1d+fr7i4+O1Zs0anThxIiCTuZ1Op5xOp9xud5X3BQCBkto1VSnrU+QqdBldis/y3Hkq8ZSEVc0wF78DUemaPr9ksVhkt9vVqlUr9enTR/Xq1fNr/0uXLtWJEye8nzdt2qRNmzZJknr06OF9ZH7y5MmKi4tTZmam3G63mjZtqunTp6tt27Z+HffnHA6HHA6HsrOzNXz48CrvDwACITkxOexGWRJmJoTXaBZMx+9ANGfOnEDWUc6yZct86mez2TR69GiNHj06qPUAAIBrV0i+ywwAAKA6BWRS9e7du3XgwAGdP39etWrVUosWLdSmTZtA7BoAACDoqhSIdu/erVdffVW5uT/dF/Z4PN55RQkJCZo4caL+7d/+repVAgAABJHfgejIkSN64YUXdOHCBd15551q166dYmNj9f3332vHjh366quv9MILL+idd97RjTfeGMCSqw9PmQEAYA5+B6K0tDRdvHhRr732mjp06FBm2+DBg7Vt2zZNmjRJaWlpevHFF6tapyF4ygwAAHPwe1L1zp071aVLl3JhqFSHDh3UpUsX7dixw+/iAAAAqoPfgejcuXNq1KhRhX0aNWqkc+fO+XsIAACAauF3IIqNjdXevXsr7JOVlaXY2Fh/DwEAAFAt/A5EnTp10s6dO/XHP/5RhYWFZbYVFhbq3Xff1Y4dO/TrX/+6ykUCAAAEk9+TqocMGaItW7boz3/+s1atWqXWrVurXr16+uGHH7R//37l5+ercePGGjJkSCDrBQAACDi/A1HdunU1b948vfPOO1q3bp22bt3q3Wa1WtW7d2+NGjVKderUCUihRuCxewAAzKFKCzNed911mjhxol544QXl5OR4V6pu0qSJoqICsgi2oXjsHgAAc6h0annvvfd04cIFPfHEE97QExUVpWbNmnn7XLx4UQsWLFDNmjX16KOPBq5aAACAIKjUpOq//e1vevfdd1WnTp0KR4Cio6NVp04d/fGPf9Q333xT5SIBAACCqVKBKDMzU3a7Xf37979q3wcffFB2u12rV6/2uzgAAIDqUKlAtGfPHt1xxx2yWq1X7Wu1WnXnnXdq9+7dfhcHAABQHSoViM6cOaPGjRv73L9Ro0Y6e/ZspYsCAACoTpUKRBEREbp06ZLP/S9duqSICL/XfgQAAKgWlUorsbGxOnLkiM/9jxw5ovr161e6KAAAgOpUqcfub731Vn322WfKy8u76otd8/Ly9M0336hnz55VKtBILMwIAIA5VGqE6MEHH9SlS5c0ZcoU5efnX7FfQUGB/vCHP6i4uFj9+vWrao2GcTgcevXVV/XMM88YXQoAAAiiSo0QtWzZUgMHDlR6eroef/xx9evXT+3atVODBg0k/TTp+uuvv9Ynn3yi/Px8DRo0SC1btgxK4QAAAIFS6ZWqx4wZI6vVqg8++ECLFi3SokWLymz3eDyKiIjQo48+qmHDhgWsUAAAgGCpdCCyWCwaMWKE+vbtq4yMDO3Zs0fff/+9JOlf/uVf1KZNG/Xu3Vvx8fEBLxYAACAY/H4Da3x8PC88BQAA1wQWCQIAAKZHIAIAAKZHIAIAAKbn9xwiM2BhRgAAzIFAVAGHwyGHw6Hs7GwmkAMAcA3jlhkAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA93mVWAV7uCgCAORCIKsDLXQEgsPLceUqYmWB0GZVit9mV2jVVyYnJRpeCICIQAQCCzm6zSy6pxFOiXFeu0eVUjktKWZ9CILrGEYgAAEGX2jVVKetT5Cp0GV1KpeS581TiKQm7ulF5BCIAQNAlJyaH5QhLwsyE8BvRgl94ygwAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJger+6ogNPplNPplNvtNroUAAAQRASiCjgcDjkcDmVnZ2v48OFGlwMAAIKEW2YAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0oowuIJQ5nU45nU653W6jSwEAAEFEIKqAw+GQw+FQdna2hg8fbnQ5AAAgSLhlBgAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI+VqgEAuIo8d54SZiYYXYbP7Da7UrumKjkx2ehSwgaBCACAK7Db7JJLKvGUKNeVa3Q5vnNJKetTCESVQCACAOAKUrumKmV9ilyFLqNL8VmeO08lnpKwqjkUEIgAALiC5MTksBtlSZiZEF6jWSGCSdUAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0TBeI9uzZo3vvvVd/+tOfjC4FAACECFMFopKSEr311ltq1aqV0aUAAIAQEmV0AdXpk08+UevWrXXu3DmjSwEAACEkJEeIzp8/r3fffVcvvPCC+vbtq86dO2v16tWX7VtUVKR58+bpwQcflMPh0MiRI/XVV1+V61dQUKD09HQ98cQTwS4fAACEmZAMRAUFBUpLS1NOTo6aN29eYd9p06Zp2bJl6t69u8aOHauIiAiNHz9eu3btKtNvwYIFGjhwoOx2ezBLBwAAYSgkA1FsbKw++ugjpaen66mnnrpiv6ysLK1bt04jRozQ6NGjlZSUpNmzZ6thw4aaN2+et98//vEP7d+/X/fdd191lA8AAMJMSM4hslqtio2NvWq/jRs3KjIyUklJSd42m82mvn37av78+Tp58qTi4uK0c+dOfffddxowYIAkye12KzIyUsePH9ekSZOCdh4AACA8hGQg8tWBAweUkJCg2rVrl2lv3bq1JOngwYOKi4tTUlKSunXr5t0+Z84cNWrUSIMHD77sfs+cOaOzZ896P+fk5AShegAAECrCOhCdPXv2siNJpW1nzpyRJNWoUUM1atTwbrfZbKpZs+YV5xOtWrVKaWlpgS8YAACEpLAORIWFhYqOji7XbrVavdsvZ/LkyRXuNykpSZ06dfJ+zsnJ0dSpU6tQKQAACGVhHYhsNpsuXrxYrr2oqMi73R/169dX/fr1q1QbAAAIHyH5lJmvYmNjy8z1KVXaRqgBAAC+COtA1Lx5cx07dqzcytNZWVne7QAAAFcT1oGoS5cuKi4u1qpVq7xtRUVFysjIUGJiouLi4gysDgAAhIuQnUO0YsUKud1u7+2vzZs369SpU5KkAQMGKCYmRomJieratavmz5+v/Px8xcfHa82aNTpx4oQmTJhQ5RqcTqecTqfcbneV9wUAAEJXyAaipUuX6sSJE97PmzZt0qZNmyRJPXr0UExMjKSfnhiLi4tTZmam3G63mjZtqunTp6tt27ZVrsHhcMjhcCg7O1vDhw+v8v4AAEBoCtlAtGzZMp/62Ww2jR49WqNHjw5yRQAA4FoV1nOIAAAAAoFABAAATI9ABAAATC9k5xCFAp4yAwDAHAhEFeApMwAAzIFbZgAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPR4yqwCPHYPAIA5EIgqwGP3AACYA7fMAACA6RGIAACA6RGIAACA6RGIAACA6RGIAACA6RGIAACA6RGIAACA6bEOUQVYmBEAAHMgEFWAhRkBADAHbpkBAADTIxABAADTIxABAADTIxABAADTIxABAADTIxABAADTIxABAADTIxABAADTY2HGCrBSNQAA5kAgqgArVQMAwlWeO08JMxOMLsNndptdqV1TlZyYbMjxCUQAAFxD7Da75JJKPCXKdeUaXY7vXFLK+hQCEQAAqLrUrqlKWZ8iV6HL6FJ8lufOU4mnxNCaCUQAAFxDkhOTDRtl8VfCzATDR7N4ygwAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJge6xBVgHeZAQBgDgSiCvAuMwAAzIFbZgAAwPQIRAAAwPQIRAAAwPQIRAAAwPSYVO2DwsJCSVJOTk7A923Nt6r2udqyFluVnZ0d8P0DABDqgv13YZMmTVSjRo0K+1g8Ho8n4Ee+xqxdu1ZTp041ugwAAOCHBQsWqGXLlhX2IRD5ID8/X9u3b9fKlSv17LPP+vy9uXPn6plnnqmwT05OjqZOnarf//73atKkSVVLvSb48nszihG1BeOYgdpnVfbjz3cr+x2uQf+E8jUoVX99wTqeGa5DX/sG+zr0ZYSIW2Y+uO6669SjRw99/vnnV02YPxcTE+Nz/yZNmlRq39eyyvzeqpsRtQXjmIHaZ1X24893K/sdrkH/hPI1KFV/fcE6nhmuw8ru38jrkEnVleBwOILaHz8J5d+bEbUF45iB2mdV9uPPd7kGq0eo/96qu75gHc8M12Go/1n6OW6ZGax0FWxf7m8CCDyuQcB4oXAdMkJksNjYWA0dOlSxsbFGlwKYEtcgYLxQuA4ZIQIAAKbHCBEAADA9AhEAADA9AlGIKyoq0quvvqrk5GT16tVLo0aN0p49e4wuCzCV119/XQ888IB69eqlIUOGaPPmzUaXBJjWnj17dO+99+pPf/pTQPfLHKIQ9+OPP2rp0qXq3bu3GjRooPXr12v27NlaunSpatWqZXR5gCnk5OSoUaNGslqt2rdvn55//nktWbJEdevWNbo0wFRKSko0evRoeTwe/epXv9KQIUMCtm9GiEJczZo1NXToUMXFxSkiIkLdunVTVFSUvvvuO6NLA0yjSZMmslqtkiSLxaKLFy/qzJkzBlcFmM8nn3yi1q1bB2U1a1aqDrDz589ryZIlysrK0r59++RyuTRp0iT17t27XN+ioiItXLhQa9eulcvlUrNmzTRs2DC1b9/+ivv/7rvv5HK5FB8fH8zTAMJWsK7BmTNnKiMjQ0VFRerYsaOaNm1aHacDhKVgXIcFBQVKT0/XvHnzNHfu3IDXzAhRgBUUFCgtLU05OTlq3rx5hX2nTZumZcuWqXv37ho7dqwiIiI0fvx47dq167L9CwsLNXXqVA0ePFgxMTHBKB8Ie8G6Bp9//nllZmZq1qxZat++vSwWS7BOAQh7wbgOFyxYoIEDB8putwenaA8CqrCw0HPmzBmPx+Px7Nu3z3PPPfd4MjIyyvXbu3ev55577vEsXrzY23bhwgXPww8/7Bk1alS5/hcvXvSMHz/e89JLL3lKSkqCdwJAmAvWNfhzEyZM8Pz1r38NbOHANSTQ12F2drbnySef9Fy6dMnj8Xg8r7zyiictLS2gNTNCFGBWq9WnlTY3btyoyMhIJSUledtsNpv69u2rvXv36uTJk972kpISTZ06VRaLRZMnT+b/TIEKBOMa/KXi4mLl5uYGpF7gWhTo63Dnzp367rvvNGDAAD3wwAP6/PPPtXjxYk2bNi1gNTOHyCAHDhxQQkKCateuXaa9devWkqSDBw8qLi5OkjRjxgydPXtWM2bMUFQU/8mAQPD1GnS73dqyZYs6deokq9WqL774Qjt27NCIESOMKBu4pvh6HSYlJalbt27e7XPmzFGjRo00ePDggNXC364GOXv27GXTc2lb6RMsJ06c0Keffiqr1VomQb/22mu67bbbqqdY4Brk6zVosVj06aefatasWfJ4PIqPj1dKSopatGhRrfUC1yJfr8MaNWqoRo0a3u02m001a9YM6HwiApFBCgsLFR0dXa699NHewsJCSVLDhg21adOmaq0NMANfr8HatWvrzTffrNbaALPw9Tr8pcmTJwe8FuYQGcRms+nixYvl2ouKirzbAQQP1yBgvFC6DglEBomNjdXZs2fLtZe21a9fv7pLAkyFaxAwXihdhwQigzRv3lzHjh3TuXPnyrRnZWV5twMIHq5BwHihdB0SiAzSpUsXFRcXa9WqVd62oqIiZWRkKDEx0fuEGYDg4BoEjBdK1yGTqoNgxYoVcrvd3iG/zZs369SpU5KkAQMGKCYmRomJieratavmz5+v/Px8xcfHa82aNTpx4oQmTJhgZPlA2OMaBIwXbtchb7sPgkGDBunEiROX3bZ06VI1atRI0k+z50vf3+J2u9W0aVMNGzZMd911V3WWC1xzuAYB44XbdUggAgAApsccIgAAYHoEIgAAYHoEIgAAYHoEIgAAYHoEIgAAYHoEIgAAYHoEIgAAYHoEIgAAYHoEIgAAYHoEIgAAYHoEIgCm0rlz5zI/hYWF3m2rV69W586dtXr1agMr/H8ff/xxmVr/8z//0+iSgGsWb7sHEBR5eXl66KGHKuzTsGFDLVu2rJoqKnvcXr16SZIiIyODeqzt27frhRdeUPv27fXGG29U2Pfll1+W0+lUSkqKunfvrpYtW2ro0KFyu91avnx5UOsEzI5ABCCo4uPj1b1798tui4mJqeZqftKwYUM98cQT1XKsO++8U3Fxcfr666918uRJxcXFXbaf2+3WF198oZiYGHXu3FmS1KpVK7Vq1Up5eXkEIiDICEQAgio+Pr7awkcoioiIUO/evZWWlqY1a9ZoyJAhl+3ndDpVWFioPn36yGazVXOVAJhDBCBkdO7cWWPHjtXp06f18ssv6/7771fPnj01fvx4HT9+XJJ09OhRTZ48WX379lXPnj2VkpKi77//Pqh1nTp1SkOGDJHD4dCGDRu87T/88IPmzp2rRx55RN26ddP999+v3//+9zp8+HCZ7/fp00cWi0WrV6+Wx+O57DEyMjIkSX379g3aeQC4MgIRgJDicrk0ZswY5eXlqWfPnmrXrp22bt2q559/XocPH9bo0aP1448/qk+fPmrVqpU2btyol156KWj1HD16VKNHj9apU6f0+uuvq0uXLpKk3NxcDRs2TOnp6WrcuLH69++vjh07avv27XrqqaeUlZXl3UfDhg11xx136Pjx49qxY0e5Yxw+fFj79+9XixYtdPPNNwftXABcGbfMAARVbm6u3n333ctuu+WWW9ShQ4cybYcOHdKgQYP09NNPe9tmzpyplStX6umnn9a///u/a+DAgZIkj8ejCRMmaOvWrcrOzlbLli0DWvvevXs1YcIERUVFae7cuWrevLl32yuvvKLvv/9eM2bM0F133eVtf/zxxzV8+HC99tprSktL87b37dtXf/vb35SRkaHbb7+9zHEYHQKMxwgRgKDKzc1VWlraZX+2bdtWrn/NmjU1bNiwMm3dunWTJNWtW1fJycnedovF4t126NChgNa9ZcsWPffcc7Lb7Xr77bfLhKF//OMf2rNnj3r27FkmDEnSDTfcoPvuu0+HDx8uc+vsnnvuUd26dbVx40adO3fO237p0iWtXbtWVqv1ipPPAQQfI0QAguquu+7SjBkzfO6fkJCgGjVqlGmLjY2VJDVt2lQWi+Wy286cOVPFSv/f+vXr9dVXX6lZs2Z6/fXXVa9evTLbS2+H/fDDD5cd/fr222+9/2zatKkkeQPP8uXL5XQ61a9fP0nS5s2blZ+fL4fDIbvdHrBzAFA5BCIAIaV27drl2krXCqpo26VLlwJWw969e1VcXKxbb721XBiSpH/+85+SfhpF2rJlyxX38+OPP5b53LdvXy1fvlwZGRneQMTtMiA0EIgA4BdGjBihL7/8UsuXL1dkZKTGjBlTZntpMHv22Wc1YMAAn/fbrFkztWrVSvv27dORI0dkt9u1fft2NWrUqNy8IgDVizlEAPALVqtVr7zyiu6++24tXbpUb731VpntrVu3lvTTSFJllY4E/eUvf1FmZqaKi4u9j+UDMA6BCAAuw2q1aurUqfrVr36lZcuWae7cud5tiYmJSkxM1Lp167Ru3bpy3y0pKdHOnTsvu1+Hw6EaNWpo7dq1ysjIUEREhPc1IgCMwy0zAEFV0WP3kjR48OCQXZk5OjpaqampmjJlitLT0+XxeDR27FhJ0pQpUzRu3Di99NJLWr58uVq0aCGbzaZTp05pz549KigokNPpLLfP2rVr695771VmZqby8/PVoUOHK77OA0D1IRABCKrSx+6vZODAgSEbiKT/D0V/+MMftHz5cnk8Hj377LNq3LixFi5cqKVLl+qLL77Q6tWrFRERodjYWN12223eBRwvp2/fvsrMzJT00yrWAIxn8VxpHXkAuAZ17txZbdu21Zw5c4wuxWd5eXl66KGH1KtXL02ePNnocoBrEiNEAExn586d3jfKf/bZZyE7QvXxxx/rjTfeMLoMwBQIRABMZejQoWU+l65jFIpatmxZpt4WLVoYVwxwjeOWGQAAMD0euwcAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKZHIAIAAKb3v9DqIenmZ55eAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "\n",
+ "file_path = \"test_injected.h5\"\n",
+ "\n",
+ "# Check if the file exists and remove it if it does\n",
+ "if os.path.exists(file_path):\n",
+ " os.remove(file_path)\n",
+ "\n",
+ "# Get the data of the injected source\n",
+ "injector.inject_point_source(spectrum = spectrum_inj, coordinate = source_coord, orientation = ori, source_name = \"point_source\",\n",
+ " make_spectrum_plot = True, data_save_path = \"test_injected.h5\", project_axes = None)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Method 2: Read the spectrum from a file"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In this method, we're loading spectral data from a file (crab_spec.dat) and visualizing it:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Load data from the text file, skipping the index column\n",
+ "dataFlux = np.genfromtxt(\"crab_spec.dat\", usecols=2, skip_footer=1, skip_header=5)\n",
+ "dataEn = np.genfromtxt(\"crab_spec.dat\", usecols=1, skip_footer=1, skip_header=5)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([6.22916e-04, 5.07161e-04, 4.12162e-04, 3.34285e-04, 2.70525e-04,\n",
+ " 2.18397e-04, 1.75844e-04, 1.41395e-04, 1.13695e-04, 9.14211e-05,\n",
+ " 7.35111e-05, 5.91097e-05, 4.75297e-05, 3.82183e-05, 3.07310e-05,\n",
+ " 2.47106e-05, 1.98696e-05, 1.59770e-05, 1.28470e-05, 1.03302e-05,\n",
+ " 8.30642e-06, 6.67913e-06, 5.37064e-06, 4.31849e-06, 3.47247e-06,\n",
+ " 2.79219e-06, 2.24518e-06, 1.80533e-06, 1.45165e-06, 1.16726e-06,\n",
+ " 9.38588e-07, 7.54712e-07, 6.06858e-07, 4.87970e-07, 3.92373e-07,\n",
+ " 3.15505e-07, 2.53695e-07, 2.03994e-07, 1.64030e-07, 1.31896e-07,\n",
+ " 1.06056e-07, 8.52791e-08, 6.85723e-08, 5.51385e-08, 4.43364e-08,\n",
+ " 3.56506e-08, 2.86664e-08, 2.30504e-08, 1.85347e-08, 1.49036e-08])"
+ ]
+ },
+ "execution_count": 60,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dataFlux"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2YAAAIvCAYAAAAf9cjuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACG4ElEQVR4nOzdeVxVdf7H8fcFBBRcQVFRUURR3DAVzS0XSs1ymmyxaaymUUvLbNptpqlpnMmmfTV1KtOp1LLMzC3MXXHL/QJuiCiCgrIr6/394Y9bxHa53su9F17Px6PHI8753nM+UJ388P2e79tgMplMAgAAAAA4jJujCwAAAACAuo7GDAAAAAAcjMYMAAAAAByMxgwAAAAAHIzGDAAAAAAcjMYMAAAAAByMxgwAAAAAHIzGDAAAAAAcjMYMAAAAAByMxgwAgBrQvn17tW/f3tFlAACcFI0ZAECSZDAYqvxr48aNji7TaWzcuLHKn9epU6ccXWaFyqu/QYMGatWqlYYOHaqnn35a+/bts9n9HnjgAaf/mQCAI3k4ugAAgHN58cUXKzzHjE9ZQUFBeuCBB8o916RJkxqtxRq/rj8/P18XLlzQzz//rNdff12vv/66/vCHP2ju3Lny9fV1bKEAUMvRmAEASnnppZccXYJLad++vUv/zCqqf//+/brvvvv0xRdf6OLFi1q9enXNFwcAdQhLGQEAVnnppZfMyxu//vprRUREqEGDBmrWrJkmTJigs2fPlvu5ixcvaubMmeratavq16+vxo0ba+TIkVq3bl2ZsQsWLJDBYNCCBQu0Zs0aDRs2TI0bN5bBYDCPycjI0OOPP642bdrI29tbXbp00ZtvvqmTJ0/KYDCUms265557ZDAYtGnTpnJrW7ZsmQwGgx599NFr++FY6Nc/w986depUmfp37twpT09PBQcHKyMjo9T4c+fOKSAgQL6+voqNjb3m2sLDwxUVFaXmzZtrzZo1Wr58eanzy5cv1x//+Ed17txZPj4+8vHxUZ8+ffTuu++quLi41FiDwaDPPvtMktShQwfz0slfz8Du3btXM2bMUK9evdSsWTN5e3urU6dOevLJJ3Xp0qVr/n4AwNnRmAEArsmHH36oP/7xj2rfvr0eeeQRde/eXUuWLFFkZKTy8vJKjU1ISFCfPn00e/ZsNW/eXA8//LDuvvtuxcTEaPTo0Zo/f3659/j66691yy23qGHDhubPSNKVK1c0YsQIvfPOO2rRooVmzJihYcOG6V//+peefPLJMteZOnWqJGnevHnl3mfu3LmSpIcfftjqn4c99e/fX//+978VHx+vyZMnm48XFxfr3nvv1fnz5/XBBx+oS5cuNrlfixYt9NBDD0mSPv/881LnnnvuOf3888/q37+/pk+frvvuu0/Z2dmaMWOG7r///lJjX3zxRfXq1UuSNGPGDL344ot68cUX9fjjj5vHzJ8/X4sXL1ZoaKj+9Kc/aerUqWrVqpXefPNNDRo0SFlZWTb5ngDAWbGUEQBQSkXL8ry9vfXcc8+VOb5mzRrt3r1bPXr0MB/7wx/+oC+//FLfffed7rrrLvPx+++/XwkJCfryyy81YcIE8/H09HQNGzZMjz32mMaNG6eAgIBS91i1apVWrVql0aNHlzr+2muv6eeff9aECRP0xRdfmGfS/vrXv+q6664rU+vQoUPVrVs3LVu2TO+++678/PzM506ePKmoqCgNHDhQ3bt3r+QnVNqpU6fK/ZkNGzZMw4YNs/g6lnryySe1YcMGffXVV5o7d64eeugh/fOf/9SGDRt03333lWmKrtWwYcM0a9Ys7dq1q9TxH374QR07dix1rLi4WH/605+0cOFCPfroo+rfv7+kq/9OnTp1SgcOHNDjjz9e7ruKM2fO1AcffCB3d/dSxz/++GNNmjRJH374oZ599lmbfm8A4FRMAACYTCZJlf7VuHHjUuNffPFFkyTTX//61zLX+umnn0ySTE8++aT52P79+02STHfccUe591++fLlJkumDDz4wH/v0009Nkky33XZbuZ/p2LGjyc3NzRQfH1/m3KxZs0ySTPfff3+p4++//75Jkun1118vdfy5554zSTJ99tln5d7rtzZs2FDpz+vFF18sNT4oKMgUFBRU6ljJz3DDhg1lrh8fH19u/SaTyXThwgVTYGCgydvb2/T++++b3N3dTaGhoabs7GyLav91/TfccEOl42JiYkySTPXr17founv37jVJMv3jH/8odfz+++83SSr3n1VliouLTY0aNTINHz68Wp8DAFfDjBkAoBSTyVSt8X379i1zrG3btpJU6t2gHTt2SLr6Tlh5M0wXLlyQJMXExJQ5FxERUeZYZmamTpw4obZt25Y7AzN48OBy673vvvv03HPPad68eebljgUFBVqwYIGaNm1aaobPEjfccEONxwj4+/vriy++0IgRI/Too4/K29tbS5YskY+Pj83vVfLvw6/f65OktLQ0vfbaa1q1apVOnjypnJycUucresewIgUFBZo7d64WL14so9GojIyMUu+qVfd6AOBqaMwAANekvC3hPTyu/u+lqKjIfCwtLU2S9OOPP+rHH3+s8HrZ2dlljrVs2bLMsczMTEkqs+yxREXHGzZsqD/+8Y/66KOPtGHDBg0fPlwrVqxQcnKyHn/8cXl7e1dYmzOJiIhQu3btFB8fr+HDh5vf4bK1pKQkSVLz5s3Nx9LT09WvXz/Fx8crIiJC9913n5o1ayYPDw+lp6frnXfeKfN+YVXuvvtuffvttwoODtbvfvc7tWzZUl5eXpKkt99+u9rXAwBXQ2MGAKgRjRs3liS98847euyxx6r12d/O1khSo0aNJEkpKSnlfqai49LVTUA++ugjzZ07V8OHDzdv+jFlypRq1XWt3Nyu7sFVWFhY5lx6enqln50xY4bi4+Pl7++v1atX6/PPP9e9995r8xo3bNggSeb3xSTpv//9r+Lj4/Xiiy+Wmf3csWOH3nnnnWrdY8+ePfr2228VGRmp1atXmxt76ep7a//5z3+s/wYAwEWwKyMAoEYMGDBAkrRlyxabXK9Ro0YKDg7W2bNnderUqTLnt27dWuFne/bsqUGDBunbb7/Vzp07FRUVpaFDh6pr1642qc1STZs2lSQlJiaWObdnz54KP7d06VLNmzdPQ4cO1c8//2ze4fLYsWM2re/8+fPmpvXXTd/x48clSePHjy/zmYqiCEo29fj1LOpvrzdu3LhSTZkk7dq1S5cvX7aiegBwLTRmAIAa0bdvXw0ZMkTffPONPvnkk3LHHDp0SOfPn7f4mvfdd5+Ki4s1c+bMUu/GJSYm6u233670s1OnTlV+fr7Gjx8vk8nkkC3yS96d+/TTT0vNmiUmJurll18u9zMnT57U5MmT5efnpy+++EJt27bVZ599ppycHN199902W/J34MAB3XjjjUpNTdXNN9+scePGmc+VvNP323fr9u3bp1deeaXc65XsgHn69Oky5yq63vnz5/XII49Y9w0AgIthKSMAoJSKtsuXpNtuu03h4eFWX7tkw4o///nPevfdd9W/f381adJEZ86c0cGDB3X48GHt2LFDLVq0sOh6zzzzjJYvX67FixcrLi5ON910kzIyMrR06VINHTpUy5cvNy8X/K0777xTf/nLX3T27Fn5+/vr9ttvt/r7slb//v01dOhQbd68WRERERoxYoRSUlL0/fffa9SoUWVm0goKCjRhwgRlZmZqxYoVCgwMlCSNGTNGTz75pF5//XU99dRTeu+99yyu4dfb/RcUFCg1NVV79+7V3r17Jcn8Pt6v3XfffXrttdf0+OOPa8OGDerUqZOOHTumlStX6vbbb9eSJUvK3GfkyJF67bXXNHnyZI0fP14NGzZUkyZN9Oijj6pfv34aNGiQvvnmGw0cOFCDBw9WSkqKVq9erdDQULVu3bo6P1YAcE2O3RQSAOAsVMV2+ZJMn376qXm8tVu9Z2Zmmv71r3+ZrrvuOpOPj4/J29vb1L59e9PNN99smjt3bqkt30u2y//1fX/r0qVLpunTp5tatWpl8vT0NIWGhppef/11086dO02STDNmzKjws48//rhJkumpp56y4CdUmqXbzZcob7v8kvonTZpkat68ucnT09PUrVs309y5c8v9GT7xxBMmSabHHnuszHXy8/NNERERJkmmb775xuL6f/2Xt7e3qWXLlqYhQ4aYnnrqKdO+ffsq/PyRI0dMt956q6l58+amBg0amK677jrT/PnzK/1n/8Ybb5i6dOli8vT0NEkq9fNIS0szTZ061RQUFGTy8vIyBQcHm2bOnGnKycmp8GcHALWJwWSq5r7IAAC4gPnz52vKlCn66KOP9NBDD5U7ZtiwYdq8ebPi4uLUqVOnGq4QAIBf0JgBAFxaUlJSmaVup0+f1uDBg3Xu3DklJCSUuxRu165d6t+/v0aPHq3Vq1fXVLkAAJSLd8zK8dprr2nbtm26cuWKAgICNGXKFA0aNMjRZQEAyjF+/HgVFBSoT58+atKkiU6dOqWVK1cqNzdXr7zySpmmbM6cOTp79qw+/fRTubm56R//+IeDKgcA4BfMmJUjISFBrVq1kqenp2JiYvTEE09o8eLF5gweAIDz+PDDD7Vo0SIdO3ZMGRkZ8vX1Ve/evfXoo4+Wu6FH+/btdebMGQUHB+ull17SH/7wBwdUDQBAaTRmVYiNjdWjjz6quXPnqmPHjo4uBwAAAEAt5LRLGXNzc7V48WIZjUbFxMQoKytLM2fO1JgxY8qMzc/P18cff6x169YpKytLHTt21KRJk9SvXz+r7//mm29q1apVys/P14ABAxQcHHwt3w4AAAAAVMhpA6YzMjK0YMECJSQkKCQkpNKxr7zyipYuXaobb7xRjz32mNzc3PTMM8/o4MGDVt//iSee0Nq1a/XWW2+pX79+MhgMVl8LAAAAACrjtDNmfn5++vbbb+Xn56fY2FhNmTKl3HFGo1Hr16/X1KlTdc8990iSRo0apQceeEBz5szRnDlzzGMfeeQRHTp0qNzrTJw4UZMnTy51zN3dXX369NFXX32lNm3a6Prrr6+y7itXrighIUFBQUHy9va29NsFAAAAUIc5bWPm6ekpPz+/Ksdt2rRJ7u7uGjdunPmYl5eXxo4dq3nz5iklJUUBAQGSpA8++MCqWoqKinT27FmLxiYkJGjy5MmaP3++QkNDrbqfLZ04cYJ34wDAQXgGA4BjuOLz12mXMlrq2LFjatOmjXx8fEod79q1qyTp+PHj1bpedna2fvzxR+Xm5qqwsFAbNmzQvn371KtXr3LHp6amKi4uzvxXQkKCdd+IneTl5Tm6BACos3gGA4BjuOLz12lnzCyVlpZW7sxaybHU1NRqXc9gMGjlypV66623ZDKZFBgYqBdeeEGdOnUqd/yKFSu0YMGCMsfj4+NVVFRUrXvbQ3Z2toxGo6PLAIA6iWcwADiGMz1/w8LCLBrn8o1ZXl6e6tWrV+a4p6en+Xx1+Pj46J133rF4/Lhx40qFTyckJGjWrFnq0KGDUyxlNBqNFv/LAACwLZ7BAOAYrvj8dfnGzMvLSwUFBWWO5+fnm8/bk7+/v/z9/e16DwAAAAC1m8u/Y+bn56e0tLQyx0uO0TQBAAAAcHYuP2MWEhKiffv2KScnp9QGICVrSqvKQLOVqKgoRUVFKTs7u0buBwAAAKD2cPkZs2HDhqmoqEgrVqwwH8vPz9eqVasUFhZm3irf3iIjIzV79mxNnz69Ru4HAAAAoPZw6hmzZcuWKTs727wscdu2bTp//rwkafz48fL19VVYWJiGDx+uefPmKT09XYGBgVqzZo2Sk5P17LPPOrJ8AAAAALCIUzdmS5YsUXJysvnrzZs3a/PmzZKkm266Sb6+vpKk559/XgEBAVq7dq2ys7MVHBysV199VeHh4Y4oGwAAAACqxakbs6VLl1o0zsvLS9OmTdO0adPsXBEAAAAA2J5TN2auhM0/AAAAAFiLxsxGIiMjFRkZqbi4OE2ePNnR5QAAAABwIS6/KyMAAAAAuDoaMwAAAABwMBozAAAAAHAw3jGzEWfb/KO42KTk2Iu6cDhHSUpTyy7N5OZmcHRZAAAAAMpBY2YjzrT5R/yuZEUvjFHOxSuSpGPLU+XTzFsD7uuqDhEtHVobAAAAgLJYyljLxO9K1vq395mbshI5F69o/dv7FL8ruYJPAgAAAHAUGrNapLjYpOiFMZWOiV4Uo+JiUw1VBAAAAMASNGa1SHLsxTIzZb+Vk3ZFybEXa6giAAAAAJagMatFLqfnWTQuI8k5NigBAAAAcBWbf9iIM+zKWL+Jl0Xjov8Xq/zLReo2Kkgenu52rgoAAABAVZgxs5HIyEjNnj1b06dPd1gNLbs0k08z7yrHFeUXa/eXcVr29BadjD4nk4l3zgAAAABHojGrRdzcDBpwX9dKx7Tu7ifD/8eZZV24rJ/e3a+V/9ip88fTzWOKi01KMqbpxPYkJRnT2CwEAAAAsDOWMtYyHSJaauTjvUvlmEmSj5+3Bky8mmOWdjpTOxfFKulImiQp5eglrfj7DnUc1FotuzTV/m9PlP4sGWgAAACAXdGY1UIdIloqqG+AkmMv6tjhk+rUPVgtuzSTm9vVqTK/do005vl+Stx3QTs/j1XGuRxJ0oltSTqxLanM9Uoy0EY+3pvmDAAAALADljLWUm5uBrUO81Pz7j5qHeZnbspKGAwGtbuuhca/OljX399Vnj5V9+hkoAEAAAD2QWNWx7l5uKnbqPa64eGeVY4lAw0AAACwD5Yy2ogzbJd/LQrziiwaZ2lWGgAAAADLMWNmI86wXf61sDQDLWHveeXnFti5GgAAAKBuoTGDJMsz0E7uOKelT2xW7E+JvG8GAAAA2AiNGSRZloFm+P9/W65k5mvrfw9r+fPbzFvuS+SfAQAAANbiHTOYVZWB5t++kXZ9Gaf4ncmSpIuns7TqX7sU1DdArbv76eCKk+SfAQAAAFagMUMpv85Au5yep/pNvEploI2c0VvJsRe1Y2GM0k5lSpIS9qQoYU9KmWuRfwYAAABYhsYMZZRkoFWkZZdmum3WQB3bcla7F8fpckZ+pdeLXhSjoL4BZbLUAAAAAFzFO2awisHNoM43tNHQh3pUOZb8MwAAAKByNGa4Jvm5hRaNI/8MAAAAqBhLGW3E1QOmrWV5/lmK2oY3l2eDenauCAAAAHA9NGY2EhkZqcjISMXFxWny5MmOLqfGlOSf/Xo3xvKc3JGsc8aL6ntXZ3W6oQ3vmwEAAAC/wlJGXBNL8s/c3K82YZcz8rVl/mF997ftpd45I/8MAAAAdR0zZrhmluSf7fwiVqd2Xd1SP+1Upla+vFMdBrRU6zA/7V9+gvwzAAAA1Gk0ZrCJqvLPIh+/Tudi0rRjYYwuJmRJkuKjkxUfnVzmWuSfAQAAoK5hKSNspiT/rOPA1mod5lfmPbJWXf10278GafCk7vJqWPUmINGLYljWCAAAgDqBxgw1ys3NoC4j2uoG8s8AAAAAMxozOETBlSKLxpF/BgAAgLqAxgwOYWn+2TnjRRUVWNbEAQAAAK6KxgwOUZJ/VpXYnxK17JmtOv3zeZlMvG8GAACA2onGDA5hSf5ZicyUXK17fa/WvrpH6Wez7VwZAAAAUPPYLt9GoqKiFBUVpexsGgdLVZV/1qhFA+1YaFRy7CVJ0pmDqVr23FZ1uylIvW8PkZdPPRUXmyrcoh8AAABwFTRmNhIZGanIyEjFxcVp8uTJji7HZVSVfzb2hf6K35msnZ/HKiftikxFJh1efUrHtyWpfb8And53XrkXf9kghHBqAAAAuCIaMzhcSf5ZeQwGg4IHtFK73i10cOVJHfj+pIryi3UlM1+x6xPLjCecGgAAAK6Id8zgEjy83HXd+E668/What8/oMrxhFMDAADAldCYwaX4+tdX2I1BVY4jnBoAAACuhMYMLsfS0OncS1eqHgQAAAA4ARozuBxLw6kPrzmljHM5dq4GAAAAuHY0ZnA5loZTp57I1LJntmjXl7HKv1xYA5UBAAAA1qExg8uxJJzay7eeJKm4yKSD38frqyc369iWszKZrm4IUlxsUpIxTSe2JynJmMZGIQAAAHAotsuHS6oqnLpNT38dWHFSh36IV1FBsS6n52nTnIOKWX9a7fsG6MiahNKfI/8MAAAADkRjBpdVVTh137s6q/MNbbTzfzFK2HteknT+aLrOH00vcy3yzwAAAOBINGZwaZWFU0tSo4AGuvHJPjpz4IK2f2ZUZnJupdeLXhSjoL4B5uYOAAAAqAm8Y4Y6oU2v5hr4p25VjiP/DAAAAI5AY4Y6Iy8r36JxluakAQAAALZCY4Y6w9L8s3OxF1VcWGznagAAAIBf0JihzrA0/yw2KlHfzNyqs4dTa6AqAAAAgM0/bCYqKkpRUVHKzs52dCmoQEn+2fq391U5Nv1sjlb/e7c69G+p/n/sIl+/+jVQIQAAAOoqGjMbiYyMVGRkpOLi4jR58mRHl4MKVJV/1tC/vrYtOKILxzMkSfE7k5W4/4LCf9dRPca2l3s9dxUXmyrcoh8AAACwBo0Z6pyq8s/GvXS9jm05q11fxulKZr4K84q0Z+lRHd10RsHXt9KxzWcJpwYAAIBN0ZihTqos/8zgZlDnG9ooqG+Afv76mIzrEmQySZkpudq//ESZ8YRTAwAA4Fqx+QdQAS+ferr+/jDd9sogBYQ2qXJ89KIYFReb7F8YAAAAah0aM6AKfu0aqc8dnaocRzg1AAAArEVjBljgcgbh1AAAALAfGjPAApaGUyfuv6DCvCI7VwMAAIDahsYMsICl4dTHtybp66e36NTuFJlMvG8GAAAAy9CYARYoCaeujOH//2vKTr2sqLd+1tr/7FHGuRzz+eJik5KMaTqxPUlJxjQ2CgEAAIAZ2+UDFqoqnLppoK+2f2ZU0uE0SdKZA6la9uwW9bwlWE0DfbXryzjyzwAAAFAuGjOgGqoKpx4zs59O7UpW9KJY5Vy8ouJCU7nZZxL5ZwAAAPgFjRlQTZWGUxsM6tC/ldr0aq79y0/o4MqTMhVXfr3oRTEK6htgbu4AAABQ9/COGWAH9bw91G9CqIZM6VHlWPLPAAAAQGMG2JG7h2X/iZF/BgAAULfRmAF2ZGn+WVFhFesdAQAAUKvRmAF2ZGn+2ZZ5h7TryzgVXCmsgaoAAADgbGjMADuyJP9MkkzF0sHvT+rrp7boZPQ5wqkBAADqGBozwM5K8s9+O3Pm4+et4Y/0UvhtHeXmcXVHxpyLV/TTu/u1+t+7delstiSCqQEAAOoCtssHakBV+WedhgYqemGMEvdfkCQlHUnTN89tVdvw5ko9maHcS79sDkIwNQAAQO3DjFklDh8+rBtuuEGfffaZo0tBLVCSf9ZxYGu1DvMrlVvWuKWPbnq6j2588jr5Nq8vSTIVmXR67/lSTZn0SzB1/K7kGq0fAAAA9kNjVoHi4mK9//776tKli6NLQR1hMBgU1CdAd7w2ROG/71jl+OhFMSxrBAAAqCVozCrw/fffq2vXrgoKCnJ0KahjPDzd1bqbX5XjCKYGAACoPZy2McvNzdUnn3yip556SmPHjtXQoUO1evXqcsfm5+drzpw5+v3vf6/IyEg99NBD2r17t9X3zsjI0FdffaUHH3zQ6msA18LSwOncS1fsXAkAAABqgtM2ZhkZGVqwYIESEhIUEhJS6dhXXnlFS5cu1Y033qjHHntMbm5ueuaZZ3Tw4EGr7j1//nzdeeedatiwoVWfB66VpcHUB76P18XELDtXAwAAAHtz2l0Z/fz89O2338rPz0+xsbGaMmVKueOMRqPWr1+vqVOn6p577pEkjRo1Sg888IDmzJmjOXPmmMc+8sgjOnToULnXmThxoiZPnqyjR48qNjZWf/nLX2z/TQEWKgmmzrlY+YzYpdNZ+nbmNnUbFaTrxofIs0G9GqoQAAAAtuS0jZmnp6f8/Kp+z2bTpk1yd3fXuHHjzMe8vLw0duxYzZs3TykpKQoICJAkffDBB1Veb//+/UpMTNT48eMlSdnZ2XJ3d1dSUpJmzpxp5XcDVE9JMPX6t/dVOMa7kaeuZObLVGzS4dWndGLHOfX/Q6g6Dmotg+Hqjo/FxaYKt+gHAACA83DaxsxSx44dU5s2beTj41PqeNeuXSVJx48fNzdmlhg3bpxGjhxp/vrdd99Vq1atdO+995Y7PjU1VWlpaeavExISqlM+UKGSYOrohTGlZs58/Lw1YGJXtQ1vroMrT+rAdydVVFCsy+l52vjhQcX+lKiBD3RTRnJO2c+SgQYAAOCUXL4xS0tLK3dmreRYampqta7n7e0tb29v89deXl6qX79+he+brVixQgsWLChzPD4+XkVFRdW6tz1kZ2fLaDQ6ugxYy1fq+XALZZ7OU352kTx93dWonZcuu13U0eMX5d1F6hXQUqd+vKSLRy9LkpJjL+mb57aWe7mSDLTQO5rLr0uDmvxOgDqJZzAAOIYzPX/DwsIsGufyjVleXp7q1Sv7Xo2np6f5/LV4/vnnKz0/btw4DRo0yPx1QkKCZs2apQ4dOig0NPSa7m0LRqPR4n8Z4MS6V376ukFS4r7z2rEwRpkpuVVe7syGLA26rQ/LGgE74xkMAI7his9fl2/MvLy8VFBQUOZ4fn6++bw9+fv7y9/f3673ACzRtncLtermp+2fHtHRTWcrHVuSgdY6rOr3OAEAAGB/TrtdvqX8/PxKveNVouQYTRPqEg9PdwX2sOzfeUuz0gAAAGB/Lj9jFhISon379iknJ6fUBiAla0qrykCzlaioKEVFRSk7O7tG7gdUxNIMtPqNPe1cCQAAACzl8jNmw4YNU1FRkVasWGE+lp+fr1WrViksLKxaOzJei8jISM2ePVvTp0+vkfsBFSnJQKvKnqXHlJaQWQMVAQAAoCpOPWO2bNkyZWdnm5clbtu2TefPn5ckjR8/Xr6+vgoLC9Pw4cM1b948paenKzAwUGvWrFFycrKeffZZR5YPOIQlGWiSdP5YupY/v01dbwxSnzs7ycuHcGoAAABHcerGbMmSJUpOTjZ/vXnzZm3evFmSdNNNN8nX11fS1Z0TAwICtHbtWmVnZys4OFivvvqqwsPDHVE24HCVZaB1Ghqo+OhkZZzLkckkGdcl6GT0OUXcE6pOQwJlcDMQTA0AAFDDnLoxW7p0qUXjvLy8NG3aNE2bNs3OFQGuo0NESwX1DSi3wep9W0cdXn1K+749ocK8Il3JzNfmuYcU+1Oi2vcL0JE1CQRTAwAA1CCnbsxcCZt/wBm5uRnK3RLfvZ67eo3rqI4DW2vn/2IVv+vqzPT5Y+k6fyy9zPiSYOqRj/emOQMAALADl9/8w1mw+Qdcka9/fY18vLdGz+ynRi0bVDk+elGMiotNNVAZAABA3UJjBkBtevhr4J+6VTmuJJgaAAAAtkVjBkCSlJeVb9E4gqkBAABsj8YMgCTLg6kvxGfIxHJGAAAAm2LzDxth8w+4upJg6l/vxliewz+cUkrsJQ38Uzc1D25cQ9UBAADUbsyY2Qibf8DVlQRTW+LCiQx998J2bf34sK5YuAQSAAAAFaMxA2BWEkzt08y71HEfP2+NfLy3bv5rhJoEXg12l0mKXZ+or57crNj1p1VcbFJxsUlJxjSd2J6kJGMaOzgCAABYiKWMAEqpLJhakm5/ZZAOr03QvmXHVHClSHnZBdr68REdWBmvgsuFupL5ywwawdQAAACWsboxO3PmjA4dOqQLFy4oIyND3t7eaty4sTp27Kju3bvLy8uyjQQAOJ+Kgqklyc3DTT3HdlDHga206/NYndh+TpKUlZJbZizB1AAAAJapVmOWkpKiH374QatXr9aFCxckSSZT6aVKBoNB7u7u6tevn8aNG6frr79eBoPBdhUDcAo+Tb01/NFwhQ5vo9Wz98hUVPGyxehFMQrqG2CedQMAAEBpFjVm6enp+uSTT7Ry5UoVFRUpMDBQN954o7p06aKmTZuqUaNGysvLU2ZmphITE3XkyBH9/PPPio6OVps2bfTwww9r8ODB9v5eHIpdGVFnGQyVNmXSL8HUFc3CAQAA1HUWNWYTJkyQm5ubxo8fr5tuukmdOnWq8jOXL1/Wxo0b9cMPP+hvf/ubpk2bprvuuuuaC3ZWkZGRioyMVFxcnCZPnuzocoAaY2ngdMa5bBozAACACljUmN1xxx26++671bBhQ4svXL9+fY0ZM0ZjxozR3r17lZOTY3WRAJyXpcHUuz6Pk6lY6jKyHUsaAQAAfsOixmzSpEnXdJM+ffpc0+cBOC9Lg6kLrhRp+6dGxW04o4EPhCmgc9MaqhAAAMD5WZxjduTIEXvWAcBFWRJM3aprM/Pfp53K1PcvRWvz3IO6nPHLMkgy0AAAQF1m8a6M06ZNU/v27TV27FjddNNNatKkiR3LAuBKSoKpoxfGlJo58/Hz1oCJV3PMkmMvavsCoy6ezpIkHd10Vqd2p6jvXZ3l3dhTOxfFlv4sGWgAAKAOsbgx69atm44cOaIPP/xQ8+bN08CBAzV27FhFRESwHT6AKoOpW3Zpptv+NVAxUae196tjys8tVH5uobYvMJZ7PTLQAABAXWJxY/bhhx8qMTFRK1eu1I8//qhNmzZp8+bN8vPz05gxY3TzzTerdevW9qzVqbFdPlB5MLUkubm7qduo9uowoJV2fxmnY5vPVnlNMtAAAEBdYDD9NiHaAsXFxYqOjtYPP/yg6OhoFRYWymAwKDw8XGPHjtUNN9wgT09Pe9Tr9Eq2y58/f75CQ0MdXY6MRqPCwsIcXQZQriNrT2nHZzFVjrv5bxFstQ+XxDMYABzDFZ+/Fs+Y/Zqbm5sGDhyogQMHKj09XWvXrtWqVau0b98+7d+/X2+//bYiIyN18803O0VzAsA5eTe07Bc4lmalAQAAuCqLd2WsSJMmTXT33Xfrs88+00cffaRx48ZJkr777js9/PDD11wggNrL0gw0N49rflQBAAA4NZv+aadNmzYKCgqSv7+/TCaTrFglCaAOKclAq8qmjw7q8Op4FRcV10BVAAAANc+qpYy/tXv3bq1atUpbt25VQUGBTCaTevXqpbFjx9ri8gBqqZIMtPVv76t0XOGVIkUvilXcxrMa+EBYqVw0AACA2sDqxuzcuXNavXq11qxZo/Pnz8tkMsnPz0+jR4/WzTffrDZt2tiyTgC1VGUZaNfdEaKUuHQd3XhGknQpMUs//HOnOg5qrf5/CFWDpt4qLjZVuEU/AACAq6hWY5afn6+NGzdq1apVOnDggIqLi+Xu7q5BgwZp7NixGjBggNzceBcEQPVUloEWekNbdRnRVts/PaLU+ExJ0oltSTr9c4ra92ups4dTlXvxl81BCKYGAACuyOLG7I033tD69euVm5srk8mktm3b6uabb9bo0aPVrBnLigBcm8oy0FqENNG4fw5U3IZE7Vl8VHk5BSq4XFRuDhrB1AAAwBVZ3JitWLFC3t7eGjVqlMaOHauePXvasy6XQ8A0YF9ubgZ1HdlOHfq11K7FcebljRUhmBoAALgSixuzp556SiNHjlSDBg3sWY/LioyMVGRkpDlgGoB9eDfyVMjg1lU2ZjlpV5Qce5FgagAA4BIsbsxuvfXWco/n5uYqMTFRV65cUa9evWxWGABUxNLAaYKpAQCAq7imXRnfffddRUdHy2QyyWAwaMOGDZKkQ4cO6T//+Y+eeOIJ9e7d22bFAoBkeTB17E+JFmelAQAAOJJVWyimpKRo6tSpio6O1uDBg9WtW7dSYdJdu3ZVRkaGoqKibFYoAJSwtNk6Z7yor5/arIPfn1RRIeHUAADAeVnVmH3yySfKysrSu+++q3/+85/q27dvqfMeHh7q2bOnDh8+bJMiAeDXSoKpK+Ph7S5JKrhSpF1fxumb57bq7OHUUmOKi01KMqbpxPYkJRnTVFxsKu9SAAAAdmfVUsZdu3ZpyJAh6tGjR4VjWrZsqZ9//tnqwgCgMpUFUw+Y2FWtwpppz5Kjiv0pUTJJGUk5Wv3v3eowoKUG3NtF509klP0sGWgAAMBBrGrMsrKy1LJl5X9wMZlMKigosKooALBEZcHUkjT4z93VZXhbbVtwRBeOZ0iS4qOTlbDnvIrLWdpIBhoAAHAUqxqzpk2b6syZyreqPnnypAICAqwqCgAsVVkwtST5BzfWuJeu19HNZ7T7yzhdySootyn7NTLQAABATbPqHbO+fftqx44dOnHiRLnnDxw4oJ9//lkDBgy4puIAwBYMbgaFDmurO9+4QUF9WlQ5viQDDQAAoKZYNWN23333adOmTZo+fbomTJigs2fPSpKio6N1+PBhLV26VI0bN9aECRNsWiwAXAsv33oKvr6VEvaer3IsGWgAAKAmWdWYtWrVSq+//rpeeuklffzxxzIYDDKZTHruuedkMpkUEBCgl19+Wf7+/rau12lFRUUpKipK2dnZji4FQCUszUCzdBwAAIAtWB0wHRYWpi+++ELbt2+X0WhUVlaWGjRooLCwMA0ePFj16tWzZZ1OLzIyUpGRkYqLi9PkyZMdXQ6ACpRkoP16N8byHFlzSo1aNJCvf/0aqgwAANRlVjVmhw4dUo8ePeTh4aGhQ4dq6NCh5Y5bunSp7rrrrmsqEABsqSQDbf3b+yodl7DnvM4cTFXv20LUY2x7uddzr6EKAQBAXWTV5h8zZ87UqVOnKh2zdOlSffjhh9ZcHgDsqiQDzaeZd6njPs28FXZTkLwbeUqSivKLtWfpUS17dqsSD1wwjyOYGgAA2JpVM2ZeXl56+umn9eGHH6p58+Zlzn/99df64IMP1L1792suEADsobIMtD53dtLPXx+TcV2CTCYpMzlXa1/do6B+AWrTw1/7l58gmBoAANiUVTNmr732mnJycvTkk08qMzOz1Llly5bpvffeU1hYmF577TWbFAkA9lCSgdZxYGu1DvMz55Z5+dTT9feH6bZXBikgtKl5fMLuFG375EiZ99NKgqnjdyXXaP0AAKD2sKoxCw4O1uzZs5WcnKxnn31WeXlXt5VetmyZ3n33XXXt2lVvvPGGGjRoYNNiAaAm+bVrpFv+3l83TOsp70ZVb2gUvSiGZY0AAMAqVjVmktSzZ0/9/e9/V2xsrF544QV99dVXevfddxUaGqrXX3+dpgxArWAwGNRpcKCGTulR5ViCqQEAgLWsbswkafDgwXryySe1c+dOffDBBwoNDdVbb70lX19fW9UHAE6h4EqRReMIpgYAANawaPOP/fv3V3iuTZs2GjRokA4dOqSJEyfq2LFjpc6Hh4dfS30A4BQsDZzOOn/ZzpUAAIDayKLGbMaMGTIYDJWOMZlMeuGFF8oc37hxo1WFAYAzsTSYes/So0o5dknX3xemRgEs6QYAAJaxqDG7//77q2zMAKA2szSYWpIS911Q0uEt6nlrsHqNC5aHJ+HUAACgchY1Zg8++KC96wAAp1cSTB29MKZ0jpmftwZM7KLiQpN2fh6r3Et5Kioo1r5vjuv4lrMacF9XBfUJUHGxqdzcNAAAAIsDpufMmaMhQ4YQGg2gTqssmFqS2vZuoX3fHNfhNadkKjIp68Jl/fjGz/Lr0Ei5F6/ocka++VoEUwMAgBIWN2ZLly7VkiVL1KRJEw0cOFCDBw9W37595enpac/6AMDplARTl8ezvof639tFnW8I1I7PYpR0JE2SlBafWWZsSTD1yMd705wBAFDHWdyYffvtt9q6dau2bt2qqKgorVq1Sl5eXurXr58GDx6s66+/Xo0bN7ZnrQDgMpq2aagxz/fTie3ntOnDAzJVkjsdvShGQX0DWNYIAEAdZnFj1qRJE91yyy265ZZblJeXp507d2rr1q3asWOHtmzZInd3d3Xv3l2DBw/W4MGD1bp1a3vW7XSioqIUFRWl7OxsR5cCwEkYDAY1aOpVaVMm/RJMXdEsHAAAqP0sbsx+zcvLS0OHDtXQoUNVXFysgwcPauvWrdq2bZs++OADffjhhwoKCtLQoUM1aNAgdenSxdZ1O53IyEhFRkYqLi5OkydPdnQ5AJyEpYHT2RfIPwMAoC6zqjH7NTc3N4WHhys8PFyPPvqo4uPjtWXLFm3dulWLFi3SokWL5Ofnp2XLltmiXgBwKZYGU+/6Mlb16nuofb8A4kkAAKiDrrkx+60OHTqoQ4cOuu+++5SammqeSQOAusjSYOormQVa//Y+tenpr+vvD1PjVj41VCEAAHAGbra8mMlkUmJiolJSUiRJ/v7+uu222/Taa6/Z8jYA4DJKgqkr06ydr/nvzxxM1bJnt2j34jgVXCk0Hy8uNinJmKYT25OUZExTcXEVL64BAACXYtWM2aZNm7R161Y99thjatiwoSTp3Llzeu6555SQkCBJGjZsmF544QW5u7vbrloAcEGVB1N3Vft+ATq1O0XRi2KUk3ZFxYUmHVhxUse3JWnAxK6STIpeGFv6s2SgAQBQq1jVmH333Xe6ePGiuSmTpPfff1+nTp3Sddddp8zMTG3cuFF9+vTRrbfearNiAcBVVRVM3SGipdr09Nf+5Sd06Id4FReZlJN2NeesPGSgAQBQu1i1lPHUqVPq2vWXpTm5ubnasWOHRowYobfeektz585VUFCQVq1aZbNCAcDVlQRTdxzYWq3D/MrkltXz9lC/CaEa/58hCuzhb9E1oxfFsKwRAIBawKrGLDMzU82aNTN/ffDgQRUVFWnkyJGSJA8PD/Xt21dnz561TZUAUIc0buWj0c/11XXjQ6ocW5KBBgAAXJtVjZmPj48yMzPNX+/bt09ubm7q1auX+ZiHh4euXKl8FzIAQPkMBoPFOzNampUGAACcl1WNWbt27bR9+3ZlZGQoKytLUVFR6ty5c6l3zpKTk9W0aVObFQoAdY2lGWieDWyefAIAAGqYVY3Z+PHjlZqaqvHjx+vOO+9UWlqabrvttlJjjEajQkKqXoYDAChfSQZaVTbPP6QTO87JZOJdMwAAXJVVjdmwYcP0l7/8RR06dFDbtm310EMPacyYMebz+/fvV05OjiIiImxWKADUNZZkoEnS5Uv52vDefq3+925dOpNVA5UBAABbs3r9y2233VZmlqxEeHg4OzICgA1UloHW89Zgndl/QYn7L0iSko6k6ZuZ29R9dHv1vj1EnvU9VFxsqnCLfgAA4DwsbsymTJmioUOHatCgQerQoYM9awIA/EplGWhhN7bT6Z/Pa8fCGGVfuCxTkUmHfojXie1JCh7QUvE7k5Vz8ZfNQQimBgDAOVncmOXl5Wn+/Pn673//q1atWmnw4MEaPHiwevbsKYOB374CgD2VZKD9lsFgUFCfAAX28NeBFSd18PuTKiooVu6lPB1enVBmPMHUAAA4J4sbs88++0xJSUnasmWLtm3bpq+//lpfffWVGjVqpIEDB2rQoEGKiIiQl5dlu4gBAGzHw9Ndfe7opE5DWmv7Z0ad2Z9a6fjoRTEK6hvAskYAAJxEtd4xa926te6++27dfffdysjI0Pbt27V161Zt2LBBq1evlpeXl/r06aMhQ4Zo4MCBatKkiZ3KBgCUp1GAj3reElxlY1YSTF3eLBwAAKh5Vm/+0bhxY40ZM0ZjxoxRXl6edu/era1btyo6Olrbt2+Xm5ubunXrpsGDB2vQoEFq27atLesGAFTA0sBpgqkBAHAeNkkl9fLyMr9zZjKZdPjwYfOSxzlz5uijjz7Sxo0bbXGrGvHYY4/JaDTK3d1dktSzZ0+99tprDq4KACxjaTB1/K5ktQ1vLs8G9excEQAAqIpNGrNfMxgM6tGjh3r06KFp06bp1KlT2rZtm61vY3fPPPOMbrrpJkeXAQDVVhJM/evt9ctzaleKUo6mK+IPoQoZ1JqNnAAAcCCrAqaro3379rr33nvtfRsAwP+zJJjazf1qE3Y5PU+bPjyoH/65U2mnM83ni4tNSjKm6cT2JCUZ01RcbLJrzQAA1HXVnjErLCzUiRMn5OHhoeDg4Ap/w3r8+HEdP35co0ePtqqw3NxcLV68WEajUTExMcrKytLMmTM1ZsyYMmPz8/P18ccfa926dcrKylLHjh01adIk9evXz6p7S9J7772n9957T506ddIjjzyijh07Wn0tAKhplQVTD5jYVf4dGil6UawS9qRIkpJjL2n589sVdlM7+XdorD1Ljpb+HPlnAADYVbUasw0bNujNN99UVlaWJMnPz08PP/ywbrzxxjJjt2zZos8++8zqxiwjI0MLFixQQECAQkJCtG/fvgrHvvLKK9q4caPuvPNOtWnTRqtXr9Yzzzyjd955Rz179qz2vR9++GG1b99e7u7uWrZsmZ5++mn973//U4MGDaz6XgDAESoLppakG5+4TokHLmjHAqMyU3JlKjbpyJqy2WcS+WcAANibxY2Z0WjUyy+/LDc3N/Xt21ceHh7as2eP/vWvf+ngwYN68sknbVqYn5+fvv32W/n5+Sk2NlZTpkypsK7169dr6tSpuueeeyRJo0aN0gMPPKA5c+Zozpw55rGPPPKIDh06VO51Jk6cqMmTJ0uSwsLCzMf/8Ic/aNWqVTpy5Mg1zcABgCNUFExdom2v5mr9n8E6+EO89n17XMUFlS9ZJP8MAAD7sLgx+/LLL2UwGPT222+rR48ekqSUlBTNmjVL33//vfLy8jRz5kybvTzu6ekpP7+q83U2bdokd3d3jRs3znzMy8tLY8eO1bx585SSkqKAgABJ0gcffGBVLQaDQSYT71cAqJ3c67mr920hatSigTa8f6DSseSfAQBgHxZv/nHo0CENGTLE3JRJUkBAgN566y2NGDFCa9eu1b/+9a8ab2COHTumNm3ayMfHp9Txrl2vvvh+/Pjxal0vKytLu3fvVn5+vgoKCrR06VJlZWWVmkUDgLqM/DMAAGzP4hmzrKwstWnTpuwFPDz0wgsvyMPDQ2vXrlVxcbH+9re/2bTIyqSlpZU7s1ZyLDU1tVrXKyoq0rx583T69Gl5eHgoJCREr776qnx9fcsdn5qaqrS0NPPXCQnlv58BAM7O0vyzgitFdq4EAIC6x+LGrFmzZkpPTy/3nMFg0MyZM2UymbRu3TqZTCYFBgbaqsZK5eXlqV69suGonp6e5vPV0aRJE82fP9/i8StWrNCCBQvKHI+Pj1dRkeP/8JKdnS2j0ejoMgC4AFOxSZ4N3ZWfVfmza+t/D+v4/gS1u6GxPOq711B1rolnMAA4hjM9fy1deWdxY9auXbtKd0Y0GAx6/vnnJUnr1q2rsR0Mvby8VFBQUOZ4fn6++bw9jRs3ToMGDTJ/nZCQoFmzZqlDhw4KDQ21670tYTQaWYYJwGIN/uyn9W9X/KwvkbwnS+lH8xQxIVSdhgbKwGYg5eIZDACO4YrPX4vfMevfv7/Onj2rAwcqfjG8pDkbNWqUcnNzbVJgVfz8/EotJSxRcszf39+u9/f391doaKj5r6CgILveDwDsqST/zKeZd6njPn7eGj49XP0mdJaH19VZsiuZ+do875C+fylaqfEZ5rGEUwMAUH0Wz5iNGDFCly5dUmZmZqXjSpY1tmzZUikpKddcYFVKMs5ycnJKbQBSMnUZEhJi9xoAoDapKv8sZFBrRX8eq/joZEnS+ePpWv637eo6sp2ahzTW3qXHCKcGAKCaLG7M/P399dBDD1k01mAw6MEHH7S6qOoYNmyYFi9erBUrVphzzPLz87Vq1SqFhYWZt8q3t6ioKEVFRSk7O7tG7gcA9lRZ/pmPX32NfKy3zo5I1fYFRmUk5UgmKSbqtGKiyo4nnBoAgKpZ3Jg5wrJly5SdnW1elrht2zadP39ekjR+/Hj5+voqLCxMw4cP17x585Senq7AwECtWbNGycnJevbZZ2us1sjISEVGRiouLs4cVA0AtVlgd3/dPnuwjqw+pb3Ljqkov7jS8YRTAwBQMaduzJYsWaLk5GTz15s3b9bmzZslSTfddJN5C/vnn39eAQEBWrt2rbKzsxUcHKxXX31V4eHhjigbAOoMdw839bw1WL7N6+und/dXOpZwagAAKmZ1Y7Zs2TKNHz/elrWUsXTpUovGeXl5adq0aZo2bZpd6wEAlM9k4QYfhFMDAFA+i3dl/LXPPvtM7733nq1rAQC4KEvDqfNzy8abAAAAK2bMPvjgA3311Ve666677FGPy2LzDwB1WcsuzeTTzLvUbozl2faJUanxWep3d2d5N/KsoeoAAHB+1Zoxe+211/TVV19pzJgxLBv8jcjISM2ePVvTp093dCkAUOPc3AwacF9Xi8bGbUjUV09tVsz602ScAQDw/yxqzAoLC/XSSy9p5cqVuuGGG/TMM8/Yuy4AgIupLJx6xPRw9b+3i+rVvxpOnZddoG0fH9GKF7br/PF0SQRTAwDqNouWMn711VfasGGDIiIi9MILL8hgYKtjAEBZVYVTdxzYSju/iNOJbUmSpNT4TK34+w616uanjLPZyv3V5iAEUwMA6hKLZsyuXLkig8GgwYMHy8PDqXfYBwA4WEk4dceBrdU6zK9UblmDpt4a/kgvjX0hQk3b+pqPnzuSVqopk34Jpo7flSwAAGo7ixqzIUOGqGHDhnrnnXe0detWe9fkkqKiovTcc8+xWyUAWKBVVz/9/l+D1P/e0CrHRi+KYVkjAKDWs6gxCwkJ0XvvvaemTZvqH//4h/bt22fvulwOm38AQPW4ebjJr0PjKseVBFMDAFCbWbwrY/v27fX+++/L399fzz//vGJjY+1ZFwCgDrA0cLqqbfgBAHB11douv1WrVnr//ffVokULdmYEAFwzS4Op9y07ppSjl+xcDQAAjlOtxkyS/Pz89N5776lVq1b2qAcAUIeUBFNXJTPlsr5/KVqbPjqoyxmWzbIBAOBKqt2YSVKjRo301ltv2boWAEAdY0kwtW/zXxq3Y5vP6qsnN+vI2lMqLio2HycDDQDg6qze+75Bgwa2rMPlRUVFKSoqStnZ2Y4uBQBcSkkwdfTCmFLvkvn4eWvAxK4K6tNCMVGJ2vvVUeXnFio/t1A7PotR3MYzGvhAN13OyCv7WTLQAAAuxmAymfi1og3FxcVp8uTJmj9/vkJDq94G2t6MRqPCwsIcXQYAVKm42FRhMLUkXc7I064v43Rs81mLrzny8d4Obc54BgOAY7ji85e0aACAUygJpq5I/cZeuuHhnuoyoq22f3pEaQlZVV4zelGMgvoGlGrwAABwRlY3ZgcPHtTixYt1/PhxpaWlqaioqMwYg8GgDRs2XFOBAAD8WkDnpvrdvwZp5/9idGRNQqVjSzLQKmv4AABwBlY1ZmvXrtUrr7wik8mk1q1bq2vXrnJ3d7d1bQAAlMvNzaAWIU10RJU3ZpLlWWkAADiSVY3ZZ599poYNG+rVV191ubWbAIDawdIMNO9GnnauBACAa2fVdvnnz5/XiBEjaMoAAA5jaQbajoVGnYu5WAMVAQBgPatmzFq2bKnCwkJb1+LS2C4fAGpWSQba+rf3VTou/UyOfvjnTnUc1Fr9/xCqBk2rbuYAAKhpVs2Y3XLLLdq+fbsyMzNtXY/LioyM1OzZszV9+nRHlwIAdUZJBtpvZ858/LzVd0Jn+Qc3Nh87sS1JXz21WYd+iFdx4dVwaoKpAQDOwqoZswkTJigpKUnTpk3Tfffdp5CQEPn4+JQ7NiAg4JoKBACgMh0iWiqob0C5GWg9bwnW0Q2J2r3kqPKyC1RwuUg7P4/V0U1n1GFAS8X9dIZgagCAU7B6u/zOnTsrKipK//73vyscw3b5AICaUFEGmpubQV1GtlP7iJbas+SoYjckSibp0plsXfr6eJnxORevaP3b+xweTA0AqHusasyWLVum9957Tx4eHurdu7f8/PzYLh8A4LS8G3pq8KTuCh3eRts+OaLU+MqX4hNMDQCoaVY1ZkuXLpW/v78+/PBDtWjRwtY1AQBgF807NlHEPaFa9e/dlY4jmBoAUNOs2vzj4sWLuuGGG2jKAAAu53JmvmXjCKYGANQgqxqzwMBAtoUHALgkS4Opk4wXVfT/uzcCAGBvVjVmd911l7Zu3ark5GRb1wMAgF1ZGkwd91Oivnluq84eTq2BqgAAdZ1V75i1bt1a4eHhmjx5su68806FhISoQYMG5Y4NDw+/lvpcBgHTAOAaLA2mlqSMpByt/vdudejfUv3/2EW+fvUlXc0/K297fgAArGUwmUzVTtO84YYbZDAYVPJRg6Hi/xlt3LjR6uJcUVxcnCZPnqz58+crNDTU0eXIaDQqLCzM0WUAgNOJ35Ws6IUxpXPM/Lw1YGJXNWxRX9s/Ner8sXTzOQ8vd/X+fUf5Nm+gXZ/HWpR/xjMYABzDFZ+/Vs2Y3X///ZU2YwAAOLvKgqkl6dYXB+jY5rPatThOVzLzVZhXpN2Lj5Z7LfLPAADXyqrG7MEHH7R1HQAA1LiKgqklyeBmUOdhbRTUN0B7vz4m47qEKq9H/hkAwFpWbf4BAEBd4eVbTwMfCNPgSd2rHFuSfwYAQHVZ1ZgdOnRI77//vtLS0so9n5qaqvfff19Hjhy5puIAAHAW9bzdLRpH/hkAwBpWNWZLlizRtm3b5OdX/vIPf39/bd++XUuXLr2m4gAAcBaW5p8BAGANqxqz2NhY9ezZs9IxvXr1ktFotKooAACcjaX5Z5vmHtS+b4+rML+oBqoCANQWVjVm6enp8vf3r3RMs2bNdOnSJauKAgDA2ZTkn1WluMCkvV8d0zfPbtWl45droDIAQG1gVWPm6+ur8+fPVzomJSVF9evXt6ooAACcUYeIlhr5eO8yM2c+ft66YWpPdRsdJMP/78iYmZKrmMXn9eMbe5V1Idc8trjYpCRjmk5sT1KSMU3FxdWOEwUA1EJWbZcfFhamzZs3a9KkSQoICChzPiUlRVu2bNF11113zQUCAOBMKss/6zQkUJ2HtdGOBUYlx15dNZKw97zOHExV+O86qlHLBtr1RZxF4dQAgLrFqsbsrrvu0vbt2/XII49o0qRJ6tu3r/z9/ZWamqrdu3frv//9r/Lz83X33Xfbul6nFRUVpaioKGVnZzu6FACAnVWWf+bXrpHGvtBfJ7YladvCIyrILlJRQbH2fn2s3PGEUwMAJCsbs/DwcD3yyCP68MMPNXv2bEmSwWCQyWQy//306dMVHh5us0KdXWRkpCIjIxUXF6fJkyc7uhwAgAMZDAaFDA5Urs8l5R521+E1p6QqViwSTg0AdZtVjZkk3Xnnnbruuuv03XffKTY2VtnZ2fL19VXXrl31u9/9TsHBwbasEwAAl+Ph5aYBE7uqaVtfbZl3uNKxJeHUFc3EAQBqN6sbM0nq2LGjnnjiCVvVAgBAreThSTg1AKByFu/KOGXKFP3vf/9TfHy8PesBAKDWsTScuuSVAABA3WPxjFleXp7mz5+v//73v2rVqpUGDx6swYMHq2fPnjIYWA8PAEBFSsKpf70bY3k2zz2kjHO56jUu2OJZNgBA7WBxY/bZZ58pKSlJW7Zs0bZt2/T111/rq6++UqNGjTRw4EANGjRIERER8vKy7LeCAADUFSXh1Ovf3lfpuOJCk/Z9c1zHtpzV9RO7ql2fFvzyEwDqiGq9Y9a6dWvdfffduvvuu5WRkaHt27dr69at2rBhg1avXi0vLy/16dNHQ4YM0cCBA9WkSRM7lQ0AgGspCaeOXhhTOsfMz1t97+6siwlZOrzmlExFJmVfuKwf3/xZbcOba8B9XdW4pY+Ki03lZqcBAGoHqzf/aNy4scaMGaMxY8YoLy9Pu3fv1tatWxUdHa3t27fLzc1N3bp10+DBgzVo0CC1bdvWlnUDAOByKgun1mCp8w2B2vFZjJKOpEmSEvdf0NnDqWp3XQudP5au3Eu/bA5CMDUA1C4Gk43fNDaZTDp8+LB5yeOZM2dkMBi0ceNGW97GaZXkmM2fP1+hoaGOLkdGo1FhYWGOLgMA6iRrnsEmk0nxO5MV/b8Y5V6sepdGgqkBoCxX/DPwNW2XXx6DwaAePXqoR48emjZtmk6dOqVt27bZ+jYAANRKBoNBwQNaqW14c/38zXEdWln5bsgEUwNA7WDxdvnWat++ve6991573wYAgFqlnreH2oY3r3JcSTA1AMC1WT1jlp6erlWrVik2NlbZ2dkqKioqM8ZgMOjtt9++lvoAAKizLA2czr1U+Tb8AADnZ1VjduLECT3++OPKysqqNAyTLX4BALCepcHUh1edUvPgJmrcysfOFQEA7MWqxuyDDz5QZmam7rvvPo0dO1bNmzeXuztBmAAA2JKlwdSp8Zla9swW9RjbQeG3dVQ9b5u/Qg4AsDOr3jE7cuSIBg8erD//+c9q2bIlTRkAAHZQEkxdGe+G9SRJxUUmHVhxUl8/vUXxO8+ZV7QUF5uUZEzTie1JSjKmqbjYppsxAwBsxKpfqXl4eCgwMNDWtbi0qKgoRUVFKTs729GlAABqkcqCqQdM7Kq2vZpr/3cndHDlSRUXmpSTdkXr39mv1t39FHRdCx1cGV/6c+SfAYBTsqoxCw8PV1xcnK1rcWmRkZGKjIw055gBAGArlQZTS+p7V2d1GhKoHQuNOnMgVZKUdDhNSYfTylwr5+IVrX97H/lnAOBkrFrKOG3aNJ08eVJffvmlresBAADlcHMzqHWYnzoObK3WYX5lcssat/LRqGf6KvIv18nHz7vK60UvimFZIwA4EYtmzGbPnl3mWHBwsObOnasVK1YoJCREPj7l7wT13HPPXVuFAADAIgaDQe37Bcjd001rX91T6diS/LPWYX41VB0AoDIWNWarV6+u8FxSUpKSkpLKPWcwGGjMAACoYfk5BRaNszQnDQBgfxY1ZkuWLLF3HQAAwEYszT+7dCZbJpOJ3FEAcAIWNWYtW/JyMAAArsLS/LP9y08o5eglDXwgTE3bNKyh6gAA5bFq84/fKiwsVFZWlgoLC21xOQAAcA0syT8rcc54Ud/M3Kadn8cq/zL/HwcAR7Fqu3xJKioq0rJly7R69WqdOnXKvBSiffv2GjNmjG6//XZ5eFh9eQAAcA2qyj9zczcoemGMsi5clqnIpEM/xOvEtiRF3NtFHQe2ksFgUHGxqcIt+gEAtmVV55Sbm6unnnpKRqNRBoNBLVq0ULNmzXTx4kWdOnVKH374oTZt2qTXX39d9evXt3XNAADAAlXlnwX28NfB70/qwIqTKiooVm56njZ+cECxPyUqqG8LHf7hFOHUAFBDrGrMPvnkEx05ckSRkZGaMmWKAgICzOdSUlI0d+5crV+/Xh9//LEeffRRmxULAACqpyT/rDwenu66bnynq+HUi2J0eu95SVJyzEUlx1wsM55wagCwH6veMduwYYNCQ0P1wgsvlGrKJCkgIEB///vfFRoaqg0bNtikSAAAYD8NWzTQTU/20U1P95Fvc8KpAcARrGrMMjIy1Ldv30rH9OnTR5mZmVYVBQAAal673i006MHuVY4rCacGANiOVY1ZmzZtdOnSpUrHpKenKzAw0KqiAACAYxBODQCOYVVjdscdd+inn35SfHx8uedPnDihn376SXfeeec1FQcAAGqWpeHUFxOyZDKxnBEAbMWqzT/atGmj6667TpMnT9bo0aPVs2dPNW3aVJcuXdKBAwe0du1aRUREKDAwUPv37y/12fDwcBuUDQAA7MHScOoD359U8v+HU/sFNaqh6gCg9rKqMZsxY4YMBoNMJpO+//57rVy50nyu5Ldn27dv1/bt28t8duPGjdZVCgAA7K4knHr92/uqHJsSd0nLn9+mrjcFqc8dneTlU0+SyD8DACtY1Zjdf//9Mhh4wAIAUBtVFU7t4eWuHQuMykzJlckkGdcm6OSOc4r4Q6jqebkrelEs+WcAUE1WNWYPPvigresAAABOpKpw6tb/GaxDP5zSvuXHVZRfrCuZ+dr80aFyr0X+GQBUzarGrC744osvtGzZMmVnZ6tNmzZ677331KBBA0eXBQBAjaksnNq9nrvCb+uokMGtFf2/GJ3alVLl9aIXxSiobwDLGgGgHBY1ZpcvX1b9+vWv6Ua2uEZN+eabb7Rz5059+OGHatGihU6ePCkPD3pYAAB+y9e/viIfv04Hvj+h3V8erXRsSf5ZRc0eANRlFm2Xf/fdd+vLL7/U5cuXq32Dw4cP66mnntLSpUur/VlHKCoq0qJFi/TMM88oICBABoNBHTt2lKenp6NLAwDAafn6WfbLV/LPAKB8Fk0DRUZG6r///a8WLFigoUOHatiwYerWrZuaNGlSZmxhYaFOnDih3bt368cff1RCQoKCgoLUv3//ahWWm5urxYsXy2g0KiYmRllZWZo5c6bGjBlTZmx+fr4+/vhjrVu3TllZWerYsaMmTZqkfv36VeueknThwgXl5eVp48aNWrp0qXx9fTVhwgTdeuut1b4WAAB1haX5Zx5e7nauBABck0WN2WOPPabf//73WrhwoTZs2KAff/xRkuTv769mzZrJ19dX+fn5yszM1Llz51RQUCCTyaT27dvr6aef1pgxY+TmVr0s64yMDC1YsEABAQEKCQnRvn0Vb9v7yiuvaOPGjbrzzjvVpk0brV69Ws8884zeeecd9ezZs1r3vXDhgrKzs5WYmKilS5fqzJkzevzxx9WuXTv16tWrWtcCAKCusDT/bPPcg4r4Qxd1HtpGBt41AwAzi1+catu2rf76179q+vTp+vHHH/Xzzz/r8OHDiouL++ViHh7q0KGDwsPDNWTIkGtqZPz8/PTtt9/Kz89PsbGxmjJlSrnjjEaj1q9fr6lTp+qee+6RJI0aNUoPPPCA5syZozlz5pjHPvLIIzp0qPwdoyZOnKjJkyfLy+vqb/weeOABeXl5qWPHjho5cqSio6NpzAAAqICl+Wd52YXaMu+wYn9K1KAHusk/uHENVQgAzq3aO1o0atRI48eP1/jx4yVdXbqYkZEhLy8v+fr62qwwT09P+flV/XLwpk2b5O7urnHjxpmPeXl5aezYsZo3b55SUlIUEBAgSfrggw+qvF7btm1Vr169UjltZLYBAFC1yvLPet/WUWePpCk+OlmSdOF4hpa/sF1dRrRV37s7y9v36rvchFMDqKuueatBDw8Pixooezl27JjatGkjHx+fUse7du0qSTp+/Li5MbNE/fr1dcMNN2jhwoWaMWOGkpKS9NNPP+nll1+2ad0AANRGleWfdRnZTmdHpGrHZ0aln82RTFLs+kTF70xWv3tC5dXAg3BqAHWWy+8Bn5aWVm5jWHIsNTW12tf8y1/+oldffVW33nqrGjdurD//+c8VLmNMTU1VWlqa+euEhIRq3w8AgNqksvyzwO7++v0rg3Vk9Sn9/M1xFeYVKS+7QFvnHy53POHUAOoKl2/M8vLyVK9evTLHS7a3z8ur/ra8DRs21KxZsywau2LFCi1YsKDM8fj4eBUVFVX73raWnZ0to9Ho6DIAoE7iGVwxj45Sr4daKiHqklKNuVWO3/LJQeU2SGPDEAAWcabnb1hYmEXjXL4x8/LyUkFBQZnj+fn55vP2NG7cOA0aNMj8dUJCgmbNmqUOHTooNDTUrve2hNFotPhfBgCAbfEMrlrvAdKhVfHa+b/YSsflZxapqVtLwqkBWMQVn78u35j5+fnpwoULZY6XLC/09/e36/39/f3tfg8AAGqzBhZmoBFODaA2q164mBMKCQnRmTNnlJOTU+p4ydRlSEiII8oCAAAWsjSc2r0e4dQAai+Xb8yGDRumoqIirVixwnwsPz9fq1atUlhYWLV2ZLwWUVFReu655/Tee+/VyP0AAKgtSsKpq7J53kHFRJ1WcbGpBqoCgJrl1EsZly1bpuzsbPOyxG3btun8+fOSpPHjx8vX11dhYWEaPny45s2bp/T0dAUGBmrNmjVKTk7Ws88+W2O1RkZGKjIyUnFxcZo8eXKN3RcAAFdnaTh1fk6htn1yRHEbEjXwT93UIqRJzRQIADXgmhqztLQ0HT16VFlZWSouLi53zOjRo62+/pIlS5ScnGz+evPmzdq8ebMk6aabbjIHWj///PMKCAjQ2rVrlZ2dreDgYL366qsKDw+3+t4AAKDmVBZOfd3tIToXc1HHtyZJklLjM7Xi7zvUeVgb9ZvQWfUbeRFMDcDlWdWY5eXl6bXXXtP69etlMpW/nMBkMslgMFxTY7Z06VKLxnl5eWnatGmaNm2a1fcCAACOVVk4dejwtuoyoq22fWrUpcQsSdLRjWeUsDtF7SMClHjggnIv/rI5CMHUAFyNVY3Z3Llz9eOPP6pt27YaOXKkmjdvLnf3uv1CblRUlKKiopSdne3oUgAAcFmVhVO37NJMv//3QBnXndber4+p4HKh8nIKFLfhTJmxBFMDcDVWNWYbNmxQ+/btNX/+fHOQc13HO2YAANifm7ubuo9pr+DrW2nXF7Hm5Y0ViV4Uo6C+ASxrBOD0rNqVMTs7WxERETRlAADAIRo08VLnYW2qHJeTdkXJsRdroCIAuDZWNWbt2rXTpUuXbF0LAACAxSwNnCaYGoArsKoxmzBhgrZu3aozZ8qu6QYAAKgJlgZTH918VrkZNGcAnJtF75jt37+/1NfNmzdXRESEHnroId15553q3LmzGjRoUO5n2bIeAADYQ0kw9a+31y/P2YOp+vrJzbrujk4Ku7Gd3Nyt+r00ANiVRY3ZjBkzZDCUfWnWZDLp008/LfdciY0bN1pdnCthV0YAAGqWJcHUHp5uKswvVn5uoaIXxujoxjMa+ECYWnZpJknknwFwGhY1Zvfff3+lzRfYlREAAEeoLJh6wMSuahnaVLuXHNXRjVdfv7h4OksrX96pkMGt1aprM/287Hjpz5F/BsBBLGrMHnzwQXvXAQAAYJXKgqklaeiUHuoyvI22fWpU2qlMSdLxrUnlbrVP/hkAR2GRNQAAcHklwdQdB7ZW6zC/MssRW3Rqqt/NGqiBfwqTZ4Oqfy8dvShGxcUme5ULAGVYFTBdIjU1VT/99JOOHTum7Oxs+fr6qlOnThoxYoT8/f1tVSMAAMA1c3MzKOzGIDVo4qWotyp+L036Jf+sdZhfDVUHoK6zujH75ptvNGfOHBUUFMhk+uU3SuvWrdP8+fM1bdo0/f73v7dJkQAAALZSVFBs0TjyzwDUJKsas/Xr1+udd95R48aNNXHiRPXs2VPNmjXTxYsXdeDAAX399dfm8yNGjLB1zU6JXRkBAHANluafXSb7DEANsqox++KLL9S4cWN98sknpZYstmvXTuHh4RozZoz+/Oc/64svvqgzjRm7MgIA4BoszT+LXhSrCycyFHFvF/k09a6h6gDUVVZt/pGQkKDhw4dX+B5ZixYtNHz4cCUkJFxTcQAAALZWkn9miRPbz+nrJzfr4A/xKi60bAkkAFjDqsbM19dX3t6V/+aofv368vX1taooAAAAeyrJP/NpVvrPMz5+3ho5I1yDJ3WXl289SVLBlSLt+jxW38zcpqQjaeaxxcUmJRnTdGJ7kpKMaeziCOCaWLWUcdCgQdq+fbsmT54sD4+ylygsLNS2bds0ePDgay4QAADAHqrKP2vfL0B7lh5V7E+JkklKP5utVf/apeABrdS6u5/2fUM4NQDbsWrGbOrUqapfv76efPJJHTlypNS5w4cP68knn1SDBg300EMP2aRIAAAAe6gs/8y7oacG/7m7fvfPgWresbH5+Mnoc9r638Nl3lErCaeO35VcY/UDqD2smjH785//rMLCQqWlpemRRx6Ru7u7GjdurIyMDBUVFUmS/Pz89Oc//7nU5wwGgxYvXnztVQMAANSQ5sGNNe4f1+vopjPa9WWs8rILKx0fvShGQX0DyoRcA0BlrGrMTCaT3N3d1aJFi1LH/fz8yoyr7OvahO3yAQCovQxuBoUObyuvRp6KeuPnSscSTg3AGlY1ZkuXLrV1HS6P7fIBAKj9ivKKLBpHODWA6rLqHTNr7d+/XwsWLKjJWwIAANiMpeHU2VVkpAHAb9VoY7Zv3z4aMwAA4LJKwqmrsvuLOK1/e5+y0y7XQFUAaoMabcwAAABcWXXCqeN3Jevrp7Zo/3cnVFRg2RJIAHUXjRkAAEA1VBVOPfShHvJu5ClJKswr0p4lR/XNc9t05uAFSQRTAyifVZt/AAAA1GVVhVMH9Q3Q3q+PKWZdgkwmKeNcjtbM3qPmHRsrO+1Kqc1BCKYGIDFjBgAAYJXKwqm9fOpp4P1huu3fgxTQuan5+IUTGWV2bCSYGoBEYwYAAGA3fkGNdMuL/TV0Sg+pirzp6EUxLGsE6jCWMtoIAdMAAKA8BoNBvi3qS1X0XARTA3UbjZmNEDANAAAqYmngdHYq2+sDdRVLGQEAAOzM0mDqPUuOKnHfeTtXA8AZ1WhjFhISolGjRtXkLQEAABzO0mDq3Et5WvvaXq17Y6+yzufWQGUAnIVVjdmGDRuqHFNUVKQ5c+aUOjZkyBDNnDnTmlsCAAC4LEuCqZsE+pj//vTe8/r66S36+ZtjKsz/JZyaDDSg9rLqHbOXXnpJu3bt0owZM+TtXfa3P2fOnNHLL7+so0ePaurUqddcJAAAgKsrCaaOXhijnItXzMd9/Lw1YGJXte8XoBPbz2nX57HKTc9TUUGxfv76uI5tPqvr7wtTUWFx2c+SgQbUGlY1ZhEREVq1apUOHTqkF198UZ06dTKfW716td555x3l5eXpj3/8o80KBQAAcHVVBVOHDGqtdr2b6+dvjuvImgSZik3KOn9Z617fW+71SjLQRj7em+YMcHFWLWV87bXX9Mgjjyg5OVlTp07V4sWLlZWVpX/84x969dVX1bBhQ7399tuaNGmSresFAABwaZUFU0uSZ4N6GvDHrrp99iC1Cmtm0TXJQANcn9Wbf9x1112aM2eOWrVqpY8++kjjx4/Xhg0bNHToUH3yySfq1auXLesEAACoU5q2aaib/xqh8Ns6Vjm2JAMNgOu6pl0ZQ0JCNHDgQJlMJuXl5alRo0Z68MEH1bBhQ1vVBwAAUGcZDAY1beNr0VhLs9IAOCerG7OUlBRNnz5dS5YsUUhIiP74xz8qOztbU6ZM0XfffWfLGgEAAOosSzPQPH3q2bkSAPZk1eYfGzZs0Ouvv66cnBzdcccdeuihh1SvXj0NGjRIL7/8st566y3t2rVLzz77rBo1amTrmp1SVFSUoqKilJ2d7ehSAABALVKSgfbr3RjLs/W/h3X9fWEK6ttCBoOh0rEAnI9VM2YvvfSS6tWrp//85z969NFHVa/e1d/QhIWF6ZNPPlFkZKS2bt2qP/3pTzYt1plFRkZq9uzZmj59uqNLAQAAtYglGWjS1ffMot76WWv/s1cZyTk1UBkAW7KqMevfv78+/fRTRURElDnXoEED/e1vf9Nf//pXXb58+ZoLBAAAqOtKMtB8mpXOj/Xx89b193VV6+5+5mNnDlzQsme2aM/SoyrMuxpOTTA14PysWsr4n//8p8oxN910k3r06GHN5QEAAPAblWWghY0KUvzOZO38X6xyLl5RcaFJ+5ef0PGtZ9VhQCud3J6knIu/bA5CMDXgfKxqzCzVqlUre14eAACgTinJQPstg8Gg4AGt1Da8ufYvP6FDP8SruMik7NQrOrQyvsx4gqkB52NVY7Z//36Lx4aHh1tzCwAAAFRTPW8P9ZsQqk5DA7V9wRElHa482yx6UYyC+gaUCbkGUPOsasxmzJhh8W4/GzdutOYWAAAAsFKT1r4K/13HKhuzkmDq8mbhANQsqxqz+++/v9zGLCcnR0ePHtWBAwd0/fXXKzQ09JoLBAAAQPVdzsi3bBzB1IBTsKoxe/DBBys9v3HjRr3yyit1art8AAAAZ2JpMHXC3vNqd10L1fO269YDAKpg1Xb5VRk2bJh69+6tefPm2ePyAAAAqEJJMHVVTu44p6+f2qKT0edkMrGNPuAodmnMJCkoKEhHjhyx1+UBAABQCUuCqQ3//yfBnItX9NO7+7X637t16Wy2+Tz5Z0DNsduc9bFjx+TmZre+DwAAAFUoCaaOXhijnItXzMd9/Lw1YGJXNWvbUDsWxujMgQuSpKQjafrmua3qPqa9mrVrqD2Lj5b+HPlngN1Y1ZilpKSUe7yoqEgXLlzQ6tWr9fPPP2vw4MHXVBwAAACuTWXB1JI06pk+Or33vHYsjFF26mWZikzlZp9J5J8B9mRVY3bXXXdVul2+yWRS69atNX36dKsLAwAAgG1UFEwtXQ2nDuoboMAe/jqw4oQOfH9SxYWVL1kk/wywPasas1GjRpXbmBkMBjVs2FBdunTR4MGD5eVl2W5AAAAAcCwPL3f1ubOzGrf20cYPDlY6lvwzwPasasyef/55W9cBAAAAJ1DZqqhfI/8MsC0CK2wkKipKUVFRys7OrnowAACAk7I0/6yooMjOlQB1C9sm2khkZKRmz57Ne3UAAMClWZp/tnneYUX/L0b5uQU1UBVQ+1k0Y3b33XdbdXGDwaDFixdb9VkAAADUvJL8s/Vv76t8oEk6vOqUTm4/p4g/hKrjoNYWL4MEUJZFM2Ymk8mqv4qLi+1dPwAAAGysJP/stzNnPn7eGv5oL113R4jc6139Y2Ruep42fnhQP/xzpy4mZpnHEk4NVI9FM2ZLly61dx0AAABwIlXln3UaHKgdi2J0eu95SVJy7CV9O3Obuo0Kkl/7RtqzhHBqoDrY/AMAAADlqiz/rGGLBrrpyT5K3Hc1nDozJVemYpMOrz5V7njCqYHKWbz5R05OjgoKeLkTAAAAv2jbu4Vuf3Ww+tzZSW71qn7HLHpRDMsagXJY3JiNHTtWX3zxRaljRqNRX3/9tc2LAgAAgOvw8HRX79+H6IaHelY5tiScGkBpFjdmJRt6/NrOnTv1/vvv27woAAAA1F6EUwNlkWMGAAAAm7A0nLogj3Bq4LdozAAAAGATloZTb51/WNs/Myovh/0LgBI0ZgAAALCJknBqSxjXJuirJzfr6OYzMrEZCEBjBgAAANupNJx6ei/1vbuzPLzcJUlXMvO1+aND+v7laKWdypREMDXqrmrlmK1bt05Hjhwxf3327FlJ0tNPP13ueIPBoP/85z/XUB4AAABcTVXh1CGDWmvn/2IVvytZknT+aLqW/3WbAnv462JilnIv/bI5CMHUqCuq1ZidPXvW3Iz92q5du8odbzBUnWUBAACA2qeycGpf//oa+XhvnTmUqh0LjMo4lyOTSTpzMLXMWIKpUVdY3JgtWbLEnnUAAACgjmnTw1+3vzpYh1ae1J6lxyodG70oRkF9A8yzbkBtY3Fj1rIlv6EAAACAbbl7uKlF56ZVjisJpq5oFg5wdWz+AQAAAIeyNHA69+IVO1cCOA6NGQAAABzK0mDqfctPKPVkhp2rARyjWpt/1BWjRo0q9fWVK1c0depUTZgwwUEVAQAA1F4lwdQ5VcyIZSTlaPkL29VlRFv1vauzvBt61lCFgP3RmJVj7dq15r9PTU3VnXfeqaFDhzqwIgAAgNqrJJh6/dv7KhzToJn31aWMJil2faLidyar34RQhQ5rI4ObQcXFpgq35wdcAY1ZFX788Ud169ZNrVu3dnQpAAAAtVZJMHX0wphSM2c+ft4aMLGrgq5rocNrE7Rv2TEVXClSXnaBtv73sOJ+SlT7iAAZ150u/Tnyz+BinLYxy83N1eLFi2U0GhUTE6OsrCzNnDlTY8aMKTM2Pz9fH3/8sdatW6esrCx17NhRkyZNUr9+/a65jnXr1un222+/5usAAACgclUFU/cc20EdB7bSrs9jdWL7OUnShZMZulDOe2fkn8HVOO3mHxkZGVqwYIESEhIUEhJS6dhXXnlFS5cu1Y033qjHHntMbm5ueuaZZ3Tw4MFrquHEiRNKTEzUsGHDruk6AAAAsExJMHXHga3VOsyvzHJEn6beGv5ouG7+W4SaBPpUeb3oRTEqLjbZq1zAZpx2xszPz0/ffvut/Pz8FBsbqylTppQ7zmg0av369Zo6daruueceSVc373jggQc0Z84czZkzxzz2kUce0aFDh8q9zsSJEzV58uRSx9auXatBgwapYcOGNvquAAAAYAutw/x0/X1hWv3K7krHkX8GV+G0jZmnp6f8/Kr+D2jTpk1yd3fXuHHjzMe8vLw0duxYzZs3TykpKQoICJAkffDBBxbfv7i4WFFRUXryySerXzwAAADs7kpWvkXjLM1JAxzJaRszSx07dkxt2rSRj0/pqeyuXbtKko4fP25uzKpj7969KiwsVP/+/Ssdl5qaqrS0NPPXCQkJ1b4XAAAAqs/S/LPzx9PVYUArdmmEU3P5xiwtLa3cmbWSY6mpqVZdd926dRo5cqQ8PCr/Ea1YsUILFiwoczw+Pl5FRUVW3duWsrOzZTQaHV0GANRJPIMB+zIVm+TZ0F35WZX/mevImgSd2n9OwaObqWEby5o5uDZnev6GhYVZNM7lG7O8vDzVq1evzHFPT0/zeWv89a9/tWjcuHHjNGjQIPPXCQkJmjVrljp06KDQ0FCr7m1LRqPR4n8ZAAC2xTMYsL8Gf/arNP+sRE5yvg4tSFbnGwLVb0Ko6jemQavNXPH56/KNmZeXlwoKCsocz8/PN5+3J39/f/n7+9v1HgAAAChfVfln9Rt5avsCoy6ezpIkHd10Vqd2p6jvXZ3VJbKd3AinhpNw+cbMz89PFy5cKHO85L0vmiYAAIDarar8s9v+NVAxUae1Z+kxFVwuVH5uobYvMCpuQ6I69G+lmCjCqeF4Lt+YhYSEaN++fcrJySm1AUjJmtKqMtAAAADg+kryz8o95+6mbqPaq8OAVtr9ZZyObT4rSUpLyFJaQlaZ8YRTwxGcNmDaUsOGDVNRUZFWrFhhPpafn69Vq1YpLCzMqh0ZrREVFaXnnntO7733Xo3cDwAAANXToLGXbni4p259aYCatfOtcjzh1KhJTj1jtmzZMmVnZ5uXJW7btk3nz5+XJI0fP16+vr4KCwvT8OHDNW/ePKWnpyswMFBr1qxRcnKynn322RqrNTIyUpGRkYqLiysTVA0AAADnEdC5qfr/satW/5twajgPp27MlixZouTkZPPXmzdv1ubNmyVJN910k3x9r/6m4/nnn1dAQIDWrl2r7OxsBQcH69VXX1V4eLgjygYAAICTu5JJODWci1M3ZkuXLrVonJeXl6ZNm6Zp06bZuSIAAADUBpaGUyfHXVKH/i3l5u7ybwDByTl1Y+ZKoqKiFBUVpezsbEeXAgAAgCq07NJMPs28S+3GWJ6YH08rOfaSBv0pTC27NKuh6lAX0frbSGRkpGbPnq3p06c7uhQAAABUwc3NoAH3dbVo7KXELK18eac2fnhAuZd+aeSKi01KMqbpxPYkJRnT2CgE14QZMwAAANRJVYVT+zT10rZPjUo7lSlJOr41SQl7U9Tnjk5q0NRbO/8XS/4ZbIbGDAAAAHVWVeHUv5s1UHE/JWrPkqPKyylQweUiRS+KLfda5J/hWtCYAQAAoE6rNJzazaCuke3UIaKldi85qrgNiVVeL3pRjIL6BpibO8ASvGMGAAAAVMG7kaeGTO6ugX8Kq3JsSf4ZUB3MmNkIuzICAADUfl4+9SwaR/4ZqovGzEYiIyMVGRmpuLg4TZ482dHlAAAAwA4szT8zsIwR1cRSRgAAAMBCJflnVdk896AOrjyp4sLiGqgKtQGNGQAAAGAhS/PPCvOKteuLOH0zc6uSjqTVQGVwdTRmAAAAQDWU5J/9dubMx89bQx/uoS4j20r/v5Ix/WyOVv1rl356d79y0i6bxxJOjd/iHTMAAACgmirLP+s8tI26DG+rbQuO6MLxDEnSyehzOr3vvHrfHiJf//ra9Tnh1CiNxsxG2JURAACgbqks/8w/uLHGvXS9jm46o92L43Qlq0CFeUXa/WVcueMJpwZLGW0kMjJSs2fP1vTp0x1dCgAAAJyAwc2g0OFtdccbQ9X1xnYWfSZ6UQzLGusoGjMAAADAjrx9PTXoT900aFK3KscSTl130ZgBAAAANcDT27K3iAinrptozAAAAIAaYGk4tcimrpNozAAAAIAaYHk49SHtX35CRQVFNVAVnAWNGQAAAFADLA2nLsov1p6lR7Xs2a1KPHChBiqDM2C7fBthu3wAAABUpSScOnphTOkcMz9v9b2rs1JPZsi4LkEmk5SZnKu1r+5RUL8ADfhjVzVsXl/FxaZys9Pg+mjMbCQyMlKRkZGKi4vT5MmTHV0OAAAAnFRl4dSdhgSq87A22r7AqJS4S5KkhN0pOnPggoL6XP1M7qVfNgchmLr2YCkjAAAAUMNKwqk7Dmyt1mF+pWa9/IIa6Za/99cNU3uqfmNPSVeXN57cca5UUyb9Ekwdvyu5RuuH7dGYAQAAAE7GYLg6e3bnG0PVbXRQleMJpnZ9NGYAAACAk/JsUE9BfQOqHEcwteujMQMAAACcmKWB0wRTuzYaMwAAAMCJWRpMfWRtgjJTcu1cDeyFxgwAAABwYpYGU58/lq5lz2zR3q+PqTCfcGpXQ2MGAAAAODFLgqk9G1xNwSoqKNa+b45r2dNblLA3xXy+uNikJGOaTmxPUpIxjY1CnBA5ZjZCwDQAAADspbJg6gETuyqwu5/2fXtCh9eckqnIpKwLl/XjGz+rbe/mahveXAe+O1n6c+SfOR2DyWSiXbahkoDp+fPnKzQ01NHlyGg0KiwszNFlAECdxDMYgK0VF5vKDaYucelMlrYvMOqc0bIdGkc+3rtWNmeu+PxlxgwAAABwESXB1BVp2qahbv5rhE5GJyt6kVGX0/MrvV70ohgF9Q0o1dzBMXjHDAAAAKhFDAaDOl7fSkMm96hyLPlnzoPGDAAAAKiFCi4XWjSO/DPnQGMGAAAA1EKW5p9lJOeIbSccj8YMAAAAqIUszT/7+evjWvvqHmWcy6mBqlARGjMAAACgFrIk/6zEmYOpWvbsFu1eHKeCK5YtgYRt0ZgBAAAAtVRJ/tlvZ858/Lw18vFwjZwRbj5XXGjSgRUn9fXTWxS/K9m8vJFw6prBdvkAAABALdYhoqWC+gZUmH/Wpldz7V9+Qod+iFdxkUk5aVe0/u19Cuzhp3bXtdDB7+MJp64BNGYAAABALVdZ/lk9bw/1mxCqTkMDteOzGJ09lCpJOnsoTWcPpZUZn3PxauNWW8OpHYXGzEaioqIUFRWl7OxsR5cCAAAAVFuT1r4a/Vxfndqdoh0Ljcq9WPk2+oRT2xbvmNlIZGSkZs+erenTpzu6FAAAAMAqBoNBHSJaasik7lWOJZzatmjMAAAAAJSSn0s4dU2jMQMAAABQiqXh1OlJ2YRT2wiNGQAAAIBSLA2n3vfNCa3+925dOss+C9eKxgwAAABAKdUJp046kqZvntuqnZ/HKv/yL0sgyT+rHnZlBAAAAFBGSTh19MKY0jlmft4aMLGL3NzctGNRjLIvXJapyKRDP8TrxPYk9b+3i9w8DIpeGEv+WTXQmAEAAAAoV1Xh1IE9/XVgxUkd/P6kigqKlXspTxveP1Dutcg/qxyNGQAAAIAKVRZO7eHprj53dFKnIa21Y2GMEvddqPJ65J+Vj3fMAAAAAFyTRgE+GvV0X/W5q1OVY8k/Kx+NGQAAAACbaNSigUXjyD8ri8YMAAAAgE1Ymn9Wz9vdzpW4HhozAAAAADZhaf7Z5vmHdXzrWcKpf4XGDAAAAIBNWJp/diUjXxs/PKgf/rlTF09n1UBlzo/GDAAAAIDNlOSf/XbmzMfPW4P+FKagPi3Mx5JjL+nb57cpelGM8nMLJNXdYGq2ywcAAABgU5Xln3W9MUiJ+y9ox2dGZabkylRs0uHVp3Rie5I6DGilhN3Jyrn4y+YgdSWYmsbMRqKiohQVFaXs7GxHlwIAAAA4XGX5Z23Dm6tV2GAdWhWv/ctPqCi/WJcz8mVcm1BmbF0JpmYpo41ERkZq9uzZmj59uqNLAQAAAJyeh6e7et8WojteG6p2fVtUOT56UUytXtZIYwYAAADAYRo2r6/uo9tXOa62B1PTmAEAAABwKEsDp2tzMDWNGQAAAACHsjSY+mR0svJyCuxcjWPQmAEAAABwKEuDqRP2pOirJzfr6MYzMtWy981ozAAAAAA4lCXB1G4eV1uXK5n52jzvkL7/R7RS4zNqorwaQWMGAAAAwOEqC6Ye+Xhv3fXWUHXo/8t2+eePpeu7v23Xtk+PKC+7dDj1hcM5LhdOTY4ZAAAAAKdQWTC1JI2c0VtnD6Vq+2dGZSTlyGSSYn48rfjoc+owoKVO7z1vDqc+tjzVpcKpmTEDAAAA4DRKgqk7Dmyt1mF+5qasRGAPf90+e7D63RMqDy93SdKVrALF/JhobspKlIRTx+9KrrH6rUVjBgAAAMCluHu4qdetwbrz9SGlljdWxBXCqWnMAAAAALgkH7/66npjuyrHuUI4NY0ZAAAAAJdVW8KpacwAAAAAuCxLw6ktHecoNGYAAAAAXJYl4dQ+ft5q2aVZDVVkHRozAAAAAC7LknDqARO7ltnd0dnQmAEAAABwaVWFU7tCjhkB0wAAAABc3q/DqY8dPqlO3YNLhVM7OxozAAAAALVCSTh1ulLUOszP0eVUC41ZOY4dO6a33npLJ0+eVOPGjTVx4kTdcsstji4LAAAAQC3FO2blmDVrliIiIrRq1Sq9/PLLeu+993Tq1ClHlwUAAACglqIxK0dycrJGjhwpNzc3hYaGKigoSKdPn3Z0WQAAAABqKadtzHJzc/XJJ5/oqaee0tixYzV06FCtXr263LH5+fmaM2eOfv/73ysyMlIPPfSQdu/ebfW9x48frx9//FGFhYUyGo06f/68wsLCrL4eAAAAAFTGaRuzjIwMLViwQAkJCQoJCal07CuvvKKlS5fqxhtv1GOPPSY3Nzc988wzOnjwoFX37t+/v9asWaMbb7xRjzzyiB566CH5+/tbdS0AAAAAqIrTbv7h5+enb7/9Vn5+foqNjdWUKVPKHWc0GrV+/XpNnTpV99xzjyRp1KhReuCBBzRnzhzNmTPHPPaRRx7RoUOHyr3OxIkTNXnyZGVmZurZZ5/Vc889pyFDhujUqVN66qmnFBwcrNDQUNt/owAAAADqPKdtzDw9PeXnV/UWl5s2bZK7u7vGjRtnPubl5aWxY8dq3rx5SklJUUBAgCTpgw8+qPJ6Z8+elbe3t4YNGyZJ6tixo7p3764DBw7QmAEAAACwC6ddymipY8eOqU2bNvLx8Sl1vGvXrpKk48ePV+t6bdu2VV5enrZs2SKTyaRTp07p4MGDCg4OLnd8amqq4uLizH8lJCRY940AAAAAqLOcdsbMUmlpaeXOrJUcS01Nrdb1fH199Y9//EMfffSRZs2apUaNGumuu+5S3759yx2/YsUKLViwoMzx+Ph4FRUVVeve9pCdnS2j0ejoMgCgTuIZDACO4UzPX0s3EXT5xiwvL0/16tUrc9zT09N8vroiIiIUERFh0dhx48Zp0KBB5q8TEhI0a9YsdejQwSmWPhqNRnaUBAAH4RkMAI7his9fl2/MvLy8VFBQUOZ4fn6++bw9+fv7s2MjAAAAgGvi8u+Y+fn5KS0trczxkmM0TQAAAACcncs3ZiEhITpz5oxycnJKHS9ZU1pVBhoAAAAAOJrLL2UcNmyYFi9erBUrVphzzPLz87Vq1SqFhYWZt8q3t6ioKEVFRSkzM1OSnGZ3xtOnT8vd3d3RZQBAncQzGAAcw9mev0FBQfL29q50jFM3ZsuWLVN2drZ5WeK2bdt0/vx5SdL48ePl6+ursLAwDR8+XPPmzVN6eroCAwO1Zs0aJScn69lnn62xWiMjIxUZGal169bp8OHDmjVrVo3dGwAAAIDzmj9/fpUbAxpMJpOphuqptrvuukvJycnlnluyZIlatWol6erOix9//LHWrVun7OxsBQcHa9KkSRbvrGhL6enp2rVrl5YvX64ZM2Zc8/Xee+89TZ8+3arPluwQ+be//U1BQUHXXAvs51r+ObsyV/u+nanemqzF3vey9fVtdb1rvQ7PYNfhTP9t1yRX+76dpd6arsOe97PHtZ3hGeyMz1+XnzFbunSpReO8vLw0bdo0TZs2zc4VVa1Jkya66aab9NNPP9lku3xfX99rvk5QUJBTbN2Pitnin7MrcrXv25nqrcla7H0vW1/fVtez1XV4Bjs/Z/pvuya52vftLPXWdB32vJ89ru1Mz2BXe/66/OYfzioyMtKprgPnVlf/Obva9+1M9dZkLfa+l62vz/MX1VVX/1m72vftLPXWdB32vJ89rs0z2HpOvZQR1yYuLk6TJ0+2aE0rAMC2eAYDgGO46vOXGbNazM/PTw888ID8/PwcXQoA1Dk8gwHAMVz1+cuMGQAAAAA4GDNmAAAAAOBgNGYAAAAA4GA0ZnVYfn6+Zs+erTvuuEOjR4/Www8/rMOHDzu6LACoM1577TXddtttGj16tO6//35t27bN0SUBQJ1y+PBh3XDDDfrss88cXQrvmNVlly9f1pIlSzRmzBg1b95cGzZs0Ntvv60lS5aoQYMGji4PAGq9hIQEtWrVSp6enoqJidETTzyhxYsXq3Hjxo4uDQBqveLiYk2bNk0mk0kDBw7U/fff79B6mDGrw+rXr68HHnhAAQEBcnNz08iRI+Xh4aHExERHlwYAdUJQUJA8PT0lSQaDQQUFBUpNTXVwVQBQN3z//ffq2rWrgoKCHF2KJMnD0QXAcrm5uVq8eLGMRqNiYmKUlZWlmTNnasyYMWXG5ufn6+OPP9a6deuUlZWljh07atKkSerXr1+F109MTFRWVpYCAwPt+W0AgEuy1zP4zTff1KpVq5Sfn68BAwYoODi4Jr4dAHAZ9nj+ZmRk6KuvvtKcOXP03nvv1dS3UilmzFxIRkaGFixYoISEBIWEhFQ69pVXXtHSpUt144036rHHHpObm5ueeeYZHTx4sNzxeXl5mjVrlu699175+vrao3wAcGn2egY/8cQTWrt2rd566y3169dPBoPBXt8CALgkezx/58+frzvvvFMNGza0Z+nVQmPmQvz8/PTtt9/qq6++0tSpUyscZzQatX79ek2ZMkXTpk3TuHHj9Pbbb6tly5aaM2dOmfGFhYX6+9//rsDAQD3wwAN2/A4AwHXZ6xksSe7u7urTp4/27t2rHTt22OtbAACXZOvn79GjRxUbG6tbbrmlJsq3GI2ZC/H09LQowXzTpk1yd3fXuHHjzMe8vLw0duxYHTlyRCkpKebjxcXFmjVrlgwGg55//nl+UwsAFbDHM/i3ioqKdPbsWZvUCwC1ha2fv/v371diYqLGjx+v2267TT/99JO++OILvfLKK3b7HizBO2a10LFjx9SmTRv5+PiUOt61a1dJ0vHjxxUQECBJev3115WWlqbXX39dHh786wAA18rSZ3B2drZ27NihQYMGydPTU1u2bNG+ffs0ZcoUR5QNAC7P0ufvuHHjNHLkSPP5d999V61atdK9995bo/X+Fn8Sr4XS0tLK/a1CybGSHb+Sk5O1cuVKeXp6lvrNwn/+8x/16tWrZooFgFrG0mewwWDQypUr9dZbb8lkMikwMFAvvPCCOnXqVKP1AkBtYenz19vbW97e3ubzXl5eql+/vsPfN6Mxq4Xy8vJUr169MsdLtmTOy8uTJLVs2VKbN2+u0doAoLaz9Bns4+Ojd955p0ZrA4DazNLn7289//zzdq3LUrxjVgt5eXmpoKCgzPH8/HzzeQCAffAMBgDHcPXnL41ZLeTn56e0tLQyx0uO+fv713RJAFBn8AwGAMdw9ecvjVktFBISojNnzignJ6fUcaPRaD4PALAPnsEA4Biu/vylMauFhg0bpqKiIq1YscJ8LD8/X6tWrVJYWJh5R0YAgO3xDAYAx3D15y+bf7iYZcuWKTs72zwlu23bNp0/f16SNH78ePn6+iosLEzDhw/XvHnzlJ6ersDAQK1Zs0bJycl69tlnHVk+ALg0nsEA4Bh14flrMJlMJkcXAcvdddddSk5OLvfckiVL1KpVK0lXd535+OOPtW7dOmVnZys4OFiTJk1SRERETZYLALUKz2AAcIy68PylMQMAAAAAB+MdMwAAAABwMBozAAAAAHAwGjMAAAAAcDAaMwAAAABwMBozAAAAAHAwGjMAAAAAcDAaMwAAAABwMBozAAAAAHAwGjMAAAAAcDAaMwAAAABwMBozAAAs8Nhjj2no0KGOLsPs3Xff1a233qrc3FzzsU8++URDhw7Vvn37HFjZL+bPn69Ro0bp4sWLji4FAJwejRkAAC4mMTFRy5cv1913360GDRrY9V4rVqzQ0KFD9dprr1U5dtq0aRo6dKgOHTokSZowYYLc3Nz0ySef2LVGAKgNaMwAALDAX//6Vy1atMjRZUiSFi5cKA8PD91+++12v9fIkSPl7e2tn376SXl5eRWOO336tA4fPqx27dqpR48ekqSGDRtq7Nix+uGHH5ScnGz3WgHAldGYAQBggYCAAAUFBTm6DGVkZGjDhg0aMmSI3WfLJMnHx0fDhg1TTk6ONm7cWOG4H374QZI0duzYUsdvuukmFRUVaeXKlfYsEwBcnoejCwAA1B779+/X4sWLdeTIEeXm5qpFixYaMWKEJk6cKG9vb/O4ffv2acaMGXrggQc0cOBAzZs3T0eOHJGbm5uuu+46Pfroo2rVqlWZ6yclJWnRokXavXu3Ll26pIYNGyoiIkIPPvigWrZsWWrs0KFDFR4erhdeeEHz5s0zf+btt99W7969VVhYqMWLF2vlypVKTU1V8+bNNXbsWI0YMUITJkzQ6NGj9fzzz5uv99hjj2n//v3avHlzmbq2bNmiZcuW6ejRo8rPz1dgYKBGjx6tu+66S+7u7uZxxcXFWrVqlVasWKGzZ88qLy9PjRs3VqdOnXT33Xerd+/eVf6Mo6KilJ+fr2HDhlnyj0SSdPLkST399NO6fPmyZs+erZ49e1br5zl27FitWbNGq1at0qhRo8pcv6ioSOvWrZOHh4dGjx5d6lznzp0VGBio1atXa9KkSRbXDAB1DY0ZAMAmli9frrfeeku+vr4aOHCgmjZtqri4OC1atEj79u3TO++8o3r16pX6TGxsrL788kv17t1b48aN07Fjx7RlyxadPHlSCxYskJeXl3ms0WjUU089pcuXL2vgwIFq06aNkpOT9eOPP2rnzp2aM2eOWrduXer6GRkZmjp1qho1aqQRI0YoPz/fPMv06quvau3atWrdurVuu+02FRQUaOnSpTp8+HC1vu+5c+fq888/V/PmzTV06FD5+vrq4MGDmjNnjmJiYvTyyy+XGvvll18qMDBQkZGRatCggVJTU3Xw4EHt2bPHosbs559/liR169bNovoOHjyo5557TvXr19f777+v4OBgSdX7efbq1Utt27bV/v37lZSUVObnvHPnTqWlpWnIkCFq2rRpmRq6d++utWvXKjExUW3btrWobgCoa2jMAADX7NSpU3rnnXfUsWNHvfXWW2rcuLH53P/+9z/NmzdPy5Yt04QJE0p9Ljo6Wi+++KJGjhxpPvavf/1La9eu1datW83HCwsL9dJLL6m4uFhz585V586dzeMPHjyoGTNm6N1339Xs2bNLXT8+Pl4333yznn766VIzV3v37tXatWvVqVMnffDBB+bZvIkTJ1ZrVmf37t36/PPPFRERoX/+85+qX7++JMlkMunNN9/Ud999p40bN5pnt3744Qf5+/vr008/LTWDKEmZmZkW3fPQoUNq3ry5mjVrVuXYrVu36h//+IcCAgL0xhtvKCAgQJJ1P8+bb75Zc+fO1apVq8r8jEqWMd5yyy3l1hEaGqq1a9fq0KFDNGYAUAHeMQMAXLPvvvtORUVFmjFjRqmmTJL+8Ic/qEmTJlq/fn2Zz/Xq1atUUyZdbQAkKSYmxnxs+/btSk5O1j333FOqiZCknj17atCgQYqOjlZOTk6pc/Xq1dPDDz9cqimTpHXr1kmS7r///lINkr+/v+644w5Lv2198803kqSnn37a3JRJksFg0EMPPSSDwVDm+/bw8JCbW9n//TZq1KjK+xUUFCg9Pb3cWanfWrlypV544QUFBwfr/fffNzdlknU/z9GjR8vd3V1r1qxRcXGx+Xh6erp27Nghf39/RURElFtLSb0XLlyosm4AqKuYMQMAXDOj0ShJ2rVrl/bu3VvmvIeHh06fPl3meGhoaJljzZs3lyRlZ2ebjx05ckTS1Z3/ytt6/eLFiyouLlZiYqK6dOliPt6qVSs1adKkzPjjx49Lkvldq1/r3r17mWMVMRqNql+/vnnG6Le8vLxKfd8jRozQ8uXLdf/992vkyJHq3bu3unfvXmrJZmUyMjIkSb6+vpWOW7p0qbZt21ZmJq+ENT9PPz8/XX/99dq6dav27NljbsLWrl2rwsJCc+NWnpKmMz093aLvEwDqIhozAMA1K1mGV93t5MvbVbDkD/e/npXJysqSJP3444+VXu/KlSulvq5oZik3N1dubm5lZvckWbREsERmZqaKioq0YMGCCsdcvnzZ/PePPfaYWrVqpdWrV2vhwoVauHChPD09NXz4cD3yyCPlNpG/VtLA5efnVzru4MGDkqSIiIgyTZlk/c9z7Nix2rp1q3744QdzY7Zq1SpJv8x0lqdkm/3fLt8EAPyCxgwAcM18fHwkSWvWrLHLFu4l15w9e7YGDhxo8ecMBkOF1ysuLlZGRkaZZujixYsWX9/Hx0cGg0Hff/+9ReM9PDx0zz336J577lFqaqr279+vVatWae3atbp48aLeeOONSj/fsGFDeXh4VPk+2rPPPqtFixbp/fffl5ubW5nlmdb+PAcMGCA/Pz9t27ZNmZmZOnv2rOLj4xUeHq42bdpU+LmSRrCqxhMA6jLeMQMAXLOwsDBJvyyRc/brh4SESLq6kcZvVWdXxq5duyojI0OJiYnVrsHf31+RkZF6/fXXFRgYqL1791Ya4FyiQ4cOSk5OVkFBQYVjGjZsqDfffFNdunTRu+++q6+++qrUeWt/nu7u7ho9erTy8/O1bt0682zZb7PLfqtkOWfJjpAAgLJozAAA1+y2226Tu7u73nnnHaWkpJQ5n5WVpaNHj1p9/cGDBysgIEBLlizR/v37y5wvLCw0L9+zxI033ihJWrBgQalmKC0tTV9//bXF1ymZiXr11VfN73/9Wlpamk6dOiXp6vLD8hrBK1eu6PLly/Lw8Khwhu/XwsPDlZ+fb35PriINGzbUG2+8oS5duui9997T0qVLzeeu5edZsmTx+++/1/r16+Xr61tlpprRaJS7u3u13t8DgLqGpYwAgGsWHBysJ554Qm+++abuvfdeDRgwQIGB/9fevYO0koZhHH8kGBCvhRpkCcYLSAqJhEAQjJVFRNQ0kViIkYCIioUED1haCnbaKt4QL1iJjYLYTAyYYoLY2YooBsEQCYJusRxhz3pU1rM7B/z/6o9v3pnumfned/5QLpfT5eWlTNNUMBhUPB7/V/vb7XbNzMxoampKExMT8nq9qq+vV0FBga6urpROp1VeXq61tbUP7efz+dTR0aHDw0NFo1G1tbXp8fFRR0dHcrvdMgzj1cmJP/L7/RocHNTy8rL6+/vl9/vlcDhejvml02nFYjG5XC7l83mNjY3J6XSqqalJ1dXVenh4UCKRUCaTUSQSkd1uf/eagUBA29vbOj09ldvtfnPt9y9n8Xhc8/PzkqS+vr5PPU+n0ymPxyPTNCVJvb29bw4vyeVyOj8/l8/ne7XfDQDwF4IZAOCX6O7uVmNjo7a2tmSapgzDUHFxsRwOh8LhsILB4Kf2d7vdWlxc1MbGhk5OTnR2dqbCwkJVVlYqEAj8Y+z+e6anp1VbW6v9/X3t7u6qqqpK4XBYXq9XhmF8uFcuFovJ4/FoZ2dHqVRK2WxWZWVlqqmpUTQaffk6V1RUpJGREaVSKZmmqbu7O5WWlsrpdGp4ePjD9be0tMjlcung4EADAwPvri8pKdHc3NxLOHt6elIkEvnU8+zq6noJZm8N/ZCk4+Nj5fN59fT0fOj+AOCrKnh+fn62uggAAH4Xe3t7mp2d1eTkpEKhkNXlvOp7jQsLC2pubra6nDeNj48rk8lodXX1p+P0AQD0mAEAvqjb21v9+G7y5uZGKysrstlsam1ttaiy93V2dqqurk5LS0tWl/KmVCqldDr96k++AQB/x1FGAMCXtL6+rkQiIY/Ho4qKCl1fX8swDOVyOQ0NDcnhcFhd4k/ZbDZ9+/ZNyWRSuVzuP/lFwa+QzWY1Ojqq9vZ2q0sBgN8eRxkBAF9SMpnU5uamLi4udH9/L7vdroaGBoVCoZe+MAAA/i8EMwAAAACwGD1mAAAAAGAxghkAAAAAWIxgBgAAAAAWI5gBAAAAgMUIZgAAAABgMYIZAAAAAFiMYAYAAAAAFiOYAQAAAIDF/gQjAXNjsJyrpQAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Plot the data\n",
+ "plt.figure(figsize=(10, 6))\n",
+ "plt.plot(dataEn, dataFlux, marker=\"o\", linestyle=\"-\")\n",
+ "plt.xscale(\"log\")\n",
+ "plt.yscale(\"log\")\n",
+ "plt.xlabel(\"energies (keV)\")\n",
+ "# plt.ylabel(\"Flux (keV cm^-2 s^-1)\")\n",
+ "plt.ylabel(\"Flux_ph (ph/cm^2/s/keV)\")\n",
+ "plt.title(\"Energy Flux Data\")\n",
+ "plt.grid(True)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We use a custom class `SpecFromDat` to define a spectrum from data loaded from a CSV file `crab_spec.dat`"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### SpecFromDat Class Explanation\n",
+ "\n",
+ "The `SpecFromDat` class represents a spectrum loaded from a data file (`dat`, `txt`, `csv` etc.,). It provides methods to handle spectral data and evaluate the spectrum at specified energy values (`x`).\n",
+ "\n",
+ "#### Class Description\n",
+ "\n",
+ "- **Description**: \n",
+ " - A spectrum loaded from a data file (`dat`).\n",
+ "\n",
+ "#### Parameters\n",
+ "\n",
+ "- **K**:\n",
+ " - **Description**: Normalization factor.\n",
+ " - **Initial Value**: 1.0\n",
+ " - **Is Normalization**: True\n",
+ " - **Transformation**: log10\n",
+ " - **Min**: 1e-30\n",
+ " - **Max**: 1e3\n",
+ " - **Delta**: 0.1\n",
+ " - **Units**: `ph/cm2/s`\n",
+ "\n",
+ "#### Properties\n",
+ "\n",
+ "- **dat**:\n",
+ " - **Description**: The data file from which the spectrum is loaded.\n",
+ " - **Initial Value**: `test.dat`\n",
+ " - **Defer**: True\n",
+ " - **Units**:\n",
+ " - **Energy**: `keV`.\n",
+ " - **Flux**: `ph/cm2/s/keV`.\n",
+ " \n",
+ "#### Functionality\n",
+ "\n",
+ "- Loads flux (`dataFlux`) and energy (`dataEn`) from the specified data file (`self.dat.value`).\n",
+ "- Normalizes `dataFlux` using the widths of energy bins.\n",
+ "- Interpolates (`interp1d`) the normalized data to create a function (`fun`) for evaluating the spectrum.\n",
+ "- Evaluates the spectrum (`fun(x)`) at given energy values (`x`), scaled by the normalization factor (`K`)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 62,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "spectrum = SpecFromDat(K=1/18, dat=\"crab_spec.dat\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# XXX: Create function Write_Spec_Dat_format() to take energy and flux and convert to required format"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Read orientation file"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Read the 3-month orientation\n",
+ "# It is the pointing of the spacecraft during the the mock simlulation\n",
+ "ori = SpacecraftFile.parse_from_file(orientation_path)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Get the expected counts and save to a data file"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Define an injector by the response\n",
+ "injector = SourceInjector(response_path=response_path)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Define the coordinate of the point source\n",
+ "source_coord = SkyCoord(l=184.56, b=-5.78, frame=\"galactic\", unit=\"deg\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 4.78 s, sys: 1.34 s, total: 6.12 s\n",
+ "Wall time: 6.42 s\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 65,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG7CAYAAAAizIoLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxTUlEQVR4nO3deXhUVZ7/8U9lqWJJgUzAAIk/bBaBOAioCDYNwkOxRoNCQG1UGCWAoIi2zTaGVoODKIINjjjQOGkZkVUR7UCwkEVpFluhWQJp1ighEECTrgJJIKnfH05qjIGQVKpyq7jv1/PwSJ176t7vDdyHj+eee67F4/F4BAAAYGJhRhcAAABgNAIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQJRJVy8eFFZWVm6ePGi0aUAAIAAIBBVQnZ2tpKTk5WdnW10KQAAIAAIRAAAwPQIRAAAwPQIRAAAwPQijC4gmDmdTjmdTrndbqNLAQAAAUQgqoDD4ZDD4VBWVpaSk5ONLgcAQorH49Hly5dVXFxsdCkwgcjISIWHh/v8fQIRAMDvioqKlJubqwsXLhhdCkzCYrEoLi5OUVFRPn2fQAQA8KuSkhIdO3ZM4eHhatq0qaxWqywWi9Fl4Trm8Xh05swZnThxQq1atfJppIhABADwq6KiIpWUlOimm25SnTp1jC4HJtGoUSMdP35cly5d8ikQ8ZQZACAgwsL4JwY1p7qjkPxtBQAApkcgAgCYws0336zdu3dfs9+0adP0/vvv+3ycTZs2ad26dT59d9++fbr55pt9PvaVDBgwQFlZWdfst3r1am3fvt2vxw4lzCECAOBnXn755Wp9f9OmTcrPz1e/fv38VFH1pKenV6rf6tWr1aFDB3Xp0iXAFZV3+fJlRUQYG0kIRACAgLtzwZ065T4VsP03jmqsv436W6X79+jRQ3feead27NihkydPqnfv3nrnnXckSSNGjFCHDh00YcIEXbp0SSkpKfr8889VVFSkW265Rf/1X/+lBg0aqKCgQL/73e+0fft2hYeH64477tD48eP1zjvvqLi4WJs2bdKgQYM0bdo0ZWRkKDU1VT/++KPCw8M1c+ZM9ezZU5L04osv6v3331e9evXUv3//q9Y8YsQIhYWF6eDBgzp79qzuvvtuvfPOO6pdu7by8vI0ZswYHTp0SB6PR08//bRGjx4t6aeRsdKwc7XzTk9P15o1a/TZZ58pLS1NTz31lEaOHFnm+NOnT9f7778vm80mSfr444/VrFkzZWRkaMqUKbp8+bIaNGig+fPnKz4+Xps2bdKECRO8o3L79u3Tvffeq+PHj+v48ePq0KGDRo8erc8++0yPPfaYhgwZomeeeUZZWVmyWCwaOHCgUlNT5XK59Nxzz+nvf/+7Ll68qC5duuitt96S1Wqt9J93ZRCIAAABd8p9SjmuHKPLKOPIkSPauHGjLl26pPj4eG3btk133313mT6vv/666tatq507d0qSUlNT9cILL+g///M/NWHCBNWuXVt79uxRWFiYzpw5o0aNGmnMmDHKz8/Xm2++KUk6evSoXnzxRWVkZKhevXo6fPiwunXrpuPHj8vpdGrFihX6+uuvZbfb9eijj1ZY844dO7R9+3bVqVNH999/v+bMmaOpU6fq6aefVuvWrfXhhx8qLy9Pd9xxh9q3b3/F0Z4rnfeAAQOUmJjoDYK/9MMPP2jWrFnKzc1V7dq1deHCBYWFhSkvL0+//e1vtWnTJrVr107vv/++kpKStH///mv+/AsKCnTrrbdq5syZkqSePXuqT58+WrlypSTpzJkzkqTf/e536tatmxYuXCiPx6Pk5GT98Y9/1O9///trHqMqCEQAgIBrHNU46Pb/4IMPKiIiQhEREerQoYOOHDlSLhCtXr1aBQUFWrVqlaSflhQonePz6aefaseOHd6n6Ro1anTF46xbt06HDx9W9+7dvW1hYWH69ttvtWHDBg0dOlT16tWTJI0ePVpffvnlVWseOnSo7Ha7JOmJJ57Q3LlzNXXqVDmdTn399deSpBtvvFGDBg2S0+m8YiCqzHn/Ur169dSqVSs98sgj6tOnjxISEhQXF6fPPvtM7dq1U7t27SRJw4YN07hx45STc+3wGxkZqUceeUSS5Ha79eWXXyojI8O7vfTnuXr1am3btk2zZ8+WJO8om78RiFBlK/av0LRN0+QqdBldSpXYbXal9kxVUnyS0aUAplOV21k1pVatWt7fh4eH6/Lly+X6eDwezZs3T3369PH5OB6PR71799aSJUuu2beqj45frX9F+6nMef9SeHi4tm/frr/+9a/atGmTunTpog8++KDC70RERJR5bcvFixfLbK9Tp06llmbweDxatWqVbrnllmv2rQ6eMkOVTds0TQfPHlSOKyekfh08e1ApG1OM/vEBCCGlt6VKX0Fy4cIF7+2gxMREzZo1SyUlJZL+7xZPvXr1VFBQ4N1H37595XQ6tWfPHm9b6S04h8OhFStWyOVyyePxaMGCBRXWs3LlSrndbhUXF+u///u/5XA4vPtZuHCht44PP/xQvXv3rtK5/rLun3O5XDp9+rS6deumlJQU/eY3v9GuXbvUpUsX7d27V/v27ZMkLV26VLGxsYqNjVXz5s2VnZ3t/bksXrz4qseOiopS9+7d9cYbb3jbSr93//33a+bMmd7g9sMPP+jw4cNVOrfKYIQIVVY6MhRmCVOTqCYGV1M5ue5clXhKQm5UC4AxSkdYJk2apMLCQnXu3LlM26233qo5c+bo2WefVbt27RQZGalOnTpp4cKFeuCBB7R48WJ16NDBO6l6yZIlGj16tC5cuKCioiJ17NhRS5Ys0YABA7Rz507dfvvt15xULUmdOnVS3759debMGd19993e+T5z587Vk08+qXbt2snj8ejf//3f1blz5yqd86OPPqoRI0Zo9erVGjduXJlJ1QUFBUpKStL58+dlsVjUqlUrDR8+XPXr19f777+vxx57zDupesWKFbJYLGratKkmTpyou+66SzExMdc8t8WLF+vpp5/WrbfeqsjISA0cOFAvvfSS5syZo8mTJ6tDhw4KCwtTRESEXnvtNbVs2bJK53ctFo/H4/HrHq9DpW+7X7hwoVq3bm10OYaLmx2nHFeOYu2xOvHcCaPLqZRQrBkIVRcvXtSxY8f0q1/9qsztmVAxYMAADRs2TMOGDTO6lDJ+/vQbyqvu3ztGiAAA+F8Oh0OFhYVKTEw0uhTUMAIRAAD/y+l0Gl3CVaWlpRldwnWNSdUAgIAonWwM1ITqzgBihAgA4FdWq1VhYWE6efKkGjVqJKvVWu03kQMV8Xg8OnPmjCwWiyIjI33aB4EIAOBXYWFh+tWvfqXc3FydPHnS6HJgEhaLRXFxcT4v2kggAgD4ndVq1f/7f/9Ply9fLrM4HxAokZGR1VrBmkBUAafTKafTKbfbbXQpABBySm9f+HoLA6hJBKIKOBwOORwO7zpEAADg+sRTZgAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPR4ygymkuvOVdzsOKPLqDS7za7UnqlKik8yuhQAuK4RiGAKdptdckklnhLluHKMLqfyXFLKxhQCEQAEGIEIppDaM1UpG1PkKnQZXUql5bpzVeIpCamaASBUEYhgCknxSSE3yhI3Oy60RrMAIIQxqRoAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgeK1UbbMX+FZq2aVpIvZ4h151rdAkAAPgVgchg0zZN08GzB40uwyd2m93oEgAA8AsCkcFKR4bCLGFqEtXE4Goqz26zK7VnqtFlAADgFwSiINEkqolOPHfC6DIAADAlJlUDAADTIxABAADTIxABAADTIxABAADTIxABAADTIxABAADTM9Vj90uWLNGqVavkdrsVFxenefPmqU6dOkaXBQAADGaaQPThhx9qx44devvtt3XjjTfq6NGjiogwzekDAIAKmCIRFBcXa/HixXrrrbcUExMjSWrRooXBVQEAgGARlIHowoULWrp0qTIzM3XgwAG5XC5NmTJF/fv3L9e3qKhIixYt0vr16+VyudSiRQuNHDlSnTp18vY5c+aMCgsLtWnTJi1fvlxRUVF66KGHdN9999XkaQEAgCAVlJOqCwoKlJaWpuzsbLVs2bLCvjNmzNDy5cvVu3dvjR8/XmFhYZo4caL27Nnj7XPmzBm53W599913Wr58uV5++WUtWLBAf//73wN9KgAAIAQEZSCKjo7WRx99pBUrVujJJ5+8ar/MzExt2LBBo0aN0tixY5WYmKg333xTjRs31vz58739bDabJGnEiBGy2Wxq0aKFevXqpe3btwf8XAAAQPALykBktVoVHR19zX6bN29WeHi4EhMTvW02m00JCQnav3+/Tp8+LUm66aabFBkZKYvF4u33898DAABzC8pAVFmHDh1SXFyc6tatW6a9bdu2kqTDhw9LkmrXrq177rlH7733noqKinT8+HF9/vnn6tKlyxX3e/bsWWVlZXl/ZWdnB/ZEAACAoYJyUnVlnTt37oojSaVtZ8+e9bY9++yzmjlzpu677z7Vr19fTzzxhNq3b3/F/a5Zs0ZpaWkBqRkAAASfkA5EhYWFioyMLNdutVq920vZ7XZNnz69UvtNTExU165dvZ+zs7Mr/V0AABB6QjoQ2Ww2Xbp0qVx7UVGRd7svGjZsqIYNG1arNgAAEDpCeg5RdHS0zp07V669tI1QAwAAKiOkA1HLli114sQJnT9/vkx7ZmamdzsAAMC1hPQtsx49emjp0qVas2aNHn74YUk/3S5LT09XfHy89zUdQCjLdecqbnac0WVUmt1mV2rPVCXFJxldCgBUWtAGotK30pfe/tq6davy8vIkSYMHD1ZUVJTi4+PVs2dPLViwQPn5+YqNjdW6det06tQpTZo0qdo1OJ1OOZ1Oud3uau8LqCq7zS65pBJPiXJcOUaXU3kuKWVjCoEIQEgJ2kC0bNkynTp1yvt5y5Yt2rJliySpT58+ioqKkiRNnTpVMTExysjIkNvtVvPmzTVz5kx16NCh2jU4HA45HA5lZWUpOTm52vsDqiK1Z6pSNqbIVegyupRKy3XnqsRTElI1A4AUxIFo+fLllepns9k0duxYjR07NsAVATUrKT4p5EZZ4mbHhdZoFgD8r5CeVA0AAOAPBCIAAGB6BCIAAGB6QTuHKBjwlBkAAOZAIKoAT5kBAGAO3DIDAACmRyACAACmRyACAACmRyACAACmRyACAACmx1NmFeCxewAAzIFAVAEeuwcAwBy4ZQYAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPdYgqwMKMAACYA4GoAizMCACAOXDLDAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB4LM1aAlaoBADAHAlEFWKkaAABz4JYZAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPZ4yA+B3ue5cxc2OM7qMSrPb7Ertmaqk+CSjSwFgEAIRAL+x2+ySSyrxlCjHlWN0OZXnklI2phCIABMjEAHwm9SeqUrZmCJXocvoUiot152rEk9JSNUMwP8IRAD8Jik+KeRGWeJmx4XWaBaAgGBSNQAAMD1GiCrAu8wAADAHAlEFeJcZAADmwC0zAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgerztvgJOp1NOp1Nut9voUgAAQAARiCrgcDjkcDiUlZWl5ORko8sBAAABwi0zAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgehFGFwAAwSDXnau42XFGl1FpdptdqT1TlRSfZHQpwHWBQFQBp9Mpp9Mpt9ttdCkAAsRus0suqcRTohxXjtHlVJ5LStmYQiAC/IRAVAGHwyGHw6GsrCwlJycbXQ6AAEjtmaqUjSlyFbqMLqXSct25KvGUhFTNQLAjEAEwtaT4pJAbZYmbHRdao1lACGBSNQAAMD0CEQAAMD2fA9GRI0f0l7/8RefPn/e2FRYW6o033tCgQYP08MMP6+OPP/ZLkQAAAIHkcyB67733tGjRItWpU8fbtmDBAq1Zs0YXLlxQXl6e5syZo6+++sovhQIAAASKz4HowIED6tixoywWiyTp8uXLWrt2rdq2bauPP/5Yy5Yt0w033KCVK1f6rVgAAIBA8DkQFRQU6MYbb/R+PnjwoM6fP6+BAwfKZrOpYcOG6tq1qw4fPuyXQgEAAALF50AUHh6uS5cueT/v3r1bFotFHTt29LbVr19fBQUF1asQAAAgwHwORI0bN9auXbu8nzdu3KgmTZqocePG3rYzZ86ofv361asQAAAgwHxemLFPnz6aP3++Ro8ercjISB05ckSPPvpomT5Hjx5VXFzovBsIAACYk88jRIMGDVKPHj2UlZWlvXv3qnPnznrkkUe8248dO6bDhw/r9ttv90uhAAAAgeLzCJHVatVLL72k8+fPy2KxlHn8XpIaNGigRYsWlbmFBgAAEIx8HiHavXu3Tp8+rbp165YLQ5J0ww03yG6385QZAAAIej4HogkTJmjt2rUV9snIyNCECRN8PQQAAECN8DkQeTyeSvUpXbgRAAAgWAX05a4nTpxQ3bp1A3kIAACAaqvSpOpXX321zOcvvvhCp06dKtevuLhYeXl52rNnjzp37ly9CgEAAAKsSoHo53OGLBaLDh8+fNVJ0xaLRW3atNFTTz1VvQoBAAACrEqBaNmyZZJ+mhv00EMPaciQIUpKSirXLywsTHa7XbVr1/ZPlQAAAAFUpUD08zWFJk+erFtuuYV1hgAAQMjzeWHG/v37+7MOAAAAw/gciEplZmbq4MGDcrvdKikpKbfdYrFo+PDh1T0MAABAwPgciP75z39q6tSp2rdvX4VrEhGIAABAsPM5EL311lvau3evOnTooH79+unGG29UeHi4P2sDAACoET4Hom3btqlt27Z68803WY0aAACENJ9Xqi4sLFT79u0JQwAAIOT5HIhatmx5xVWqAQAAQo3PgWjEiBHaunWr9u/f7896AAAAapzPc4i+//57denSRePHj1fv3r3VqlWrq77ItV+/fj4X6C/jx49XZmamd+L3bbfdptdff93gqgAAQDDwORDNmDFDFotFHo9Ha9eu1dq1a8vNJ/J4PLJYLEERiCRp4sSJ6tOnj9FlAACAIONzIJo8ebI/6wAAADBMUL6648KFC1q6dKkyMzN14MABuVwuTZky5YrHLCoq0qJFi7R+/Xq5XC61aNFCI0eOVKdOncr1nTdvnubNm6dWrVpp3LhxatGiRcDOAQAAhA6fJ1UHUkFBgdLS0pSdna2WLVtW2HfGjBlavny5evfurfHjxyssLEwTJ07Unj17yvQbM2aMli1bppUrV+rOO+/U73//e124cCGQpwEAAEKEzyNEp0+frnTfmJiYKu07OjpaH330kaKjo3Xw4EGNGjXqiv0yMzO1YcMGPfnkk3r44YclSX379tWIESM0f/58zZ8/39s3Pj7e+/vf/va3Sk9P1/79+684kgQAAMzF50A0dOjQSi3KaLFYtHHjxirt22q1Kjo6+pr9Nm/erPDwcCUmJnrbbDabEhIStGDBAp0+ffqqYax0QjgAAIDPgahv375XDERut1tHjhxRbm6uOnTooMaNG1erwIocOnRIcXFx5R73b9u2rSTp8OHDiomJkcvl0sGDB70ra3/00UdyuVxlRo1+7uzZszp37pz3c3Z2dsDOAQAAGM/nQDR16tSrbvN4PFq6dKk++OADTZo0yddDXNO5c+euOJJU2nb27FlJUnFxsRYsWKBvv/1WERERatmypWbOnKmoqKgr7nfNmjVKS0sLWN0AACC4+ByIKmKxWPTwww9r+/btevvttzV9+vRAHEaFhYWKjIws1261Wr3bJemGG27QwoULK73fxMREde3a1fs5Ozs7YOcAAACMF5BAVKp169b69NNPA7Z/m82mS5culWsvKirybvdFw4YN1bBhw2rVBgAAQkdAA1FOTo6Ki4sDtv/o6GidOXOmXHvp/B9CDYDrWa47V3Gz44wuo9LsNrtSe6YqKT7J6FKAcvweiEpKSnTmzBmtW7dOW7du1e233+7vQ3i1bNlSu3bt0vnz58tMrM7MzPRuB4Drjd1ml1xSiadEOa4co8upPJeUsjGFQISg5HMguueeeyp87N7j8chut2vcuHG+HuKaevTooaVLl2rNmjXedYiKioqUnp6u+Pj4Kq9/BAChILVnqlI2pshV6DK6lErLdeeqxFMSUjXDXHwORKWPsP+SxWKR3W5XmzZtNGDAADVo0MCn/a9atUput9t7+2vr1q3Ky8uTJA0ePFhRUVGKj49Xz549tWDBAuXn5ys2Nlbr1q3TqVOn/PJ0m9PplNPplNvtrva+AMBfkuKTQm6UJW52XGiNZsF0fA5Ec+fO9Wcd5SxbtkynTp3yft6yZYu2bNkiSerTp4/3kfmpU6cqJiZGGRkZcrvdat68uWbOnKkOHTpUuwaHwyGHw6GsrCwlJydXe38AACA4BXRSdXUsX768Uv1sNpvGjh2rsWPHBrgiAABwvfJLINq7d68OHTqkCxcuqE6dOmrVqpXatWvnj10DAAAEXLUC0d69e/Xqq68qJ+en+8Iej8c7ryguLk6TJ0/Wv/7rv1a/SgAAgADyORAdO3ZMzz//vC5evKg777xTHTt2VHR0tL7//nvt2rVLX331lZ5//nm98847uvnmm/1YMgAAgH/5HIjS0tJ06dIlvfbaa+rcuXOZbcOGDdOOHTs0ZcoUpaWl6cUXX6xunYbgKTMAAMzB50C0e/du9ejRo1wYKtW5c2f16NFDX3/9tc/FGY2nzAAAMIcwX794/vx5NWnSpMI+TZo00fnz5309BAAAQI3wORBFR0dr//79FfbJzMxUdHS0r4cAAACoET4Hoq5du2r37t3605/+pMLCwjLbCgsL9e6772rXrl36zW9+U+0iAQAAAsnnOUTDhw/Xtm3b9D//8z9as2aN2rZtqwYNGuiHH37QwYMHlZ+fr6ZNm2r48OH+rBcAAMDvfA5E9evX1/z58/XOO+9ow4YN2r59u3eb1WpV//79NWbMGNWrV88vhQIAAARKtRZmvOGGGzR58mQ9//zzys7O9q5U3axZM0VEBO1bQQAAAMqocmp57733dPHiRT3++OPe0BMREaEWLVp4+1y6dEkLFy5U7dq19cgjj/iv2hrGOkQAAJhDlSZV/+1vf9O7776revXqVTgCFBkZqXr16ulPf/qTvvnmm2oXaRSHw6FXX31VTz/9tNGlAACAAKpSIMrIyJDdbtegQYOu2feBBx6Q3W7X2rVrfS4OAACgJlQpEO3bt0933HGHrFbrNftarVbdeeed2rt3r8/FAQAA1IQqBaKzZ8+qadOmle7fpEkTnTt3rspFAQAA1KQqBaKwsDBdvny50v0vX76ssDCf134EAACoEVVKK9HR0Tp27Fil+x87dkwNGzasclEAAAA1qUqB6LbbbtM333yj3Nzca/bNzc3VN998o/bt2/tcHAAAQE2oUiB64IEHdPnyZU2bNk35+flX7VdQUKA//OEPKi4u1sCBA6tbo2GcTqcmT56sefPmGV0KAAAIoCotzNi6dWsNGTJEK1as0GOPPaaBAweqY8eOatSokaSfJl1//fXX+uSTT5Sfn6+hQ4eqdevWASm8JjgcDjkcDmVlZSk5OdnocgAAQIBUeaXqcePGyWq16oMPPtDixYu1ePHiMts9Ho/CwsL0yCOPaOTIkX4rFAAAIFCqHIgsFotGjRqlhIQEpaena9++ffr+++8lSf/yL/+idu3aqX///oqNjfV7sQAAAIHg8xtYY2NjuY0EAACuCywSBAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATM/np8zMwOl0yul0yu12G10KAAAIIAJRBVipGgAAc+CWGQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD1e3VEB3mUGAP6V685V3Ow4o8uoErvNrtSeqUqKTzK6FAQQgagCvMsMAPzDbrNLLqnEU6IcV47R5VSNS0rZmEIgus4RiAAAAZfaM1UpG1PkKnQZXUqV5LpzVeIpCbm6UXUEIgBAwCXFJ4XkCEvc7LjQG9GCT5hUDQAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI+Xu1bA6XTK6XTK7XYbXQoAAAggAlEFHA6HHA6HsrKylJycbHQ5AAAgQLhlBgAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATC/C6AKCmdPplNPplNvtNroUAAAQQASiCjgcDjkcDmVlZSk5OdnocgAAQIBwywwAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJge6xABAHANue5cxc2OM7qMSrPb7Ertmaqk+CSjSwkZBCIAAK7CbrNLLqnEU6IcV47R5VSeS0rZmEIgqgICEQAAV5HaM1UpG1PkKnQZXUql5bpzVeIpCamagwGBCACAq0iKTwq5UZa42XGhNZoVJJhUDQAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATM90gWjfvn2655579Oc//9noUgAAQJAwVSAqKSnRW2+9pTZt2hhdCgAACCIRRhdQkz755BO1bdtW58+fN7oUAAAQRIJyhOjChQt699139fzzzyshIUHdu3fX2rVrr9i3qKhI8+fP1wMPPCCHw6HRo0frq6++KtevoKBAK1as0OOPPx7o8gEAQIgJykBUUFCgtLQ0ZWdnq2XLlhX2nTFjhpYvX67evXtr/PjxCgsL08SJE7Vnz54y/RYuXKghQ4bIbrcHsnQAABCCgjIQRUdH66OPPtKKFSv05JNPXrVfZmamNmzYoFGjRmns2LFKTEzUm2++qcaNG2v+/Pnefv/4xz908OBB3XvvvTVRPgAACDFBOYfIarUqOjr6mv02b96s8PBwJSYmettsNpsSEhK0YMECnT59WjExMdq9e7e+++47DR48WJLkdrsVHh6ukydPasqUKQE7DwAAEBqCMhBV1qFDhxQXF6e6deuWaW/btq0k6fDhw4qJiVFiYqJ69erl3T537lw1adJEw4YNu+J+z549q3Pnznk/Z2dnB6B6AAAQLEI6EJ07d+6KI0mlbWfPnpUk1apVS7Vq1fJut9lsql279lXnE61Zs0ZpaWn+LxgAAASlkA5EhYWFioyMLNdutVq9269k6tSpFe43MTFRXbt29X7Ozs7W9OnTq1EpAAAIZiEdiGw2my5dulSuvaioyLvdFw0bNlTDhg2rVRsAAAgdQfmUWWVFR0eXmetTqrSNUAMAACojpANRy5YtdeLEiXIrT2dmZnq3AwAAXEtIB6IePXqouLhYa9as8bYVFRUpPT1d8fHxiomJMbA6AAAQKoJ2DtGqVavkdru9t7+2bt2qvLw8SdLgwYMVFRWl+Ph49ezZUwsWLFB+fr5iY2O1bt06nTp1SpMmTap2DU6nU06nU263u9r7AgAAwStoA9GyZct06tQp7+ctW7Zoy5YtkqQ+ffooKipK0k9PjMXExCgjI0Nut1vNmzfXzJkz1aFDh2rX4HA45HA4lJWVpeTk5GrvDwAABKegDUTLly+vVD+bzaaxY8dq7NixAa4IAABcr0J6DhEAAIA/EIgAAIDpEYgAAIDpEYgAAIDpBe2k6mDAY/cAAJgDgagCPHYPAIA5cMsMAACYHoEIAACYHoEIAACYHoEIAACYHoEIAACYHk+ZVYDH7gEAMAcCUQV47B4AAHPglhkAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9HruvAOsQAQBgDgSiCrAOEQAA5sAtMwAAYHoEIgAAYHoEIgAAYHoEIgAAYHoEIgAAYHoEIgAAYHoEIgAAYHoEIgAAYHoszFgBVqoGAISqXHeu4mbHGV1GpdltdqX2TFVSfJIhxycQVYCVqgEAocZus0suqcRTohxXjtHlVJ5LStmYQiACAADVl9ozVSkbU+QqdBldSqXlunNV4ikxtGYCEQAA15Gk+CTDRll8FTc7zvDRLCZVAwAA0yMQAQAA0yMQAQAA0yMQAQAA0yMQAQAA0yMQAQAA0yMQAQAA0yMQAQAA02NhxgrwLjMAAMyBQFQB3mUGAIA5cMsMAACYHoEIAACYHoEIAACYHnOIKqGwsFCSlJ2d7fd9W/Otqnu+rqzFVmVlZfl9/wAABLtA/1vYrFkz1apVq8I+Fo/H4/H7ka8z69ev1/Tp040uAwAA+GDhwoVq3bp1hX0IRJWQn5+vnTt3avXq1XrmmWcq/b158+bp6aefrrBPdna2pk+frhdeeEHNmjWrbqnXhcr83IxiRG2BOKa/9lmd/fjy3ap+h2vQN8F8DUo1X1+gjmeG67CyfQN9HVZmhIhbZpVwww03qE+fPvr888+vmTB/LioqqtL9mzVrVqV9X8+q8nOraUbUFohj+muf1dmPL9+t6ne4Bn0TzNegVPP1Bep4ZrgOq7p/I69DJlVXgcPhCGh//CSYf25G1BaIY/prn9XZjy/f5RqsGcH+c6vp+gJ1PDNch8H+d+nnuGVmsNJFHytzfxOA/3ENAsYLhuuQESKDRUdHa8SIEYqOjja6FMCUuAYB4wXDdcgIEQAAMD1GiAAAgOkRiAAAgOkRiIJcUVGRXn31VSUlJalfv34aM2aM9u3bZ3RZgKm8/vrruv/++9WvXz8NHz5cW7duNbokwLT27dune+65R3/+85/9ul/mEAW5H3/8UcuWLVP//v3VqFEjbdy4UW+++aaWLVumOnXqGF0eYArZ2dlq0qSJrFarDhw4oOeee05Lly5V/fr1jS4NMJWSkhKNHTtWHo9Hv/71rzV8+HC/7ZsRoiBXu3ZtjRgxQjExMQoLC1OvXr0UERGh7777zujSANNo1qyZrFarJMlisejSpUs6e/aswVUB5vPJJ5+obdu2AVnNmpWq/ezChQtaunSpMjMzdeDAAblcLk2ZMkX9+/cv17eoqEiLFi3S+vXr5XK51KJFC40cOVKdOnW66v6/++47uVwuxcbGBvI0gJAVqGtw9uzZSk9PV1FRkbp06aLmzZvXxOkAISkQ12FBQYFWrFih+fPna968eX6vmREiPysoKFBaWpqys7PVsmXLCvvOmDFDy5cvV+/evTV+/HiFhYVp4sSJ2rNnzxX7FxYWavr06Ro2bJiioqICUT4Q8gJ1DT733HPKyMjQnDlz1KlTJ1kslkCdAhDyAnEdLly4UEOGDJHdbg9M0R74VWFhoefs2bMej8fjOXDggKdbt26e9PT0cv3279/v6datm2fJkiXetosXL3oeeughz5gxY8r1v3TpkmfixImel156yVNSUhK4EwBCXKCuwZ+bNGmS569//at/CweuI/6+DrOysjxPPPGE5/Llyx6Px+N55ZVXPGlpaX6tmREiP7NarZVaaXPz5s0KDw9XYmKit81msykhIUH79+/X6dOnve0lJSWaPn26LBaLpk6dyv+ZAhUIxDX4S8XFxcrJyfFLvcD1yN/X4e7du/Xdd99p8ODBuv/++/X5559ryZIlmjFjht9qZg6RQQ4dOqS4uDjVrVu3THvbtm0lSYcPH1ZMTIwkadasWTp37pxmzZqliAj+yAB/qOw16Ha7tW3bNnXt2lVWq1VffPGFdu3apVGjRhlRNnBdqex1mJiYqF69enm3z507V02aNNGwYcP8Vgv/uhrk3LlzV0zPpW2lT7CcOnVKn376qaxWa5kE/dprr6l9+/Y1UyxwHarsNWixWPTpp59qzpw58ng8io2NVUpKilq1alWj9QLXo8peh7Vq1VKtWrW82202m2rXru3X+UQEIoMUFhYqMjKyXHvpo72FhYWSpMaNG2vLli01WhtgBpW9BuvWras//vGPNVobYBaVvQ5/aerUqX6vhTlEBrHZbLp06VK59qKiIu92AIHDNQgYL5iuQwKRQaKjo3Xu3Lly7aVtDRs2rOmSAFPhGgSMF0zXIYHIIC1bttSJEyd0/vz5Mu2ZmZne7QACh2sQMF4wXYcEIoP06NFDxcXFWrNmjbetqKhI6enpio+P9z5hBiAwuAYB4wXTdcik6gBYtWqV3G63d8hv69atysvLkyQNHjxYUVFRio+PV8+ePbVgwQLl5+crNjZW69at06lTpzRp0iQjywdCHtcgYLxQuw55230ADB06VKdOnbritmXLlqlJkyaSfpo9X/r+FrfbrebNm2vkyJG66667arJc4LrDNQgYL9SuQwIRAAAwPeYQAQAA0yMQAQAA0yMQAQAA0yMQAQAA0yMQAQAA0yMQAQAA0yMQAQAA0yMQAQAA0yMQAQAA0yMQAQAA0yMQATCV7t27l/lVWFjo3bZ27Vp1795da9euNbDC//Pxxx+XqfU//uM/jC4JuG7xtnsAAZGbm6sHH3ywwj6NGzfW8uXLa6iissft16+fJCk8PDygx9q5c6eef/55derUSW+88UaFfV9++WU5nU6lpKSod+/eat26tUaMGCG3262VK1cGtE7A7AhEAAIqNjZWvXv3vuK2qKioGq7mJ40bN9bjjz9eI8e68847FRMTo6+//lqnT59WTEzMFfu53W598cUXioqKUvfu3SVJbdq0UZs2bZSbm0sgAgKMQAQgoGJjY2ssfASjsLAw9e/fX2lpaVq3bp2GDx9+xX5Op1OFhYUaMGCAbDZbDVcJgDlEAIJG9+7dNX78eJ05c0Yvv/yy7rvvPvXt21cTJ07UyZMnJUnHjx/X1KlTlZCQoL59+yolJUXff/99QOvKy8vT8OHD5XA4tGnTJm/7Dz/8oHnz5unhhx9Wr169dN999+mFF17Q0aNHy3x/wIABslgsWrt2rTwezxWPkZ6eLklKSEgI2HkAuDoCEYCg4nK5NG7cOOXm5qpv377q2LGjtm/frueee05Hjx7V2LFj9eOPP2rAgAFq06aNNm/erJdeeilg9Rw/flxjx45VXl6eXn/9dfXo0UOSlJOTo5EjR2rFihVq2rSpBg0apC5dumjnzp168sknlZmZ6d1H48aNdccdd+jkyZPatWtXuWMcPXpUBw8eVKtWrXTLLbcE7FwAXB23zAAEVE5Ojt59990rbrv11lvVuXPnMm1HjhzR0KFD9dRTT3nbZs+erdWrV+upp57Sv/3bv2nIkCGSJI/Ho0mTJmn79u3KyspS69at/Vr7/v37NWnSJEVERGjevHlq2bKld9srr7yi77//XrNmzdJdd93lbX/ssceUnJys1157TWlpad72hIQE/e1vf1N6erpuv/32MsdhdAgwHiNEAAIqJydHaWlpV/y1Y8eOcv1r166tkSNHlmnr1auXJKl+/fpKSkrytlssFu+2I0eO+LXubdu26dlnn5Xdbtfbb79dJgz94x//0L59+9S3b98yYUiSbrrpJt177706evRomVtn3bp1U/369bV582adP3/e23758mWtX79eVqv1qpPPAQQeI0QAAuquu+7SrFmzKt0/Li5OtWrVKtMWHR0tSWrevLksFssVt509e7aalf6fjRs36quvvlKLFi30+uuvq0GDBmW2l94O++GHH644+vXtt996/9u8eXNJ8gaelStXyul0auDAgZKkrVu3Kj8/Xw6HQ3a73W/nAKBqCEQAgkrdunXLtZWuFVTRtsuXL/uthv3796u4uFi33XZbuTAkSf/85z8l/TSKtG3btqvu58cffyzzOSEhQStXrlR6ero3EHG7DAgOBCIA+IVRo0bpyy+/1MqVKxUeHq5x48aV2V4azJ555hkNHjy40vtt0aKF2rRpowMHDujYsWOy2+3auXOnmjRpUm5eEYCaxRwiAPgFq9WqV155RXfffbeWLVumt956q8z2tm3bSvppJKmqSkeC/vKXvygjI0PFxcXex/IBGIdABABXYLVaNX36dP3617/W8uXLNW/ePO+2+Ph4xcfHa8OGDdqwYUO575aUlGj37t1X3K/D4VCtWrW0fv16paenKywszPsaEQDG4ZYZgICq6LF7SRo2bFjQrswcGRmp1NRUTZs2TStWrJDH49H48eMlSdOmTdOECRP00ksvaeXKlWrVqpVsNpvy8vK0b98+FRQUyOl0lttn3bp1dc899ygjI0P5+fnq3LnzVV/nAaDmEIgABFTpY/dXM2TIkKANRNL/haI//OEPWrlypTwej5555hk1bdpUixYt0rJly/TFF19o7dq1CgsLU3R0tNq3b+9dwPFKEhISlJGRIemnVawBGM/iudo68gBwHerevbs6dOiguXPnGl1KpeXm5urBBx9Uv379NHXqVKPLAa5LjBABMJ3du3d73yj/2WefBe0I1ccff6w33njD6DIAUyAQATCVESNGlPlcuo5RMGrdunWZelu1amVcMcB1jltmAADA9HjsHgAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmN7/ByRHKQsZXj//AAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "\n",
+ "file_path = \"crab_piecewise_injected.h5\"\n",
+ "\n",
+ "# Check if the file exists and remove it if it does\n",
+ "if os.path.exists(file_path):\n",
+ " os.remove(file_path)\n",
+ "\n",
+ "# Get the data of the injected source\n",
+ "injector.inject_point_source(spectrum=spectrum, coordinate=source_coord, orientation=ori, source_name=\"point_source\",\n",
+ " make_spectrum_plot=True, data_save_path=file_path, project_axes=None)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### (Optional) Compare simulated data with existing models"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Text(0.5, 1.0, 'Comparison b/w model and piecewise injected counts')"
+ ]
+ },
+ "execution_count": 67,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHTCAYAAAD/DLZnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtD0lEQVR4nO3deVwU9f8H8Ney7C7XAoKCCN54gKJ434qCihdeWJoVZmpmZWplanmU9tUus/SXpZmWHV6lqXkFnpmWZ+ZFnqSIAnK4K8ix+/n9Qbu57gLLsQzH6/l4+Fj3M5+Zee/szOyb+XzmMzIhhAARERERlTo7qQMgIiIiqqyYaBERERHZCBMtIiIiIhthokVERERkI0y0iIiIiGyEiRYRERGRjTDRIiIiIrIRJlpERERENsJEi4iIiMhGmGiRmZCQEMhkMqnDKJZ58+ZBJpNh//79UodSYV2/fh0ymQxjxowp0XL2798PmUyGefPmlUpcZUEmkyEkJMRmy1+zZg1kMhnWrFljs3WUB+XlHFJa+zIA1KtXD/Xq1Svxcsornjttp9InWhcvXsRLL72E5s2bw83NDUqlErVq1cKAAQOwatUqZGVlSR0ilSMDBgyAh4cHcnNzpQ6FiKo4Wyf+VV1ZJc/2Nl+DhN5++2289dZb0Ov16NSpE6KiouDi4oI7d+5g//79GDduHJYvX47jx49LHWq58vXXXyMjI0PqMMqcRqNBTEwMHn/8cdjbV+pDgyQydOhQdOzYET4+PlKHYlPl5Rzi6+uLCxcuwM3NrcTLiomJKYWIqCqqtL8m//vf/zB37lzUrl0bGzduRIcOHczqbN++HR9++KEE0ZVvderUkToESezYsQNZWVkYOnSo1KFQJeXm5lYqP/rlXXk5hygUCjRt2rRUltWwYcNSWQ5VPZWy6fD69euYN28eFAoFduzYYTHJAoCBAwdi165dZuUbNmxA9+7d4ebmBkdHRwQFBWHhwoUWmxkNlx61Wi2mTp2K2rVrw9HREcHBwdiyZQsAIDc3F++88w4aNWoEBwcHNGzYEMuWLTNb1sN9Wo4cOYKwsDC4ublBrVajb9++Fq+83bp1C2+//Ta6dOmCmjVrGptGn3jiCZw/f97itjH0Wfj777/x+OOPw8vLC3Z2dsa2eUv9K4QQ+Oqrr9C5c2fUqFEDDg4OqF27Nvr27Yv169ebrefEiRMYPnw4vLy8oFKpULduXUyaNAkJCQlmdceMGQOZTIbr16/j888/R1BQEBwcHODt7Y0JEyYgPT3dbB5rfPXVV2jVqhUcHR3h5eWFsWPH4vbt2/nW37x5M5ycnNC3b18AQK1ateDr62tWr27dupDJZJg/f75J+c6dOyGTyTBnzpxCY3v4uz5+/DjCw8Ph5uaGatWqYfjw4bhx4wYA4OrVqxg5ciRq1KgBR0dH9OzZE3/++afFZSYkJOCFF15AvXr1oFQqUaNGDQwbNgwnTpywWF+j0WDatGnw8/ODg4MDmjZtisWLF0Ov1+cbd0ZGBhYuXIjg4GA4OzvDxcUFnTp1wvfff1/oZy5Meno63n//ffTq1Qt+fn7GzxAREYEjR45YnMfQtJKcnIwJEybAx8cHKpUKzZo1w+rVqy3Ok52djfnz56Nhw4ZQqVSoX78+3nzzzSJ3I3j4WLp48SKGDBkCDw8PODs7o2vXrtizZ4/ZPAX10bp58yZefPFFNGjQACqVCp6enoiIiMCxY8csrl+n0+Gzzz5Dly5djOcqf39/jBs3DpcuXTKpm5ubi08//RQdO3aEq6srnJyc0KpVKyxbtszk+9ZqtVAqlejSpYvJ/JmZmXBwcIBMJsPatWtNpi1fvhwymQxffvmlsaw0ziFF3R6W5NdHqzjnnIKamb7//nv07NkT7u7ucHBwQEBAABYsWJDvPnXx4kWMHTsW9erVg0qlgpeXF7p164bly5cD+G8/AYADBw5AJpMZ/z3a5/H3339HZGSk8fxfu3ZtPPfcc7h165bFdZ84cQLh4eFQq9VwdXVFWFhYvsdXYTIyMvDuu++ibdu2UKvVcHFxQUBAACZPnow7d+6Y1C3K+amg/mKl8Z0azr9xcXGIi4sz2b4PL/fQoUMYNGgQ/Pz8oFKpULNmTXTs2BFvvfVW0TaUqITmzJkjAIiRI0cWed6ZM2cKAKJ69epi4sSJ4tVXXxXNmjUTAESPHj1EVlaWSf26deuKWrVqiY4dO4rGjRuLF154QYwfP164uLgIOzs7ER0dLYYNGyZ8fX3FuHHjxAsvvCC8vLwEALFu3TqTZe3bt08AEOHh4UKpVIr+/fuLmTNnihEjRgi5XC4cHBzEwYMHTeb5/vvvhaOjo+jfv7+YNGmSmD59uhg6dKhQKBTC2dlZnD592qT+tWvXBADRtWtX4e7uLtq3by+mTJkinnvuOXHixAkhhBA9evQQj+4ahu1Sv359MWnSJDFz5kwxZswY0axZMzF8+HCTutu2bRNKpVIoFAoxatQoMWPGDNG7d28BQNSqVUtcvXrVpH5UVJQAIEaMGCFcXV3F6NGjxbRp00SrVq0EANGzZ0+rv7+5c+cKACIiIkI4ODiIqKgoMWPGDNG1a1dj/ImJiWbzPXjwQKjVajF06FBj2ejRowUAceHCBWPZpUuXBADj/vCwV155RQAQ+/fvLzROw3fdv39/4eDgIPr27SteeeUV0adPHwFANG7cWFy4cEF4enqKLl26iGnTponhw4cLmUwmatSoITQajcnyrl69KmrVqiUAiF69eokZM2aI0aNHC6VSKZRKpdi2bZvZ523Xrp0AIFq2bCmmT58uJkyYINzd3UVERIQAIKKiokzmSU1NNX4nrVu3Fi+++KKYNGmSaNiwoQAg3njjDYufce7cuYVuDyGEOHLkiFAoFCI0NFRMmDBBvP7662LUqFHC2dlZ2Nvbi507d5rNY4i/cePGonnz5uLFF18U48ePF+7u7gKAWLNmjUl9vV4vBg8eLACIhg0bimnTpokXX3xR+Pj4GD/3o99rfgzHUvfu3YW7u7vo1q2bmDFjhoiKihIODg7Czs7O7BhfvXq1ACBWr15tUn7ixAnh6ekpZDKZCA8PF6+88oqIiooSbm5uQqlUip9//tmkflZWlvGYql27tpg4caKYPn26eOyxx4SHh4fJ8rOzs0Xfvn0FANGkSRPx3HPPiZdfflm0aNFCABBPPvmkybK7dOki7O3txb1794xlv/zyi3G/f3S/GD58uAAgrl+/biwr6TmkqNsjP4bv6NGYi3POqVu3rqhbt65Z+TPPPCMACD8/PzF27Fgxbdo00blzZwFAhISEiJycHJP627dvF46OjsLOzk70799fzJgxQ0ycOFF06tRJ1KtXTwghxKlTp4znsrp164q5c+ca/+3bt8+4rFWrVgm5XC6cnJzEyJEjxWuvvSaGDBki7OzshI+Pj4iLizNZ9+HDh4Wjo6OQy+VixIgRYubMmaJfv35CqVSK8PBwAcBk+QVJSUkRLVu2NO5XkydPFq+++qoYOnSocHFxMVlOUc9Phs9uKZbS+E6vXbsm5s6dK9zc3ISbm5vJ9t28ebMQQoidO3cKOzs74e7uLp5++mkxc+ZM8dxzz4nu3bsLLy8vq7aRQaVMtHr16iUAiJUrVxZpvt9++8144kpISDCW5+TkiIEDBwoA4p133jGZp27dugKAGDhwoHjw4IGx/ODBgwKAqFatmmjbtq1ITU01Trty5YpQKBQiODjYZFmGHyYAYunSpSbTtmzZIgAIf39/odPpjOV37twxOSEanD59Wjg7O4vw8HCTcsNOCkDMnDnT4nawdJL08PAQvr6+4v79+2b1k5KSjP/XaDTCw8ND2NnZmSWFixYtEgBE7969TcoNB0jt2rVNTgw5OTmiW7duAoD4/fffLcb6KMMBqlAoxMmTJ02mTZkyRQAQY8eONZtv+/btAoBYu3atsWzVqlUCgFi2bJmx7LPPPjN+BqVSabI9goODhaOjo1kybsnD3/U333xjMm3s2LHGfWfBggUm095++20BQCxZssSk3JCgPVr/8OHDQi6XCw8PD5Pk7J133hEAxLBhw0z2p6tXr4pq1aoVeCJ79913TcozMzNF3759hUwmE6dOnTL7jNYmWmlpaSb7ksGNGzeEj4+PaNq0qdk0wzZ89tlnRW5urrH83LlzQi6Xi4CAAJP63377rQAgOnbsKDIzM43ld+/eFQ0aNChWogVAvPrqqybTjh07Juzt7YW7u7tIT083lltKtHJyckTDhg2FSqUyS9Lj4+NFrVq1RM2aNU3OL4akZdCgQSblQuQl0Q//MWE4Jl588UWTbZSbm2vc17Zs2WIsnz17tgAgtm/fbiybMWOGkMvlolevXsLPz89YrtPphIeHh2jQoIFJDCU5hxRne+SnsB/lopxzLCVahu9z6NChIiMjw2SaYbs/fKwmJSUJV1dXoVAoLP5BduPGDZP3Be2PsbGxQqFQiIYNG4qbN2+aTIuOjhZ2dnZiyJAhxjK9Xi+aNGli9n0LIcSSJUuM+7K1idaoUaMEADFx4kSTc4gQeb8DaWlpxvdFPT+VJNEq6XdqMGzYMAHA7GKFEMLieaoglTLRCggIEAAs/gVckHHjxgkA4vPPPzebFhsbK+zs7ET9+vVNyg2J1uXLl83mqV+/vgAgYmJizKaFhIQIe3t7kxOf4Yfp0WTKwHDysuaKiRBCDBo0SKhUKpGdnW0sM+yk3t7e+Z6o8jtJ1qtXr9CT2zfffCMAiFGjRplNy8nJEfXq1RMATA4EwwFiKTH+8ssvLSae+TEcoJaSqbS0NOHm5iYcHBzMPsezzz4rFAqFSUJ8/fp140nUYMSIEcLb21ts27ZNABC7d+8WQgiRnJwsZDKZWRKZH8N33bVrV7NpBw4cEABEvXr1TPaPh2MaM2aMsezGjRsCgKhTp47Jd23w5JNPCgDiq6++Mpb5+/sLOzs7i/utYRs+fCJLTk4WcrlctG3b1uLnOX36tAAgXnvtNbPPaG2iVZCXXnrJbL8RIu+HyMnJySSZMejevbsAYHICDwsLEwDE3r17zeobfjSLmmi5ublZ/GPHsF8/fFXNUqJl+CPq0WTNwPAjaLiKk5ubK9zc3ISjo6OIj48vMEZDIlSzZk2zKytC5F2llMlkYsSIEcay/fv3CwBi6tSpxrJ27dqJ9u3bi2XLlgkAIjY2VgiRd+UJgBg/frzJcktyDinq9ihIYT/KRTnnWPpRDg4OFvb29ibnDYPc3Fzh6ekp2rVrZyz74IMPBAAxefLkQmMXouBEy/CH48MJ8cOGDBki5HK5cd/89ddfjVdgLcVquDJtTaJ1584d41UzrVZbYN3inJ9KkmiV9Ds1MCRahn29JCptZ/jiOHnyJACgV69eZtMaN24MPz8/XLt2Denp6SYdWt3d3S12lKxVqxauXbuGNm3amE3z9fVFbm4ubt++bdYPqFu3brCzM+8+FxISggMHDuDUqVPo0aOHsfznn3/GZ599huPHjyM5OdlsaILk5GSzu5xatmwJlUplaTNYNHr0aCxduhSBgYF47LHH0KNHD3Tq1MmsY29B29De3h7du3fH9evXcerUKbMOs23btjWbp3bt2gCA1NRUq2MFYLJ9DNzc3BAcHIwDBw7gwoULCA4OBgDo9Xps3boVISEhcHd3N9avW7cuGjRogP3790Ov1xv7DISFhaFHjx6wt7dHTEwM+vTpg3379kEIYfFzF8TSZ65VqxYAIDg4GHK53GSaYV+5efOmsezUqVMA8vYbhUJhtrxevXrhm2++walTp/D0009Do9Hg8uXLqF27tsX9NiQkxKwPwrFjx6DT6fIdFysnJwcAcOHChYI+bqEOHz6Mjz/+GEeOHEFiYiKys7NNpsfHx5vtN40aNYKrq6vZsh7ed1xcXADk7Z92dnbo2rWrWf3i3kbfunVrqNVqi8v76quvcOrUKURFReU7v6F/TFxcnMVta+hvdeHCBfTv3x8XL15Eeno6OnToYNxX8vP3338jJSUFjRo1woIFCyzWcXR0NPneOnXqBEdHR+Nddunp6Th58iSmT59u3L9jYmLQuHFj7N27F4Dl4/1R1p5Diro9SqIk55yMjAz8+eefqF69OpYsWWKxjkqlMtm2R48eBQD069evmBH/x7CdDhw4YLHfWmJiInQ6Hf7++2+0adPGeG62dG6Uy+Xo2rUrrly5YtW6jx07Br1ej+7du8PZ2bnAukU9P5VUaf2OjB49Gj/++CM6dOiAxx9/HD179kSXLl3g5+dX5JgqZaLl4+ODCxcuID4+vkjzGTrL5XfrtY+PD/755x+kpaWZnBzyu4vIMESApemGaYYfqId5e3tbXF7NmjVN4gSAjz/+GFOmTEG1atXQu3dv1KlTB05OTpDJZNiyZQv+/PNPix0yDcuy1kcffYQGDRpg9erVWLRoERYtWgR7e3v0798fH374Ifz9/U1iK2gbAkBaWprZtIeTHAPDdtLpdEWKtyjb8NChQ0hKSrJ4t2FoaChWrlyJkydPQqFQICkpCaGhoVCr1WjXrp3xx8jwGhoaWqQ4C9o3rN1virrNDfUL20YPu3v3LoC8E2xBnZG1Wm2+0wqzefNmREZGwsHBAb1790bDhg3h7OxsvFHjwIEDFvdlS/sNYHnfSU9Ph4eHh8UTflGPCYOi7GuWGLbtxo0bC6xn2LaG79HSjRr5LfvSpUsFduB9+HtTKpXo2rUroqOjkZSUhN9++w06nQ6hoaEICAiAj48PYmJi8PzzzyMmJgYymcyqRMvac0hRt0dJlOSck5qaCiEEkpKSrO4cXZTvrjCG7fT+++8XWM+wnYpz3OenKJ+jJL8JxVFavyPDhg0zjkzw5Zdf4vPPPwcAtGnTBgsXLkTv3r2tXlalTLS6du2KvXv3IiYmBs8++6zV8xl+2G7fvm3xL33DHXO2vj370bs1DAx3zBnWn5ubi3nz5qFmzZo4efKk2Y5c0J0kRR21WS6XY8qUKZgyZQoSExPx66+/Yt26ddi4cSPOnTuHc+fOQaVSmWxDS8rbNgTyfuBlMhmGDBliVr9Xr15YuXIloqOjoVQqAfyXTPXq1QsLFy5ESkoKYmJi4ObmhtatW5fyJylcUbe54bWwbWRpHVOnTsXixYtLFnA+Zs+eDaVSiePHjyMgIMBk2nPPPYcDBw6UeB1ubm5ISUlBTk6OWbJV0B2pBSnKvpZfTADw008/ISIiotD1GX5IrPlD0rDsoUOH4scffyy0vkGvXr3wyy+/ICYmBr/99hscHByMdyL26tULO3fuRFZWFg4dOoRmzZrBy8ur0GUW9Rxi7faQiiHOVq1aGa8WFebh7y4oKKhU1p+enm7xim5+9Yty3OenOPtgUX4TDC06lgaOLq2EzBoDBgzAgAEDcP/+ffz+++/Yvn07li9fjoEDB+LUqVMIDAy0ajmVcniHZ555BgqFAj/88IPFIQ4e9vBfyK1atQIAi7eUXr58GTdv3kT9+vXz/Qu6tPz6668Wb7E3xGWIMzk5GWlpaejcubNZkqXVaq0++IvKy8sLw4YNw4YNG9CrVy9cuXIFZ8+eNYnN0jbMzc3FoUOHAMDmCYmlH+X09HScPn3aePu1wZYtW/IdRLJXr16QyWSIiYnB3r170aBBA+Mt3qGhodDr9fj6669x6dIlhISEmDX1lQXDNv/1118tnpj27dsH4L9trlar4e/vj/j4eItNBZa+u/bt28POzs74/dnC5cuXERgYaJZk6fV6/Prrr6WyjtatW+e7vOI+euTkyZPQaDT5Ls/w/eSnY8eOAGD1tm3atCnc3d1x5syZfG/hf7Tu0aNHLV49z4/hjwnDft+5c2c4ODgYp6WkpGD58uW4f/9+ka/iAgWfQ4q6PaTi4uKCZs2a4dy5c0hJSbFqHsNn27lzp1X17ezs8r0KU9TtZDj+LZ0bdTpdkY4xw/ng4MGDuH//foF1i3p+AoBq1aoBgHGYm4eV5gDjcrncqqtczs7O6NWrFxYvXoxZs2YhOzvb6u8QqKSJVr169TBv3jxkZ2djwIAB+X4xu3btMmkrHzt2LABgwYIFSEpKMpbrdDq8+uqr0Ov1RbpCVlyXLl3Cp59+alL2008/4cCBA/D390e3bt0A5J2snJyccOLECZPL6Dk5OXj55ZeRnJxcKvFkZWXh8OHDZuU5OTnGE4yTkxMAGMcS+v777439EQyWLFmCa9euISwszOYDGq5du9bYN8Bg3rx5SE9Px6hRo4z9006ePIm4uLh8Byn18vJCs2bNcPjwYRw8eNDkR8Xw47Nw4UIA1vVTsQU/Pz/07t0b169fN+sr8vvvv+O7775DtWrVTD7jM888A71ej9dff90kqb927Ro++eQTs3V4eXlh9OjROH78OObPn2/x5HTlyhVcu3at2J+jXr16uHTpkknyIITAvHnzCv2DyVrPPPMMAOCNN97AgwcPjOUpKSn59mEqTHp6Ot5++22TsuPHj+Pbb7+Fm5tboQPgDh48GA0bNsT//d//YceOHRbrHDlyxDjSulwux6RJk5CZmYmJEyeaNadmZ2cbz1/29vZ46aWXkJCQgMmTJyMzM9Ns2QkJCWbbt3Xr1nBzc8NPP/2Ec+fOmez3hv28KPt9Uc4hRd0eUpo2bRqys7MxduxYi1daUlNTTf7gjYqKgqurK5YvX46DBw+a1X+47yUAeHp6Wkw2AODFF1+EQqHA1KlT8ffff5tNz87ONknCOnfujCZNmuDgwYP46aefTOouW7bM6v5ZAFCjRg2MHDkSCQkJxt/Gh2m1WmOTYXHOT+3btwcArF692iQ5u3HjhtmxVhKenp5ISkqyeFwcPHjQYmJouCJo2F+tUSmbDgFg1qxZyM3NxVtvvYV27dqhc+fOaNu2rfERPAcPHsSlS5dMOs517twZ06dPx3vvvYfmzZsjMjISzs7O2LlzJ86ePYuuXbvitddes3ns4eHheOWVV7Bz5060bNkSly9fxo8//ggHBwd8+eWXxsuqdnZ2mDx5MhYtWoSgoCAMHjwY2dnZ2LdvH1JSUtCzZ0/jXwslkZmZia5du8Lf3x9t2rRB3bp18eDBA/zyyy+4cOECIiIijFchXFxc8OWXX2LEiBHo0aMHRowYgTp16uDEiRPYs2cPatasaWzrtqV+/fqhS5cueOyxx+Dj44Nff/0Vv/76K+rVq4dFixYZ6xmaUwr6MQwNDTX+tf3wD45KpUKXLl2K3T+rNBkGrnzttdewZ88etG3bFjdu3MDGjRthZ2eH1atXm3TYfuWVV7Blyxb88MMPaN26Nfr27Yu0tDTjYL1bt241W8eyZctw6dIlzJkzB2vXrkXXrl3h7e2NW7du4cKFCzh27Bi+//571K9fv1ifYerUqZg4cSJatWqF4cOHQ6FQ4PDhwzh//jwGDRqEbdu2FXv7GIwaNQrr16/H1q1b0bx5cwwePBg5OTnYtGkT2rVrV6QfG4Pu3bvjiy++wO+//44uXbogISEB69evh16vx+eff15os45CocCPP/6Ivn37YsCAAejcuTOCg4Ph5OSEGzdu4NixY7h69SoSEhKMJ/e5c+fi999/x7Zt29C4cWMMHDgQarUaN27cwJ49e/D+++8bB16cPXs2/vzzT3z22WfYtm0bevXqBV9fXyQmJuLSpUs4fPgw3nnnHZNmELlcjpCQEOMP8sP7dt26ddGwYUNcuXIFcrncYufqRxXlHFKc7SGVsWPH4sSJE/j000/RsGFD9O3bF3Xq1EFKSgquXbuGgwcP4plnnsFnn30GAKhevTq+++47REZGomfPnujXrx9atGiBe/fu4cyZM7hx44bJHyuhoaFYt24dBg0ahNatW0OhUKB79+7o3r07mjZtii+//BJjx45Fs2bNEB4ejsaNGyMnJwf//PMPDh06hBo1auDixYsA8rqLrFq1Cr1798bw4cMxbNgw+Pv74/Tp04iJiUF4eLjFAbzzs2zZMpw9exafffYZ9u/fj759+0KpVOLatWvYvXu38QYjoOjnpw4dOqB79+44ePAg2rdvj169euHOnTvYtm0b+vbtm2/yWVShoaE4duwYwsPD0b17d6hUKrRs2RKDBg3C5MmTER8fjy5duhgHWT1x4gT27t2LunXrYuTIkdavqMT3LZZz58+fFy+++KJo1qyZUKvVQqFQiJo1a4rw8HDxxRdfWLzV+PvvvxddunQRLi4uQqVSicDAQLFgwQKTcXcMCro91NItzgaGW1GvXbtmLHv4dvjffvtNhIaGCrVaLVxcXETv3r3FH3/8YbacnJwc8eGHH4qAgADh4OAgvL29xZNPPimuX79ucR353RpbUNzZ2dni3XffFeHh4aJ27dpCpVKJ6tWriw4dOojly5dbHDfqjz/+EEOGDBHVq1cXCoXCOKiipdvRLcVpaZtY4+HbglevXi1atmwpHBwcRPXq1cWYMWPErVu3TOoHBgaKoKCgApe5detWAUDIZDJx584dk2n/+9//jMNlFEVBn6uw7wj53PJ98+ZNMXHiRFGnTh2hUCiEp6enGDx4sMX9Rggh0tPTxdSpU0WtWrWESqUSTZo0ER988IG4cuVKvuvPysoSS5cuFZ06dRKurq5CqVSK2rVri169eomPPvpIJCcnW/UZ82P4zpycnISnp6cYMmSIOHPmTL63e+e3LYTIf7/KysoSb731lqhfv75QKpWibt26YtasWeLBgwfFGt4hKipKnD9/XkRERAh3d3fh6OgoOnfuLHbt2mXx8wHmA5YKkXfL/Ouvvy6aNWsmHB0dhbOzs/D39xfDhw8Xa9euNRueIScnRyxdulS0a9dOODs7CycnJ+Hv7y/Gjx8vLl26ZFJXr9eLr7/+WvTq1UtUq1ZNKBQKUatWLdGlSxfxzjvviH/++ccsnk8++UQAEK6urmbDjEyYMEEAEO3bt7e4bUrjHFLU7WFJYUMBFOWcU9C5ftu2bWLAgAGiRo0aQqFQCG9vb9GuXTvxxhtvmAx4bHD27Fnx1FNPiVq1agmFQiG8vLxE9+7dzYYWunPnjhg1apTw8vISdnZ2FuM6c+aMiIqKEnXq1BFKpVJUq1ZNNGvWTEyYMMHi0ELHjx8Xffv2FS4uLsLFxUWEhoaK3377rcAhFfKj1WrFggULRFBQkHB0dBQuLi4iICBAvPzyy2bnyqKen1JTU8W4ceNEjRo1hFKpFM2aNROff/55qX6nWq1WTJw4Ufj6+gq5XG6y3PXr14uRI0cKf39/4ezsLNRqtWjWrJmYNWuWxUGvCyITQojiZoNUuvbv34+ePXti7ty5Fm9rptL1999/o0mTJpgzZ07RH6lAVd7169dRv359REVFWXykDlUuNWvWhJubG2JjY6UOhSqYStlHi8gamzdvBlBwsyERUUpKCpKTk4s1hhIREy2qsl5//XUIIYwDlxIRPSw9PR2zZ89GeHg4dDodIiMjpQ6JKiAmWkRERBakpqZi4cKFxtfnnntO6pCoAmIfLSIiIiIb4RUtIiIiIhthokVERERkI0y0rPDgwQPExsaajCRNREREVBgmWlaIi4vD+PHjERcXJ3UoREREVIEw0SIiIiKyESZaRERERDbCRIuIiIjIRphoEREREdmIvdQBlGfR0dGIjo6GVquVOhQiqsCEEMjNzYVOp5M6FKJKS6FQQC6XSx2GGSZaBQgLC0NYWBhiY2Mxfvx4qcMhogooOzsbCQkJyMjIkDoUokpNJpPBz88PLi4uUodigokWEZGN6PV6XLt2DXK5HLVq1YJSqYRMJpM6LKJKRwiBpKQk3Lx5E40aNSpXV7aYaBER2Uh2djb0ej1q164NJycnqcMhqtRq1KiB69evIycnp1wlWuwMT0RkY3Z2PNUS2Vp5vVrMo5+IqIoJDg6GRqMptN64ceOwb9++Yq9ny5YtOHr0aLHm3b59O0JCQoq97jlz5uDbb78FAOzfvx+7du0yTrt+/Trc3d2LvezS0LZtW+zfv7/QevXq1cPp06dtHg/ZDpsOiYiqGGt/uL/44osSrWfLli0IDg5Gx44dS7Sc4nj77beN/9+/fz/S0tIQHh5e5nEQ8YoWEVEVI5PJkJaWBiDvismcOXPQqVMn1K9fHwsWLDDWCwkJwZYtWwAAGo0G48ePR/v27dGiRQtMmDAB2dnZAID4+HhERkYiKCgILVq0wOzZs7Fjxw5s3boV77//PoKDg41J29q1a9GhQwe0bt0a3bt3x59//gkAyMnJwaRJk9CoUSO0b98+3ytpf//9Nxo3bgwgrwO0t7c3Zs2aBQA4ePAgevXqBQAYM2YMlixZgtOnT+Ozzz7Dt99+i+DgYJMEbO7cuWjTpg38/f2xY8cOi+ubN28eHnvsMQwaNAiNGzfGwIEDcfbsWfTt2xeNGzfGqFGjoNfrAQCJiYkYNmwYgoKC0Lx5c3z++efG5fz2228IDg5G8+bN8cwzzyA3N9c47fbt23jsscfQvn17BAUF4c0337TiW6SKgle0iIjKUNsVbXFbe9tmy6/pUhPHJxwv0jxpaWk4cuQIkpOT0bBhQzzzzDPw9fU1qfPKK6+gW7duWLlyJYQQGD9+PD7++GO89tprePLJJ9GnTx9s2rQJAJCUlIQaNWogIiICwcHBmDJlCgDg8OHD+P7773Hw4EGoVCocOnQITzzxBM6dO4cVK1YgNjYW586dAwD07dvXYqyNGzdGVlYW/vnnH6SmpqJBgwaIiYkBAPzyyy8ICwszqR8cHIyJEyciLS0NS5YsAZDXdJieno4WLVrgrbfewq5du/Dyyy+jf//+Ftd5/PhxnDhxAu7u7ggJCcG4cePwyy+/wNHREW3btsXOnTsxYMAAvPTSS2jSpAl+/PFHJCYmok2bNmjZsiVat26Nxx9/HKtXr0ZYWBj27NmDNWvWGJcfFRWFWbNmoUePHsjNzcXAgQOxceNGjBgxokjfI5VPTLSIiMrQbe1txGvipQ7DxBNPPAEAqF69Oho0aIBr166ZJVpbtmzBkSNHsHjxYgBAZmYm5HI5tFotfv31V+zevdtYt0aNGhbX89NPP+HPP/9Ehw4djGUpKSnIzMxETEwMnn76aSiVSgDA2LFjsWrVKovLCQ0NRXR0NFJTU/HUU09hxYoVSEtLQ3R0tDGZKoyDgwOGDRsGAOjUqROuXLmSb90+ffqgWrVqAIDWrVtDpVJBrVYDAFq1aoVLly4ByBvk+sSJEwAALy8vDBs2DNHR0XBycoK9vb0xCezTpw8aNGgAALh//z5iYmJw584d4/q0Wi1iY2Ot+hxU/jHRIiIqQzVdapa75Ts4OBj/L5fLTZq1DIQQ+OGHH4zNdgZFeXKGEAJRUVH43//+V2jdgu4gCwsLw/bt25GamoqPP/4Yly5dwubNm3Hp0iW0bdvWqlhUKpVxHXK5vMBR+x/dPtZsr8I+g2GaEAIAcPToUZPlUuXBRIuK7p+NwJk5QM5Ddy2FxgCuTf57f/074NT0wpflWBMIf6SZ44/ngPifC5+33iig1fumZdubAjn5nPgVaqDFfKBOZOHLJrKRojbrlRdDhgzBu+++i88//xz29vZITU3F3bt34e/vj+7du+PDDz/EzJkzAfzXdOjq6or09HTjMiIiIjB69GhMnDgRderUgV6vx8mTJ9G2bVuEhYXhm2++wRNPPAEhBFavXp1vLKGhoZg6dSo8PDzQuHFjhIWF4YUXXkDXrl0tjp/k6uqKuLi40t8ojwgLC8PKlSvxzjvvICkpCT/++CM2btyIpk2bIjc3F/v27UPPnj0RHR1tvILm4uKCnj17YtGiRZg3bx4A4NatW9Dr9fDz87N5zGR77AxPRXdmDnDvIpAZ/98//SN/0eVmmE7P95+FvipZKdbNm51qPm/Grfzr37sInJltm21CVEkZrrx89NFHcHR0RHBwMFq0aIHQ0FBcv34dQF4H9+PHj6NZs2YIDg7GsmXLAABPPfUUNmzYgFatWuGLL75At27d8N5772Ho0KFo2bIlmjVrhnXr1gEAxo8fj0aNGiEwMBBdu3ZFcHBwvjF5e3vD29sbnTp1AgD06NEDt27dQmhoqMX6Q4cOxenTp806w5e2Tz75BBcuXEBQUBB69uyJN954Ax06dIBSqcT69esxdepUBAUF4bvvvkPLli2N83377be4fPkymjdvjqCgIAwbNgx37961WZxUtmTCcN2S8mV41uHKlSvRpEmTwmeo5DI2esIpJwU6ASTq83L1x1Oq46pOYawzxCEDb6jT81uEUaJejgF3vUzKFrmmIlT1oNB5f3rghAUaN5Oy/dXvwFmmN6vrZaeHXAZkKDzgNIInMCobDx48wLVr11C/fv0K2SzUrFkzrFixAl26dJE6FKJCldfjjU2HVGT3su7ByQ5IyAVqXzckNYkmdf5PA/xfkjVL0wMw7Rj8VOHjKP5L+++//zTKZ94b9QA/xb+xW7t4oiqsSZMmCAgIkGQMLKLKhIkWFZkQ/yZXMsBX7Vtw5XJiUtItqGQCTg6u+ErqYIgqAN71RlQ6mGhRsclldrg57abUYVjFb7Ef4jXx8JU5Sh0KERFVIewMT0RERGQjTLSIiIiIbIRNh1RkA+56IfH+bXg5e+Gk1MFYKcg+G7UdAHf7bKlDISKiKoSJFhVZol6O+FwAevOBAcurL6vdhU91IEHHoR2IiKjssOmwANHR0ZgxYwaWLl0qdShERKUmODgYGk3h46iMGzcO+/btK/Z6tmzZgqNHjxZr3u3btyMkJKTY654zZw6+/fZbAMD+/fuxa9cu47Tr16/D3d292Ms2+Oyzz/D+++8XXtFGSvr9PCw7OxsDBw5EUFAQXnjhhVJZ5sPS0tKwaNEik7LSjL884xWtAoSFhSEsLMw4YCkRUWVw+vRpq+p98cUXJVrPli1bEBwcLMlYXA+PAL9//36kpaUhPDy8VNcxceLEUl1eUZX0+3nYqVOncOnSJZsN62FItGbMmGEsK834yzNe0aIiG+14H1Pd816JqOKRyWRIS0sDANSrVw9z5sxBp06dUL9+fSxYsMBYLyQkBFu2bAEAaDQajB8/Hu3bt0eLFi0wYcIEZGfn9XmMj49HZGQkgoKC0KJFC8yePRs7duzA1q1b8f777yM4ONj4o7p27Vp06NABrVu3Rvfu3fHnn38CAHJycjBp0iQ0atQI7du3z/dKx99//218sLUQAt7e3pg1axYA4ODBg+jVqxcAYMyYMViyZAlOnz6Nzz77DN9++63ZI3jmzp2LNm3awN/fHzt27LC4vnnz5mH48OHo1asXmjZtikGDBhkfjzNv3jxMmTLFWPeDDz5A+/bt0bp1a4SHhxufr7ht2za0aNECwcHBaN68OX766ScAwO3bt/HYY4+hffv2CAoKwptvvgkA2LNnD/r06QMAuHfvHhQKBVasWAEA+PrrrzF27Fiz7+eLL75AYGAggoODERQUhN9//x0AcOnSJQwYMADt2rVDixYtjI9Hetj58+cxevRo/PPPPwgODsbXX39t9tmWLVuGMWPGAADWrFmDsLAwjBo1CkFBQWjbti2uXr1qrLt69WoEBwejZcuWaNu2La5fv46JEydCo9EgODjY+ODvh+NPTEzEsGHDEBQUhObNm+Pzzz83Lq+gfbQi4BUtKrIpLvfgIwcSdPekDoWoYrqwGLi4uPB6Hq2BHltNyw5EACn53IbSdBoQMK3I4aSlpeHIkSNITk5Gw4YN8cwzz8DX13Qw4ldeeQXdunXDypUrIYTA+PHj8fHHH+O1117Dk08+iT59+mDTpk0A/nuodEREBIKDg40/2IcPH8b333+PgwcPQqVS4dChQ3jiiSdw7tw5rFixArGxsTh37hwAoG/fvhZjbdy4MbKysvDPP/8gNTUVDRo0QExMDADgl19+QVhYmEn94OBgTJw4EWlpaViyZAmAvKbD9PR0tGjRAm+99RZ27dqFl19+Gf3797e4zkOHDuHMmTOoWbMmJk2ahJkzZxoTH4PvvvsOsbGxOHLkCORyOdauXYtJkybh559/xptvvonPP/8cnTp1gl6vx717eefOqKgozJo1Cz169EBubi4GDhyIjRs3YuDAgRg5ciSysrKwb98+tGvXDtHR0ZgwYQJ++eUX9OvXzyzGV155BRcvXoSPjw9ycnKQlZUFnU6HUaNG4ZtvvkHTpk2RkZGBjh07okOHDmjXrp1x3sDAQHzxxReYMmWK8Wqn4QHX+Tl27BhOnz6N+vXrY8aMGcYHju/fvx9vv/02fvvtN/j4+CAjIwNAXjNrcHBwvldTX3rpJTRp0gQ//vgjEhMT0aZNG7Rs2dJ4NdSafbS8YqJFRFTWcu7lPei8MA9qWyhLyn/enOL98fPEE08AAKpXr44GDRrg2rVrZj9iW7ZswZEjR7B4cV6CmJmZCblcDq1Wi19//RW7d+821q1Ro4bF9fz000/4888/0aFDB2NZSkoKMjMzERMTg6effhpKpRIAMHbsWKxatcrickJDQxEdHY3U1FQ89dRTWLFiBdLS0hAdHW1Mpgrj4OCAYcOGAQA6deqEK1eu5Ft3wIABqFmzJgBgwoQJxvketmXLFhw7dgxt2rQBAOh0OpN4X375ZURGRqJPnz4IDg7G/fv3ERMTgzt37hjrabVaxMbGYsSIEQgODsbhw4eNfYWnTZsGvV6PvXv3WuwXFhoaiqeeegqDBg1Cv3790LhxY5w/fx7nzp3DyJEjjfU0Gg3Onz9vkmgVh+HqkuH/hr7MP//8M5566in4+PgAAJycrHvoWXR0NE6cOAEA8PLywrBhwxAdHW1MtKzZR8srJlpERGVN4Qo4WvEj4WAhYXGokf+8CtdihfPwA3jlcjlyc3PN6ggh8MMPPxib7Qy0Wq1Z3fwIIRAVFYX//e9/hdaVyWT5TgsLC8P27duRmpqKjz/+GJcuXcLmzZtx6dIlY7NUYVQqlXEdcrncJDEqTmxCCMycORMTJkwwm7Z48WKcO3cO+/btQ1RUFEaPHo1JkyYBAI4ePWrxAchhYWGIjo7GwYMHsWjRIgQFBeGbb75BtWrVjEnfw3744QecOHEC+/fvR//+/bFgwQIEBQXBw8PD6j55D7O3tzfZJg8ePDCZbs0+UxKPbmNbr8+WmGhRleIj1wM5GkCh/q/QVs04D3u0SSdHA2wPKHw+hRpoMR+oE1l4Xao4AorXxAfAfB8sI0OGDDE2D9nb2yM1NRV3796Fv78/unfvjg8//BAzZ84E8F/ToaurK9LT043LiIiIwOjRozFx4kTUqVMHer0eJ0+eRNu2bREWFoZvvvkGTzzxBIQQWL16db6xhIaGYurUqfDw8EDjxo0RFhaGF154AV27doVcbj7sjKurq7G/VHHs2LEDd+7cgbe3N7744guz5knD9vnwww8RGRkJDw8P5OTk4OzZs2jVqhUuXryIZs2aoVmzZrC3t8eePXswffp09OzZE4sWLTI20926dQt6vR5+fn4ICwvDY489hrp168LZ2RlhYWGYM2cOhgwZYrbu3NxcXL9+HW3btkXbtm2RnJyMP/74A5GRkXB1dcXq1avxzDPPAAAuX74MDw8PeHh4FPiZ/f398fPPP0On0yErKws//PADmjRpUui2GjRoEMaMGYPnn3/epOnQ1dUVmZmZyM7ONl61fFhYWBhWrlyJd955B0lJSfjxxx+xcePGQtdXEbAzPFUJWvHwri5MJxqacQr79yDJfMGGZpzC/pk16Qjr5rt3ETgzu7Q3B5HVDFcWPvroIzg6OiI4OBgtWrRAaGgorl+/DiCvg/vx48fRrFkzBAcHGztcP/XUU9iwYQNatWqFL774At26dcN7772HoUOHomXLlmjWrBnWrVsHABg/fjwaNWqEwMBAdO3aFcHBwfnG5O3tDW9vb3Tq1AkA0KNHD9y6dQuhoaEW6w8dOhSnT5826wxvrW7duuGJJ55A06ZNERcXZ/GK3OjRozFmzBj07NkTLVu2RHBwMPbu3QsAmDVrFpo1a4ZWrVph7dq1xsTq22+/xeXLl9G8eXMEBQVh2LBhxo72bdu2RXp6uvEz9e7dG3FxcRY/o06nw9ixY9G8eXMEBwfjxIkTmDZtGuzt7bF9+3b8+OOPaNGiBZo1a4Znn30WmZmZhX7mYcOGoVatWggICMDAgQPRqlUrq7ZV9+7dMXfuXPTt2xctW7ZEjx49kJSUBA8PDzz99NNo0aKFxauOn3zyCS5cuICgoCD07NkTb7zxhkkTc0UmE0KIwqtVbYbhHVauXGlVRl/ZJayVw0euR4LODj5PWX+5XUrP/Z8npjinwF1uB5+RaRXjilZmPND5O8C1MeDRpvB1ULnz4MEDXLt2DfXr17fYPFTeNWvWDCtWrECXLl2kDkUy8+bNM+lIT+VXeT3e2HRIVcLPWY5YkQzYyQCfpVY02Vly7SRwwq+Y8y4GdlqRzJnwhfrntzG/53xEMtGiMtakSRMEBARIMgYWUWXCRIuqBLVKDWgAvdAjXmPF3V7lhQaYvW82IgPZR4vKlq0GrqxoChvmgKgwTLSoSpjfcz5m75sNTVbhjx0pLxK0CdALfYWKmYiITDHRoiK7mmuPlNxspMEePlIHY6XIwMgKd1Uo6v88kfEgBU6qwjuuUvmm1+ulDoGo0iuvXc6ZaFGRPZ5aA/GaePiqa+Cm1MFUYotc0+BTDUjQpUkdChWTUqmEnZ0dbt26hRo1akCpVBY4PhQRFY8QAklJSZDJZFAoFFKHY4KJFhGRjdjZ2aF+/fpISEjArVu3pA6HqFKTyWTw8/OzOJaalJhoERHZkFKpRJ06dZCbm1uk0ceJqGgUCkW5S7IAJlpERDZnaM4ob00aRGR7TLSoyJa6pcBJDWTYpUgdChERUbnGRIuKrKMyCz5yIEGXJXUoRERE5RoTLan9sxE4MyfvkSwG/uOBoLmm9TZbOSJ5528A75D/3t/ZD/z2pHXzDn3kHsK/3gIurzSr5mXHW9WJiIiswURLamfm5D04+GHZ6eb1Mq0czfzRq0y6LOvnfVR2usV55f/enW76oGYiIiJ6FBMtiWVkJsIJgE4Aifq8xOW741/gowMbTOodq2FdUjP5xydxJFtlfN9JmYVP3Kybt91i06tmU53v4Qkn83l1Qg+NHlhy3xWfW7VkIiKiqomJlsTuZd2Dkx2QkAvUvm5oktP8++8/tax+CkuyybtNADbdtXZe06tXr2qAVwuo3bS6l7ULpmK4L+xwT6fHfV45JCKqsJhoSUyIf5MrGeCr9pU2mCJQq9SY33O+1GFUaiHJ3v+OwO/NEfiJiCooJlrlhFxmh5vT+HNKRERUmbBNgoiIiMhGeEVLYkezVXDSZyLDToWhUgdDREREpYqJlsReSvf4tx+OBxMtMvGmOh32jkCuvYXhPoiIqEKoUonWd999hx9++AFarRZ+fn5YunQpnJycpA6LyKLBDhn/jsCfIXUoRERUTFUm0frxxx/x+++/49NPP4WXlxeuXr0Ke/sq8/GJiIhIAlUi09DpdFi7di2WLVsGb29vAEDDhg0ljoqIiIgqu3KZaGVkZGDdunU4f/48Lly4AI1Gg5kzZ6Jfv35mdbOzs7Fq1Srs2bMHGo0GDRs2xLhx49CuXTtjnaSkJGRlZWH//v3YsGEDXFxcMHLkSAwaNKgsP5ZF66slwb0akIYkqUMhIiKiUlYuh3dIT0/HmjVrEBcXB39//wLrLly4EBs2bEDv3r0xefJk2NnZYfr06Thz5oyxTlJSErRaLW7cuIENGzbg7bffxooVK/Dnn3/a+qMUqoF9Lpqp8l6JiIiocimXiZanpyc2b96MjRs34vnnn8+33vnz5xETE4MJEyZg0qRJiIiIwJIlS1CzZk0sX77cWE+lynv235gxY6BSqdCwYUOEhobi6NGjNv8sREREVHWVy0RLqVTC09Oz0HoHDhyAXC5HRESEsUylUmHAgAE4d+4c7ty5AwCoXbs2FAoFZDKZsd7D/yciIiKyhXKZaFnr0qVL8PPzg7Ozs0l5QEAAAODy5csAAEdHR/To0QNff/01srOzcf36dezduxcdO3a0uNzk5GTExsYa/8XFxdn2gxAREVGlVC47w1vr7t27Fq98GcqSk5ONZVOnTsW7776LQYMGwc3NDc8++yxatmxpcblbt27FmjVrbBIzERERVR0VOtHKysqCQqEwK1cqlcbpBmq1GgsWLLBquREREejSpYvxfVxcnNXzEpWWmCwHqHQZyJI74EmpgyEiomKp0ImWSqVCTk6OWXl2drZxenFUr14d1atXL1FsRCU14141xGsy4KuuxkSLiKiCqtB9tDw9PXH37l2zckMZkyUiIiKSUoVOtPz9/XHz5k3cv3/fpPz8+fPG6URERERSqdBNhyEhIVi3bh22bt2KUaNGAchrNtyxYwcCAwONj9spz5ZoXZGTnQaF0hXvSh0MlTt17YEdnneAzX4FV2z1HlDvif/e34sFYkKtW0n4McDR57/3l1cAf71d+HyujYHQvaZlh0cDqSeBFvOBOpHWrZ+IqBIrt4nWDz/8AK1Wa2wGPHz4MBITEwEAw4cPh4uLCwIDA9GzZ0+sWLECaWlp8PX1xa5du3D79m28/vrrJY4hOjoa0dHR0Gq1JV5Wfr7NdEa8Jg2+amcmWmRifbUk1PUE/BS5QGZ8wZVzM0zf662Yx0DoTN/naK2bV+lmXpZyHND8DZyZzUSLiAjlONFav349bt++bXx/8OBBHDx4EADQp08fuLi4AABmzZoFb29v7N69G1qtFg0aNMC7776L4ODgEscQFhaGsLAwxMbGYvz48SVeHlFRfJ3hginOKUjQ2cHHxafgyvZOpu/t7AFHX+tWJJObvle4WDevg4Urxpq/815zNNatm4iokiu3idaGDRusqqdSqTBp0iRMmjTJxhERla2fsxyxIhnwVfvg5lM3izazaxNgaBHnMfCfkPevOBx9rb+SRkRUBZTbRKuq8LLTAfb/vhIREVGlwkRLYj97JsLHC0jQJUodCpVTCdoE+C0upDN8OXGsRgJ85EBGbiacCq9ORFTpMdEiKqfUKjWgAfRCj3hNxWiO03kCkAP3su4x0SIiAhOtApXFXYdE+Znfcz5m75sNTVYF6lguy0sIhdBLHAgRUfnARKsAvOuQpBQZGInIwIo1RELCWjkAJllERAYVemR4IiIiovKMV7SIqNR8l+EMWa4Gwt4Zr0gdDBFROcBEi4hKzUf3XRGv0cBX7cpEi4gIbDokIiIishkmWkREREQ2wqbDAnB4ByIiIioJJloFKIvhHR5PqY67GYnwdKqOgzZZA1HZOVYjAT41gQRdgtShEBGVC0y0JHZVp0B8NuCrUkgdChEREZUy9tEiIiIishEmWkREREQ2wqZDiQ1xyMADGeCgypA6FCIiIiplTLQk9oY6HT7uQIIuXepQiIiIqJSx6ZCIiIjIRnhFqwAcR4uIiIhKgolWAcpiHC0iIiKqvNh0SERERGQjvKJFRKVmcroH7mUmw9XRAxulDoaIqBxgokVEpeZItgrxGYCvXCV1KERE5QKbDomIiIhshIkWERERkY2w6VBiiXo5dHo97kIOH6mDISqhTsos3HMCXJVZUodCRFQuMNGS2IC7XojXxMNX7YWbUgdDVEKfuKXAxwNI0KVIHQoRUbnApkMiIiIiG+EVrQJwZHgiIiIqCSZaBeDI8ERERFQSTLQktsg1FSpnIEueKnUoREREVMqYaEksVPUAPnIgQfdA6lCIiIiolLEzPBEREZGNMNEiIiIishE2HRJRqUvV25kOwPvXW8DllYXP6NUD6PKtaVlML+De34XPGzQH8J/w3/vMBGBXO2vCBUJjANcm1tUlIioCJlpEVGq0wg6AHmPTPHH04QnZ6UBmfOELyEo2L3twx7p5cx4ZhkXorJsPAPS51tUjIioiJlpEVGo+0LhiinMKbuoeObUo3QBH38IXoKpuXubgnZeoFUbhYvpeJrdunQBgx1MhEdkGzy5EVGp+znLEimTAV/3IhKC5ef+KI3Rv8eZz9AGG8sFWRCQtdoYnIiIishFe0SoAH8FDVAVc/w7IzQDsnYB6T0gdDRFVMky0ClAWj+D56YET7HO1yLV3wkSbrIGICnRqel6neUdfJlpEVOqYaElsgcYN8RotfNVuTLSo0kjQJsBvsZ/UYVjlWI0E+MiBjNxMOEkdDBFVOky0iKjUqFVqQAPohR7xGiuHVpCYzhOAHLiXdY+JFhGVOiZaRFRq5vecj9n7ZkOTpZE6FOvJ8hJCIfQSB0JElRETLSIqNZGBkYgMjJQ6jCJJWCsHwCSLiGyDiZbE9le/A68aQKK4I3UoREREVMo4jpbEnGV6uMrzXomIiKhyYaJFREREZCNMtIiIiIhshH20iKhKS9TLodPrcRdy+EgdDBFVOky0iKhKG3DXC/GaePiqvcBHUBNRaWPTIREREZGNMNEiIiIishEmWkREREQ2wj5aBYiOjkZ0dDS0Wq3UoRCRjSxyTYXKGciSp0odChFVQky0ChAWFoawsDDExsZi/PjxNlnHjHvuyHiQAicHd3xlkzUQUUFCVQ/gIwcSdA+kDoWIKiEmWhKLyXJEvBbwlTlKHQoRERGVMvbRIiIiIrIRJlpERERENsKmQ4kF2WejtgPgbp8tdShERERUyphoSezLanfhUx1I0N2VOhQiIiIqZWw6JCIiIrIRJlpERERENsJEi4iIiMhG2EeLiKq0nx44wT5Xi1x7J0yUOhgiqnSYaBFRlbZA44Z4jRa+ajcmWkRU6th0SERERGQjTLSIiIiIbISJFhEREZGNsI8WEVVp+6vfgVcNIFHckToUIqqEeEVLYiHJ3nC9kvdKRGXPWaaHqzzvlYiotDHRkth9YQeNPu+ViIiIKhf+uhMRERHZCBMtIiIiIhthZ3iJjXfSQCgAmUIjdShEVZqXnR7Y7Jf3pv1ngO/A/yamnAAODLZuQQMvAAr1f+8vLAYuLi58Po/WQI+tpmUHIoCUk5brK9RAi/lAnUjr4iIiSTDRktgEZy185ECCTit1KERVklbYAdBDLgOQGZ9XqMs0raTL/m9aoYTp25x71s37oLaFsqT8580EcGY2Ey2ico6JVgGio6MRHR0NrZZJEFFl9YHGFVOcU+Aut4OPi09eodzRtJJcCTj6WrlEmelbhat18zrUsFxmad4HCYDQAzm8Ek5U3smEEKLwalVbbGwsxo8fj5UrV6JJkyaluuyEtXL4yPVI0NnB5yldqS6biArnt9gP8Zp4+Kp9cXPaTanDsc5mv7wrXY6+wNAKEjNRFcUrWkREFU3TaXlNkgpXqSMhokIw0SIiqmgCpkkdARFZicM7EBEREdkIEy0iIiIiG2HTIRFRRZOjQd4wEjLTMbuIqNxhokVEBCBBmwC/xX5Sh2GVYzUS4CPXI0PhAacRd6UOh4gKUOxE68qVK7h48SJCQkLg7OwMAMjKysKyZctw+PBhqFQqjBw5EoMHWzmachX1V44S17MfQCNTwkfqYIiqILVKDWgAvdAjXmPtoKTS0nkCkAP3su7BSepgiKhAxU60vv76a/z111/o37+/sWzFihXYunUrHB0dkZ6ejo8++gi1atVCu3btSiXYymhsmue/Y/h4gqPhEJW9+T3nY/a+2dBkVaDBP2V5CaEQeokDIaLCFDvRunDhAlq1agWZLG8U5NzcXOzcuRMBAQH4+OOPodFoMG7cOGzatImJFhGVW5GBkYgMrFiPsUlYKwfAJIuoIij2XYfp6enw8vIyvr948SLu37+PwYMHQ6VSoXr16ujSpQsuX75cKoESERERVTTFTrTkcjlycnKM70+fPg2ZTIZWrVoZy9zc3JCenl6yCImIiIgqqGI3HdasWROnTp0yvt+3bx98fHxQs2ZNY1lSUhLc3NxKFmEl96X7XajdAI2Mdw4RERFVNsVOtPr06YPly5fjueeeg0KhwJUrV/DUU0+Z1Ll69Sr8/CrG7dJSCVJkw0cOJOiypQ6FiIiISlmxmw6HDRuGkJAQxMbG4q+//kKHDh3w5JNPGqdfu3YNly9fRuvWrUslUCIiIqKKpthXtJRKJd566y3cv38fMpkMTk6mo7lUq1YNq1atMmlKJCIiIqpKin1F6/Tp07hz5w6cnZ3NkiwAcHd3h1qt5l2HRESlbGyqJzrdyHslovKt2InWlClTsHPnzgLr7N69G1OmTCnuKoiIyIK/cpU4+iDvlYjKt2InWkIIq+oYBjQlIiIiqmqKnWhZ4+bNm8bnIBIRERFVNUXqDL9o0SKT94cOHcLt27fN6ul0OiQmJuLMmTPo0KFDySIkIiIToapMZAjASZUpdShEVIgiJVoP98mSyWS4fPlyvp3dZTIZmjZtihdffLFkERIRkYlFrmnwqQYk6NKkDoWIClGkRGv9+vUA8vpejRw5EiNGjEBkpPnDWO3s7KBWq+Ho6Fg6UVZiK+67QOTcg0zhgrlSB0NERESlqkiJ1sNjYs2YMQONGzfmOFkltDJDjXjNPfiq1Uy0iIiIKpliD1jar1+/0oyDiIiIqNIpdqJlcP78eVy8eBFarRZ6vd5sukwmQ1RUVElXQ0RERFThFDvRunfvHmbNmoWzZ88WOKZWeUm0Jk+ejPPnz0MulwMAWrRogffff1/iqABnmR5qu7xXIiIiqlyKnWgtW7YMf/31F4KDgxEeHg4vLy9jElNeTZ8+HX369JE6DBP7q9+BjzeQoLsjdShERERUyoqdaB05cgQBAQFYsmQJR38nIiIisqDYiVZWVhZatmxpkyQrIyMD69atw/nz53HhwgVoNBrMnDnTYgf87OxsrFq1Cnv27IFGo0HDhg0xbtw4tGvXzqzu0qVLsXTpUjRq1AgvvPACGjZsWOqxExERERkU+xE8/v7+FkeFLw3p6elYs2YN4uLi4O/vX2DdhQsXYsOGDejduzcmT54MOzs7TJ8+HWfOnDGpN3HiRKxfvx6bNm1C27Zt8dprryEjI8Mm8RMR2dJ9YYd7urxXIirfin2UjhkzBocPH8a5c+dKMx4AgKenJzZv3oyNGzfi+eefz7fe+fPnERMTgwkTJmDSpEmIiIjAkiVLULNmTSxfvtykbmBgIJycnKBSqfDEE0/AycnJJrETEdlaSLI33K7mvRJR+VbspsOUlBR07NgRkydPRu/evdGoUaN8HyAdHh5epGUrlUp4enoWWu/AgQOQy+WIiIgwlqlUKgwYMAArVqzAnTt34O1t+UQkk8kKvFuSiIiIqKSKnWgtXLjQmKzs3LkTO3fuNOuvJYSATCYrcqJlrUuXLsHPz88swQsICAAAXL58Gd7e3tBoNLh48aKxT9nmzZuh0WgQGBhok7iIiIiIgBIkWjNmzCjNOIrl7t27Fq98GcqSk5MBADqdDitWrMA///wDe3t7+Pv7491334WLi4vF5SYnJ+Pu3bvG93FxcTaInoiIiCq7Cv0InqysLCgUCrNypVJpnA4A7u7uWLlypdXL3bp1K9asWVMqMRIRlbY31emwdwRy7dOlDoWIClHiR/BISaVSIScnx6w8OzvbOL04IiIi0KVLF+P7uLg4LFiwoHhBEhGVssEOGfCRAwk63jlNVN4VO9G6c8f6kczz65BeUp6enkhKSjIrNzT7Va9evVjLrV69erHnLaqxqZ5Iy0yCu6MndpbJGomosvCy0wOb/cwn+A4A2n9uWrarLZBpxZA8rd4D6j3x3/t7sUBMqHUBhR8DHH3+e395BfDX2/+9V6iBFvOBOpHWLY+oEih2ovXYY49ZNVipTCbDvn37iruaAvn7++PUqVO4f/++SYf48+fPG6eXd3/lKhH/APBVKKUOhYgqCK2wA6CHXAYgM968QlaKeVnmbct1H5X7yFUyfa518wGA0Jm+z9GazpsJ4MxsJlpUpRQ70erbt6/FREur1eLKlStISEhAcHAwatasWaIACxISEoJ169Zh69atGDVqFIC8ZsMdO3YgMDDQZlfSiIik9IHGFVOcU+Aut4OPi495BZWHeZmjledieyfT93b2gKOvdfPKHnnercLlv3kfJABCD+RorFsWUSVR7ERr1qxZ+U4TQmDdunX4/vvv8frrrxdr+T/88AO0Wq2xGfDw4cNITEwEAAwfPhwuLi4IDAxEz549sWLFCqSlpcHX1xe7du3C7du3i73eh0VHRyM6OhparbbEyyIiKi0/ZzliRTLgq/bBzaduWjdT+PHircy1CTDUynU8yn9C3j8gr4nT2itjRJWITTrDy2QyjBo1CkePHsWnn35arI7k69evN3nEz8GDB3Hw4EEAQJ8+fYxDM8yaNQve3t7YvXs3tFotGjRogHfffRfBwcEl/hxhYWEICwtDbGwsxo8fX+LlWRKqykSGAJxUmTZZPhEREUnHpncdNmnSBNu3by/WvBs2bLCqnkqlwqRJkzBp0qRirUdqi1zT4FMNSNClSR0KERERlTKbPpE0Pj4eOp2u8IpERERElVCpX9HS6/VISkrCrl27cPjwYbRu3bq0V0FERBWNa2NA6QY48CYlqlqKnWj16NGjwOEdhBBQq9V44YUXirsKIiKqLEL3Sh0BkSSKnWgZHtD8KJlMBrVajaZNm6J///6oVq1aiQIkIiIiqqiKnWh98sknpRlHucThHYiIiKgkKvSzDm2tLIZ3ICIqrgRtAvwWW3gETzmlVqkxv+d8RAZyZHiqOkol0frrr79w6dIlZGRkwMnJCY0aNUJQUFBpLJqIiB6hVqkBDaAXesRrKsYgoN94A9XlQPbvzwJMtKgKKVGi9ddff2HRokWIj8870IUQxn5bfn5+mDFjBpo3b17yKImIyGh+z/mYvW82NFkV53E2PZzi4WcPJOjYFYOqlmInWteuXcOrr76KBw8eoG3btmjVqhU8PT2RkpKCU6dO4dixY3j11Vfx2WefoV69eqUYcuVyX9jhnk6P+8KmQ5oRUSUSGRhZ4ZrfEtbKAeilDoOozBU70VqzZg1ycnLw3nvvoUOHDibTRo8ejd9//x0zZ87EmjVrMG/evJLGWWmFJHsjXhMPX7U3ivk0MSIiIiqnin0Z5fTp0wgJCTFLsgw6dOiAkJAQnDp1qtjBEREREVVkxb6idf/+ffj4+BRYx8fHB/fv3y/uKiTH4R2IiIioJIqdaHl6euLcuXMF1jl//jw8PT2LuwrJcXgHIiIiKoliNx126dIFp0+fxhdffIGsrCyTaVlZWfjyyy9x6tQpdO3atcRBVmZvqtOx0ivvlYiIiCqXYl/RioqKwpEjR/DNN99g69atCAgIQLVq1ZCamoqLFy8iLS0NtWrVQlRUVGnGW+kMdsiAjxxI0GVIHQoRERGVsmInWm5ubli+fDk+++wzxMTE4OjRo8ZpSqUS/fr1w8SJE+Hq6loqgRIRERFVNCUasNTd3R0zZszAq6++iri4OOPI8HXr1oW9PZ/uQ0REeb7LcIYsVwNh74xXpA6GqAwVORv6+uuv8eDBA4wdO9aYTNnb26Nhw4bGOjk5OVi5ciUcHR3x5JNPll60RERUIX103xXxGg181a5MtKhKKVJn+OPHj+PLL7+Eq6trgVesFAoFXF1d8cUXX+DkyZMlDpKIiIioIirSFa3du3dDrVZj2LBhhdYdOnQovvnmG+zcuROtW7cudoBS4jhaREREVBJFSrTOnj2LNm3aQKlUFlpXqVSibdu2+Ouvv4odnNQ4jhYRERGVRJGaDpOTk1GrVi2r6/v4+ODu3btFDoqIiCqXYzUSIBrlvRJVJUVKtOzs7JCbm2t1/dzcXNjZFXtMVCIiIqIKrUhNh56enrh27ZrV9a9du4bq1asXOaiqJCbLASpdBrLkDuD9mURERJVLkS43tWjRAidPnkRCQuGXfhMSEnDy5Em0bNmy2MFVBTPuVcNjt/NeiYiIqHIpUqI1dOhQ5ObmYs6cOUhLS8u3Xnp6OubOnQudTofBgweXNEYiIiKiCqlITYdNmjTBiBEjsHHjRjz99NMYPHgwWrVqhRo1agDI6yx/4sQJbNu2DWlpaXjsscfQpEkTmwROREREVN4VeWT4F154AUqlEt9//z3Wrl2LtWvXmkwXQsDOzg5PPvkkxo0bV2qBEhEREVU0RU60ZDIZJkyYgAEDBmDHjh04e/YsUlJSAAAeHh4ICgpCv3794OvrW+rBlrWyGLD0Z89EeHoCd5Fos3UQERGRNIr95GdfX99KP4hnWQxY6mWng48ckOt0Nlk+ERERSYeDXBERERHZSLGvaBEREVlrcroH7mUmw9XRAxulDoaoDDHRIiIimzuSrUJ8BuArV0kdClGZYtMhERERkY0w0SIiIiKyETYdEhGRzXVSZuGeE+CqzJI6FKIyxUSLiIhs7hO3FPh4AAm6FKlDISpTbDokIiIishFe0ZLYOxo3PMhKhYPKDcukDoaIiIhKFa9oSWzLAyesupf3SkRERJULr2gVoCyedUhEVJV42emBzX7/FQy9aVrhr7eAyyutWFAPoMu3pmUxvYB7fxc+b9AcwH/Cf+8zE4Bd7fKvr1ADLeYDdSILXzbRI5hoFaAsnnVIRFQVaIUdAD3kMgCZ8flXzE4veLpBVrJ52YM71s2b88gfz0JX8HyZAM7MZqJFxcJES2IN5DlwUwKe8hypQyEispkPNK6Y4pwCd7kdfFx88q+odAMcfQtfoKq6eZmDd16iVhiFi+l7mTz/dT5IAIQeyNEUvlwiC5hoSWy9RzJ8agAJOgt/nRERVRI/ZzliRTLgq/bBzadu5l8xaG7ev+II3Vu8+Rx9zJswDTb7WXeVjCgfTLSIiIjyExoD6HMBO/5cUvFwzyEiIsqPaxOpI6AKjsM7EBEREdkIEy0iIiIiG2HTIRERUX6ufwfkZgD2TkC9J6SOhiogJlpERET5OTU9765DR18mWlQsbDokIiIishEmWkREREQ2wqZDIiIqMwnaBPgt9iu8YjlxrEYCfORARm4mnKQOhiokJloSG3DXC4n3b8PL2QsnpQ6GiMhG1Co1oAH0Qo94TcUZaV3nCUAO3Mu6x0SLioWJlsQS9XLE5wLQy6UOhYjIZub3nI/Z+2ZDk1XBnhkoy0sKhdBLHAhVVEy0ChAdHY3o6GhotdrCKxMRUb4iAyMRGRgpdRhFlrBWDoBJFhUfE60ChIWFISwsDLGxsRg/frzU4RAREVEFw0RLYqMd7yNHDiiU96UOhYiIiEoZEy2JTXG5Bx85kKC7J3UoRET0iES9HDq9Hnchh4/UwVCFxESLiIgoHwPueiFeEw9ftRduSh0MVUgcsJSIiIjIRphoEREREdkIEy0iIiIiG2EfLSIionwsck2FyhnIkqdKHQpVUEy0iIiI8hGqevDvneEPpA6FKig2HRIRERHZCBMtIiIiIhth06HErubaIyU3G2mw52B4RERElQwTLYk9nlrj38HwanAwPCIiokqGTYdERERENsJEi4iIiMhGmGgRERER2Qj7aElsqVsKnNRAhl2K1KEQERFRKWOiJbGOyqx/B8PLkjoUIiJ6xE8PnGCfq0WuvRMmSh0MVUhMtIiIiPKxQOOGeI0Wvmo3JlpULOyjRURERGQjvKJVgOjoaERHR0Or1UodChEREVVATLQKEBYWhrCwMMTGxmL8+PFSh0NEREQVDBMtIiKifOyvfgdeNYBEcUfqUKiCYh8tIiKifDjL9HCV570SFQcTLSIiIiIbYaJFREREZCPsoyWx7zKcIcvVQNg74xWpgyEiIqJSxURLYh/dd0W8RgNftSsTLSIiokqGTYdERERENsIrWkRERIXwkeuB+O2A78D/ClNOAAcGW7eAgRcAhfq/9xcWAxcXFz6fR2ugx1bTsgMRQMrJgudTqIEW84E6kdbFRzbDRIuIiCgfWmEH4N+hHXSZphN12UBmvJVLEqZvc+5ZN++D2hbKkgqfNxPAmdlMtMoBJloSO1YjAT41gQRdgtShEBHRIz7QuGKKcwrc5XbwkTuaTpQrAUdfK5ckM32rcLVuXocalssKmjczHqgfBbi3sDI2siUmWkRERPn4OcsRK5IBX7UPbj7cbAgAHm2AoTeLt+CAaXn/iuPRpkQq19gZnoiIiMhGmGgRERER2QibDomIiCqTHA3yOt/LTO90JEkw0SIiIqpMtgfkdYh39C1+HzIqNWw6JCIiIrIRJlpERERENsJEi4iIiMhGmGgRERER2Qg7w0tscroH7mUmw9XRAxulDoaIiCxK0CbAb7Gf1GFY5ViNBPjIgYzcTDhJHQwx0ZLakWwV4jMAX7lK6lCIiOgRapUa0AB6oUe8xtrnGkpL5wlADtzLusdEqxxgokVERJSP+T3nY/a+2dBkaaQOxXqyvIRQCL3EgRDARIuIiChfkYGRiAyMlDqMIklYKwfAJKu8YKIlsU7KLNxzAlyVWVKHQkRERKWMiZbEPnFLgY8HkKBLkToUIiKqBMameiItMwnujp7YKXUwxESLiIioMvkrV4n4B4CvQil1KIQqOI7W2bNn0aNHD3z11VdSh0JERESVXJVKtPR6PZYtW4amTZtKHQoRERFVAVWq6XDbtm0ICAjA/fv3pQ6FiIjIJkJVmcgQgJMqU+pQCOU00crIyMC6detw/vx5XLhwARqNBjNnzkS/fv3M6mZnZ2PVqlXYs2cPNBoNGjZsiHHjxqFdu3Ym9dLT07Fx40YsX74cS5cuLauPQkREVKYWuabBpxqQoEuTOhRCOW06TE9Px5o1axAXFwd/f/8C6y5cuBAbNmxA7969MXnyZNjZ2WH69Ok4c+aMSb2VK1dixIgRUKvVtgydiIiIyKhcJlqenp7YvHkzNm7ciOeffz7feufPn0dMTAwmTJiASZMmISIiAkuWLEHNmjWxfPlyY72///4bFy9exMCBA8sifCIiIiIA5bTpUKlUwtPTs9B6Bw4cgFwuR0REhLFMpVJhwIABWLFiBe7cuQNvb2+cPn0aN27cwPDhwwEAWq0Wcrkct27dwsyZM232OYiIiKhqK5eJlrUuXboEPz8/ODs7m5QHBAQAAC5fvgxvb29EREQgNDTUOP2TTz6Bj48PRo8eXabxEhERUdVSoROtu3fvWrzyZShLTk4GADg4OMDBwcE4XaVSwdHRMd/+WsnJybh7967xfVxcXGmGbaJdkg/iNfHwVfvgps3WQkRERFKo0IlWVlYWFAqFWblSqTROt2TWrFkFLnfr1q1Ys2ZNieMjIiKiqq1CJ1oqlQo5OTlm5dnZ2cbpxREREYEuXboY38fFxWHBggXFC5KIiIiqrAqdaHl6eiIpKcms3NDsV7169WItt3r16sWel4iIiMigQida/v7+OHXqFO7fv2/SIf78+fPG6eXdVOd7kKkAYX9P6lCIiKgSuC/scE+nx31RLkdwqnIq9LcQEhICnU6HrVu3Gsuys7OxY8cOBAYGwtvbW8LorPOE031Mq5b3SkREVFIhyd5wu5r3StIrt1e0fvjhB2i1WmMz4OHDh5GYmAgAGD58OFxcXBAYGIiePXtixYoVSEtLg6+vL3bt2oXbt2/j9ddfL3EM0dHRiI6OhlarLfGyiIiIqOopt4nW+vXrcfv2beP7gwcP4uDBgwCAPn36wMXFBUDeHYTe3t7YvXs3tFotGjRogHfffRfBwcEljiEsLAxhYWGIjY3F+PHjS7w8IiIiqlrKbaK1YcMGq+qpVCpMmjQJkyZNsnFEREREREVTbhMtIiIiKro31emwdwRy7dOlDoXARIuIiKhSGeyQAR85kKDLkDoUQgW/65CIiIioPOMVrQLwrkMiIiIqCSZaBeBdh0RERFQSTLQkdjRbBSd9JjLsVBgqdTBERERUqphoSeyldA/Ea+Lhq/ZgokVERFTJsDM8ERERkY0w0SIiIiKyESZaRERERDbCPloFKIvhHdZXS4J7NSANSTZbBxERVR0xWQ5Q6TKQJXfAk1IHQ0y0ClIWwzs0sM/9dwTfXJssn4iIqpYZ96ohXpMBX3U1JlrlAJsOiYiIiGyEiRYRERGRjTDRIiIiIrIR9tEiIiKqRH72TISnJ3AXiVKHQmCiRUREVKl42engIwfkOp3UoRDYdEhERERkM7yiVYCyGEeLiIiIKi8mWgUoi3G0iIiIqPJioiWxJVpX5GSnQaF0xbtSB0NERESliomWxL7NdEa8Jg2+amcmWkRERJUMO8MTERER2QgTLSIiIiIbYdOhxLzsdID9v69ERERUqTDRktjPnonw8QISdBzBl4iISu4djRseZKXCQeWGZVIHQ2w6JCIiqky2PHDCqnt5ryQ9JlpERERENsKmwwJwZHgiIqqIGiuA/TUSgM1+hVcOPwY4+vz3/vIK4K+3C5/PtTEQute07PBoIPFA4fP6jweC5pqWbQ8AWswH6kQWPn8FwkSrABwZnoiIKiJ7GeAj1wOZ8YVXFo/cjJWjtW4+pZt5WVaydfNmp5u+114H7l0EzsxmokVERETlW64AEnR28HHxKbyyTG76XuECOPoWPp+Dt3mZqrp18z6apB0cnPeaoyl83gqGiRYREVEl83cO0C7JBzefuln0mf0n5P0rji7fFm++rLvFm68CYGd4IiIiIhthokVERERkI0y0iIiIiGyEfbQk9nhKddzNSISnU3UclDoYIiIiKlVMtCR2VadAfDbgq1JIHQoRERGVMjYdEhEREdkIEy0iIiIiG2HTocSGOGTggQxwUGVIHQoREZE0On8D6LIAuUrqSEodE60ClMWzDt9Qp8PHHUjQpRdal4iIyFoJ2gT4LbbiWYflhFqlxvye8xFpYcD5ioyJVgH4rEMiIqpo1Co1oAH0Qo94jRXPHSwvNMDsfbMRGchnHRIREVE5Nb/nfMzeNxuarIrz3MAEbQL0Ql+hYrYWEy0iIqJKJDIwssJdFRqxrAbuZSbDVZkldSiljokWERERSeoTtxT4eAAJuhSpQyl1HN6BiIiIyEaYaBERERHZCBMtIiIiIhthokVERERkI+wML7FEvRw6vR53IYeP1MEQERFRqWKiJbEBd70Qr4mHr9oLN6UOhoiIiEoVmw6JiIiIbISJFhEREZGNMNEiIiIishH20ZLYItdUqJyBLHmq1KEQERFJol2Sz7/9lX0qXX9lJloFiI6ORnR0NLRarc3WEap6AB85kKB7YLN1EBERkTSYaBUgLCwMYWFhiI2Nxfjx46UOh4iIiCoYJlpWyMrKe5p4XFxcqS87OdkZ9+z0SNbb4V5sbKkvn4iIqLxTpinhfN8ZSp0SsTb4Laxbty4cHBxKfbnWkAkhhCRrrkD27NmDBQsWSB0GERERFcPKlSvRpEkTSdbNRMsKaWlp+OOPP7Blyxa8/PLLVs+3dOlSvPTSSwXWiYuLw4IFC/Dmm2+ibt26JQ21UrBmu0lFithssc7SWmZJllOceYs6D4/B4inPxyBQ9vHZan1V4Ti0tq6tj0Mpr2ix6dAK7u7u6NOnD/bu3VukjNjFxcXq+nXr1pUs2y5virLdypoUsdlinaW1zJIspzjzFnUeHoPFU56PQaDs47PV+qrCcVjU5VfG45DjaBVBWFiYTetTnvK83aSIzRbrLK1llmQ5xZmXx2DZKO/brazjs9X6qsJxWN73pbLApkOJGe5olLL9mKgq4zFIJL3KfBzyipbEPD09MWbMGHh6ekodClGVxGOQSHqV+TjkFS0iIiIiG+EVLSIiIiIbYaJFREREZCNMtMq57OxsLFq0CJGRkQgPD8fEiRNx9uxZqcMiqlLef/99DBkyBOHh4YiKisLhw4elDomoyjp79ix69OiBr776SupQrMI+WuVcZmYm1q9fj379+qFGjRrYt28flixZgvXr18PJyUnq8IiqhLi4OPj4+ECpVOLChQuYNm0a1q1bBzc3N6lDI6pS9Ho9Jk2aBCEEOnfujKioKKlDKhSvaJVzjo6OGDNmDLy9vWFnZ4fQ0FDY29vjxo0bUodGVGXUrVsXSqUSACCTyZCTk4Pk5GSJoyKqerZt24aAgIAK9RQHjgxfyjIyMrBu3TqcP38eFy5cgEajwcyZM9GvXz+zutnZ2Vi1ahX27NkDjUaDhg0bYty4cWjXrl2+y79x4wY0Gg18fX1t+TGIKixbHYOLFy/Gjh07kJ2djY4dO6JBgwZl8XGIKiRbHIfp6enYuHEjli9fjqVLl5bVRykxXtEqZenp6VizZg3i4uLg7+9fYN2FCxdiw4YN6N27NyZPngw7OztMnz4dZ86csVg/KysLCxYswOjRo+Hi4mKL8IkqPFsdg9OmTcPu3bvx0UcfoV27dpDJZLb6CEQVni2Ow5UrV2LEiBFQq9W2DL30CSpVWVlZIjk5WQghxIULF0S3bt3Ejh07zOqdO3dOdOvWTXz33XfGsgcPHoiRI0eKiRMnmtXPyckR06dPF2+99ZbQ6/W2+wBEFZytjsGHvf766+K3334r3cCJKpHSPg5jY2PFs88+K3Jzc4UQQrzzzjtizZo1Nv4UpYNXtEqZUqm0amTbAwcOQC6XIyIiwlimUqkwYMAAnDt3Dnfu3DGW6/V6LFiwADKZDLNmzeJf0kQFsMUx+CidTof4+PhSiZeoMirt4/D06dO4ceMGhg8fjiFDhmDv3r347rvvsHDhQpt9htLCPloSuXTpEvz8/ODs7GxSHhAQAAC4fPkyvL29AQAffPAB7t69iw8++AD29vzKiEqDtcegVqvFkSNH0KVLFyiVShw6dAinTp3ChAkTpAibqFKx9jiMiIhAaGiocfonn3wCHx8fjB49ukzjLQ7+akvk7t27FrN9Q5nhjqbbt29j+/btUCqVJhn/e++9h5YtW5ZNsESVkLXHoEwmw/bt2/HRRx9BCAFfX1/Mnj0bjRo1KtN4iSoja49DBwcHODg4GKerVCo4OjpWiP5aTLQkkpWVBYVCYVZuuIU8KysLAFCzZk0cPHiwTGMjqgqsPQadnZ3x8ccfl2lsRFWFtcfho2bNmmXTuEoT+2hJRKVSIScnx6w8OzvbOJ2IbIfHIJH0qsJxyERLIp6enrh7965ZuaGsevXqZR0SUZXCY5BIelXhOGSiJRF/f3/cvHkT9+/fNyk/f/68cToR2Q6PQSLpVYXjkImWREJCQqDT6bB161ZjWXZ2Nnbs2IHAwEDjHYdEZBs8BomkVxWOQ3aGt4EffvgBWq3WeOnz8OHDSExMBAAMHz4cLi4uCAwMRM+ePbFixQqkpaXB19cXu3btwu3bt/H6669LGT5RhcdjkEh6PA7zyIQQQuogKpvHHnsMt2/ftjht/fr18PHxAZB3N4Xh+U5arRYNGjTAuHHj0L59+7IMl6jS4TFIJD0eh3mYaBERERHZCPtoEREREdkIEy0iIiIiG2GiRURERGQjTLSIiIiIbISJFhEREZGNMNEiIiIishEmWkREREQ2wkSLiIiIyEaYaBERERHZCBMtIiIiIhthokVEVUr37t1N/mVlZRmn7dy5E927d8fOnTsljPA/P/30k0ms//vf/6QOiYiKyF7qAIiockpISMDjjz9eYJ2aNWtiw4YNZRSR6XrDw8MBAHK53Kbr+uOPP/Dqq6+iXbt2+PDDDwus+/bbbyM6OhqzZ89G79690aRJE4wZMwZarRabNm2yaZxEZBtMtIjIpnx9fdG7d2+L01xcXMo4mjw1a9bE2LFjy2Rdbdu2hbe3N06cOIE7d+7A29vbYj2tVotDhw7BxcUF3bt3BwA0bdoUTZs2RUJCAhMtogqKiRYR2ZSvr2+ZJTXlkZ2dHfr164c1a9Zg165diIqKslgvOjoaWVlZ6N+/P1QqVRlHSUS2wj5aRFRudO/eHZMnT0ZSUhLefvttDBo0CH379sX06dNx69YtAMD169cxa9YsDBgwAH379sXs2bORkpJi07gSExMRFRWFsLAw7N+/31iempqKpUuXYtSoUQgNDcWgQYPw5ptv4urVqybz9+/fHzKZDDt37oQQwuI6duzYAQAYMGCAzT4HEZU9JlpEVK5oNBq88MILSEhIQN++fdGqVSscPXoU06ZNw9WrVzFp0iRkZmaif//+aNq0KQ4cOIC33nrLZvFcv34dkyZNQmJiIt5//32EhIQAAOLj4zFu3Dhs3LgRtWrVwrBhw9CxY0f88ccfeP7553H+/HnjMmrWrIk2bdrg1q1bOHXqlNk6rl69iosXL6JRo0Zo3LixzT4LEZU9Nh0SkU3Fx8fjyy+/tDitWbNm6NChg0nZlStX8Nhjj+HFF180li1evBhbtmzBiy++iGeeeQYjRowAAAgh8Prrr+Po0aOIjY1FkyZNSjX2c+fO4fXXX4e9vT2WLl0Kf39/47R33nkHKSkp+OCDD9C+fXtj+dNPP43x48fjvffew5o1a4zlAwYMwPHjx7Fjxw60bt3aZD28mkVUefGKFhHZVHx8PNasWWPx3++//25W39HREePGjTMpCw0NBQC4ubkhMjLSWC6TyYzTrly5UqpxHzlyBFOnToVarcann35qkmT9/fffOHv2LPr27WuSZAFA7dq1MXDgQFy9etWkCbFbt25wc3PDgQMHcP/+fWN5bm4u9uzZA6VSme9NA0RUcfGKFhHZVPv27fHBBx9YXd/Pzw8ODg4mZZ6engCABg0aQCaTWZyWnJxcwkj/s2/fPhw7dgwNGzbE+++/j2rVqplMNzQLpqamWrxa988//xhfGzRoAADGRGrTpk2Ijo7G4MGDAQCHDx9GWloawsLCoFarS+0zEFH5wESLiMoVZ2dnszLDWFcFTcvNzS21GM6dOwedTocWLVqYJVkAcO/ePQB5V72OHDmS73IyMzNN3g8YMACbNm3Cjh07jIkWmw2JKjcmWkREj5gwYQJ+/fVXbNq0CXK5HC+88ILJdEPC9/LLL2P48OFWL7dhw4Zo2rQpLly4gGvXrkGtVuOPP/6Aj4+PWb8tIqoc2EeLiOgRSqUS77zzDjp16oT169dj2bJlJtMDAgIA5F35KirDlauff/4Zu3fvhk6nMw7/QESVDxMtIiILlEolFixYgM6dO2PDhg1YunSpcVpgYCACAwMRExODmJgYs3n1ej1Onz5tcblhYWFwcHDAnj17sGPHDtjZ2RkfB0RElQ+bDonIpgoa3gEARo8eXW5HQlcoFJg/fz7mzJmDjRs3QgiByZMnAwDmzJmDKVOm4K233sKmTZvQqFEjqFQqJCYm4uzZs0hPT0d0dLTZMp2dndGjRw/s3r0baWlp6NChQ76P5SGiio+JFhHZlGF4h/yMGDGi3CZawH/J1ty5c7Fp0yYIIfDyyy+jVq1aWLVqFdavX49Dhw5h586dsLOzg6enJ1q2bGkc2NSSAQMGYPfu3QDyRo0nospLJvJ7HgQRUSXUvXt3BAcH45NPPpE6FKslJCTg8ccfR3h4OGbNmiV1OERUBLyiRURVzunTp9G9e3cAwC+//FJur6j99NNP+PDDD6UOg4hKgIkWEVUpY8aMMXlvGIerPGrSpIlJvI0aNZIuGCIqFjYdEhEREdkIh3cgIiIishEmWkREREQ2wkSLiIiIyEaYaBERERHZCBMtIiIiIhthokVERERkI0y0iIiIiGyEiRYRERGRjTDRIiIiIrKR/wfSA4WxXDuSoAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "model_injected = Histogram.open(\"model_injected.h5\").project(\"Em\")\n",
+ "piecewise_injected = Histogram.open(\"crab_piecewise_injected.h5\").project(\"Em\")\n",
+ "\n",
+ "ax, plot = model_injected.draw(label=\"injected with model\", color=\"green\")\n",
+ "\n",
+ "piecewise_injected.draw(\n",
+ " ax, label=\"injected with piesewise function\", color=\"orange\", linestyle=\"dashed\"\n",
+ ")\n",
+ "\n",
+ "\n",
+ "ax.set_xscale(\"log\")\n",
+ "ax.set_yscale(\"log\")\n",
+ "ax.legend()\n",
+ "ax.set_ylabel(\"Counts\")\n",
+ "ax.set_title(\"Comparison b/w model and piecewise injected counts\")"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "cosipy",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/docs/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb b/docs/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb
index f4a2f72a..ee658d56 100644
--- a/docs/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb
+++ b/docs/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb
@@ -1607,7 +1607,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAG7CAYAAAB6sxkSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFlElEQVR4nOzdd1yVZf/A8c9hyQYRFzJkKLhYLtx779yjUsvKHDkqrWz5VI85M8vqsVLbjsqBgoqKew/EhWxBRURlb875/cHPYwQq4MEDh+/79Xper8f7uu/7+h7ihi/XfV3fS6FSqVQIIYQQQohKT0/bAQghhBBCiNKRxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE2HZGdnExYWRnZ2trZDEUIIIUQFkMRNh8TGxjJlyhRiY2O1HYoQQgghKoAkbkIIIYQQVYQkbkIIIYQQVYQkbkIIIYQQVYQkbkIIIYQQVYSBtgMQQgghqruCggLy8vK0HYaoYPr6+hgYGKBQKMp9D0nchBBCCC1KT08nPj4elUql7VDEM2Bqakr9+vUxMjIq1/WSuAkhhBBaUlBQQHx8PKamptSuXfupRmJE5aZSqcjNzeXOnTtER0fTqFEj9PTKPmNNEjchhBBCS/Ly8lCpVNSuXRsTExNthyMqmImJCYaGhsTGxpKbm4uxsXGZ7yGLE4QQQggtk5G26qM8o2xFrtdQHEIIIYQQooJJ4iaEEEKIIho2bIiHhwfe3t40adKEcePGkZGRUe77rVu3jmvXrj2y/fjx47Ro0QIfHx927dpF//79iYyMLNW11Y0kbkIIIYQoZvPmzZw/f57Lly+TmprKunXryn2vJyVf69ev54UXXuDcuXP06dOHnTt34urqWqprqxtZnCCEEEJUElveO0JmSk6F9mFqVYOhn3Yo9fk5OTlkZGRQs2ZN9bGlS5eyceNG8vPzqVevHt999x0ODg5s376d9957Dz09PfLz8/n000+5c+cOp0+fZubMmSxYsIDPPvuM/v37q++1aNEiNmzYgKmpKb/++ivBwcF4e3vj7+/P8ePHH3ttdSSJmxBCCFFJZKbkkHmvYhO30hoxYgTGxsZER0fTsmVLRo0aBcBvv/3GtWvXOHbsGPr6+vz8889Mnz6drVu3smDBAr799lvat2+PUqkkNTUVa2trfvnlF958800GDhxYrJ/58+dz9epVWrVqxfTp04u0vfzyy4+9tjqSxE2U2p07d6hdu7a2wxBCCJ1lalWj0vSxefNmmjdvTn5+Pq+++irz5s1j2bJlbNmyhdOnT9OyZUugsBadvr4+AD169GDWrFmMGDGC3r174+3tXVEfo9qSxE2Uyu3bt2nYsCE9evRg3rx5dOrUSdshCSGEzinLK8xnxcDAgOHDh/PWW2+xbNkyVCoVCxYsYPLkycXOXb58OZcuXWL//v28+OKLjB8/nrffflsLUesuWZwgSmX16tVkZ2ezY8cOtm3bpu1whBBCPEP79u3D3d0dgMGDB7N69Wru3bsHFBYRPnfuHABXr16lWbNmTJ8+nalTp3L8+HEALC0tSUlJKVffT3OtLpLETZSKvb09Dg4OGBgYMHPmzCJt+fn58lAJIYSOGTFiBN7e3jRr1owrV66wcuVKAJ5//nkmTJhA165d8fLywtvbm/379wPwzjvv0KxZM3x8fPj555/56KOPAHjllVdYuHAh3t7e7Ny5s0xxPM21ukihkl1tdUZYWBhTpkxhzZo16r+MNCkvL4+TJ0/SoUPRofyNGzfy8ssvM2XKFGbNmoWDg4PG+xZCCF2UnZ1NdHQ0zs7O5dr+SFQ9T/vfXEbcRKkZGhoWS9pUKhXLli0jLS2N5cuXExISoqXohBBCCN0niVsllZyczNtvv03v3r0ZN24cp06d0nZIJcrJycHb25saNWrQsmVLBgwYUKRdBnSFEEIIzZHErZJasWIFNjY2bNu2jddff50PP/ywUs4jMzY25rvvvuP69ev89NNPxTZKnj17NpMmTSIiIkJLEQohhBC6QxK3SigzM5NDhw4xadIkjI2N6dixI25ubhw+fFjboT1SnTp1aNq0aZFj8fHxfPPNN6xbt47WrVuTmZmppeiEEEII3aBzddwuXLjAzz//zKVLl8jNzaV27dr07duXF198scL6zMzMZP369YSHhxMeHk5KSgoTJ04sscZNZmYm33//Pfv37yctLQ1HR0fGjx9Pjx491OfEx8djYmJC3bp11cdcXFyIjo6usM9QES5evIipqSm5ubm89tprmJqaajskIYQQokrTqRG3PXv2MHPmTMzNzXnvvfdYvHgx48ePr/B5VikpKWzfvp28vLwnFqZdsGABgYGBTJw4kcWLF+Ph4cHHH3/Mnj171OdkZWVhZmZW5DozMzOysrIqJP6K0rdvX2JiYvjkk0+YO3dukTalUsnSpUvVdYCEEEII8WQ6M+J2584dli5dyuDBg5kzZ476uK+v72Ovy8jIIDQ0FD8/vxLbjx49io+PDyYmJo+8R7169dixYwcKhYLk5GT8/f1LPO/YsWOcPn2aDz74gJ49e6rjS0hI4JtvvqF79+7o6+tjYmJCRkZGsTgfF0NlZWVlxXvvvVfs+IYNG3jrrbf49NNPWbVqFRMmTNBCdEIIUfmc2RxeYfduOaJRhd1bPBs6M+Lm7+9PVlYW48aNK/N18+fPJyAgoFjb1q1beeedd9i1a9dj76FQKIpNyi/JoUOHMDExoWvXrkWO9+/fn6SkJC5fvgwUFrvNysoiMTFRfc6Dmi8lCQoKYv78+axateqJMVQGKpWKTz75BChcPVunTh0tRySEEOKfGjZsiIeHB97e3jRp0oRx48YVG1Aoi3Xr1nHt2rVHth8/fpwWLVrg4+PDrl276N+/P5GRkaW6FmDOnDn88ccf5Y5P0+bOncvvv/9eIffWmcQtJCQES0tLrl+/zuTJk+nWrRuDBw9m6dKlj/1mGz16NCNGjGDRokVs3bpVfXzTpk0sW7aMCRMmMHToUI3EGB0djZOTEwYGRQc6XV1d1e0ApqamdOzYkbVr15KTk8PRo0cJDw8vVkPtgZ49e7Jo0SJmzJihkTgrmkKhYNeuXUycOJE+ffrQu3fvIu15eXlaikwIIcQDmzdv5vz581y+fJnU1FTWrVtX7ns9Kflav349L7zwAufOnaNPnz7s3LlT/bvxSdfeuHGDgIAARo8eXaaY8vPzS3WsLNc/MG/ePD766COUSmWZYioNnUnckpKSyM7O5oMPPqB79+4sX76csWPHsmvXLt5+++3HznObPn06EyZMYNmyZWzatIlff/2VVatW8dJLLzFlyhSNxZiSkoKlpWWx4xYWFgCkpqaqj82ZM4ekpCQGDhzIqlWr+Oijj7C2ttZYLNpmb2/P2rVrS3ytPH36dPr168eVK1e0EJkQQoh/ysnJISMjg5o1a6qPLV26lDZt2uDr60v//v2Ji4sDYPv27Xh6euLt7U3z5s3ZunUr33//PadPn2bmzJklblu1aNEiNmzYwMqVK/H29iY5OZmGDRty8eLFJ14L8OOPPzJixAj1m6+8vDzmz59PmzZt8Pb2ZsyYMSQnJwMwceJEZs6cSd++ffHy8iI4OBhvb29mzpxJu3bt+Pvvvzl9+jTt2rXD09OTNm3acOTIEQBiYmKwtbVl4cKFdOrUiVWrVpX4eaGw0oKzszN79+7V+H8PnZnjplQqyc3NZeLEier5Uj4+PhgYGLBq1SrOnDlDq1atHnn9lClTMDIyUr9unDp1KmPHjtV4nKV5pQpgbW3NkiVLNN5/ZfPv0ccrV67w/fffo1QqOXbsGHFxcerEVgghxLMzYsQIjI2NiY6OpmXLlowaNQqA3377jWvXrnHs2DH09fX5+eefmT59Olu3bmXBggV8++23tG/fHqVSSWpqKtbW1vzyyy+8+eabDBw4sFg/8+fP5+rVq7Rq1Yrp06cXaXv55Zcfey1AcHAwb775pvrfS5YswdzcnJMnTwLwn//8hw8//FC91+rhw4c5ePAg5ubmBAcHc+HCBb766iu+/PJLcnNzcXNzY82aNfTp04fDhw8zYsQIdS3Su3fv4ubmxgcffACAl5dXsc/7QPv27dm7dy+9evUq73+CEunMiJuVlRUAbdq0KXL8waKDJ70fB0hPT1cnVunp6RqOsDDGkoropqWlAZQ4Glfd3L59W73X6bx58yRpE0IILXnwqvTu3bs4Ozszb948ALZs2UJQUBAtW7bE29ubxYsXExsbC0CPHj2YNWsWixcv5sKFC8/kTVF8fDz16tVT/3vLli388ssveHt74+3tze+//05UVJS6fdSoUZibm6v/3bhxYzp27AgU7vltZGREnz59AOjYsSN16tThwoULQGHR+X8O6jzu89arV4/4+HiNf16dSdxcXFxKPP7gFenjRrpUKhUrVqxg06ZNzJs3j7lz5/LLL7/w9ddfazzG2NjYYu/FH3xDPWrxQXXStWtXrly5wvLly0ssIVLVatkJIURVZ2BgwPDhwwkMDAQKf2cuWLCA8+fPc/78eUJDQzl//jwAy5cvZ+3atZiamvLiiy+yePHiCo/P1NS0SLkslUrF6tWr1fFdvnyZ7du3q9v/mbT9+98qlarEfOHBMTMzsyLtj/u82dnZFVINQmcSty5dugBw4sSJIsePHz8OQLNmzUq8TqlUsnjxYrZt28b7779P//79GTJkCPPnz2fz5s0sX75cY3XgOnXqRFZWFgcOHChyPDAwEFtb22I7D1RXJiYmzJ49GyMjoyLH161bh4eHBwsWLJBdGIQQ4hnat28f7u7uAAwePJjVq1er63Dm5eVx7tw5AK5evUqzZs2YPn06U6dOVf8OtrS0LPe2jU+61tPTk6tXr6r/PXjwYJYvX67+PZGZmcmlS5dK1ZeHhwc5OTns27cPKCwJlpiYSIsWLUo8/1GfFwqn/nh5eZWq37LQmTlubdq0oX379qxfvx6lUkmzZs24evUq69ato3379nh6epZ43YYNG9i9e7d6suED/fr1w8jIiE8++QQnJyeGDx/+2P6PHz9Odna2+hslNjaW4OBgoPB1rbGxMX5+frRq1Ur9DdWgQQP27t3LiRMnWLBgAfr6+pr5Yuige/fuMW/ePHJzc/n000/p0aMH3bp103ZYQgihcZWl1tqDOW55eXk0bNiQb7/9FoDnn3+eu3fv0rVrVxQKBfn5+bz00kv4+PjwzjvvcO3aNYyMjDA1NeWbb74B4JVXXmHu3LksWbKEzz77jP79+5c6jiddO2LECH766Sf1bkXz58/n448/pm3bturRsXnz5j1yAOefjIyM+PPPP5k5cyYZGRkYGxuzadMmzMzMuHPnTrHzH/V5VSoVe/fu5d133y315ywthaqitxV4hnJycli7di1BQUHcvXsXW1tbevXqxcSJE4uN3vzzmvDwcJo3b15ie2hoKB4eHhgaGj6271GjRpGQkFBi24YNG6hfvz5QmPmvWbOmyJZXEyZMKLLlVXmFhYUxZcoU1qxZo/7LSFdkZmbyySefsHTpUp577rlKVa9HCCHKKzs7W12n09jYWNvhVElKpZLWrVuzdetW7O3ttR0OUPgm7ddff+Xnn38u1va0/811KnGr7nQ5cXvg6tWrWFpaYmdnV+R4SEgInp6epV61K4QQlYEkbppx+vRpsrOz1YsMtG3Dhg106tSp2O8qePr/5jrzqlRUDx4eHsWOnT59Gj8/PwYMGMC3336rHt0UQghRPTyu3Jc2lLUYcFnozOIEUT3l5+czadIkCgoK2LZt21NV9hZCCCEqO0ncRJVmYGDAwoULqVOnDj4+PkWKMAohhBC6Rl6Viipv2LBhdO7cmfv37xdbRHL9+nUcHBxk7psQQgidICNuQifUqlULNze3Isdu376Nr68vw4YN4+7du1qKTAghhNAcSdyEzpo2bRp3795l69atzJ49W9vhCCFElfFgk/fH+eCDD9iwYUO5+wgODmb37t3lvrayLUh4VuRVqdBZ48eP58CBA+jr67NkyRJthyOEEDpl4cKFT3V9cHAw6enp9O7dW0MRVQ8y4iZ01rBhwwgJCWHLli3UrVtX2+EIIUSpLF++HHt7e+zt7dU78DwQHR2tbpsxY0axawcPHqxu/7d169axfPnyMsXStWtX5s2bR6dOnXB1deW1115Tt02cOJGvvvoKKNz2av78+bRp0wZvb2/GjBlDcnIyACkpKbz88su0aNECLy8vJk+ezPnz5/n222/56aef8Pb2VieBu3btomPHjrRs2ZK2bdty8OBBdX8LFizAzc2NLl264O/vX6bPoUtkxE3oNDs7u2IFEPPy8hg+fDivvPIKAwcO1FJkQghRstTUVG7cuAEU7u7zTwUFBeq2+/fvF7v2zp076vZ/y8jIIDU1tczxREZGEhwcTG5uLk2bNuXYsWO0a9euyDlLlizB3NyckydPAvCf//yHDz/8kJUrVzJr1izMzc0JCQlBT0+PO3fuULt2bV577TXS09NZunQpAFFRUXz88ccEBgZiaWlJREQEXbp0ISYmhsDAQLZt28b58+cxMTFh2LBhZf4cukISN1HtfPjhh2zfvp3t27fz3//+l/nz52s7JCGEULO0tKRBgwYA1KhRo0ibvr6+uq1mzZrFrq1du7a6/d/MzMyKJYKlMWbMGPT19TExMcHb25vIyMhiiduWLVtITU1l8+bNAOTm5uLq6gqAv78/Z86cQU9PTx1jSQIDA4mIiKBz585FjsfFxbF//35Gjx6Nubk5AJMnT+aTTz4p82fRBZK4iSfKTMnh6t7rNO3lhLFFyXu+VhVKpZKwsDCgsAZc9+7dtRyREEIUNWfOHObMmVNim7OzM/Hx8Y+8dtu2bY9smzhxYrni+ee2TPr6+uTn5xc7R6VSsXr16qf6mapSqejbty8//fRTiW2ikMxxE090KSCGs5sj+GNmMMd/vkLG3Sxth1Ruenp6bN68ma+++oqlS5fSpk0bbYckhBBV3uDBg1m+fDmZmZkAZGZmcunSJXXbkiVLUCqVQOHrXCgcWUxJSVHfo3fv3gQGBhZZzfrg1WuPHj3YuHEjGRkZFBQUVOtdciRxE49VkFfA1X1xAOTnFHAxIIYNsw5w8H+hpNzK0HJ05aNQKJg2bRpvvPFGsbYtW7aQm5urhaiEEKLqeVDcfP78+Xh7e9O2bVs8PT3x8/Pj/PnzAKxYsYLMzEyaN2+Ot7c37777LlC4gOz06dPqxQmNGjXil19+4eWXX8bLy4smTZqwcuVKAAYOHMjAgQPx8vKie/fueHp6auXzVgYKlYw/6oywsDCmTJnCmjVrcHd319h90xIzCd0RTVhwPAV5yocNCnBuXQ+vwS7YulhprD9t2bx5MyNHjsTPz4+NGzfi4OCg7ZCEEDouOzub6OhonJ2di7ySrAr69+/PCy+8wJgxY7QdSpXytP/NZcRNPJFFHVPaT2rG6C+74jXEFSPT/58aqYLokwlsWXCUgP+e5Oalu1V2HkJGRgZTp04F4Pjx4wQEBGg5IiGEqLx69uxJWloaAwYM0HYo1Y4sThClZmpVg9ajG+M1yJkre+O4uDOarJTC14o3Qu9yI/Qutd2s8BrkilPLOij0qs7+oGZmZgQEBDBixAg6dOjAlClTtB2SEEJUWkFBQdoOodqSxE2UmZGpIV6DXGjWx4nwgze44B9FWmLhgoU7ESkErTiLdQNzvAa54Nq+PnoGVWNgt1WrVpw9exYjI6Nim9IrlUr1UnYhhBBCW+Q3kSg3AyN9mvR0ZOSyznSb7oWNo4W6LflGOge+vcDGOQe4tCuG/JwCLUZaejY2Nuo6QQ9cunSJ5s2bc+LECS1FJYTQdVV1mokouwera8tLRtzEU9PT18O1vR0u7eoTf/4O57dFcTussKJ3elI2x9Zf4dzfkTTr60TTnk7UMDfUcsSll5aWxvDhwwkLC6NTp04EBATQo0cPbYclhNARhoaGKBQK9W4C/x7tF7pDpVKRm5vLnTt30NPTw8iofHVRJXETGqNQKHDwqYODTx0Srt4jZHsUcecK6/Vkp+ZyZmM4F7ZH4dHDkRb9GmJas/KvoMrMzKR27dqEhYXRtGlT2rdvr+2QhBA6RF9fH3t7e+Lj44mJidF2OOIZMDU1xdHRsdzTbyRxExWinocN9TxsuHs9lQvboog6dguVCvKyCgj1j+ZSYAyNO9vjOcgZy7pm2g73kerWrcu+ffv48MMPmTx5MiYmJtoOSQihY8zNzWnUqBF5eXnaDkVUMH19fQwMDJ5qZFXquOmQiqrjpgmptzO44B/NtQPxKPMffsspFODsVx+vwS7UcrLUYoRll5KSwt69e3nuuee0HYoQQohqQhYniGfCsq4ZHV9qzpiVXfEc5IyhiT4AKhVEHbvF3+8cYdfi0yRcvafdQEtJpVIxefJkhg8fzrRp08q1cbMQQghRVpK4iWfKtKYxbcZ6MObLbrQa1Rhjy4eTM+PO38F/4Qm2f3Sc6+cSK/Uqq127dvHXX38B8Ntvv5GQkKDliIQQQlQHkrgJrahhZoj3UFfGrOxKuxebYm77cKHC7Wv32b3kDH/NP0LEkZsoC55u6XRF6Nu3Lz/88AMmJib8/PPPODk5aTskIYQQ1YDMcdMhlXmO25Mo85VEHrtFyLYokm+kF2mzqGOC50AXGnVugIGRvpYiLNnt27epW7dukWNKpRKVSoW+fuWKVQghRNUnI26iUtAz0KNRpwYM/7wjveb4Utvt4ab1aYlZHPnxEhveCCZkWyS5mZVn5dW/kzaAJUuW0KdPHxITE7UQkRBCCF0m5UBEpaLQU+DUqi6OLetw68o9QrZGcSM0CYCslFxO/XGNkG1RNOnlRPO+TphY1dByxEUFBwfz7rvvolQqadmyJZcvX8bCwuLJFwohhBClIImbqJQUCgV2TWth17QWSVEphGyLIvpUAqggNzOfkK2RXNwZjXtXe1oMdMaitqm2QwbAwMCAOnXqkJCQwOTJkyVpE0IIoVGSuIlKz9bFih6zfEi5lUHI9igiDt1AWaCiIE/J5T3XubI3Dtf29fEc5IKNg3YTpY4dO3Lu3Dm+/PJLPvjgA63GIoQQQvfI4gQdUpUXJ5RFxr1sQndGc3VvXLHN6x196+A12IW6jWtqKbpHO3DgADVr1sTT01PboQghhKiiZHGCqHLMbIzxm9CEMV92xXeEW5FN66+fTWT7R8fx/88J4kLuVJpacHFxcQwfPhw/Pz/Wr1+v7XCEEEJUUZK4iSrL2MII3+caMebLrvg974GZzcNacAlX7rHr89NsefcIkcduoVRqN4H7z3/+w927d8nKymLTpk2VJqEUQghRtcirUh0QFBREUFAQ6enpXLhwQedflT5KQb6SyMM3CdkeRcqtjCJtlnVN8RzkQqNOdugbPvv6atnZ2bzxxhvs3r2bM2fOYGNj88xjEEIIUfVJ4qZDqssctydRKlXEnr5NyLYokqJSirSZWtegef+GePRwxMjk2a/NuXfvXrGkLScnhxo1KldZEyGEEJWTvCoVOkdPT4Fzm3oM+U87+r3TGrtmtdRtmck5nPwtjD9m7Of0xmtkpT7bzeFLSto6d+7M/Pnzyc/Pf6axCCGEqHqkHIjQWQqFggYtbGnQwpY7kcmEbIsi5vRtdS2481siCd0ZjXs3BzwHOGNua/LMY5w9ezYnT57k5MmT3L59m7Vr1z7zGIQQQlQdkriJaqG2qzU9Z/ty/0Y6of5RhB++iapARUGuksu7YrkSdB23DnZ4DnSmpv2zqQWnUqlo3LgxBgYGGBgY8MYbbzyTfoUQQlRdMsdNh8gct9JLv5tF6I5owvbHF6sF59SqLl6DXajjZv1MYjl69CjXr19nzJgxz6Q/IYQQVZckbjpEEreyy07N5dLuWC7viiUno+jm9XbNauE52IUGzWuhUCieeWzffvstY8aMwdra+pn3LYQQonKSxQmiWjO2NKLliEaM/rIrbcd7YFrz4erOm5fuEvjfU2xdcJToE8+2FtzatWuZOnUqLVu25Ny5c8+sXyGEEJWbJG5CAEYmBrQY4MzoL7rQaUpzLOs93LQ+KTqVvSvP8+dbhwjbH0dBvrJCY8nOzlbvcxoVFcXFixcrtD8hhBBVhyxOEOIf9A31ce/mQKMu9sScTCBkWxR3Y1IBSLmVwaE1FznzZzgt+jvj0d0BQ2PNP0LGxsYcPnyYkSNH4uvry/PPP6/xPoQQQlRNkrgJUQI9PQUufvVxbluPG6FJhGyL4tblewBk3svhxC9XOb8lkqa9nWjWxwljCyON9u/k5MShQ4dKbMvMzMTU1LTENiGEELpNXpUK8RgKhQJ7z9oMWNCWwR/74dSyjrotJz2Pc39F8MfMYI7/fIWMu1ka7btGjRrFdlQ4c+YMzs7O/PXXXxrtSwghRNUgiZsQpVSnUU16zW3J8MUdcetoh0KvcKVpfk4BFwNi2DDrAAf/F1psn1RNuX//PiNGjCAxMZHhw4fz999/V0g/QgghKi9J3IQoo5r2FnR93YtRK7rQtLcT+oaFj5GyQMW14Hg2vXmQvV+cK7ZP6tMyNDTEz88PgLZt2zJgwACN3l8IIUTlJ3PchCgni9omtJ/YFJ9hrlwMjOXKnlhyM/NBBdEnE4g+mUCDFrXwGuxK/aY2T10LztzcnN9++40uXbrQv39/jIw0O69OCCFE5SeJmxBPycSqBq1HN8ZrkDNX9sZxMSCGrOTCzetvhN7lRuhdarta4TXYFaeWddSvWMtDoVDw2muvFTuelJTEL7/8wsyZM9HTk4F0IYTQVfITXggNMTI1xGuQC6O/6EKHl5phUefhpvV3IlMIWnGWP+cd4trBeJQarAWnVCqZMGECs2fPZvDgwdy7d09j9xZCCFG5yIibEBpmYKRPkx6OuHe1J/pEYS24e9fTAEi+kcHBb0M5symcFgOc8ejmgEEN/afq7/Dhw+zevRuAU6dOkZ2d/dSfQQghROUkI25CVBA9fT1c29sx7L8d6PNWS+p51FS3ZdzN5vhPV/hj5n7O/R1BTnreY+70eJ07d2bXrl3UrVuX33//HTs7O02EL4QQohKSETchKphCocDBpw4OPnVICLtPyLZI4s7dASA7LY8zm8K5sD0Kjx6ONO/fELOaxmXuo1evXkRFRRUrzFtQUEB2djZmZmYa+SxCCCG0S2OJ25kzZzh79iwXL14kMTGRlJQUjI2Nsba2xsXFBW9vb9q1a0etWrU01aUQVU4995rUe6sVd6+ncmF7NFHHbqFSqsjLLiB0RzSXdsXQqJM9noOcsapXtmSrpN0UPvzwQ7Zs2cLmzZvx8PDQ1McQQgihJQqVSqUq78WZmZn8+eefbN++ncTERB7cysjICEtLS3JycsjIyECpLJyIra+vT4cOHRg1ahQtWrTQzCcQamFhYUyZMoU1a9bg7u6u7XBEKaTeziR0RzTXDsRTkPdwwYJCAQ3b1sNrsAu2Da3Kde+dO3eqa71ZW1sTHR2NtbW1JsIWQgihJeUecdu6dStr167l/v37uLm5MXjwYJo1a4a7u3uRv/xVKhXx8fFcvnyZU6dOcfjwYQ4dOkSHDh2YNm2azMcR1ZplXVM6TG6Gz3A3LgXEcHnPdfKy8lGpIPp4AtHHE7D3tMVriAv1PMpWC87V1ZVmzZpx6dIl3nvvPUnahBBCB5R7xK1bt2706tWLsWPH4uzsXOrrcnJyCAoK4pdffqFPnz5MnDixPN2LEsiIW9WXm5nHlaDrhO6MITs1t0hbnUbWeA12wdGn9LXgMjIy+PHHH5k+ffpTFwAWQgihfeVO3G7cuEGDBg3K3XFBQQF37tyhXr165b6HKEoSN92Rn1vAtQPxXPCPJv1O0c3ra9qb4znIBdd29dEzKN/C8B07dmBgYECfPn00Ea4QQohnpNzlQJ4maYPC+W6StAlRMgMjfZr2cmLU8s50fd2Tmg7m6rb78ekc+OYCG+cc5NKuWPJzCsp078jISMaPH0+/fv346KOP1HNQhRBCVH5SDkSISkxPXw+3jg1wbW9H3Pk7nN8WSeK1ZADSk7I4tv4y5/6OoFlfJ5r2cqKGmeET7/ntt9+SkpICwOXLl+UVqhBCVCGSuAlRBSj0FDj61sHBpzYJV+8Tsi2K+JD/rwWXmsuZjQ9rwbXo1xDTx9SC+/zzz7GxseGXX37h+++/l8RNCCGqkKcqB/JvaWlpHDlyhL59+2rqlqIMZI5b9XI3JpWQ7VFEH7/FP59ifUM9GnVugOdAZyzrProWXE5ODjVq1Chy7N69e9SsWVOSOSGEqKQ0uuXV7du3WbRokSZvKYR4hFoNLek+w5sRyzrj0cMBPYPCZKsgT8nVvXFsmnOQfavOczc2tcTr/520ZWRk0LlzZ8aOHUtaWlqFxy+EEKLsyvSq9Pbt249tT0pKeqpghBBlZ1XPjI4vNcf3OTcuBsZwJeg6eVkFqFQQdewWUcduYe9VG+//rwX3KFOnTuXSpUtcunSJvLw8/vzzz2f4KYQQQpRGmRK3UaNGPfYVikqlklcsQmiJaU1j2oz1wGuwK1f2XOdi4MNacPEhd4gPuUPdxjXxGuyCg0/tYs/qsGHD2Lp1K0qlks8++0wbH0EIIcQTlClxs7CwYMqUKfj4+JTYHhsby/vvv6+RwIQQ5VPDzBDvoa4079eQsOB4QndEk55UWAvu9rX77F56hpoOFngNcsalXX309AtnTAwbNowWLVoQHh4ucySFEKKSKlPi1rhxY5KTk3F0dCyxPTc3Fw2udRBCPAWDGvo06+NEkx4ORB67Rci2KJJvpANwPy6N4NUXOL0pHM+BzjTuYo+BkT5ubm64ubkVuY9KpeLjjz9m4sSJNGzYUAufRAghxANlWpwwdOhQ6tev/8j2unXrMn/+/KcOSgihOXoGejTq1IDhn3ek11xf6rhZq9vS72RxdO1lNrwRTMi2SHIz84pd//XXX/Pxxx/j6+tLQEDAM4xcCCHEv5VpxK1z586PbbewsKBfv35PFZAQomIo9BQ4tayLo28dEq7eI2RrFPEXChcUZaXkcuqPa5zfGkXTXo4069cQU6sa5OXlsXr1agDu379Pdna2Nj+CEEJUe1KAV4hqRqFQUL9JLeo3qUVSTAoh26KIPpEAKsjLyidkWxQXA2Jo3MUez4HOHDt2jEmTJuHi4sKwYcO0Hb4QQlRrT524de3alQ0bNlC3bl1NxCOEeIZsG1rRY6YPKbcyuOAfTfiheJT5KgrylFwJus7VfXG4tKvPmhXrsGpgWuz627dvy7MvhBDP0FMX4JXFCEJUfVb1zeg0pTmjV3alxQBnDI31AVApVUQeucnf7xxh74rzJITdV19z5MgRnJ2dWb58ufwcEEKIZ0RelQoh1MxqGtN2vAdeQ1y4suc6lwJjyE4rXLAQd+4OcefuUM+jJg6drBk1YRRZWVnMnTuXOnXqMGHCBC1HL4QQuk+jW14JIXSDsbkRPsPcGL2yK34vNMGs1sNN6xOu3uf4dxH4OXUHoFvXbowZM0ZLkQohRPUiI25CiEcyNDaged+GNO3pSMTRm1zYHkXyjQz09fTp13Ac9kaNaNaoOeEHbtKoUwMMjPS1HbIQQug0GXETQjyRnoEejTvbM/zzTvSc7UNtFysAWti1Ri/dhCM/XGLjrANc2B5FbFQcc+fOJSsrS8tRCyGE7pERNyFEqSn0FDRsXQ+nVnW5dfke57dGcvPiXQAyk3M4+uslVgS/y7XbF9kbtI+t27bg5OSk5aiFEEJ3SOImhCgzhUKBXbNa2DWrxZ3IZEK2RxFz6jbx96OISQoH4HpEPJe2x1NrTB3MbU20HLEQQuiGp07cnn/+eczNzTURixCiCqrtak3PWb4k30jngn8DDA1XsObw5zzf5g1uHk1lw4kDuLW3w3OQMzXtLbQdrhBCVGkKlRRgqpSSk5P57LPPOH/+PLa2tsyePZvWrVs/9pqwsDCmTJnCmjVrcHd3f0aRClFU+t0sQrZHEn7gJvk5Berj+QV52DQ1oev41kX2SxVCCFF6Fb44QaVSERcXR2JiYkV3pVNWrFiBjY0N27Zt4/XXX+fDDz8kJSVF22EJ8UTmtUzoMLE5Y1Z2xec5N2qYGQKw+fyPTFk0miWv/Y+dn54kPjRJCvcKIUQZaSxxO3ToEIsWLSItLU197NatW0ycOJHnn3+eUaNGsXDhQpRKpaa61FmZmZkcOnSISZMmYWxsTMeOHXFzc+Pw4cPaDk2IUjO2NKLliEaM/rIr6c6x7L22ldTs+3wZ/AFhZ6II/O8pti44SvTJBJRKSeCEEKI0NLY4Ydu2bSQmJmJh8XAOy6pVq4iJicHX15fU1FT27duHr68vAwcO1FS3j+Tv78/ixYsxMTFh165dFdpXZmYm69evJzw8nPDwcFJSUpg4cSKTJ08u8dzvv/+e/fv3k5aWhqOjI+PHj6dHjx7qc+Lj4zExMSmyB6SLiwvR0dEV+jmEqAhGJgaMnzUc/xOb2bt3Ly90eR0L48JyIknRqez94hxW9c3wHOSMW8cG6BtIlSIhhHgUjf2EjI6OpkmTJup/p6enc/z4cbp3786KFSv47rvvcHJyYseOHZrq8pHu3LnD6tWrsbW1rfC+AFJSUti+fTt5eXl06tTpsecuWLCAwMBAJk6cyOLFi/Hw8ODjjz9mz5496nOysrIwMzMrcp2ZmZnUxRJVVu3atdm1axebNm3i291L6T7Tm1oNLdXtKbcyOPS/i2yYFUzozmjysvO1GK0QQlReGhtxS05OplatWup/h4aGUlBQoB5JMjAwoFWrVkUSlIqybNkyPD09sbS05MCBA489NyMjg9DQUPz8/EpsP3r0KD4+PpiYPLqcQb169dixYwcKhYLk5GT8/f1LPO/YsWOcPn2aDz74gJ49ewLg6+tLQkIC33zzDd27d0dfXx8TExMyMjKKxfm4GISo7PT19RkxYgQALn71cW5bjxuhSXz5yXckxNyhk2sfMu/lcOKXq5zfEknT3k406+OEsYWRliMXQojKQ2MjbmZmZqSmpqr/fe7cOfT09PDy8lIfMzAwIDs7W1Ndlmj37t2cP3+eOXPmlOp8f39/5s+fT0BAQLG2rVu38s477zzxVatCoUChUDyxr0OHDmFiYkLXrl2LHO/fvz9JSUlcvnwZAHt7e7Kysoos6IiOjsbZ2bnE+wYFBTF//nxWrVr1xBiEqCwUCgWpBnf4esd/+fnUl2yK+IYCZeEq1Jz0PM79FcEfM4M5/vMVMu7KaLMQQoAGEzdHR0eOHj1Kamoq6enp7N27l0aNGhWZ85aQkEDNmjU11WUx9+/fZ9WqVbz66qvUqVOnVNeMHj2aESNGsGjRIrZu3ao+vmnTJpYtW8aECRMYOnSoRuKLjo7GyckJA4OiA52urq7qdgBTU1M6duzI2rVrycnJ4ejRo4SHh9OhQ4cS79uzZ08WLVrEjBkzNBKnEM/K9u3byczMBMC+RW1GLe2CW0c7FHqFfwjl5xRwMSCGDbMOcPB/oSTfTNdmuEIIoXUae1U6fPhwPvzwQ5577jn1yNo/J+cXFBQQGhpaZB6cpi1fvhwHB4cyJ1rTp0+nRo0aLFu2jNzcXHJzc/nuu+946aWXePHFFzUWX0pKCnZ2dsWOP0hu/zliOWfOHD799FMGDhyIra0tH330EdbW1hqLRYjKYN68eTg6OvL111/z1VdfYWpqStfXvWg5sjGhO6IJ2x9HQZ4SZYGKa8HxXDsQT8PWdfEe7Irt/++XKoQQ1YnGEreuXbsye/Zs9eKDbt26MWDAAHX7mTNnyM7Opk2bNprqsojg4GCOHj3KDz/8UKrXlv82ZcoUjIyM1K8bp06dytixYzUdZqljs7a2ZsmSJRrvX4jKZuzYsYwZM6bIs2FR2wT77uY0H9iBa/tucnl3LLmZ+aCCmJO3iTl5mwYtauE12JX6TW3K9cwLIURVpNG9SocOHfrI0a42bdqwc+dOTXanlpmZyRdffMFzzz1HrVq11LXk8vMLV6alpaVhYGDwxMn96enpKBQKVCoV6emafyVjZWVVYhHdB/FaWloWaxOiOvh34pWSkkKPHj2oU6cOGzduxHNgV67sjeNiQAxZyTkA3Ai9y43Qu9R2tcJrsCtOLeuoX7EKIYSu0olN5lNSUrh37x4bNmxgw4YNxdoHDBhAx44d+eyzz0q8XqVS8cUXX7B161bmzZtHXl4ey5cvJzc3l2nTpmksThcXF4KCgsjPzy8yzy0qKgrgkYsPhKhuXn31VSIiIoiIiGDKlCns3LkTr0EuNOvjRPihG1zYHkVaYuGChTuRKQStOIt1AzM8B7ng1t4OPakFJ4TQUTqRuNnY2LBy5cpix3/99VfOnz/PkiVLsLIqeT6MUqlkyZIlBAYG8v7776vLlxgZGbF48WJycnKYPXu2Rl7FdOrUie3bt3PgwIEiBXcDAwOxtbWladOmT92HELpgzpw5HDt2jLS0NFavXq0+bmCkT5Mejrh3tSf6RAIh26K4d71wxDr5RgYHvw3lzKZwWgxwxr2rPYbGOvEjTggh1HTip1qNGjXw8fEpdjwgIAB9ff0S2x7YsGEDu3fvZuHChUWK5/br1w8jIyM++eQTnJycGD58+GNjOH78ONnZ2eoVcrGxsQQHBwPg5+eHsbExfn5+tGrViuXLl5OZmUmDBg3Yu3cvJ06cYMGCBejr65fj0wuhe9q0acPZs2cJCwujYcOGxdr19PVwbW+HS7v6xJ+/Q8j2KBKu3gcg4242x3+6wvm/I2jWpyFNeztRw9zwGX8CIYSoGAqVDu/y/Nlnn3HgwIHH1mHLyckhPDyc5s2bl9geGhqKh4cHhoaP/8E/atQoEhISSmzbsGED9evXBwrn461Zs6bIllcTJkwoMgJXXmFhYUyZMoU1a9bg7u7+1PcTorJRKpVMnz6dSZMm0bp16yJtCWH3CdkWSdy5O0WOGxrr49HDkeb9GmJmY/wswxVCCI3T6cStupHETei6RYsW8c4772BkZMR3333HxIkTi51z73oaIdujiDp2C9U/Nq/XM1DQqFMDPAe6YFXfrNh1QghRFejEq1IhhO4rKChQr0zPy8tTj2L/m42jBd2medFqZCMu7IjmWnB8YS24fBVh++MJC47HuU09vIa4YNtQasEJIaoWSdyEEFWCvr4+e/fu5e2338ba2po+ffo89nyLOqZ0mNQMn+fcuBQQw+U918nLKqwFF30igegTCdh72uI52IX6TaQWnBCiapBXpTpEXpWK6kKlUhVLtC5fvvzYldm5mXlcCbpO6M4YslNzi7TVcbPGa4gLjj5SC04IUbmVudiRUqkkKiqKpKSkYm35+fmcP39eE3EJIcQj/Ttp2717N82bN2fGjBnk5OSUeI2RqSFeg10Z82VX2k9qinnthwW5EyOS2bPsLH/NP0z4oRso85UVGr8QQpRXmUbcEhISePvtt4mNjUWhUODn58c777yjrpF27949nnvuOXUZDPFsyYibqI7u3r2Lh4eH+o/J77//npdeeumJ1ykLlEQdu0XI9ijuxxXdKcXc1gTPgc407mqPgZGU6RFCVB5lGnH75ptvqF27Nps2beLHH38kLy+PadOmFRl9kzevQohnycbGhs8++4waNWowYMAAJk2aVKrr9PT1cOvYgOf+25Fec32p08ha3ZaelMXRdZf5Y2Yw57dEkpORV0HRCyFE2ZQpcQsJCWHq1KnUqVMHFxcXli5diqenJ9OnT+f27dtA6TdRF0IITVAoFEyZMoVjx47x008/oadXthkgCj0FTi3rMugjPwa83xZ7r9rqtuzUXE5vvMYfM/Zz8verZCaX/BpWCCGelTL9hMvOzi5SiFahUPD222/TunVrZsyYwY0bNzQeoBBClIaPjw82NjZFjsXExDB69Gju3LnziKseUigU1G9iQ995rRj2WQdc/Orz4O/QvOwCLmyP5o+ZwRz+4SKptzMr4iMIIcQTlSlxc3R0JCwsrNjxuXPn4ufnx/z58zUWmBBCPI2cnBxGjhzJxo0b8fX15eLFi6W+tlZDS7rP9GbEss54dHdAz6Awg1PmK7m6N45Ncw6w/6vz3L2eWlHhCyFEicqUuHXu3Jk9e/aU2DZnzhy6d+8uc9yEEJVCZGQkcXFxQOF+xvb29mW+h1U9Mzq+3JwxK7vSYqAzBsaFCxVUKog8eou/5x9h15LTJFy9p8nQhRDikaSOmw6RVaVCFHXr1i0mTZrEokWL8Pb2fur75aTncTkolksBMWSnFV2wULdxTbyGuODgXVvm+gohKowkbjpEEjchSicrK4vY2Fg8PDzKdX1+TgFhwXFc8I8m4252kTYbRws8B7ng4lcPPf0yl8oUQojHeuqfKl27dlWvKBVCiKpgxowZtGzZkl9//bVc1xvU0KdZn4aMXtGFzq+1wNru4ab1966nEfx1CJvmHuRK0HXycws0FbYQQjx94iYDdkKIquTPP//khx9+IDMzk1deeYWbN2+W+156Bno07mzP8MWd6Dnbl9quDzetT0vM4siPl9jwRjAh2yLJzZRacEKIpyfj+EKIaqV///5MnjwZgG+//RY7O7unvqdCT0HD1nUZvLAd/d9rQ4MWtdRtWSm5nPrjGn/MDObUhmtkpUgtOCFE+RloOwAhhHiWTExM+OGHH5g8eTIdOnTQ6L0VCgV2zWph16wWSVEphGyLIvpUAqggNzOfkK2RXNwZjXtXe1oMdMaitqlG+xdC6D5J3IQQ1VJJSduaNWuIjo5m4cKFGBg83Y9HWxcreszyIflmOhf8o4k4dANlgYqCPCWX91znyt44XNvXx2uwCzXtLZ6qLyFE9SGJmxBCAGfOnGH69Onk5uZy/PhxAgMDMTIyeur7WtuZ0/mVFrQc7kZoQAxX98aRn1OASqki4vBNIg7fxLFlHbwGuVC3cU0NfBIhhC6TxE0IISjci7mgoHAFaPPmzTWStP2TWS0T/CY0wXuIK5d3x3IpMFa9ef31M4lcP5NIvSY2eA12wd7TVmrBCSFKJImbEEIAkydPpnHjxixfvpylS5dWWD/GFkb4Dm9EiwHOhO2PI3RHDBn3CmvBJVy5R8KVe9RqaInXYBcatqmHnp4kcEKIh546cXv++ecxNzfXRCxCCKFVHTt2pGPHjsWOX758mQYNGmBlZVXCVeVjaGxA837ONOnlROThm4RsjyLlVgYAd2NS2ffleSzrmuI5yIVGnezQN9TXWN9CiKpLdk7QIbJzghCal5SUhK+vLzVq1GDz5s14eXlVSD9KpYrY07cJ2RpJUnTRzetNa9ageX9nPLo7YGQiL0qEqM7kJ4AQQjzG9OnT1ZvVv/XWW+zevbtC+tHTU+Dcph4NW9fl5sW7hGyL4ualuwBk3s/h5K9XOb8lgma9nWjWpyHGlpqdgyeEqBo0nrgplUru3LnDnTt3yM/PL/EcTWz2LIQQz8J///tfwsPDiY+PZ926dRXen0KhoEELWxq0sCUxIpmQ7VHEnircVjA3I59zf0dyYUc0Ht0daDHAGfNaJhUekxCi8tBY4qZSqfj111/ZuHEjqampjz03ODhYU90KIUSFcnZ25siRI0RGRmpkl4WyqONmTa/Zvty/kc6F7VFEHL6JSqmiIFfJpcBYLu++jltHO7wGuWDdQOYaC1EdaCxx++677/j999+pWbMm/fr1o1atWujry2RaIUTVZ2xsTLNmzYocKygoYOTIkbzwwgsMHTq0Qvuv2cCcLq950nJEI0J3RHN1XxwFeUpUShXhB28QfugGDVvVxWuwC7VdrSs0FiGEdmkscQsMDMTBwYH//e9/mJrKNi5CCN32wQcf8Pfff/P333/z3//+l/nz51d4n+a2JrR7sSnew1y5vCuWS7tiyc3MBxXEnLpNzKnb2DWrhddgF+ya15JacELoII0lbllZWfTq1UuSNiGEzlMqlURFRQGgr6+v8T1Pn8TEsgYtRzamxUAXru69TujOGLKSCzevv3npLjcv3cXW2RKvIa40bFUXhdSCE0JnaCxxc3Nz4+7du5q6nRBCVFp6enr89ttvtG/fnoKCAjp16qSVOIxMDPAc6EKzPk6EHyqsBZd2OxOApOhU9n5xDqv6ZngNcsG1ox36BnpaiVMIoTkae4pfeOEFDh8+TFhYmKZuKYQQlZZCoWDGjBnMmjWrWNv+/ftRKpXPLBZ9Q308ujswcllnus3wxsbx4ab1KbcyOPi/UDbMCuZiQAx52SWv9hdCVA0aLcAbHBzMihUr6NChA66urpiZmZV4Xt++fTXVpfgHKcArhPZt2bKFYcOGMWjQINavX0/Nms9+43iVSkX8hSRCtkaScPV+kbYa5oY06+tE095OGJtLLTghqhqNvSrNzc3l8OHDpKSksGPHDoBiE2NVKhUKhUISNyGETkpJSWHy5MkAbN++nT///JOXX375mcehUChw8KqNg1dtbl+7T8i2SK6fvQNATnoeZzdHcGF7NE16OtK8f0PMaho/8xiFEOWjscTtq6++Ys+ePbi6utKlSxcpByKEqHasrKz47bffmDBhAj169OCll17SdkjUbVyT3m+24t71NEK2RxF17CYqJeTnFBC6I5pLu2Jo1KkBngNdsKpf8lsSIUTlobFXpYMHD6ZevXqsXr0aAwPZSUsb5FWpEJXD9evXqVmzJhYWFkWOP3jroE1piZlc2BFN2P54lPn/mIenAOe29fAa7IJtQyvtBSiEeCyNLU7Izc3Fx8dHkjYhRLXn6OhYLGkLCwujY8eOXLt2TUtRFbKoY0qHSc0Ys6orXoNdMDT+/zcjKog+nsCWd48S8N9T3LpyFw1OgRZCaIjGsix3d3fi4+M1dTshhNAZGRkZjBgxgosXL9KqVSt27dpFu3bttBqTqVUNWo9xx2uwC1eCrhO6I4bstFwAboQmcSM0iTpu1ngNccHRp47UghOiktDYiNuUKVM4efIkR48e1dQthRBCJyQlJanLgzg4OODp6anliB4yMjXEa7ArY1Z1pf2kppjbPlyokBiRzJ5lZ/lz3iHCD90o+mpVCKEVGpvjtm7dOi5dusSpU6fw8fHBzc2txHIgCoWCF198URNdin+ROW5CVF7p6enMmjWLN998Ew8PD22H80jKAiVRx25xflsUyfHpRdrMahnjOdAF9272GBjJ4jMhtEFjiVuXLl1K16FCQXBwsCa6FP8iiZsQVU9aWhpnz54t9c/QZ0WlVBF3/g7nt0aSGJ5cpK2GhSEt+jnTpJcjNcwMtROgENWUxua4rVy5UlO3EkKIakGlUvHyyy+zadMmPv74Y9577z309CrHtlQKPQWOvnVw8KnN7bD7nN8aSXxIEgA5aXmc3niN89siadrLkeb9nDG1rqHliIWoHjS6c4LQLhlxE6JqebDLAoClpSUXL17EwcFBy1E92t2YVEK2RxJ1PAH+8ZtDz0BB4y72eA50xrKu1IIToiJVjj/thBCiGho8eDD/+c9/0NPTY/369ZU6aQOo1dCS7jN8GLmsMx7dHdDTL1xpqsxXcXVvHBvnHGTfqvPcvZ6q5UiF0F0aG3ELDQ3lwIEDjB07llq1ahVrv3v3Lr///jvdunWjWbNmmuhS/IuMuAlRNUVERODm5lbk2IMfzdou2Ps4mfezCQ2I4cqe6+TnFBRps/eyxXuIK/U8bLQUnRC6SWMjbhs2bODIkSMlJm0AtWrV4ujRo2zcuFFTXQohhE74d9IGsGLFCiZMmEB6enoJV1QOpjWNaTvOg7GrutFyVCNqmD9cqBAfkoT/whNs+/AY188lSjFfITREY4sTrl69SsuWLR97jpeXF6dPn9ZUl0IIoZMOHz7M22+/TUFBASEhIZw6dQoTExNth/VINcwN8RnqRot+zoQFx3NhexQZ97IBSAxPZveSM9S0N8driCsufvXQ05dZOkKUl8aenuTkZGxtbR97jo2NDffv39dUl0IIoZPu37+PqakpUDgPrjInbf9kUEOfZn2cGP1FF7pM9cTK7uFChfvx6QR/HcLG2Qe4vCeW/NyCx9xJCPEoGhtxMzc3JzEx8bHn3L59u8r8ABJCCG0ZNGgQp0+f5osvvmDhwoXaDqfM9Az0aNSpAW4d7Lh+NpFzWyJJikoBID0pm6NrL3N2cwQtBjSkSU9HjEylFpwQpaWxEbdmzZpx8OBBbt++XWL77du3OXToEM2bN9dUl0IIobMaN27M6tWrMTAo+vf18ePHiY2N1VJUZaPQU+DUqi5D/tOO/gvaYNf84Rzo7LRcTv1xjd+n7+fUH2FkpeRoMVIhqg6NJW6jRo0iJyeHadOmERgYSFJSYaHGpKQkAgICeP3118nNzWX06NGa6lIIIaqVmzdvMmTIEHx9fQkMDNR2OKWmUCiwa1qL/u+2Yein7WnYph78/2LZvOwCQrZF8fuMYI6svUTanUztBitEJafRArx//fUXq1atKrKM/Z//f8aMGTz33HOa6k78i5QDEUK3Pf/88/zyyy8A9O3bl507d1bqciGPk3Irg5DtUYQfuoGq4OGvIYUeuLSzw2uwCzYOFlqMUIjKSeM7J0RFRbFlyxauXr1Keno65ubmNGnShCFDhuDi4qLJrsS/SOImhG67f/8+EydO5OzZs5w9e5batWtrO6SnlnEvm9Cd0VwJuk5BrrJIm4N3bbyHulK3cU0tRSdE5SNbXukQSdyE0H1KpZIbN24U22VBqVRWmn1OyyM7LZfLe2K5GBBDbkZ+kba67jXxHuqKvadtlR1hFEJTqu5TruOSk5N5++236d27N+PGjePUqVPaDkkIUQno6ekVS9pyc3Pp1q0bX3zxRZUtdGtsYYTvc40Yu6obfs83KbJp/e2w++z6/DR/v3OEqOO3UCqr5mcUQhM0Vg5EaNaKFSuwsbFh27ZtnD59mg8//JDff/8dKysrbYcmhKhk3nrrLQ4ePMjBgweJjY1lxYoV2g6p3AyNDWjeryFNejkSefgm57dGknq7cMHCvetp7PvyPOa1TfAe4kqjTnboG+prOWIhni0ZcauEMjMzOXToEJMmTcLY2JiOHTvi5ubG4cOHtR2aEKKSUalUGBsbA2BkZMT48eO1HJFm6Bvo0birPSOWdabHLB9qNbRUt6XfyeLw9xf5fUYwF/yjyM3Kf8ydhNAtOjPiFh4ezpo1a4iKiiI5OZkaNWrg6OjIsGHD6N27d4X2nZmZyfr16wkPDyc8PJyUlBQmTpzI5MmTSzz3+++/Z//+/aSlpeHo6Mj48ePp0aOH+pz4+HhMTEyoW7eu+piLiwvR0dEV+jmEEFWPQqHg888/p3379ty7d49WrVppOySN0tNT4NymHg1b1+Xmpbuc/zuSW1fuAZCdmsvJ38I493ckzfo40ayvEyaWNZ5wRyGqNp1J3NLT06lTpw49e/bE1taW7Oxs9uzZwyeffMKtW7d48cUXK6zvlJQUtm/fjqurK506dcLf3/+R5y5YsICrV6/y6quv4uDgQFBQEB9//DFKpZJevXoBkJWVhZmZWZHrzMzMSE5OrrDPIISo2oYMGVLi8T/++IOhQ4eqR+WqKoVCQYPmtjRobsudyGTOb40k9nThbj15Wfmc3xJJ6I5o3LvZ4znQBXNb2aVH6KanStzy8/OLVfXWFh8fH3x8fIoca9++Pbdu3WL79u2PTNwyMjIIDQ3Fz8+vxPajR4/i4+Pz2K266tWrx44dO1AoFCQnJz8ycTt27BinT5/mgw8+oGfPngD4+vqSkJDAN998Q/fu3dHX18fExISMjIxiccp2YUKIsvj111+ZMGECvr6+bN68GWdnZ22HpBG1Xa3pNaclyTfSCdkeRcThm6iUKgrylFzefZ0rQXG4tq+P12AXatpLLTihW55qjttzzz3H119/TUxMjIbC0TwrKyv09R89edXf35/58+cTEBBQrG3r1q2888477Nq167F9KBSKUi1RP3ToECYmJnTt2rXI8f79+5OUlMTly5cBsLe3Jysrq8jer9HR0Y/8oRsUFMT8+fNZtWrVE2MQQlQPGRkZzJo1C4CzZ89y4MAB7QZUAawbmNPlNU9Gr+xCsz5O6BsW/kpTKVVEHL7Jn28fZvfSMyRGJGs3UCE06KkSt4yMDDZu3MjEiROZOnUq/v7+ZGZqd7sSpVJJfn4+ycnJ/P3335w8eZJx48Y98vzRo0czYsQIFi1axNatW9XHN23axLJly5gwYQJDhw7VSGzR0dE4OTkVG6V0dXVVtwOYmprSsWNH1q5dS05ODkePHiU8PJwOHTqUeN+ePXuyaNEiZsyYoZE4hRBVn5mZGUFBQbi5uTF58mQmTpyo7ZAqjHktE9q92JSxq7rhM8wVQ5OHP2Ovn01k2wfH8F94nPjQpCpbLkWIB57qPefff//Nrl27CAgI4PLly1y5coVVq1bRrVs3+vfvj6enp6biLLXly5ezbds2AAwNDXnjjTceOffjgenTp1OjRg2WLVtGbm4uubm5fPfdd7z00ksanRuXkpKCnZ1dseMWFoVD+ampqepjc+bM4dNPP2XgwIHY2try0UcfYW1trbFYhBC6z8vLi9OnT2NkZFSsrTJNddEUY0sjWo5sTIuBLoTti+OCfxRZKbkAJFy9T+B/T2HjaIHPMFecWtdDT0+K+Yqq56meWktLS0aOHMnIkSMJCwtj586d7N27l4CAAAIDA7G3t2fAgAH06dMHGxsbTcX8WM8//zwDBw7k/v37HD16lC+++IKsrCzGjh372OumTJmCkZGR+nXj1KlTn3hNeZS26re1tTVLlizReP9CiOqlpNqPISEhPPfcc6xbt45OnTppIaqKZWRiQIsBzjTt7Uj44ZuEbIkk7U4WUFgLbu/K81jUMcF7qCtuHRugbyCVsUTVobE/t9zd3XF3d2f69OkcPHiQHTt2cO7cOb777jvWrFlDu3btGDBgAH5+fhW6LUvdunXVZTTatWsHwP/+9z/69ev3xBGr9PR0FAoFKpWK9PR0jcdmZWVFSkpKseNpaWlAYSIshBAVKSUlhREjRhAVFUW3bt0ICAhQr2jXNfqG+nh0c6BxF3tiTiZw7u8I7scV/mxPS8zi0P8ucnrDNTwHueDR3QFDY90agRS6SePfpYaGhvTo0YMePXqQmJhIQEAAAQEBHD58mCNHjmBjY8Nff/2l6W4fqUmTJmzdupWbN28+MnFTqVR88cUXbN26lXnz5pGXl8fy5cvJzc1l2rRpGovFxcWFoKCgYq8ooqKiAHRmxZcQovLKy8vD0dGRiIgIvL29dXLE7d/09BS4+NXHuW09boQmce6vCG5fSwYgKyWXE79c5exfETTv40Szvg0xtij+almIyqJC/7yoU6cOL774It26dWPx4sWEhoZy7969iuyymHPnzqGnp1fi3DIoXMywZMkSAgMDef/999WFcI2MjFi8eDE5OTnMnj1bIxsbd+rUie3bt3PgwIEiBXcDAwOxtbWladOmT92HEEI8jq2tLbt37+azzz7j+eefr/L13cpCoVBg71kbe8/aJIbf59zfkcSdvwNAXmY+5/6O5IJ/NB7dHfAc6IxZLSnBJCqfCkvcsrKy2L9/Pzt37uTixYvqbVm6dOlSIf0tWbIEU1NTmjRpgo2NDcnJyQQHB7Nv3z7Gjh37yNG2DRs2sHv3bhYuXFjkL89+/fphZGTEJ598gpOTE8OHD39s/8ePHyc7O1u9qjY2Npbg4GAA/Pz8MDY2xs/Pj1atWrF8+XIyMzNp0KABe/fu5cSJEyxYsOCxZUuEEEJT9PX1ef/994sdv3//PgEBAY9dia8r6jSqSZ+3W3E/Po3zWyKJOnYLlQoK8pRc2hXL5T3Xcetgh9cQF6ztzLUdrhBqCpWG10aHhISwc+dOgoODycnJQaVS4eHhwYABA+jZsyempqaa7E5t586d7Ny5k9jYWNLT0zExMcHNzY2BAwc+dsurnJwcwsPDad68eYntoaGheHh4YGho+Nj+R40aRUJCQoltGzZsoH79+kDhlldr1qwpsuXVhAkTiozAlVdYWBhTpkxhzZo1uLu7P/X9hBDVh1KpZMiQIfj7+zNp0iS+/vrralX0O+1OFhf8owjbH48yX1mkzbFlHXyGuVHbpfhCDyGeNY0kbnfu3CEwMJCAgABu3ryJSqXC0tKS3r17M2DAAFxcXDQRq3gCSdyEEOW1a9cu+vbtC0CtWrU4d+4cDg4OWo7q2ctKyeFiQAyXd8eSl11QpK2ehw0+z7li16yWRqbPCFEeT/WqdN++fQQEBHD69GmUSiV6enq0bt2a/v3706lTJ52rESSEELqqT58+/PLLL7z22mv8+uuv1TJpAzCxqkHrMe54DXbhSlAcF3ZEkZOWB0DC1XsEfHaPWk4W+DznhlPLuiikFpx4xp5qxO3BfLV69erRv39/+vXrR506dTQWnCgbGXETQjytu3fvUqtWrSLHCgoKUCqVT5wyoovycwsIP3SD81siybibXaTNoo4JPsPccO1gJ7XgxDPzVENiPXr0YMCAAbRs2VJT8QghhNCifydtAJ988gl79+7ljz/+eOQKfV1lYKRPkx6OuHe1J/pEYS245BsZQGEtuIPfhXLqj2t4DnKWWnDimdD44gShPTLiJoTQtN27d9O3b19UKhV2dnaEhYVhbl59V1mqVCriQ5I4+2c4dyKLFlQ3MjWgeb+GNO3jhLG51IITFUOjfxrk5+fz119/ERQUxPXr18nJyWH//v0AhIeHs337dkaOHFlt504IIURVY2lpSYMGDYiPj2fatGnVOmmDwlpwDt61cfCuTULYfc79FcGN0CQAcjPzOftnBCHbovDo4YDnQBfMbKpPnTzxbGgsccvJyWHu3LlcvHgRKysrzMzMyM5+OB+gfv367Ny5EwsLC6ZMmaKpboUQQlQgPz8/zp07x+rVq5k/f762w6lU6rnXpN87rbl3PY1zf0cQczLhYS24wMJacK7t7fAZ6opVfTNthyt0hMZmU/7888+EhobyyiuvsGXLFgYMGFCk3dzcHG9vb06dOqWpLoUQQjwDtra2fPDBB8X2mQ4KCuLMmTNaiqrysHG0oMcbPoxc3gX3bvbo6ReuNFUVqIg4dINNcw+ye9kZkmKK71UtRFlpLHHbt28f3t7ejBs3DoVCUWKNGzs7O27fvq2pLoUQQmhJTEwMo0aNon379nz33XfIdGmwrGtKpyktGPNVN1oMcMagxsPdcK6fSWTLu0fx/88Jbl6+K18vUW4aS9wSExPx8PB47DmmpqZkZGRoqkshhBBasmjRIu7fv09ubi6BgYHaDqdSMbWqQdvxHoz7uhstRzbCyOxhGZWEK/fY+clJtrx7hNjTt1EpJYETZaOxOW4mJiakpDx+GPjmzZtYWcmWIUIIUdV9+eWX1KhRgx07drB27VrZSaAERqaG+Axzo8UAZ8L2xxOyLZLM+zkA3I1NY8/ys1jWNcV7mCtu7e3Qk1pwohQ09l3SrFkzjhw5Qnp6eontiYmJHD9+HC8vL011KYQQQkuMjIxYuXIlZ8+exdraukhbVlaWdoKqpAyM9GnWx4kxX3aly+ueWNZ7uGd36u1MDn4byu8zg7kYGE1+TsFj7iSEBhO3MWPGkJaWxpw5cwgNDaWgoPCbLzs7mzNnzjB37lzy8/MZPXq0proUQgihZZaWlkX+nZWVRfv27Zk1axa5ublaiqpy0tPXo1HHBoxc2pneb7akVsOHX7us5ByO/3SV36bt4+yf4eRk5GkxUlGZabQA79atW1m5ciVKpbJYm56eHnPmzGHgwIGa6k78ixTgFUJo28svv8wPP/wAwAsvvMD69eu1HFHlpVKpuB12nzObw7l1+V6RNn0jPTy6O+A1yAXTmlILTjyk0QK8Q4YMwcvLi61bt3LlyhVSU1MxMzOjSZMmDBs2DGdnZ012J4QQohJRqVS0atWKn3/+GQMDA9566y1th1SpKRQK6nnYMGBBW+7GpnL2z3BizySCCgpyC2vBXdlzHdcOdvgMc8WyrtSCE7LllU6RETchRGVw6tQp4uLieO6557QdSpWTejuDc39HEnHkJqqCf/x6VoBTyzr4Dm9ELSfLR99A6LxnvoSlpNeoQgghdEfr1q2LJW0qlYoVK1aQlJSkpaiqBsu6ZnR5zZOxX3alWd+G6Bv9/69pFcSeTuTvd46w45MTJFy99/gbCZ2lscTN39//iecUFBSwcOFCTXUphBCiivjf//7HnDlz8PX15cSJE9oOp9IzrWlMuxeaMO7r7vgOd8PI9OHMpluX7+G/8AR/v3uE2LO3pZhvNaOxxG3ZsmUcOnToke0qlYr//Oc/BAcHa6pLIYQQVUB2djaffvopAHFxccTGxmo5oqqjhpkhvsMbMe7r7rR93gMTKyN1292YVPYsPcumuQcJP3wDZYG80aoONFrHbeHChYSEhBRre5C07d+/n8GDB2uqSyGEEFWAsbExx44do0OHDsycOZNRo0ZpO6Qqx6CGPi36OTN2VTc6v9oCizom6rbUhEwOrL7AHzOCubQrhvxcqQWnyzS2OCE9PZ1p06Zx584dVq1ahaurK1CYtH3yyScEBQUxePBg5s6dq4nuRAlkcYIQojLLy8tDpVJhZGRU5HhaWhoWFhZaiqpqUilVxJ65zZnNEdyPSyvSZmRmSPN+TjTv2xAjU8NH3EFUVRobcTM3N2fZsmWYm5vz1ltvcevWLfVIW1BQEIMGDZKkTQghqjFDQ8NiSdvx48dxcnLi999/11JUVZNCT0HD1vV4blEH+r/XmrqNrdVtuRl5nN0cwW/T9nP85ytkpuRoL1ChcRovBxIXF8frr7+OhYUFjRs3Zv/+/QwcOFDq+TwDMuImhKhKkpKS8PX1JS4uDoC//vqLYcOGaTmqqispOoUzm8KJO3+nyHE9fQWuHezwHe6GRW3TR1wtqgqNlwNxcHBgyZIl3Lt3j+DgYAYMGCBJmxBCiGJMTU3p0aMHAB07dpSddZ6SrbMVfd5uxchlnXFtXx+FngIAZYGK8IM32DDrAHuWneHev16tiqql3DsnrFu37rHtTZo0ISIiAltb2yLnKhQKXnzxxfJ2K4QQQkeYmpry448/0qVLF3r37o2hoczH0gSr+mZ0m+5Nm3HZnN8SybUD8RTkKQtrwZ1JJPZMIvWb2NByVCPqudtoO1xRRuV+VdqlS5fydahQSEmQCiKvSoUQuiIxMZEff/yRt956C319fW2HU6Vlp+cSuiOay7tjycsquuK0VkNLfEc2wtG7NgqFQksRirIo94jbypUrNRmHEEIIARQWax87diz79u1j7969/Pbbb9SuXVvbYVVZxuZGtB7tjvcQVy7vuU6ofxTZaXnA/9eCW3IGy3qm+Dznhmt7O/T0JIGrzMqduHl7e2swDCGEEKLQ0aNHOXDgAACXLl2ioEDqkmmCobEBXoNcaN6vIdcOxBOyNZL0pGzgYS24U7+H4TXYFfdu9hgYyUhnZfTM9yoVQgghHqdTp07s3bsXe3t7NmzYQL169bQdkk7RN9CjSQ9HRn/Rle4zvbFuYKZuy7yfw7H1l/l92n7O/hVObla+FiMVJSl34jZv3jzCwsLKdW1OTg6///47W7ZsKW/3QgghdFiXLl2IiIigU6dORY7n5eWRliarIjVBoafAxa8+wxd3ou/81tR2s1K35TyoBff6Po7/fIWsVKkFV1mU+1VpYmIir776Kt7e3vTp04fOnTtjZmb22GuuXr3K7t27CQoKIisri3fffbe83QshhNBxNWrUKHbs3XffZdu2bWzevJkWLVpoISrdo1AosPe0xd7TlsSIZE5vvMbNi3cByM8p4GJADJf3xOLa3o6WIxphbmvyhDuKilTuVaUqlYqdO3eyfv16bt++jZ6eHo6OjjRu3JiaNWtiYWFBTk4OqampxMfHExYWRkZGBgqFgm7dujFlyhTq16+v6c9TrcmqUiGELtuyZYu6QK+VlRUxMTFYW1trNygdlXwjndObrhF7+jaqf+xdr1CAo28dWo5qjI2DbFOmDeUecVMoFAwYMIB+/fpx7NgxAgICCAkJYffu3cXO1dPTw8XFhU6dOjFw4EBsbW2fKmghhBDVj6enJz4+Ppw7d46FCxdK0laBrBuY03OWL+l3szj7ZwQRh2+izFei+mctuKY2tBrVmLqNa2o73GpF41texcTEcOfOHVJTUzEyMsLa2hpnZ2fMzc012Y0ogYy4CSF0XXZ2Nj///DMvv/yy1B17hrJTczm/LZKre+PIzym6ytfW2ZKWIxth7yW14J4FjSduQnskcRNCVFd///03BgYGDBo0SNuh6LS87HxCA2K4FBBDTnpekTar+oW14FzaSS24iiTlQIQQQlRpYWFhvPDCCwwePJh33nkHpVL55ItEuRgaG+A7zI1xX3ej3cSmmNZ8uIAk5VYmwV9f4I+Z+7m0O4aCfPnvUBHKPcdNCCGEqAx+/PFH0tPTAYiPj5fXdc+AvqE+zXo70aSnI1FHb3L2rwhSEzIByLyXw7F1Vzi7OYJmfZ1o0d8ZQ2NJNzRFvpJCCCGqtEWLFlGvXj1++uknvv32W0ncniE9PQVuHRvg2sGOuPN3OLMpnLsxqQDkpBfWgruwPRqP7vZ4D3XD2MJIyxFXfTLHTYfIHDchRHWWl5eHoaFhkWOJiYnUri2T5p+lhLB7nN4YTsKVe0WO6xkocG1vR6uRjTCrJbXgykvmuAkhhNAJ/07a0tLS6Ny5M8OGDSM5OVk7QVVD9dxtGPh+W55b1AFH3zrw/zmzMl9F+MEb/PFGMHuWn+V+vOyAUR7yqlQIIYROevXVVwkLCyMsLIzJkyfz119/aTukasXG0ZLeb7YkNTGTs5vDiTp2C2WBCpUSYk/fJvb0beo3taH1qMbUkVpwpSYjbkIIIXTS888/j42NDZaWlixevFjb4VRblnVM6fq6F2O/6kbT3o7oGz1MPW5dvse2j46z5b0jxJ1PRGZvPVmFJ25du3at6C6EEEKIYvr168fZs2f566+/cHNz03Y41Z6JVQ3aT2zG+NXd8R7qipHpw5d+SdGp7Fp8hs1vHiLi8A1USkngHqXCEzfJnoUQQmiLk5MTPXr0KHJMpVIxf/58wsPDtRRV9WZkakirUY0Zt7o7bca5Y2L1cKVpyq0Mglf/fy24QKkFV5IyJW7z5s3j+++/5+DBg9y6datU1/xzJc+vv/5KXl7eY84WQgghKtaKFSv4/PPPadWqFdu2bdN2ONWWgZE+ngNdGPtVNzpOaY5F7YcrTTPu5XDspyv89vo+zv4ZTl52vhYjrVzKtDjB1taWU6dOsWHDBvLy8jA3N6dRo0Y0atSIxo0b06hRIxwdHYska/8ccVuzZg39+/enZs3CSYh//PEHQ4YMwcRElgULIYSoeHl5eaxbtw6A1NRU9PRkqre26enr4dHNAfeu9sScus3ZP8O5H1dYUDknPY+zf0ZwYUc07t3s8RnmhrF59a4FV6bE7a233gKgoKCA2NhYwsLCiIiI4OrVq/j7+5OZmYmxsTGBgYElXv/v16br1q2jc+fO6sTt/v37vP766/z+++/l+SxCCCHEYxkaGnL06FGmTJmCs7MzAwcO1HZI4v8pFAqc29TDuU09blxK4szGcBLDkwHIzy7gUkAsV4LicPWrT8vRjTC3qZ6DPuUqB6Kvr4+LiwsuLi4AREZGcvDgQbZs2UJKSkqp7/PvRE6lUpX6FawQQghRHubm5vz2228lzsGOj4/H3t5eC1GJf2rQzJYGH9uSFJXCqY3XuBGaBCpQ5ikJP3SDiCM3cfSpTasxjanZwELb4T5T5a7jdvnyZQ4cOMChQ4dITEzE29ubyZMn06FDB03GJ4QQQmicQqEotpvC/v376du3Lx999BHz5s2T16iVgK2LFf3mtyY5IYMzG64Rc+o2KqUKlVJF7JlEYs8mFtaCG92YOm7VoxZcmRK3M2fOcPDgQQ4dOkRGRgZt27Zl0qRJtGvXDnNz81Ld4+jRo/j4+GBnZ1eugIUQQghNS0xMZMyYMeTm5vLuu+/i6OjI+PHjtR2W+H/W9czo8YYPmcnZnNkUTsThmxTkKUEFty7dY9sHx7F1tqTlqEbYe+r2FmdlStzmzJmDra0tEyZMYNCgQcW2FynJP794jRo1YsWKFeTn52Nqakpubi6//vorLVq0oFGjRqVO/oQQQghNqlWrFq+//joff/wxvXr1YsyYMdoOSZTA1NqYTlNa0Ha8B+f+juDqvnjysgpXnCZFp7Lr8zNY1TfDe5grbu3tUOjpXgJXpk3mX375ZWJiYsjPz8fCwqLIitLGjRvj4OBQ7JquXbsSHBys/nd+fj4xMTFcu3aNa9euER4eTkREBDk5OSgUClQqVZHzRenJJvNCCPF0goKC8Pb2xtbWVtuhiFLIzy0gdGc0lwJiyU7LLdJmZmOM5yBnmvRwRM9Ad157lylxg8cnXiYmJri5ubFq1Sr1+f9O3EqiUqmIi4tTr1KdOnVquT5MdSeJmxBCaF5cXByLFi1i8eLFmJmZaTscUQJlgZIr++K4sC2KjLvZRdqMLQxp2tsJz0EuGBjpaylCzSlz4laSxyVeDxK3JUuW4OrqipubG66urvLNXwEkcRNCCM3Kzc2lS5cuHD9+nGbNmrFt2zZ1RQVR+aiUKiKP3+LcXxGk3Mwo0mZorE/jrvb4PFe1a8GVeo7b4xIvhUKBo6Mjjo6O9OrVq8Tr8/Ly2LlzJ7GxseTl5VG3bl31vdzc3HBzc5MFC0IIISqVixcvcvHiRQAyMjKwtrbWbkDisRR6Ctza2+Harj7xIXc4szmcpKhUAPKyC7gUGMvVvXG4tKtPy1GNMbcx1nLEZVfqxC0/P/+pEq93330XAKVSydmzZ/n4449JSkri/v37bN68WV2818XFhdWrVz/9JxNCCCGekq+vL6dPn2b8+PF8++232NjYaDskUQoKhQIH7zo4eNfhdvh9Tm+4xq0r90AFBXlKwg/eIOLwTRx9a9N6dGOsq1AtuFInbu+88w7w9ImXnp4e69ev57XXXmPAgAHAw9G47777jkaNGj3lRxJCCCE0x93dnVOnThUrMZGTk0NSUhINGjTQUmSiNOo2qsmABW25fyONU39cI+7cnYe14E4nEnsmkfpNbGg1ujF1G1X+WnBlLsCricTrypUr6hE4KNyCZMiQIZiamhIUFFTWkIQQQogKVVJdsNmzZ7Np0yZ+++23R04TEpVHzQYW9J7bkvS7WZzecI2o4wko8/+/Ftzle2z/8Di2Lpa0HN4YB5/a2g73kcq1PvbKlSv4+vqq//0g8Zo9ezYJCQlPvN7NzY3du3cXO96sWTOuXLlSnpCEEEKIZ2bTpk188803JCUlMXToUO7cuaPtkEQpmdcyoevrXoz7uhtNezthUOPhStOkqFR2LTnNpjcPEn7oRonbomlbuRK3p0285s6dy2+//cbKlSu5efMmUPgKduvWraUq6iuEEEJoU48ePdRvnVatWkXt2pV3hEaUzNjCiPYTmzL+m+54D3WhhvnD/CPlZgYHvrnAHzODuRgYg7JAqcVIiyrXXqVz585l+vTpJCcnM3LkSOzs7MqUeDVq1IjVq1ezYsUKxo4di6mpKQUFBeTn5/Pmm2+WJyQhhBDimbGxsWHbtm3s3LmTgQMHajsc8RQMjQ1oNcod3+cacTEwhosBMWTezwEg4242x3+6wvm/I2jSywnPQc4Y1ij3Nu8aUe46bpGRkaxYsYLQ0NBiiVf//v3V5z2pAO/NmzcJDw9HoVDg7u5O3bp1yxOOQOq4CSFEZbB+/XpSU1OZPn26Tu+ZqatUShXXDsYTsjWK1NuZRdqMzAzwGuRCk56OGJlq5w1hudNGV1dXvvrqqycmXk/KC+3s7KR+mxBCCJ1w/vx5XnvtNbKzszl69Cg///wzBgbaHaERZaPQU+De1YHGXeyJPX2bs39FcC82DYDcjHxO/XGNuu421HPXzgrUp/5uelLideDAgaftQgghhKgSgoKCyM4u3HLJ2tpakrYqTKFQ0LB1PRq2rsfNy3c5s/Eat68lU8+jptaSNihH4qZUKomJicHS0rLYJrz5+flcvHgRb29vTcUnhBBCVBlvvvkmLi4ufP3116xYsULb4QgNsWtaC7uP2pF8I52CPO0uVCjTqtKEhAQmTpzIpEmTGDFiBPPnzyclJUXdnpqayqxZszQdoxBCCFFlPPfccwQFBWFsXHQ7paioKHJycrQUldAE6wbm1GpoqdUYypS4ffPNN9SuXZtNmzbx448/kpeXx7Rp00hKSlKfUxlrngghhBDP0r8XJdy7d48ePXrQqVMnYmNjtRSV0AVlStxCQkKYOnUqderUwcXFhaVLl+Lp6cn06dO5ffs2UHJ1aSGEEKI6e/XVV4mJieHUqVO8/vrr2g5HVGFlStyys7OL1GlTKBS8/fbbtG7dmhkzZnDjxg2NByiEEEJUde+99x4uLi7UqlWLb7/9VtvhiCqsTImbo6MjYWFhxY7PnTsXPz8/5s+fr7HAhBBCCF3h7e3NmTNnCAwMxMHBQdvhiCqsTIlb586d2bNnT4ltc+bMoXv37jLHTQghhCiBtbU1rVq1KnKsoKCASZMmceTIES1FJaqacu+cICof2TlBCCGqloULF/Lhhx9iYGDA6tWrmTJlirZDEpVcuTaZf+DBBvFCCCGEKJuCggJ1kXqlUombm5uWIxJVwVOVdB43bhwvvfQSzz//vKbiEUIIIaoFfX19du3axfvvv4+lpSXdunXTdkiiCniqxE2lUlFQUFDk2I4dO7h48SLz5s17qsCEEEIIXWdgYMB///vfEtvOnz8vOxGJYp7qVWlJEhMTCQgIKLHtt99+Y9q0aZruUgghhNAp/v7++Pj48Morr6j3PhUCKiBxe5ycnBwuXbr0LLsUQgghqpS7d++qpyCtWbOGP/74Q8sRicrkmSZuQgghhHi8WrVqsXLlSkxMTBg2bBgvvviitkMSlchTzXETQgghhOa98MIL+Pr64uDgIFtJiiJkxE0IIYSohJo3b46VlVWRYxEREQwZMoSEhAQtRSW07alH3LZs2UJ0dDQeHh64u7uTkZGhibiqveTkZD777DPOnz+Pra0ts2fPpnXr1toOSwghhJZkZWUxYsQIQkJCOHnyJLt27cLT01PbYYln7KkSN2dnZ65fv05wcDDBwcFFhnMXLlyIi4sLrq6uuLi4ULdu3acOtjpZsWIFNjY2bNu2jdOnT/Phhx/y+++/F/vrSwghRPUQGxtLUlISAFZWVjg7O2s5IqENT5W4rVu3jtzcXCIiIggPDycsLIxr164RHR3N3r172bt3rzqZMzMzo0aNGhoJWtdlZmZy6NAhfv/9d4yNjenYsSNubm4cPnyYAQMGaDs8IYQQWuDh4cHZs2eZMmUKn332GRYWFtoOSWjBU78qNTIyomnTpjRt2lR9LD8/n8jISK5du6ZO5qKiokhPT6+wSZZnzpxhz549XLx4kcTERMzNzXF3d2fixIkVvm9nZmYm69evJzw8nPDwcFJSUpg4cSKTJ08u8dzvv/+e/fv3k5aWhqOjI+PHj6dHjx7qc+Lj4zExMSkySuni4kJ0dHSFfg4hhBCVW506ddi6dWux4xkZGURGRsqr02qgQlaVGhgY4O7ujru7O4MGDQIKk7mYmBjCwsIqoku2bt1KSkoKI0aMoGHDhiQnJ7NhwwZee+01li5dSsuWLSukX4CUlBS2b9+Oq6srnTp1wt/f/5HnLliwgKtXr/Lqq6/i4OBAUFAQH3/8MUqlkl69egGF8xjMzMyKXGdmZkZycnKFfQYhhBBVk0qlYurUqWzcuJGvv/6al156SdshiQr0zMqBGBgY4ObmVmGb6M6ePZuaNWsWOdamTRvGjRvHL7/88sjELSMjg9DQUPz8/EpsP3r0KD4+PpiYmDyy73r16rFjxw4UCgXJycmPTNyOHTvG6dOn+eCDD+jZsycAvr6+JCQk8M0339C9e3f09fUxMTEptsgjIyPjsTEIIYSonjZv3szPP/8MwKxZs+jfvz/169fXclSiouhMOZB/J20ApqamODk5kZiY+Mjr/P39mT9/fonbdG3dupV33nmHXbt2PbZvhUJRqlfAhw4dwsTEhK5duxY53r9/f5KSkrh8+TIA9vb2ZGVlFYk7Ojr6kRNRg4KCmD9/PqtWrXpiDEIIIXTL4MGD1dtJ/vDDD5K06TidSdxKkp6eTnh4OA0bNnzkOaNHj2bEiBEsWrSoyLyBTZs2sWzZMiZMmMDQoUM1Ek90dDROTk4YGBQd6HR1dVW3Q2HC2bFjR9auXUtOTg5Hjx4lPDycDh06lHjfnj17smjRImbMmKGROIUQQlQdNWrU4KuvvuL06dOMGjVK2+GICqbTOyesWLGCrKwsXnjhhceeN336dGrUqMGyZcvIzc0lNzeX7777jpdeekmjW42kpKRgZ2dX7PiDlUGpqanqY3PmzOHTTz9l4MCB2Nra8tFHH2Ftba2xWIQQQuiWkqYEffXVV0RHR7No0SIMDQ21EJXQNJ1N3L7//nv27NnDG2+8UapVpVOmTMHIyEj9unHq1KmMHTtW43GVdlWttbU1S5Ys0Xj/Qgghqofjx48zZ84c8vLyOHnyJHv37sXIyEjbYYmnpJOvSteuXctPP/3ElClTGD58eKmv+2e5kvT0dI3HZWVlRUpKSrHjaWlpAFhaWmq8TyGEENXTtWvX1P/fz89PkjYdoXMjbmvXrmXt2rVMmjSJ559/vlTXqFQqvvjiC7Zu3cq8efPIy8tj+fLl5Obmqid8aoKLiwtBQUHk5+cXmecWFRUFIFWwhRBCaMwLL7yAu7s7K1eu5LPPPtN2OEJDdCpxW79+PWvXruWFF15g0qRJpbpGqVSyZMkSAgMDef/999WFcI2MjFi8eDE5OTnMnj1bI4WDO3XqxPbt2zlw4ECRgruBgYHY2toWKWIshBBCPK22bdvy22+/FTseEhKCg4MDNjY2WohKPA2dSdz++OMPfvjhB9q2bUu7du24dOlSkfZmzZqVeN2GDRvYvXs3CxcupFOnTurj/fr1w8jIiE8++QQnJ6cnvnI9fvw42dnZZGZmAoV7ygUHBwOFQ9TGxsb4+fnRqlUrli9fTmZmJg0aNGDv3r2cOHGCBQsWoK+v/xRfASGEEOLJbt++rf4dt3nzZlq1aqXtkEQZKFQqlUrbQWjCzJkzOX/+/CPbDx48WOLxnJwcwsPDad68eYntoaGheHh4PHE1zqhRo0hISCixbcOGDeq6OpmZmaxZs6bIllcTJkwoMgJXXmFhYUyZMoU1a9ZU+DZfQgghqqZRo0axadMmAPr27VtiHVNReelM4iYkcRNCCPFkcXFxjBo1itjYWM6dO1dkX2xR+enMq1IhhBBCPJmDgwMHDhwgJiamWNKmUqk0MqdbVBydLAcihBBCiEczMjKicePGRY7l5eUxcOBANmzYoKWoRGlI4iaEEEII3n33XXbu3MmYMWP4z3/+o+1wxCNI4iaEEEJUc0qlkjt37gBgaGhIr169tByReBSZ4yaEEEJUc3p6eqxdu5YOHTqQn5+Pn5+ftkMSjyCJmxBCCCFQKBRMmTKlxLbAwEB69eol9UYrAXlVKoQQQohH2rhxI/369aN///4kJSVpO5xqTxI3IYQQQpQoJSWFV199FYDdu3ezfft2LUckJHETQgghRImsrKz466+/qFOnDhMmTGDixInaDqnakzluQgghhHikbt26ce7cOaysrIoV55WCvc+ejLgJIYQQ4rHs7OwwMzMrcuzSpUu0bt2aS5cuaSmq6kkSNyGEEEKUSVpaGsOHD+fMmTO0adOGo0ePajukakMSNyGEEEKUSXJyMsbGxgA0atQIHx8fLUdUfUjiJoQQQogycXBw4NixY0ybNo3NmzdjYmKi7ZCqDUnchBBCCFFmJiYmfPXVV7i5uRU5npKSwu7du7UUle6TxE0IIYQQGqFSqZg4cSJ9+vRhwYIFFBQUaDsknSOJmxBCCCE0YsuWLWzZsgWA1atXc+vWLe0GpIMkcRNCCCGERgwdOpSlS5diaGjIzz//jL29vbZD0jmSuAkhhBBCIxQKBXPnziUiIoIBAwYUaVMqlahUKi1FpjskcRNCCCGERjk6OhY7tnjxYkaMGEFKSooWItIdsuWVEEIIISrU/v37ee+991AqlVy8eJHz589LCZFykhE3IYQQQlSonJwcLC0tARg3bpwkbU9BRtyEEEIIUaH69u3L2bNnWbVqFQsWLNB2OFWajLgJIYQQosI5OzuzfPly9PX1ixw/dOgQkZGRWoqq6pHETQghhBBacf36dYYNG0bLli3ZunWrtsOpEiRxE0IIIYRWvPvuu9y9e5eUlBR++OEHKRdSCjLHTQghhBBasXr1anJzczl16hTr169HoVBoO6RKTxI3IYQQQmiFpaUlGzZsIDExkZo1axZpy8/Px8BA0pR/k1elQgghhNAahUJB3bp1ixzLycmhY8eOfP755yiVSi1FVjlJKiuEEEKISmXWrFmcOHGCEydOcOPGDb788ktth1RpSOImhBBCiEpDpVJRp04dFAoFNWrU4KWXXtJ2SJWKJG5CCCGEqDQUCgUff/wx7dq14969e3h5eWk7pEpFEjchhBBCVDp9+/Yt8fi6desYNWoUpqamzziiykEWJwghhBCiSli7di2TJk3Cz8+Pa9euaTscrZDETQghhBCVXkZGBm+//TYAoaGhnDp1SssRaYckbkIIIYSo9MzMzDhw4ABNmjThtddeY/z48doOSStkjpsQQgghqoSmTZty8uTJEgvz5ubmYmRkpIWoni0ZcRNCCCFElWFubo6xsXGRY6dPn8bV1ZWgoCAtRfXsSOImhBBCiCrr3r17jBgxgvj4eHr37s3u3bu1HVKFksRNCCGEEFVa06ZNAfDz86Nr167aDaaCyRw3IYQQQlRZNjY2+Pv7s3TpUsaOHavz89xkxE0IIYQQVZqenh5vv/02Dg4ORY4nJSXx448/olKptBSZ5kniJoQQQgidU1BQwPjx43nppZeYMGEC6enp2g5JIyRxE0IIIYTOCQoKUi9UCAoKIjU1VcsRaYYkbkIIIYTQOX369GHTpk1YW1vzxx9/YGdnp+2QNEIWJwghhBBCJ40YMYJevXphZWVV5Hh+fj5KpbJKLmSQETchhBBC6Kx/J20AH374IZ06deL69etaiOjpyIibEEIIIaoNf39/PvvsMwDatGlDREQE5ubmWo6q9GTETQghhBDVhp2dHc7OzgC8+eabVSppAxlxE0IIIUQ14uvry5kzZ1izZg1z587VdjhlJiNuQgghhKhWatasydtvv41CoShyfOfOnRw7dkxLUZWOJG5CCCGEqPYiIyMZO3YsnTt3ZuXKlZV2twVJ3IQQQghR7S1dupTU1FTy8/M5evSotsN5JJnjJoQQQohqb9WqVVhYWLB9+3a+//77Yq9RKwsZcRNCCCFEtWdgYMDixYs5ffo0FhYWRdrS0tK0FFVxkrgJIYQQQvw/MzOzIv/OyMigXbt2TJ06lezsbC1F9ZC8KhVCCCGEKIFKpeK1117j0qVLXLp0ifT0dH7++WetxiQjbkIIIYQQJVAoFHTr1g1jY2PMzc1ZsGCBtkOSETchhBBCiEeZPHkyLVu2JC4uDnd3d22HI4mbEEIIIcTjeHl54eXlpe0wAHlVKoQQQghRZUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRRhoOwChOTk5OQDExsZqORIhhBBClJWTkxPGxsaPPUcSNx2SkJAAwCeffKLlSIQQQghRVmvWrMHd3f2x5yhUKpXqGcUjKlhycjInT55ky5YtvPHGG6W6ZtWqVcyYMeOJ58XGxvLJJ5+wYMECnJycnjZUnVDar502POvYKqo/Td33ae5TnmvLek1pzpdnsLjK/AyCPIeavE9FP4eV5XehjLhVM9bW1vTu3Zt9+/Y9MWN/wNzcvNTnQuE3VVnO12Vl/do9S886torqT1P3fZr7lOfasl5TlvPlGXyoMj+DIM+hJu9T0c9hVfpdKIsTdFDPnj0r5FxRVGX+2j3r2CqqP03d92nuU55ry3pNZf5eqswq+9dNnkPN3aein8PK/r30T/KqVJRKWFgYU6ZMKdX7dyGE5skzKIT2VYbnUEbcRKnUqlWLiRMnUqtWLW2HIkS1JM+gENpXGZ5DGXETQgghhKgiZMRNCCGEEKKKkMRNCCGEEKKKkMRNCCGEEKKKkMRNCCGEEKKKkMRNCCGEEKKKkMRNaERubi7//e9/GT58OH379uW1114jNDRU22EJUa189NFHDBkyhL59+zJx4kSOHj2q7ZCEqLYuXrxIly5dWL9+vUbvK+VAhEZkZWWxYcMG+vXrR+3atdm1axerV69m06ZNT9x3TQihGdHR0djb22NoaMjly5eZO3cuf/zxB1ZWVtoOTYhqRalUMnXqVBQKBe3atePFF1/U2L1lxE1ohImJCRMnTqRu3bro6enRr18/lEol8fHx2g5NiGrD2dkZQ0NDAPT19cnLyyMpKUnLUQlR/Wzbto0WLVrg6Oio8XvLJvPVVGZmJuvXryc8PJzw8HBSUlKYOHEikydPLvHc77//nv3795OWloajoyPjx4+nR48ej7x/bGwsOTk52NnZVeTHEKLKqqhncOHChRw8eJDc3Fz8/PxwcXF5Fh9HiCqpIp7DlJQUNm/ezLfffsuXX36p8ZglcaumUlJS2L59O66urnTq1Al/f/9HnrtgwQKuXr3Kq6++ioODA0FBQXz88ccolUp69epV7Pzs7Gw+/fRTXnjhBUxNTSvyYwhRZVXUM/jBBx+Qn5/P2bNniY2NRaFQVPRHEaLKqojn8H//+x+jRo3C3Ny8QmKWxK2aqlevHjt27EChUJCcnPzIb9Zjx45x+vRpPvjgA3r27AmAr68vCQkJfPPNN3Tv3h19fX31+fn5+Xz44Yc4OTnx/PPPP5PPIkRVVFHPIICBgQFt2rThzz//xN7ennbt2lX45xGiKtL0cxgWFsa1a9eYO3duhcUsc9yqKYVCUaq/xA8dOoSJiQldu3Ytcrx///4kJSVx+fJl9TGlUsmnn36Knp4e8+bNk7/0hXiMingG/02pVHLjxo2nDVUInaXp5zAkJISYmBiGDBnCoEGD2LdvH7/++iuffvqpxmKWETfxWNHR0Tg5OWFgUPRbxdXVVd3eokULAJYuXcrdu3dZsmRJsfOFEOVT2mfw7t27hIaG0rZtWwwNDTl48CDnzp3j1Vdf1UbYQuiU0j6HAwcOLJLcff3119SrV49x48ZpLBb57SoeKyUlpcQFBhYWFgCkpqYCkJCQgL+/P0ZGRgwePFh93uLFi/Hy8no2wQqhg0r7DAJs3ryZzz//HIVCgb29PR999BFubm7PLFYhdFVpn0NTU9Mic7tr1KiBqampRkvySOImnqg0w8j16tXj4MGDzyAaIaqf0jyDtWrV4quvvnoG0QhRPZVn+s+7776r8Thkjpt4LCsrK1JSUoodT0tLA8DS0vJZhyREtSLPoBDaV5meQ0ncxGO5uLgQGxtLfn5+keNRUVFAYcFPIUTFkWdQCO2rTM+hJG7isTp16kRWVhYHDhwocjwwMBBbW1uaNm2qpciEqB7kGRRC+yrTcyhz3Kqx48ePk52dTWZmJlC420FwcDAAfn5+GBsb4+fnR6tWrVi+fDmZmZk0aNCAvXv3cuLECRYsWFCsfpQQovTkGRRC+6racyibzFdjo0aNIiEhocS2DRs2UL9+faBwm481a9YU2eZjwoQJj93ySgjxZPIMCqF9Ve05lMRNCCGEEKKKkDluQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQghRTaxYsYJBgwapt/YB+PHHH+ncuTPnzp3TYmQPffrpp4wcOZKcnBxthyJEpSR7lQohqqRbt24xevTox57j5ubGjz/++Iwiqtzi4uLYtm0br7zyCqamphXa19atW1m2bBmDBw/mzTfffOy5L7/8MteuXWPNmjW4u7vz4osvEhQUxKZNm5gwYUKFxilEVSSJmxCiSmvQoAG9evUqsa1WrVrPOJrKa+3atRgZGTFkyJAK76tnz558/fXX7Nu3jxkzZlCjRo0Sz4uMjOTatWs0atQId3d3AOzt7enYsSO//fYbw4cPx8TEpMLjFaIqkcRNCFGlNWjQgMmTJ2s7jEotOTmZgwcP0rVr1wofbQMwMzOjS5cu7Nq1iwMHDtC7d+8Sz/P39wegf//+RY737t2bAwcOsHfvXgYOHFjh8QpRlcgcNyFEtdG5c2dmzpxJcnIyixYtYvDgwfTs2ZPXXnvtkXO8MjMz+fHHH3nhhRfo2bMn/fv358033+TChQvFzp05cyadO3cmNzeXH374gbFjx9KtW7cir2sPHDjAlClT6NmzJ0OGDGHx4sWkpaUxatQoRo0apT7v008/pXPnzly5cqXEuL755hs6d+7MwYMHn/i59+7dS25uLl27dn3iuQ9ERkYybNgwBg0axOXLl9XHb968yeeff86IESPo0aMHQ4cO5bPPPiMhIaHI9QMGDAAgICCgxPvn5eURFBSEkZFRscTOz88PExMTdu7cWep4haguJHETQlQr6enpvP7660RGRtKrVy86d+5MWFgYb775JlFRUUXOTU1NZerUqaxbtw5LS0uGDh2qPv+NN97g0KFDJfaxYMECdu7ciZeXFyNHjsTOzg6AHTt28P7773Pjxg369OlD3759uXTpEnPmzCE/P7/IPQYPHgw8HJX6p/z8fHbt2oWNjQ3t27d/4mc+c+YMAM2aNXvyFwgICQlhxowZ6Ovr89VXX9G0aVMALl++zMsvv0xgYCDu7u6MGDECLy8v9uzZw6uvvsrNmzfV9/D29sbe3p6zZ89y69atYn0cOXKElJQUOnfujIWFRZE2Q0NDGjduzJUrV8jKyipVzEJUF/KqVAhRpd24ceORCxCaNWtG27ZtixyLiIhg6NChzJo1Cz29wr9dfX19Wbx4MX/99VeRyfRffPEF0dHRzJ8/v8jrvHv37vHKK6+wZMkS2rRpU2wO1927d1m7di2WlpbqY2lpaXz55ZeYmpry/fffq5O5KVOm8PbbbxMWFka9evXU57do0QJnZ2f27t3L9OnTi8z1Onr0KPfu3WPcuHEYGDz5x/jFixepXbs2NWvWfOK5hw4d4uOPP8bOzo6lS5dSp04doDBZ/Oijj1AqlaxZswY3Nzf1NRcuXOCNN97gyy+/ZNGiRerj/fv353//+x+BgYFMmjSpSD87duwAHo7M/Zu7uzshISFcuXIFX1/fJ8YtRHUhI25CiCrtxo0brFu3rsT/nThxotj5JiYmvPbaa+qkDaBv377o6+tz9epV9bHk5GT2799Py5Yti83BsrGxYezYsSQnJ6tHs/5p0qRJRZI2gMOHD5OVlcXAgQPVSRuAgYEBL730UomfbfDgwWRmZrJv374ix/39/VEoFKWa/5WXl0dycnKpkjZ/f38++OADGjVqxFdffaVO2qAwWUxISGDs2LFFkjYAT09POnTowPHjx8nIyFAff/B1DQgIQKVSqY8nJSVx+vRp6tWr98ik7EG8d+7ceWLcQlQnMuImhKjS2rRpw9KlS0t9vr29fbEJ+gYGBtjY2JCenq4+dvXqVQoKCsjNzS1xRC8+Ph6A2NjYYq8rmzRpUuz8yMhIAJo3b16srUmTJujr6xc73rt3b7799lv8/f3VI1N37tzh1KlT6leRT5KSkgJQ7HXkv23cuJEjR47g5+fHwoULMTY2LtJ+6dIlAK5fv17i1+PevXsolUri4uLw8PAAwNbWlrZt23L06FHOnj1Ly5YtgcJ5bwUFBfTv3x+FQlFiPA8S3wfxCyEKSeImhKhWzMzMSjyur6+PUqlU/zs1NRWA0NBQQkNDH3m/7OzsYsdsbGyKHXswEmVtbV2sTU9PDysrq2LHLSws6NatG4GBgcTExNCwYUN27txJQUFBqVdbPniN+6SCtg8WW7Rt27ZY0gaFr3oB9uzZ89j7/PvrMWDAAI4ePUpAQECRxE1PT49+/fo98j4P4n1UKREhqitJ3IQQogQPErzRo0czbdq0Ml1b0ijSg/slJycXa1MqlaSkpFC7du1ibYMHDyYwMBB/f3+mTZtGQEAAlpaWdO7cuVSxWFhYYGBgoE5EH2XevHn89NNPfPnll+jp6TFs2LAi7Q9GKRctWlSqBREPtGvXDhsbGw4cOMDs2bOJiIggPj6eNm3aULdu3Ude9yDekhJdIaozmeMmhBAl8PDwQKFQqF8RPi1XV1egcKHAv125coWCgoISr2vevDkuLi7s2rWL48ePc/PmTXr16lWmkShnZ2cSEhKKrVz9JwsLC1asWEHjxo1ZsWIFf/31V5H2BytLy/r1MDAwoE+fPuTk5LB37151iY9HLUp4IC4uDgAXF5cy9SeErpPETQghSlCrVi26devGxYsX+f3334tMrn/g8uXLJb4qLUnHjh0xMTHB39+/SNmM/Px8fvjhh8deO2jQIFJSUliyZAlAmYvSent7k5ubq55n9ygWFhYsX74cDw8PvvjiC/78888i8detW5cNGzZw/vz5Ytfm5+eXWNsOHiZpW7ZsITg4GCsrKzp27PjYWC5fvkytWrVwcHB4wqcTonqRV6VCiCrtceVAgKfaVWHOnDnExcXxzTffsGvXLpo1a4a5uTmJiYmEhYURHx/P33//XeKcsH+zsLBg+vTpLFmyhJdffpnu3btjZmbG8ePHMTIywtbW9pET9fv06cN3331HUlISTZs2VY/elVanTp3YtGkTZ86cUW8t9bg4ly1bxty5c1m5ciUqlYoRI0ZgZGTEwoULefvtt5k5cyYtW7bE2dkZgNu3b3PhwgWsrKz45Zdfit3T0dGRFi1aqOcKDhw4EENDw0fGcOPGDW7dusXQoUPL9DmFqA4kcRNCVGkPyoE8ytMkbpaWlqxevZq//vqLffv2ERQUhFKpxMbGBjc3N1588cUSFxU8yqBBg7CwsODnn38mMDAQMzMzOnTowGuvvcbIkSNp0KBBideZm5vTsWNHgoKCyrUFlLe3N46OjuzevZtx48Y98fwHI29z587lyy+/RKVSMXLkSJo0acKPP/74f+3dvYriUBjG8UdEvAERQcR7ECwtjIVFevEDrMXewtJSsBEsbMTSUtEuN6A2IugFCFpErUQQFGG3WHCYWZdlApMxu/9fGU6SUz6c9+U9GgwGms1mWq1WCgQCCoVCSqVSymQyf/ymaZqP4PZxvMpHlmVJehtCDOCN78ez838AgGt2u52KxaLS6bQajcbTNeVyWfv9XsPh0NF9o+PxWK1WS91u99Gv9oru97tKpZIikYja7fZ3bwd4OfS4AYBLzuezbrfbu2fX61WdTkfSr5LmM9PpVJvNRtls1vEl8aZpKh6Pq9/vO3rfLZZlybZtVavV794K8JIolQKAS5bLpZrNppLJpMLhsE6nkxaLhWzbViKRkGEY79aPRiMdDgdNJhMFg0EVCgXH//b7/arX65rP57pcLo4D4Ffz+Xyq1Wp/7cUD/leUSgHAJdvtVr1eT+v1+jHPLRqNyjAM5fP530Z85HI5HY9HxWIxVSqVT81PA/BvIrgBAAB4BD1uAAAAHkFwAwAA8AiCGwAAgEcQ3AAAADyC4AYAAOARBDcAAACPILgBAAB4BMENAADAI34C4fcZMfdez38AAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAG7CAYAAAB6sxkSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFlElEQVR4nOzdd1yVZf/A8c9hyQYRFzJkKLhYLtx779yjUsvKHDkqrWz5VI85M8vqsVLbjsqBgoqKew/EhWxBRURlb875/cHPYwQq4MEDh+/79Xper8f7uu/7+h7ihi/XfV3fS6FSqVQIIYQQQohKT0/bAQghhBBCiNKRxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE2HZGdnExYWRnZ2trZDEUIIIUQFkMRNh8TGxjJlyhRiY2O1HYoQQgghKoAkbkIIIYQQVYQkbkIIIYQQVYQkbkIIIYQQVYQkbkIIIYQQVYSBtgMQQgghqruCggLy8vK0HYaoYPr6+hgYGKBQKMp9D0nchBBCCC1KT08nPj4elUql7VDEM2Bqakr9+vUxMjIq1/WSuAkhhBBaUlBQQHx8PKamptSuXfupRmJE5aZSqcjNzeXOnTtER0fTqFEj9PTKPmNNEjchhBBCS/Ly8lCpVNSuXRsTExNthyMqmImJCYaGhsTGxpKbm4uxsXGZ7yGLE4QQQggtk5G26qM8o2xFrtdQHEIIIYQQooJJ4iaEEEKIIho2bIiHhwfe3t40adKEcePGkZGRUe77rVu3jmvXrj2y/fjx47Ro0QIfHx927dpF//79iYyMLNW11Y0kbkIIIYQoZvPmzZw/f57Lly+TmprKunXryn2vJyVf69ev54UXXuDcuXP06dOHnTt34urqWqprqxtZnCCEEEJUElveO0JmSk6F9mFqVYOhn3Yo9fk5OTlkZGRQs2ZN9bGlS5eyceNG8vPzqVevHt999x0ODg5s376d9957Dz09PfLz8/n000+5c+cOp0+fZubMmSxYsIDPPvuM/v37q++1aNEiNmzYgKmpKb/++ivBwcF4e3vj7+/P8ePHH3ttdSSJmxBCCFFJZKbkkHmvYhO30hoxYgTGxsZER0fTsmVLRo0aBcBvv/3GtWvXOHbsGPr6+vz8889Mnz6drVu3smDBAr799lvat2+PUqkkNTUVa2trfvnlF958800GDhxYrJ/58+dz9epVWrVqxfTp04u0vfzyy4+9tjqSxE2U2p07d6hdu7a2wxBCCJ1lalWj0vSxefNmmjdvTn5+Pq+++irz5s1j2bJlbNmyhdOnT9OyZUugsBadvr4+AD169GDWrFmMGDGC3r174+3tXVEfo9qSxE2Uyu3bt2nYsCE9evRg3rx5dOrUSdshCSGEzinLK8xnxcDAgOHDh/PWW2+xbNkyVCoVCxYsYPLkycXOXb58OZcuXWL//v28+OKLjB8/nrffflsLUesuWZwgSmX16tVkZ2ezY8cOtm3bpu1whBBCPEP79u3D3d0dgMGDB7N69Wru3bsHFBYRPnfuHABXr16lWbNmTJ8+nalTp3L8+HEALC0tSUlJKVffT3OtLpLETZSKvb09Dg4OGBgYMHPmzCJt+fn58lAJIYSOGTFiBN7e3jRr1owrV66wcuVKAJ5//nkmTJhA165d8fLywtvbm/379wPwzjvv0KxZM3x8fPj555/56KOPAHjllVdYuHAh3t7e7Ny5s0xxPM21ukihkl1tdUZYWBhTpkxhzZo16r+MNCkvL4+TJ0/SoUPRofyNGzfy8ssvM2XKFGbNmoWDg4PG+xZCCF2UnZ1NdHQ0zs7O5dr+SFQ9T/vfXEbcRKkZGhoWS9pUKhXLli0jLS2N5cuXExISoqXohBBCCN0niVsllZyczNtvv03v3r0ZN24cp06d0nZIJcrJycHb25saNWrQsmVLBgwYUKRdBnSFEEIIzZHErZJasWIFNjY2bNu2jddff50PP/ywUs4jMzY25rvvvuP69ev89NNPxTZKnj17NpMmTSIiIkJLEQohhBC6QxK3SigzM5NDhw4xadIkjI2N6dixI25ubhw+fFjboT1SnTp1aNq0aZFj8fHxfPPNN6xbt47WrVuTmZmppeiEEEII3aBzddwuXLjAzz//zKVLl8jNzaV27dr07duXF198scL6zMzMZP369YSHhxMeHk5KSgoTJ04sscZNZmYm33//Pfv37yctLQ1HR0fGjx9Pjx491OfEx8djYmJC3bp11cdcXFyIjo6usM9QES5evIipqSm5ubm89tprmJqaajskIYQQokrTqRG3PXv2MHPmTMzNzXnvvfdYvHgx48ePr/B5VikpKWzfvp28vLwnFqZdsGABgYGBTJw4kcWLF+Ph4cHHH3/Mnj171OdkZWVhZmZW5DozMzOysrIqJP6K0rdvX2JiYvjkk0+YO3dukTalUsnSpUvVdYCEEEII8WQ6M+J2584dli5dyuDBg5kzZ476uK+v72Ovy8jIIDQ0FD8/vxLbjx49io+PDyYmJo+8R7169dixYwcKhYLk5GT8/f1LPO/YsWOcPn2aDz74gJ49e6rjS0hI4JtvvqF79+7o6+tjYmJCRkZGsTgfF0NlZWVlxXvvvVfs+IYNG3jrrbf49NNPWbVqFRMmTNBCdEIIUfmc2RxeYfduOaJRhd1bPBs6M+Lm7+9PVlYW48aNK/N18+fPJyAgoFjb1q1beeedd9i1a9dj76FQKIpNyi/JoUOHMDExoWvXrkWO9+/fn6SkJC5fvgwUFrvNysoiMTFRfc6Dmi8lCQoKYv78+axateqJMVQGKpWKTz75BChcPVunTh0tRySEEOKfGjZsiIeHB97e3jRp0oRx48YVG1Aoi3Xr1nHt2rVHth8/fpwWLVrg4+PDrl276N+/P5GRkaW6FmDOnDn88ccf5Y5P0+bOncvvv/9eIffWmcQtJCQES0tLrl+/zuTJk+nWrRuDBw9m6dKlj/1mGz16NCNGjGDRokVs3bpVfXzTpk0sW7aMCRMmMHToUI3EGB0djZOTEwYGRQc6XV1d1e0ApqamdOzYkbVr15KTk8PRo0cJDw8vVkPtgZ49e7Jo0SJmzJihkTgrmkKhYNeuXUycOJE+ffrQu3fvIu15eXlaikwIIcQDmzdv5vz581y+fJnU1FTWrVtX7ns9Kflav349L7zwAufOnaNPnz7s3LlT/bvxSdfeuHGDgIAARo8eXaaY8vPzS3WsLNc/MG/ePD766COUSmWZYioNnUnckpKSyM7O5oMPPqB79+4sX76csWPHsmvXLt5+++3HznObPn06EyZMYNmyZWzatIlff/2VVatW8dJLLzFlyhSNxZiSkoKlpWWx4xYWFgCkpqaqj82ZM4ekpCQGDhzIqlWr+Oijj7C2ttZYLNpmb2/P2rVrS3ytPH36dPr168eVK1e0EJkQQoh/ysnJISMjg5o1a6qPLV26lDZt2uDr60v//v2Ji4sDYPv27Xh6euLt7U3z5s3ZunUr33//PadPn2bmzJklblu1aNEiNmzYwMqVK/H29iY5OZmGDRty8eLFJ14L8OOPPzJixAj1m6+8vDzmz59PmzZt8Pb2ZsyYMSQnJwMwceJEZs6cSd++ffHy8iI4OBhvb29mzpxJu3bt+Pvvvzl9+jTt2rXD09OTNm3acOTIEQBiYmKwtbVl4cKFdOrUiVWrVpX4eaGw0oKzszN79+7V+H8PnZnjplQqyc3NZeLEier5Uj4+PhgYGLBq1SrOnDlDq1atHnn9lClTMDIyUr9unDp1KmPHjtV4nKV5pQpgbW3NkiVLNN5/ZfPv0ccrV67w/fffo1QqOXbsGHFxcerEVgghxLMzYsQIjI2NiY6OpmXLlowaNQqA3377jWvXrnHs2DH09fX5+eefmT59Olu3bmXBggV8++23tG/fHqVSSWpqKtbW1vzyyy+8+eabDBw4sFg/8+fP5+rVq7Rq1Yrp06cXaXv55Zcfey1AcHAwb775pvrfS5YswdzcnJMnTwLwn//8hw8//FC91+rhw4c5ePAg5ubmBAcHc+HCBb766iu+/PJLcnNzcXNzY82aNfTp04fDhw8zYsQIdS3Su3fv4ubmxgcffACAl5dXsc/7QPv27dm7dy+9evUq73+CEunMiJuVlRUAbdq0KXL8waKDJ70fB0hPT1cnVunp6RqOsDDGkoropqWlAZQ4Glfd3L59W73X6bx58yRpE0IILXnwqvTu3bs4Ozszb948ALZs2UJQUBAtW7bE29ubxYsXExsbC0CPHj2YNWsWixcv5sKFC8/kTVF8fDz16tVT/3vLli388ssveHt74+3tze+//05UVJS6fdSoUZibm6v/3bhxYzp27AgU7vltZGREnz59AOjYsSN16tThwoULQGHR+X8O6jzu89arV4/4+HiNf16dSdxcXFxKPP7gFenjRrpUKhUrVqxg06ZNzJs3j7lz5/LLL7/w9ddfazzG2NjYYu/FH3xDPWrxQXXStWtXrly5wvLly0ssIVLVatkJIURVZ2BgwPDhwwkMDAQKf2cuWLCA8+fPc/78eUJDQzl//jwAy5cvZ+3atZiamvLiiy+yePHiCo/P1NS0SLkslUrF6tWr1fFdvnyZ7du3q9v/mbT9+98qlarEfOHBMTMzsyLtj/u82dnZFVINQmcSty5dugBw4sSJIsePHz8OQLNmzUq8TqlUsnjxYrZt28b7779P//79GTJkCPPnz2fz5s0sX75cY3XgOnXqRFZWFgcOHChyPDAwEFtb22I7D1RXJiYmzJ49GyMjoyLH161bh4eHBwsWLJBdGIQQ4hnat28f7u7uAAwePJjVq1er63Dm5eVx7tw5AK5evUqzZs2YPn06U6dOVf8OtrS0LPe2jU+61tPTk6tXr6r/PXjwYJYvX67+PZGZmcmlS5dK1ZeHhwc5OTns27cPKCwJlpiYSIsWLUo8/1GfFwqn/nh5eZWq37LQmTlubdq0oX379qxfvx6lUkmzZs24evUq69ato3379nh6epZ43YYNG9i9e7d6suED/fr1w8jIiE8++QQnJyeGDx/+2P6PHz9Odna2+hslNjaW4OBgoPB1rbGxMX5+frRq1Ur9DdWgQQP27t3LiRMnWLBgAfr6+pr5Yuige/fuMW/ePHJzc/n000/p0aMH3bp103ZYQgihcZWl1tqDOW55eXk0bNiQb7/9FoDnn3+eu3fv0rVrVxQKBfn5+bz00kv4+PjwzjvvcO3aNYyMjDA1NeWbb74B4JVXXmHu3LksWbKEzz77jP79+5c6jiddO2LECH766Sf1bkXz58/n448/pm3bturRsXnz5j1yAOefjIyM+PPPP5k5cyYZGRkYGxuzadMmzMzMuHPnTrHzH/V5VSoVe/fu5d133y315ywthaqitxV4hnJycli7di1BQUHcvXsXW1tbevXqxcSJE4uN3vzzmvDwcJo3b15ie2hoKB4eHhgaGj6271GjRpGQkFBi24YNG6hfvz5QmPmvWbOmyJZXEyZMKLLlVXmFhYUxZcoU1qxZo/7LSFdkZmbyySefsHTpUp577rlKVa9HCCHKKzs7W12n09jYWNvhVElKpZLWrVuzdetW7O3ttR0OUPgm7ddff+Xnn38u1va0/811KnGr7nQ5cXvg6tWrWFpaYmdnV+R4SEgInp6epV61K4QQlYEkbppx+vRpsrOz1YsMtG3Dhg106tSp2O8qePr/5jrzqlRUDx4eHsWOnT59Gj8/PwYMGMC3336rHt0UQghRPTyu3Jc2lLUYcFnozOIEUT3l5+czadIkCgoK2LZt21NV9hZCCCEqO0ncRJVmYGDAwoULqVOnDj4+PkWKMAohhBC6Rl6Viipv2LBhdO7cmfv37xdbRHL9+nUcHBxk7psQQgidICNuQifUqlULNze3Isdu376Nr68vw4YN4+7du1qKTAghhNAcSdyEzpo2bRp3795l69atzJ49W9vhCCFElfFgk/fH+eCDD9iwYUO5+wgODmb37t3lvrayLUh4VuRVqdBZ48eP58CBA+jr67NkyRJthyOEEDpl4cKFT3V9cHAw6enp9O7dW0MRVQ8y4iZ01rBhwwgJCWHLli3UrVtX2+EIIUSpLF++HHt7e+zt7dU78DwQHR2tbpsxY0axawcPHqxu/7d169axfPnyMsXStWtX5s2bR6dOnXB1deW1115Tt02cOJGvvvoKKNz2av78+bRp0wZvb2/GjBlDcnIyACkpKbz88su0aNECLy8vJk+ezPnz5/n222/56aef8Pb2VieBu3btomPHjrRs2ZK2bdty8OBBdX8LFizAzc2NLl264O/vX6bPoUtkxE3oNDs7u2IFEPPy8hg+fDivvPIKAwcO1FJkQghRstTUVG7cuAEU7u7zTwUFBeq2+/fvF7v2zp076vZ/y8jIIDU1tczxREZGEhwcTG5uLk2bNuXYsWO0a9euyDlLlizB3NyckydPAvCf//yHDz/8kJUrVzJr1izMzc0JCQlBT0+PO3fuULt2bV577TXS09NZunQpAFFRUXz88ccEBgZiaWlJREQEXbp0ISYmhsDAQLZt28b58+cxMTFh2LBhZf4cukISN1HtfPjhh2zfvp3t27fz3//+l/nz52s7JCGEULO0tKRBgwYA1KhRo0ibvr6+uq1mzZrFrq1du7a6/d/MzMyKJYKlMWbMGPT19TExMcHb25vIyMhiiduWLVtITU1l8+bNAOTm5uLq6gqAv78/Z86cQU9PTx1jSQIDA4mIiKBz585FjsfFxbF//35Gjx6Nubk5AJMnT+aTTz4p82fRBZK4iSfKTMnh6t7rNO3lhLFFyXu+VhVKpZKwsDCgsAZc9+7dtRyREEIUNWfOHObMmVNim7OzM/Hx8Y+8dtu2bY9smzhxYrni+ee2TPr6+uTn5xc7R6VSsXr16qf6mapSqejbty8//fRTiW2ikMxxE090KSCGs5sj+GNmMMd/vkLG3Sxth1Ruenp6bN68ma+++oqlS5fSpk0bbYckhBBV3uDBg1m+fDmZmZkAZGZmcunSJXXbkiVLUCqVQOHrXCgcWUxJSVHfo3fv3gQGBhZZzfrg1WuPHj3YuHEjGRkZFBQUVOtdciRxE49VkFfA1X1xAOTnFHAxIIYNsw5w8H+hpNzK0HJ05aNQKJg2bRpvvPFGsbYtW7aQm5urhaiEEKLqeVDcfP78+Xh7e9O2bVs8PT3x8/Pj/PnzAKxYsYLMzEyaN2+Ot7c37777LlC4gOz06dPqxQmNGjXil19+4eWXX8bLy4smTZqwcuVKAAYOHMjAgQPx8vKie/fueHp6auXzVgYKlYw/6oywsDCmTJnCmjVrcHd319h90xIzCd0RTVhwPAV5yocNCnBuXQ+vwS7YulhprD9t2bx5MyNHjsTPz4+NGzfi4OCg7ZCEEDouOzub6OhonJ2di7ySrAr69+/PCy+8wJgxY7QdSpXytP/NZcRNPJFFHVPaT2rG6C+74jXEFSPT/58aqYLokwlsWXCUgP+e5Oalu1V2HkJGRgZTp04F4Pjx4wQEBGg5IiGEqLx69uxJWloaAwYM0HYo1Y4sThClZmpVg9ajG+M1yJkre+O4uDOarJTC14o3Qu9yI/Qutd2s8BrkilPLOij0qs7+oGZmZgQEBDBixAg6dOjAlClTtB2SEEJUWkFBQdoOodqSxE2UmZGpIV6DXGjWx4nwgze44B9FWmLhgoU7ESkErTiLdQNzvAa54Nq+PnoGVWNgt1WrVpw9exYjI6Nim9IrlUr1UnYhhBBCW+Q3kSg3AyN9mvR0ZOSyznSb7oWNo4W6LflGOge+vcDGOQe4tCuG/JwCLUZaejY2Nuo6QQ9cunSJ5s2bc+LECS1FJYTQdVV1mokouwera8tLRtzEU9PT18O1vR0u7eoTf/4O57dFcTussKJ3elI2x9Zf4dzfkTTr60TTnk7UMDfUcsSll5aWxvDhwwkLC6NTp04EBATQo0cPbYclhNARhoaGKBQK9W4C/x7tF7pDpVKRm5vLnTt30NPTw8iofHVRJXETGqNQKHDwqYODTx0Srt4jZHsUcecK6/Vkp+ZyZmM4F7ZH4dHDkRb9GmJas/KvoMrMzKR27dqEhYXRtGlT2rdvr+2QhBA6RF9fH3t7e+Lj44mJidF2OOIZMDU1xdHRsdzTbyRxExWinocN9TxsuHs9lQvboog6dguVCvKyCgj1j+ZSYAyNO9vjOcgZy7pm2g73kerWrcu+ffv48MMPmTx5MiYmJtoOSQihY8zNzWnUqBF5eXnaDkVUMH19fQwMDJ5qZFXquOmQiqrjpgmptzO44B/NtQPxKPMffsspFODsVx+vwS7UcrLUYoRll5KSwt69e3nuuee0HYoQQohqQhYniGfCsq4ZHV9qzpiVXfEc5IyhiT4AKhVEHbvF3+8cYdfi0yRcvafdQEtJpVIxefJkhg8fzrRp08q1cbMQQghRVpK4iWfKtKYxbcZ6MObLbrQa1Rhjy4eTM+PO38F/4Qm2f3Sc6+cSK/Uqq127dvHXX38B8Ntvv5GQkKDliIQQQlQHkrgJrahhZoj3UFfGrOxKuxebYm77cKHC7Wv32b3kDH/NP0LEkZsoC55u6XRF6Nu3Lz/88AMmJib8/PPPODk5aTskIYQQ1YDMcdMhlXmO25Mo85VEHrtFyLYokm+kF2mzqGOC50AXGnVugIGRvpYiLNnt27epW7dukWNKpRKVSoW+fuWKVQghRNUnI26iUtAz0KNRpwYM/7wjveb4Utvt4ab1aYlZHPnxEhveCCZkWyS5mZVn5dW/kzaAJUuW0KdPHxITE7UQkRBCCF0m5UBEpaLQU+DUqi6OLetw68o9QrZGcSM0CYCslFxO/XGNkG1RNOnlRPO+TphY1dByxEUFBwfz7rvvolQqadmyJZcvX8bCwuLJFwohhBClIImbqJQUCgV2TWth17QWSVEphGyLIvpUAqggNzOfkK2RXNwZjXtXe1oMdMaitqm2QwbAwMCAOnXqkJCQwOTJkyVpE0IIoVGSuIlKz9bFih6zfEi5lUHI9igiDt1AWaCiIE/J5T3XubI3Dtf29fEc5IKNg3YTpY4dO3Lu3Dm+/PJLPvjgA63GIoQQQvfI4gQdUpUXJ5RFxr1sQndGc3VvXLHN6x196+A12IW6jWtqKbpHO3DgADVr1sTT01PboQghhKiiZHGCqHLMbIzxm9CEMV92xXeEW5FN66+fTWT7R8fx/88J4kLuVJpacHFxcQwfPhw/Pz/Wr1+v7XCEEEJUUZK4iSrL2MII3+caMebLrvg974GZzcNacAlX7rHr89NsefcIkcduoVRqN4H7z3/+w927d8nKymLTpk2VJqEUQghRtcirUh0QFBREUFAQ6enpXLhwQedflT5KQb6SyMM3CdkeRcqtjCJtlnVN8RzkQqNOdugbPvv6atnZ2bzxxhvs3r2bM2fOYGNj88xjEEIIUfVJ4qZDqssctydRKlXEnr5NyLYokqJSirSZWtegef+GePRwxMjk2a/NuXfvXrGkLScnhxo1KldZEyGEEJWTvCoVOkdPT4Fzm3oM+U87+r3TGrtmtdRtmck5nPwtjD9m7Of0xmtkpT7bzeFLSto6d+7M/Pnzyc/Pf6axCCGEqHqkHIjQWQqFggYtbGnQwpY7kcmEbIsi5vRtdS2481siCd0ZjXs3BzwHOGNua/LMY5w9ezYnT57k5MmT3L59m7Vr1z7zGIQQQlQdkriJaqG2qzU9Z/ty/0Y6of5RhB++iapARUGuksu7YrkSdB23DnZ4DnSmpv2zqQWnUqlo3LgxBgYGGBgY8MYbbzyTfoUQQlRdMsdNh8gct9JLv5tF6I5owvbHF6sF59SqLl6DXajjZv1MYjl69CjXr19nzJgxz6Q/IYQQVZckbjpEEreyy07N5dLuWC7viiUno+jm9XbNauE52IUGzWuhUCieeWzffvstY8aMwdra+pn3LYQQonKSxQmiWjO2NKLliEaM/rIrbcd7YFrz4erOm5fuEvjfU2xdcJToE8+2FtzatWuZOnUqLVu25Ny5c8+sXyGEEJWbJG5CAEYmBrQY4MzoL7rQaUpzLOs93LQ+KTqVvSvP8+dbhwjbH0dBvrJCY8nOzlbvcxoVFcXFixcrtD8hhBBVhyxOEOIf9A31ce/mQKMu9sScTCBkWxR3Y1IBSLmVwaE1FznzZzgt+jvj0d0BQ2PNP0LGxsYcPnyYkSNH4uvry/PPP6/xPoQQQlRNkrgJUQI9PQUufvVxbluPG6FJhGyL4tblewBk3svhxC9XOb8lkqa9nWjWxwljCyON9u/k5MShQ4dKbMvMzMTU1LTENiGEELpNXpUK8RgKhQJ7z9oMWNCWwR/74dSyjrotJz2Pc39F8MfMYI7/fIWMu1ka7btGjRrFdlQ4c+YMzs7O/PXXXxrtSwghRNUgiZsQpVSnUU16zW3J8MUdcetoh0KvcKVpfk4BFwNi2DDrAAf/F1psn1RNuX//PiNGjCAxMZHhw4fz999/V0g/QgghKi9J3IQoo5r2FnR93YtRK7rQtLcT+oaFj5GyQMW14Hg2vXmQvV+cK7ZP6tMyNDTEz88PgLZt2zJgwACN3l8IIUTlJ3PchCgni9omtJ/YFJ9hrlwMjOXKnlhyM/NBBdEnE4g+mUCDFrXwGuxK/aY2T10LztzcnN9++40uXbrQv39/jIw0O69OCCFE5SeJmxBPycSqBq1HN8ZrkDNX9sZxMSCGrOTCzetvhN7lRuhdarta4TXYFaeWddSvWMtDoVDw2muvFTuelJTEL7/8wsyZM9HTk4F0IYTQVfITXggNMTI1xGuQC6O/6EKHl5phUefhpvV3IlMIWnGWP+cd4trBeJQarAWnVCqZMGECs2fPZvDgwdy7d09j9xZCCFG5yIibEBpmYKRPkx6OuHe1J/pEYS24e9fTAEi+kcHBb0M5symcFgOc8ejmgEEN/afq7/Dhw+zevRuAU6dOkZ2d/dSfQQghROUkI25CVBA9fT1c29sx7L8d6PNWS+p51FS3ZdzN5vhPV/hj5n7O/R1BTnreY+70eJ07d2bXrl3UrVuX33//HTs7O02EL4QQohKSETchKphCocDBpw4OPnVICLtPyLZI4s7dASA7LY8zm8K5sD0Kjx6ONO/fELOaxmXuo1evXkRFRRUrzFtQUEB2djZmZmYa+SxCCCG0S2OJ25kzZzh79iwXL14kMTGRlJQUjI2Nsba2xsXFBW9vb9q1a0etWrU01aUQVU4995rUe6sVd6+ncmF7NFHHbqFSqsjLLiB0RzSXdsXQqJM9noOcsapXtmSrpN0UPvzwQ7Zs2cLmzZvx8PDQ1McQQgihJQqVSqUq78WZmZn8+eefbN++ncTERB7cysjICEtLS3JycsjIyECpLJyIra+vT4cOHRg1ahQtWrTQzCcQamFhYUyZMoU1a9bg7u6u7XBEKaTeziR0RzTXDsRTkPdwwYJCAQ3b1sNrsAu2Da3Kde+dO3eqa71ZW1sTHR2NtbW1JsIWQgihJeUecdu6dStr167l/v37uLm5MXjwYJo1a4a7u3uRv/xVKhXx8fFcvnyZU6dOcfjwYQ4dOkSHDh2YNm2azMcR1ZplXVM6TG6Gz3A3LgXEcHnPdfKy8lGpIPp4AtHHE7D3tMVriAv1PMpWC87V1ZVmzZpx6dIl3nvvPUnahBBCB5R7xK1bt2706tWLsWPH4uzsXOrrcnJyCAoK4pdffqFPnz5MnDixPN2LEsiIW9WXm5nHlaDrhO6MITs1t0hbnUbWeA12wdGn9LXgMjIy+PHHH5k+ffpTFwAWQgihfeVO3G7cuEGDBg3K3XFBQQF37tyhXr165b6HKEoSN92Rn1vAtQPxXPCPJv1O0c3ra9qb4znIBdd29dEzKN/C8B07dmBgYECfPn00Ea4QQohnpNzlQJ4maYPC+W6StAlRMgMjfZr2cmLU8s50fd2Tmg7m6rb78ekc+OYCG+cc5NKuWPJzCsp078jISMaPH0+/fv346KOP1HNQhRBCVH5SDkSISkxPXw+3jg1wbW9H3Pk7nN8WSeK1ZADSk7I4tv4y5/6OoFlfJ5r2cqKGmeET7/ntt9+SkpICwOXLl+UVqhBCVCGSuAlRBSj0FDj61sHBpzYJV+8Tsi2K+JD/rwWXmsuZjQ9rwbXo1xDTx9SC+/zzz7GxseGXX37h+++/l8RNCCGqkKcqB/JvaWlpHDlyhL59+2rqlqIMZI5b9XI3JpWQ7VFEH7/FP59ifUM9GnVugOdAZyzrProWXE5ODjVq1Chy7N69e9SsWVOSOSGEqKQ0uuXV7du3WbRokSZvKYR4hFoNLek+w5sRyzrj0cMBPYPCZKsgT8nVvXFsmnOQfavOczc2tcTr/520ZWRk0LlzZ8aOHUtaWlqFxy+EEKLsyvSq9Pbt249tT0pKeqpghBBlZ1XPjI4vNcf3OTcuBsZwJeg6eVkFqFQQdewWUcduYe9VG+//rwX3KFOnTuXSpUtcunSJvLw8/vzzz2f4KYQQQpRGmRK3UaNGPfYVikqlklcsQmiJaU1j2oz1wGuwK1f2XOdi4MNacPEhd4gPuUPdxjXxGuyCg0/tYs/qsGHD2Lp1K0qlks8++0wbH0EIIcQTlClxs7CwYMqUKfj4+JTYHhsby/vvv6+RwIQQ5VPDzBDvoa4079eQsOB4QndEk55UWAvu9rX77F56hpoOFngNcsalXX309AtnTAwbNowWLVoQHh4ucySFEKKSKlPi1rhxY5KTk3F0dCyxPTc3Fw2udRBCPAWDGvo06+NEkx4ORB67Rci2KJJvpANwPy6N4NUXOL0pHM+BzjTuYo+BkT5ubm64ubkVuY9KpeLjjz9m4sSJNGzYUAufRAghxANlWpwwdOhQ6tev/8j2unXrMn/+/KcOSgihOXoGejTq1IDhn3ek11xf6rhZq9vS72RxdO1lNrwRTMi2SHIz84pd//XXX/Pxxx/j6+tLQEDAM4xcCCHEv5VpxK1z586PbbewsKBfv35PFZAQomIo9BQ4tayLo28dEq7eI2RrFPEXChcUZaXkcuqPa5zfGkXTXo4069cQU6sa5OXlsXr1agDu379Pdna2Nj+CEEJUe1KAV4hqRqFQUL9JLeo3qUVSTAoh26KIPpEAKsjLyidkWxQXA2Jo3MUez4HOHDt2jEmTJuHi4sKwYcO0Hb4QQlRrT524de3alQ0bNlC3bl1NxCOEeIZsG1rRY6YPKbcyuOAfTfiheJT5KgrylFwJus7VfXG4tKvPmhXrsGpgWuz627dvy7MvhBDP0FMX4JXFCEJUfVb1zeg0pTmjV3alxQBnDI31AVApVUQeucnf7xxh74rzJITdV19z5MgRnJ2dWb58ufwcEEKIZ0RelQoh1MxqGtN2vAdeQ1y4suc6lwJjyE4rXLAQd+4OcefuUM+jJg6drBk1YRRZWVnMnTuXOnXqMGHCBC1HL4QQuk+jW14JIXSDsbkRPsPcGL2yK34vNMGs1sNN6xOu3uf4dxH4OXUHoFvXbowZM0ZLkQohRPUiI25CiEcyNDaged+GNO3pSMTRm1zYHkXyjQz09fTp13Ac9kaNaNaoOeEHbtKoUwMMjPS1HbIQQug0GXETQjyRnoEejTvbM/zzTvSc7UNtFysAWti1Ri/dhCM/XGLjrANc2B5FbFQcc+fOJSsrS8tRCyGE7pERNyFEqSn0FDRsXQ+nVnW5dfke57dGcvPiXQAyk3M4+uslVgS/y7XbF9kbtI+t27bg5OSk5aiFEEJ3SOImhCgzhUKBXbNa2DWrxZ3IZEK2RxFz6jbx96OISQoH4HpEPJe2x1NrTB3MbU20HLEQQuiGp07cnn/+eczNzTURixCiCqrtak3PWb4k30jngn8DDA1XsObw5zzf5g1uHk1lw4kDuLW3w3OQMzXtLbQdrhBCVGkKlRRgqpSSk5P57LPPOH/+PLa2tsyePZvWrVs/9pqwsDCmTJnCmjVrcHd3f0aRClFU+t0sQrZHEn7gJvk5Berj+QV52DQ1oev41kX2SxVCCFF6Fb44QaVSERcXR2JiYkV3pVNWrFiBjY0N27Zt4/XXX+fDDz8kJSVF22EJ8UTmtUzoMLE5Y1Z2xec5N2qYGQKw+fyPTFk0miWv/Y+dn54kPjRJCvcKIUQZaSxxO3ToEIsWLSItLU197NatW0ycOJHnn3+eUaNGsXDhQpRKpaa61FmZmZkcOnSISZMmYWxsTMeOHXFzc+Pw4cPaDk2IUjO2NKLliEaM/rIr6c6x7L22ldTs+3wZ/AFhZ6II/O8pti44SvTJBJRKSeCEEKI0NLY4Ydu2bSQmJmJh8XAOy6pVq4iJicHX15fU1FT27duHr68vAwcO1FS3j+Tv78/ixYsxMTFh165dFdpXZmYm69evJzw8nPDwcFJSUpg4cSKTJ08u8dzvv/+e/fv3k5aWhqOjI+PHj6dHjx7qc+Lj4zExMSmyB6SLiwvR0dEV+jmEqAhGJgaMnzUc/xOb2bt3Ly90eR0L48JyIknRqez94hxW9c3wHOSMW8cG6BtIlSIhhHgUjf2EjI6OpkmTJup/p6enc/z4cbp3786KFSv47rvvcHJyYseOHZrq8pHu3LnD6tWrsbW1rfC+AFJSUti+fTt5eXl06tTpsecuWLCAwMBAJk6cyOLFi/Hw8ODjjz9mz5496nOysrIwMzMrcp2ZmZnUxRJVVu3atdm1axebNm3i291L6T7Tm1oNLdXtKbcyOPS/i2yYFUzozmjysvO1GK0QQlReGhtxS05OplatWup/h4aGUlBQoB5JMjAwoFWrVkUSlIqybNkyPD09sbS05MCBA489NyMjg9DQUPz8/EpsP3r0KD4+PpiYPLqcQb169dixYwcKhYLk5GT8/f1LPO/YsWOcPn2aDz74gJ49ewLg6+tLQkIC33zzDd27d0dfXx8TExMyMjKKxfm4GISo7PT19RkxYgQALn71cW5bjxuhSXz5yXckxNyhk2sfMu/lcOKXq5zfEknT3k406+OEsYWRliMXQojKQ2MjbmZmZqSmpqr/fe7cOfT09PDy8lIfMzAwIDs7W1Ndlmj37t2cP3+eOXPmlOp8f39/5s+fT0BAQLG2rVu38s477zzxVatCoUChUDyxr0OHDmFiYkLXrl2LHO/fvz9JSUlcvnwZAHt7e7Kysoos6IiOjsbZ2bnE+wYFBTF//nxWrVr1xBiEqCwUCgWpBnf4esd/+fnUl2yK+IYCZeEq1Jz0PM79FcEfM4M5/vMVMu7KaLMQQoAGEzdHR0eOHj1Kamoq6enp7N27l0aNGhWZ85aQkEDNmjU11WUx9+/fZ9WqVbz66qvUqVOnVNeMHj2aESNGsGjRIrZu3ao+vmnTJpYtW8aECRMYOnSoRuKLjo7GyckJA4OiA52urq7qdgBTU1M6duzI2rVrycnJ4ejRo4SHh9OhQ4cS79uzZ08WLVrEjBkzNBKnEM/K9u3byczMBMC+RW1GLe2CW0c7FHqFfwjl5xRwMSCGDbMOcPB/oSTfTNdmuEIIoXUae1U6fPhwPvzwQ5577jn1yNo/J+cXFBQQGhpaZB6cpi1fvhwHB4cyJ1rTp0+nRo0aLFu2jNzcXHJzc/nuu+946aWXePHFFzUWX0pKCnZ2dsWOP0hu/zliOWfOHD799FMGDhyIra0tH330EdbW1hqLRYjKYN68eTg6OvL111/z1VdfYWpqStfXvWg5sjGhO6IJ2x9HQZ4SZYGKa8HxXDsQT8PWdfEe7Irt/++XKoQQ1YnGEreuXbsye/Zs9eKDbt26MWDAAHX7mTNnyM7Opk2bNprqsojg4GCOHj3KDz/8UKrXlv82ZcoUjIyM1K8bp06dytixYzUdZqljs7a2ZsmSJRrvX4jKZuzYsYwZM6bIs2FR2wT77uY0H9iBa/tucnl3LLmZ+aCCmJO3iTl5mwYtauE12JX6TW3K9cwLIURVpNG9SocOHfrI0a42bdqwc+dOTXanlpmZyRdffMFzzz1HrVq11LXk8vMLV6alpaVhYGDwxMn96enpKBQKVCoV6emafyVjZWVVYhHdB/FaWloWaxOiOvh34pWSkkKPHj2oU6cOGzduxHNgV67sjeNiQAxZyTkA3Ai9y43Qu9R2tcJrsCtOLeuoX7EKIYSu0olN5lNSUrh37x4bNmxgw4YNxdoHDBhAx44d+eyzz0q8XqVS8cUXX7B161bmzZtHXl4ey5cvJzc3l2nTpmksThcXF4KCgsjPzy8yzy0qKgrgkYsPhKhuXn31VSIiIoiIiGDKlCns3LkTr0EuNOvjRPihG1zYHkVaYuGChTuRKQStOIt1AzM8B7ng1t4OPakFJ4TQUTqRuNnY2LBy5cpix3/99VfOnz/PkiVLsLIqeT6MUqlkyZIlBAYG8v7776vLlxgZGbF48WJycnKYPXu2Rl7FdOrUie3bt3PgwIEiBXcDAwOxtbWladOmT92HELpgzpw5HDt2jLS0NFavXq0+bmCkT5Mejrh3tSf6RAIh26K4d71wxDr5RgYHvw3lzKZwWgxwxr2rPYbGOvEjTggh1HTip1qNGjXw8fEpdjwgIAB9ff0S2x7YsGEDu3fvZuHChUWK5/br1w8jIyM++eQTnJycGD58+GNjOH78ONnZ2eoVcrGxsQQHBwPg5+eHsbExfn5+tGrViuXLl5OZmUmDBg3Yu3cvJ06cYMGCBejr65fj0wuhe9q0acPZs2cJCwujYcOGxdr19PVwbW+HS7v6xJ+/Q8j2KBKu3gcg4242x3+6wvm/I2jWpyFNeztRw9zwGX8CIYSoGAqVDu/y/Nlnn3HgwIHH1mHLyckhPDyc5s2bl9geGhqKh4cHhoaP/8E/atQoEhISSmzbsGED9evXBwrn461Zs6bIllcTJkwoMgJXXmFhYUyZMoU1a9bg7u7+1PcTorJRKpVMnz6dSZMm0bp16yJtCWH3CdkWSdy5O0WOGxrr49HDkeb9GmJmY/wswxVCCI3T6cStupHETei6RYsW8c4772BkZMR3333HxIkTi51z73oaIdujiDp2C9U/Nq/XM1DQqFMDPAe6YFXfrNh1QghRFejEq1IhhO4rKChQr0zPy8tTj2L/m42jBd2medFqZCMu7IjmWnB8YS24fBVh++MJC47HuU09vIa4YNtQasEJIaoWSdyEEFWCvr4+e/fu5e2338ba2po+ffo89nyLOqZ0mNQMn+fcuBQQw+U918nLKqwFF30igegTCdh72uI52IX6TaQWnBCiapBXpTpEXpWK6kKlUhVLtC5fvvzYldm5mXlcCbpO6M4YslNzi7TVcbPGa4gLjj5SC04IUbmVudiRUqkkKiqKpKSkYm35+fmcP39eE3EJIcQj/Ttp2717N82bN2fGjBnk5OSUeI2RqSFeg10Z82VX2k9qinnthwW5EyOS2bPsLH/NP0z4oRso85UVGr8QQpRXmUbcEhISePvtt4mNjUWhUODn58c777yjrpF27949nnvuOXUZDPFsyYibqI7u3r2Lh4eH+o/J77//npdeeumJ1ykLlEQdu0XI9ijuxxXdKcXc1gTPgc407mqPgZGU6RFCVB5lGnH75ptvqF27Nps2beLHH38kLy+PadOmFRl9kzevQohnycbGhs8++4waNWowYMAAJk2aVKrr9PT1cOvYgOf+25Fec32p08ha3ZaelMXRdZf5Y2Yw57dEkpORV0HRCyFE2ZQpcQsJCWHq1KnUqVMHFxcXli5diqenJ9OnT+f27dtA6TdRF0IITVAoFEyZMoVjx47x008/oadXthkgCj0FTi3rMugjPwa83xZ7r9rqtuzUXE5vvMYfM/Zz8verZCaX/BpWCCGelTL9hMvOzi5SiFahUPD222/TunVrZsyYwY0bNzQeoBBClIaPjw82NjZFjsXExDB69Gju3LnziKseUigU1G9iQ995rRj2WQdc/Orz4O/QvOwCLmyP5o+ZwRz+4SKptzMr4iMIIcQTlSlxc3R0JCwsrNjxuXPn4ufnx/z58zUWmBBCPI2cnBxGjhzJxo0b8fX15eLFi6W+tlZDS7rP9GbEss54dHdAz6Awg1PmK7m6N45Ncw6w/6vz3L2eWlHhCyFEicqUuHXu3Jk9e/aU2DZnzhy6d+8uc9yEEJVCZGQkcXFxQOF+xvb29mW+h1U9Mzq+3JwxK7vSYqAzBsaFCxVUKog8eou/5x9h15LTJFy9p8nQhRDikaSOmw6RVaVCFHXr1i0mTZrEokWL8Pb2fur75aTncTkolksBMWSnFV2wULdxTbyGuODgXVvm+gohKowkbjpEEjchSicrK4vY2Fg8PDzKdX1+TgFhwXFc8I8m4252kTYbRws8B7ng4lcPPf0yl8oUQojHeuqfKl27dlWvKBVCiKpgxowZtGzZkl9//bVc1xvU0KdZn4aMXtGFzq+1wNru4ab1966nEfx1CJvmHuRK0HXycws0FbYQQjx94iYDdkKIquTPP//khx9+IDMzk1deeYWbN2+W+156Bno07mzP8MWd6Dnbl9quDzetT0vM4siPl9jwRjAh2yLJzZRacEKIpyfj+EKIaqV///5MnjwZgG+//RY7O7unvqdCT0HD1nUZvLAd/d9rQ4MWtdRtWSm5nPrjGn/MDObUhmtkpUgtOCFE+RloOwAhhHiWTExM+OGHH5g8eTIdOnTQ6L0VCgV2zWph16wWSVEphGyLIvpUAqggNzOfkK2RXNwZjXtXe1oMdMaitqlG+xdC6D5J3IQQ1VJJSduaNWuIjo5m4cKFGBg83Y9HWxcreszyIflmOhf8o4k4dANlgYqCPCWX91znyt44XNvXx2uwCzXtLZ6qLyFE9SGJmxBCAGfOnGH69Onk5uZy/PhxAgMDMTIyeur7WtuZ0/mVFrQc7kZoQAxX98aRn1OASqki4vBNIg7fxLFlHbwGuVC3cU0NfBIhhC6TxE0IISjci7mgoHAFaPPmzTWStP2TWS0T/CY0wXuIK5d3x3IpMFa9ef31M4lcP5NIvSY2eA12wd7TVmrBCSFKJImbEEIAkydPpnHjxixfvpylS5dWWD/GFkb4Dm9EiwHOhO2PI3RHDBn3CmvBJVy5R8KVe9RqaInXYBcatqmHnp4kcEKIh546cXv++ecxNzfXRCxCCKFVHTt2pGPHjsWOX758mQYNGmBlZVXCVeVjaGxA837ONOnlROThm4RsjyLlVgYAd2NS2ffleSzrmuI5yIVGnezQN9TXWN9CiKpLdk7QIbJzghCal5SUhK+vLzVq1GDz5s14eXlVSD9KpYrY07cJ2RpJUnTRzetNa9ageX9nPLo7YGQiL0qEqM7kJ4AQQjzG9OnT1ZvVv/XWW+zevbtC+tHTU+Dcph4NW9fl5sW7hGyL4ualuwBk3s/h5K9XOb8lgma9nWjWpyHGlpqdgyeEqBo0nrgplUru3LnDnTt3yM/PL/EcTWz2LIQQz8J///tfwsPDiY+PZ926dRXen0KhoEELWxq0sCUxIpmQ7VHEnircVjA3I59zf0dyYUc0Ht0daDHAGfNaJhUekxCi8tBY4qZSqfj111/ZuHEjqampjz03ODhYU90KIUSFcnZ25siRI0RGRmpkl4WyqONmTa/Zvty/kc6F7VFEHL6JSqmiIFfJpcBYLu++jltHO7wGuWDdQOYaC1EdaCxx++677/j999+pWbMm/fr1o1atWujry2RaIUTVZ2xsTLNmzYocKygoYOTIkbzwwgsMHTq0Qvuv2cCcLq950nJEI0J3RHN1XxwFeUpUShXhB28QfugGDVvVxWuwC7VdrSs0FiGEdmkscQsMDMTBwYH//e9/mJrKNi5CCN32wQcf8Pfff/P333/z3//+l/nz51d4n+a2JrR7sSnew1y5vCuWS7tiyc3MBxXEnLpNzKnb2DWrhddgF+ya15JacELoII0lbllZWfTq1UuSNiGEzlMqlURFRQGgr6+v8T1Pn8TEsgYtRzamxUAXru69TujOGLKSCzevv3npLjcv3cXW2RKvIa40bFUXhdSCE0JnaCxxc3Nz4+7du5q6nRBCVFp6enr89ttvtG/fnoKCAjp16qSVOIxMDPAc6EKzPk6EHyqsBZd2OxOApOhU9n5xDqv6ZngNcsG1ox36BnpaiVMIoTkae4pfeOEFDh8+TFhYmKZuKYQQlZZCoWDGjBnMmjWrWNv+/ftRKpXPLBZ9Q308ujswcllnus3wxsbx4ab1KbcyOPi/UDbMCuZiQAx52SWv9hdCVA0aLcAbHBzMihUr6NChA66urpiZmZV4Xt++fTXVpfgHKcArhPZt2bKFYcOGMWjQINavX0/Nms9+43iVSkX8hSRCtkaScPV+kbYa5oY06+tE095OGJtLLTghqhqNvSrNzc3l8OHDpKSksGPHDoBiE2NVKhUKhUISNyGETkpJSWHy5MkAbN++nT///JOXX375mcehUChw8KqNg1dtbl+7T8i2SK6fvQNATnoeZzdHcGF7NE16OtK8f0PMaho/8xiFEOWjscTtq6++Ys+ePbi6utKlSxcpByKEqHasrKz47bffmDBhAj169OCll17SdkjUbVyT3m+24t71NEK2RxF17CYqJeTnFBC6I5pLu2Jo1KkBngNdsKpf8lsSIUTlobFXpYMHD6ZevXqsXr0aAwPZSUsb5FWpEJXD9evXqVmzJhYWFkWOP3jroE1piZlc2BFN2P54lPn/mIenAOe29fAa7IJtQyvtBSiEeCyNLU7Izc3Fx8dHkjYhRLXn6OhYLGkLCwujY8eOXLt2TUtRFbKoY0qHSc0Ys6orXoNdMDT+/zcjKog+nsCWd48S8N9T3LpyFw1OgRZCaIjGsix3d3fi4+M1dTshhNAZGRkZjBgxgosXL9KqVSt27dpFu3bttBqTqVUNWo9xx2uwC1eCrhO6I4bstFwAboQmcSM0iTpu1ngNccHRp47UghOiktDYiNuUKVM4efIkR48e1dQthRBCJyQlJanLgzg4OODp6anliB4yMjXEa7ArY1Z1pf2kppjbPlyokBiRzJ5lZ/lz3iHCD90o+mpVCKEVGpvjtm7dOi5dusSpU6fw8fHBzc2txHIgCoWCF198URNdin+ROW5CVF7p6enMmjWLN998Ew8PD22H80jKAiVRx25xflsUyfHpRdrMahnjOdAF9272GBjJ4jMhtEFjiVuXLl1K16FCQXBwsCa6FP8iiZsQVU9aWhpnz54t9c/QZ0WlVBF3/g7nt0aSGJ5cpK2GhSEt+jnTpJcjNcwMtROgENWUxua4rVy5UlO3EkKIakGlUvHyyy+zadMmPv74Y9577z309CrHtlQKPQWOvnVw8KnN7bD7nN8aSXxIEgA5aXmc3niN89siadrLkeb9nDG1rqHliIWoHjS6c4LQLhlxE6JqebDLAoClpSUXL17EwcFBy1E92t2YVEK2RxJ1PAH+8ZtDz0BB4y72eA50xrKu1IIToiJVjj/thBCiGho8eDD/+c9/0NPTY/369ZU6aQOo1dCS7jN8GLmsMx7dHdDTL1xpqsxXcXVvHBvnHGTfqvPcvZ6q5UiF0F0aG3ELDQ3lwIEDjB07llq1ahVrv3v3Lr///jvdunWjWbNmmuhS/IuMuAlRNUVERODm5lbk2IMfzdou2Ps4mfezCQ2I4cqe6+TnFBRps/eyxXuIK/U8bLQUnRC6SWMjbhs2bODIkSMlJm0AtWrV4ujRo2zcuFFTXQohhE74d9IGsGLFCiZMmEB6enoJV1QOpjWNaTvOg7GrutFyVCNqmD9cqBAfkoT/whNs+/AY188lSjFfITREY4sTrl69SsuWLR97jpeXF6dPn9ZUl0IIoZMOHz7M22+/TUFBASEhIZw6dQoTExNth/VINcwN8RnqRot+zoQFx3NhexQZ97IBSAxPZveSM9S0N8driCsufvXQ05dZOkKUl8aenuTkZGxtbR97jo2NDffv39dUl0IIoZPu37+PqakpUDgPrjInbf9kUEOfZn2cGP1FF7pM9cTK7uFChfvx6QR/HcLG2Qe4vCeW/NyCx9xJCPEoGhtxMzc3JzEx8bHn3L59u8r8ABJCCG0ZNGgQp0+f5osvvmDhwoXaDqfM9Az0aNSpAW4d7Lh+NpFzWyJJikoBID0pm6NrL3N2cwQtBjSkSU9HjEylFpwQpaWxEbdmzZpx8OBBbt++XWL77du3OXToEM2bN9dUl0IIobMaN27M6tWrMTAo+vf18ePHiY2N1VJUZaPQU+DUqi5D/tOO/gvaYNf84Rzo7LRcTv1xjd+n7+fUH2FkpeRoMVIhqg6NJW6jRo0iJyeHadOmERgYSFJSYaHGpKQkAgICeP3118nNzWX06NGa6lIIIaqVmzdvMmTIEHx9fQkMDNR2OKWmUCiwa1qL/u+2Yein7WnYph78/2LZvOwCQrZF8fuMYI6svUTanUztBitEJafRArx//fUXq1atKrKM/Z//f8aMGTz33HOa6k78i5QDEUK3Pf/88/zyyy8A9O3bl507d1bqciGPk3Irg5DtUYQfuoGq4OGvIYUeuLSzw2uwCzYOFlqMUIjKSeM7J0RFRbFlyxauXr1Keno65ubmNGnShCFDhuDi4qLJrsS/SOImhG67f/8+EydO5OzZs5w9e5batWtrO6SnlnEvm9Cd0VwJuk5BrrJIm4N3bbyHulK3cU0tRSdE5SNbXukQSdyE0H1KpZIbN24U22VBqVRWmn1OyyM7LZfLe2K5GBBDbkZ+kba67jXxHuqKvadtlR1hFEJTqu5TruOSk5N5++236d27N+PGjePUqVPaDkkIUQno6ekVS9pyc3Pp1q0bX3zxRZUtdGtsYYTvc40Yu6obfs83KbJp/e2w++z6/DR/v3OEqOO3UCqr5mcUQhM0Vg5EaNaKFSuwsbFh27ZtnD59mg8//JDff/8dKysrbYcmhKhk3nrrLQ4ePMjBgweJjY1lxYoV2g6p3AyNDWjeryFNejkSefgm57dGknq7cMHCvetp7PvyPOa1TfAe4kqjTnboG+prOWIhni0ZcauEMjMzOXToEJMmTcLY2JiOHTvi5ubG4cOHtR2aEKKSUalUGBsbA2BkZMT48eO1HJFm6Bvo0birPSOWdabHLB9qNbRUt6XfyeLw9xf5fUYwF/yjyM3Kf8ydhNAtOjPiFh4ezpo1a4iKiiI5OZkaNWrg6OjIsGHD6N27d4X2nZmZyfr16wkPDyc8PJyUlBQmTpzI5MmTSzz3+++/Z//+/aSlpeHo6Mj48ePp0aOH+pz4+HhMTEyoW7eu+piLiwvR0dEV+jmEEFWPQqHg888/p3379ty7d49WrVppOySN0tNT4NymHg1b1+Xmpbuc/zuSW1fuAZCdmsvJ38I493ckzfo40ayvEyaWNZ5wRyGqNp1J3NLT06lTpw49e/bE1taW7Oxs9uzZwyeffMKtW7d48cUXK6zvlJQUtm/fjqurK506dcLf3/+R5y5YsICrV6/y6quv4uDgQFBQEB9//DFKpZJevXoBkJWVhZmZWZHrzMzMSE5OrrDPIISo2oYMGVLi8T/++IOhQ4eqR+WqKoVCQYPmtjRobsudyGTOb40k9nThbj15Wfmc3xJJ6I5o3LvZ4znQBXNb2aVH6KanStzy8/OLVfXWFh8fH3x8fIoca9++Pbdu3WL79u2PTNwyMjIIDQ3Fz8+vxPajR4/i4+Pz2K266tWrx44dO1AoFCQnJz8ycTt27BinT5/mgw8+oGfPngD4+vqSkJDAN998Q/fu3dHX18fExISMjIxiccp2YUKIsvj111+ZMGECvr6+bN68GWdnZ22HpBG1Xa3pNaclyTfSCdkeRcThm6iUKgrylFzefZ0rQXG4tq+P12AXatpLLTihW55qjttzzz3H119/TUxMjIbC0TwrKyv09R89edXf35/58+cTEBBQrG3r1q2888477Nq167F9KBSKUi1RP3ToECYmJnTt2rXI8f79+5OUlMTly5cBsLe3Jysrq8jer9HR0Y/8oRsUFMT8+fNZtWrVE2MQQlQPGRkZzJo1C4CzZ89y4MAB7QZUAawbmNPlNU9Gr+xCsz5O6BsW/kpTKVVEHL7Jn28fZvfSMyRGJGs3UCE06KkSt4yMDDZu3MjEiROZOnUq/v7+ZGZqd7sSpVJJfn4+ycnJ/P3335w8eZJx48Y98vzRo0czYsQIFi1axNatW9XHN23axLJly5gwYQJDhw7VSGzR0dE4OTkVG6V0dXVVtwOYmprSsWNH1q5dS05ODkePHiU8PJwOHTqUeN+ePXuyaNEiZsyYoZE4hRBVn5mZGUFBQbi5uTF58mQmTpyo7ZAqjHktE9q92JSxq7rhM8wVQ5OHP2Ovn01k2wfH8F94nPjQpCpbLkWIB57qPefff//Nrl27CAgI4PLly1y5coVVq1bRrVs3+vfvj6enp6biLLXly5ezbds2AAwNDXnjjTceOffjgenTp1OjRg2WLVtGbm4uubm5fPfdd7z00ksanRuXkpKCnZ1dseMWFoVD+ampqepjc+bM4dNPP2XgwIHY2try0UcfYW1trbFYhBC6z8vLi9OnT2NkZFSsrTJNddEUY0sjWo5sTIuBLoTti+OCfxRZKbkAJFy9T+B/T2HjaIHPMFecWtdDT0+K+Yqq56meWktLS0aOHMnIkSMJCwtj586d7N27l4CAAAIDA7G3t2fAgAH06dMHGxsbTcX8WM8//zwDBw7k/v37HD16lC+++IKsrCzGjh372OumTJmCkZGR+nXj1KlTn3hNeZS26re1tTVLlizReP9CiOqlpNqPISEhPPfcc6xbt45OnTppIaqKZWRiQIsBzjTt7Uj44ZuEbIkk7U4WUFgLbu/K81jUMcF7qCtuHRugbyCVsUTVobE/t9zd3XF3d2f69OkcPHiQHTt2cO7cOb777jvWrFlDu3btGDBgAH5+fhW6LUvdunXVZTTatWsHwP/+9z/69ev3xBGr9PR0FAoFKpWK9PR0jcdmZWVFSkpKseNpaWlAYSIshBAVKSUlhREjRhAVFUW3bt0ICAhQr2jXNfqG+nh0c6BxF3tiTiZw7u8I7scV/mxPS8zi0P8ucnrDNTwHueDR3QFDY90agRS6SePfpYaGhvTo0YMePXqQmJhIQEAAAQEBHD58mCNHjmBjY8Nff/2l6W4fqUmTJmzdupWbN28+MnFTqVR88cUXbN26lXnz5pGXl8fy5cvJzc1l2rRpGovFxcWFoKCgYq8ooqKiAHRmxZcQovLKy8vD0dGRiIgIvL29dXLE7d/09BS4+NXHuW09boQmce6vCG5fSwYgKyWXE79c5exfETTv40Szvg0xtij+almIyqJC/7yoU6cOL774It26dWPx4sWEhoZy7969iuyymHPnzqGnp1fi3DIoXMywZMkSAgMDef/999WFcI2MjFi8eDE5OTnMnj1bIxsbd+rUie3bt3PgwIEiBXcDAwOxtbWladOmT92HEEI8jq2tLbt37+azzz7j+eefr/L13cpCoVBg71kbe8/aJIbf59zfkcSdvwNAXmY+5/6O5IJ/NB7dHfAc6IxZLSnBJCqfCkvcsrKy2L9/Pzt37uTixYvqbVm6dOlSIf0tWbIEU1NTmjRpgo2NDcnJyQQHB7Nv3z7Gjh37yNG2DRs2sHv3bhYuXFjkL89+/fphZGTEJ598gpOTE8OHD39s/8ePHyc7O1u9qjY2Npbg4GAA/Pz8MDY2xs/Pj1atWrF8+XIyMzNp0KABe/fu5cSJEyxYsOCxZUuEEEJT9PX1ef/994sdv3//PgEBAY9dia8r6jSqSZ+3W3E/Po3zWyKJOnYLlQoK8pRc2hXL5T3Xcetgh9cQF6ztzLUdrhBqCpWG10aHhISwc+dOgoODycnJQaVS4eHhwYABA+jZsyempqaa7E5t586d7Ny5k9jYWNLT0zExMcHNzY2BAwc+dsurnJwcwsPDad68eYntoaGheHh4YGho+Nj+R40aRUJCQoltGzZsoH79+kDhlldr1qwpsuXVhAkTiozAlVdYWBhTpkxhzZo1uLu7P/X9hBDVh1KpZMiQIfj7+zNp0iS+/vrralX0O+1OFhf8owjbH48yX1mkzbFlHXyGuVHbpfhCDyGeNY0kbnfu3CEwMJCAgABu3ryJSqXC0tKS3r17M2DAAFxcXDQRq3gCSdyEEOW1a9cu+vbtC0CtWrU4d+4cDg4OWo7q2ctKyeFiQAyXd8eSl11QpK2ehw0+z7li16yWRqbPCFEeT/WqdN++fQQEBHD69GmUSiV6enq0bt2a/v3706lTJ52rESSEELqqT58+/PLLL7z22mv8+uuv1TJpAzCxqkHrMe54DXbhSlAcF3ZEkZOWB0DC1XsEfHaPWk4W+DznhlPLuiikFpx4xp5qxO3BfLV69erRv39/+vXrR506dTQWnCgbGXETQjytu3fvUqtWrSLHCgoKUCqVT5wyoovycwsIP3SD81siybibXaTNoo4JPsPccO1gJ7XgxDPzVENiPXr0YMCAAbRs2VJT8QghhNCifydtAJ988gl79+7ljz/+eOQKfV1lYKRPkx6OuHe1J/pEYS245BsZQGEtuIPfhXLqj2t4DnKWWnDimdD44gShPTLiJoTQtN27d9O3b19UKhV2dnaEhYVhbl59V1mqVCriQ5I4+2c4dyKLFlQ3MjWgeb+GNO3jhLG51IITFUOjfxrk5+fz119/ERQUxPXr18nJyWH//v0AhIeHs337dkaOHFlt504IIURVY2lpSYMGDYiPj2fatGnVOmmDwlpwDt61cfCuTULYfc79FcGN0CQAcjPzOftnBCHbovDo4YDnQBfMbKpPnTzxbGgsccvJyWHu3LlcvHgRKysrzMzMyM5+OB+gfv367Ny5EwsLC6ZMmaKpboUQQlQgPz8/zp07x+rVq5k/f762w6lU6rnXpN87rbl3PY1zf0cQczLhYS24wMJacK7t7fAZ6opVfTNthyt0hMZmU/7888+EhobyyiuvsGXLFgYMGFCk3dzcHG9vb06dOqWpLoUQQjwDtra2fPDBB8X2mQ4KCuLMmTNaiqrysHG0oMcbPoxc3gX3bvbo6ReuNFUVqIg4dINNcw+ye9kZkmKK71UtRFlpLHHbt28f3t7ejBs3DoVCUWKNGzs7O27fvq2pLoUQQmhJTEwMo0aNon379nz33XfIdGmwrGtKpyktGPNVN1oMcMagxsPdcK6fSWTLu0fx/88Jbl6+K18vUW4aS9wSExPx8PB47DmmpqZkZGRoqkshhBBasmjRIu7fv09ubi6BgYHaDqdSMbWqQdvxHoz7uhstRzbCyOxhGZWEK/fY+clJtrx7hNjTt1EpJYETZaOxOW4mJiakpDx+GPjmzZtYWcmWIUIIUdV9+eWX1KhRgx07drB27VrZSaAERqaG+Axzo8UAZ8L2xxOyLZLM+zkA3I1NY8/ys1jWNcV7mCtu7e3Qk1pwohQ09l3SrFkzjhw5Qnp6eontiYmJHD9+HC8vL011KYQQQkuMjIxYuXIlZ8+exdraukhbVlaWdoKqpAyM9GnWx4kxX3aly+ueWNZ7uGd36u1MDn4byu8zg7kYGE1+TsFj7iSEBhO3MWPGkJaWxpw5cwgNDaWgoPCbLzs7mzNnzjB37lzy8/MZPXq0proUQgihZZaWlkX+nZWVRfv27Zk1axa5ublaiqpy0tPXo1HHBoxc2pneb7akVsOHX7us5ByO/3SV36bt4+yf4eRk5GkxUlGZabQA79atW1m5ciVKpbJYm56eHnPmzGHgwIGa6k78ixTgFUJo28svv8wPP/wAwAsvvMD69eu1HFHlpVKpuB12nzObw7l1+V6RNn0jPTy6O+A1yAXTmlILTjyk0QK8Q4YMwcvLi61bt3LlyhVSU1MxMzOjSZMmDBs2DGdnZ012J4QQohJRqVS0atWKn3/+GQMDA9566y1th1SpKRQK6nnYMGBBW+7GpnL2z3BizySCCgpyC2vBXdlzHdcOdvgMc8WyrtSCE7LllU6RETchRGVw6tQp4uLieO6557QdSpWTejuDc39HEnHkJqqCf/x6VoBTyzr4Dm9ELSfLR99A6LxnvoSlpNeoQgghdEfr1q2LJW0qlYoVK1aQlJSkpaiqBsu6ZnR5zZOxX3alWd+G6Bv9/69pFcSeTuTvd46w45MTJFy99/gbCZ2lscTN39//iecUFBSwcOFCTXUphBCiivjf//7HnDlz8PX15cSJE9oOp9IzrWlMuxeaMO7r7vgOd8PI9OHMpluX7+G/8AR/v3uE2LO3pZhvNaOxxG3ZsmUcOnToke0qlYr//Oc/BAcHa6pLIYQQVUB2djaffvopAHFxccTGxmo5oqqjhpkhvsMbMe7r7rR93gMTKyN1292YVPYsPcumuQcJP3wDZYG80aoONFrHbeHChYSEhBRre5C07d+/n8GDB2uqSyGEEFWAsbExx44do0OHDsycOZNRo0ZpO6Qqx6CGPi36OTN2VTc6v9oCizom6rbUhEwOrL7AHzOCubQrhvxcqQWnyzS2OCE9PZ1p06Zx584dVq1ahaurK1CYtH3yyScEBQUxePBg5s6dq4nuRAlkcYIQojLLy8tDpVJhZGRU5HhaWhoWFhZaiqpqUilVxJ65zZnNEdyPSyvSZmRmSPN+TjTv2xAjU8NH3EFUVRobcTM3N2fZsmWYm5vz1ltvcevWLfVIW1BQEIMGDZKkTQghqjFDQ8NiSdvx48dxcnLi999/11JUVZNCT0HD1vV4blEH+r/XmrqNrdVtuRl5nN0cwW/T9nP85ytkpuRoL1ChcRovBxIXF8frr7+OhYUFjRs3Zv/+/QwcOFDq+TwDMuImhKhKkpKS8PX1JS4uDoC//vqLYcOGaTmqqispOoUzm8KJO3+nyHE9fQWuHezwHe6GRW3TR1wtqgqNlwNxcHBgyZIl3Lt3j+DgYAYMGCBJmxBCiGJMTU3p0aMHAB07dpSddZ6SrbMVfd5uxchlnXFtXx+FngIAZYGK8IM32DDrAHuWneHev16tiqql3DsnrFu37rHtTZo0ISIiAltb2yLnKhQKXnzxxfJ2K4QQQkeYmpry448/0qVLF3r37o2hoczH0gSr+mZ0m+5Nm3HZnN8SybUD8RTkKQtrwZ1JJPZMIvWb2NByVCPqudtoO1xRRuV+VdqlS5fydahQSEmQCiKvSoUQuiIxMZEff/yRt956C319fW2HU6Vlp+cSuiOay7tjycsquuK0VkNLfEc2wtG7NgqFQksRirIo94jbypUrNRmHEEIIARQWax87diz79u1j7969/Pbbb9SuXVvbYVVZxuZGtB7tjvcQVy7vuU6ofxTZaXnA/9eCW3IGy3qm+Dznhmt7O/T0JIGrzMqduHl7e2swDCGEEKLQ0aNHOXDgAACXLl2ioEDqkmmCobEBXoNcaN6vIdcOxBOyNZL0pGzgYS24U7+H4TXYFfdu9hgYyUhnZfTM9yoVQgghHqdTp07s3bsXe3t7NmzYQL169bQdkk7RN9CjSQ9HRn/Rle4zvbFuYKZuy7yfw7H1l/l92n7O/hVObla+FiMVJSl34jZv3jzCwsLKdW1OTg6///47W7ZsKW/3QgghdFiXLl2IiIigU6dORY7n5eWRliarIjVBoafAxa8+wxd3ou/81tR2s1K35TyoBff6Po7/fIWsVKkFV1mU+1VpYmIir776Kt7e3vTp04fOnTtjZmb22GuuXr3K7t27CQoKIisri3fffbe83QshhNBxNWrUKHbs3XffZdu2bWzevJkWLVpoISrdo1AosPe0xd7TlsSIZE5vvMbNi3cByM8p4GJADJf3xOLa3o6WIxphbmvyhDuKilTuVaUqlYqdO3eyfv16bt++jZ6eHo6OjjRu3JiaNWtiYWFBTk4OqampxMfHExYWRkZGBgqFgm7dujFlyhTq16+v6c9TrcmqUiGELtuyZYu6QK+VlRUxMTFYW1trNygdlXwjndObrhF7+jaqf+xdr1CAo28dWo5qjI2DbFOmDeUecVMoFAwYMIB+/fpx7NgxAgICCAkJYffu3cXO1dPTw8XFhU6dOjFw4EBsbW2fKmghhBDVj6enJz4+Ppw7d46FCxdK0laBrBuY03OWL+l3szj7ZwQRh2+izFei+mctuKY2tBrVmLqNa2o73GpF41texcTEcOfOHVJTUzEyMsLa2hpnZ2fMzc012Y0ogYy4CSF0XXZ2Nj///DMvv/yy1B17hrJTczm/LZKre+PIzym6ytfW2ZKWIxth7yW14J4FjSduQnskcRNCVFd///03BgYGDBo0SNuh6LS87HxCA2K4FBBDTnpekTar+oW14FzaSS24iiTlQIQQQlRpYWFhvPDCCwwePJh33nkHpVL55ItEuRgaG+A7zI1xX3ej3cSmmNZ8uIAk5VYmwV9f4I+Z+7m0O4aCfPnvUBHKPcdNCCGEqAx+/PFH0tPTAYiPj5fXdc+AvqE+zXo70aSnI1FHb3L2rwhSEzIByLyXw7F1Vzi7OYJmfZ1o0d8ZQ2NJNzRFvpJCCCGqtEWLFlGvXj1++uknvv32W0ncniE9PQVuHRvg2sGOuPN3OLMpnLsxqQDkpBfWgruwPRqP7vZ4D3XD2MJIyxFXfTLHTYfIHDchRHWWl5eHoaFhkWOJiYnUri2T5p+lhLB7nN4YTsKVe0WO6xkocG1vR6uRjTCrJbXgykvmuAkhhNAJ/07a0tLS6Ny5M8OGDSM5OVk7QVVD9dxtGPh+W55b1AFH3zrw/zmzMl9F+MEb/PFGMHuWn+V+vOyAUR7yqlQIIYROevXVVwkLCyMsLIzJkyfz119/aTukasXG0ZLeb7YkNTGTs5vDiTp2C2WBCpUSYk/fJvb0beo3taH1qMbUkVpwpSYjbkIIIXTS888/j42NDZaWlixevFjb4VRblnVM6fq6F2O/6kbT3o7oGz1MPW5dvse2j46z5b0jxJ1PRGZvPVmFJ25du3at6C6EEEKIYvr168fZs2f566+/cHNz03Y41Z6JVQ3aT2zG+NXd8R7qipHpw5d+SdGp7Fp8hs1vHiLi8A1USkngHqXCEzfJnoUQQmiLk5MTPXr0KHJMpVIxf/58wsPDtRRV9WZkakirUY0Zt7o7bca5Y2L1cKVpyq0Mglf/fy24QKkFV5IyJW7z5s3j+++/5+DBg9y6datU1/xzJc+vv/5KXl7eY84WQgghKtaKFSv4/PPPadWqFdu2bdN2ONWWgZE+ngNdGPtVNzpOaY5F7YcrTTPu5XDspyv89vo+zv4ZTl52vhYjrVzKtDjB1taWU6dOsWHDBvLy8jA3N6dRo0Y0atSIxo0b06hRIxwdHYska/8ccVuzZg39+/enZs3CSYh//PEHQ4YMwcRElgULIYSoeHl5eaxbtw6A1NRU9PRkqre26enr4dHNAfeu9sScus3ZP8O5H1dYUDknPY+zf0ZwYUc07t3s8RnmhrF59a4FV6bE7a233gKgoKCA2NhYwsLCiIiI4OrVq/j7+5OZmYmxsTGBgYElXv/v16br1q2jc+fO6sTt/v37vP766/z+++/l+SxCCCHEYxkaGnL06FGmTJmCs7MzAwcO1HZI4v8pFAqc29TDuU09blxK4szGcBLDkwHIzy7gUkAsV4LicPWrT8vRjTC3qZ6DPuUqB6Kvr4+LiwsuLi4AREZGcvDgQbZs2UJKSkqp7/PvRE6lUpX6FawQQghRHubm5vz2228lzsGOj4/H3t5eC1GJf2rQzJYGH9uSFJXCqY3XuBGaBCpQ5ikJP3SDiCM3cfSpTasxjanZwELb4T5T5a7jdvnyZQ4cOMChQ4dITEzE29ubyZMn06FDB03GJ4QQQmicQqEotpvC/v376du3Lx999BHz5s2T16iVgK2LFf3mtyY5IYMzG64Rc+o2KqUKlVJF7JlEYs8mFtaCG92YOm7VoxZcmRK3M2fOcPDgQQ4dOkRGRgZt27Zl0qRJtGvXDnNz81Ld4+jRo/j4+GBnZ1eugIUQQghNS0xMZMyYMeTm5vLuu+/i6OjI+PHjtR2W+H/W9czo8YYPmcnZnNkUTsThmxTkKUEFty7dY9sHx7F1tqTlqEbYe+r2FmdlStzmzJmDra0tEyZMYNCgQcW2FynJP794jRo1YsWKFeTn52Nqakpubi6//vorLVq0oFGjRqVO/oQQQghNqlWrFq+//joff/wxvXr1YsyYMdoOSZTA1NqYTlNa0Ha8B+f+juDqvnjysgpXnCZFp7Lr8zNY1TfDe5grbu3tUOjpXgJXpk3mX375ZWJiYsjPz8fCwqLIitLGjRvj4OBQ7JquXbsSHBys/nd+fj4xMTFcu3aNa9euER4eTkREBDk5OSgUClQqVZHzRenJJvNCCPF0goKC8Pb2xtbWVtuhiFLIzy0gdGc0lwJiyU7LLdJmZmOM5yBnmvRwRM9Ad157lylxg8cnXiYmJri5ubFq1Sr1+f9O3EqiUqmIi4tTr1KdOnVquT5MdSeJmxBCaF5cXByLFi1i8eLFmJmZaTscUQJlgZIr++K4sC2KjLvZRdqMLQxp2tsJz0EuGBjpaylCzSlz4laSxyVeDxK3JUuW4OrqipubG66urvLNXwEkcRNCCM3Kzc2lS5cuHD9+nGbNmrFt2zZ1RQVR+aiUKiKP3+LcXxGk3Mwo0mZorE/jrvb4PFe1a8GVeo7b4xIvhUKBo6Mjjo6O9OrVq8Tr8/Ly2LlzJ7GxseTl5VG3bl31vdzc3HBzc5MFC0IIISqVixcvcvHiRQAyMjKwtrbWbkDisRR6Ctza2+Harj7xIXc4szmcpKhUAPKyC7gUGMvVvXG4tKtPy1GNMbcx1nLEZVfqxC0/P/+pEq93330XAKVSydmzZ/n4449JSkri/v37bN68WV2818XFhdWrVz/9JxNCCCGekq+vL6dPn2b8+PF8++232NjYaDskUQoKhQIH7zo4eNfhdvh9Tm+4xq0r90AFBXlKwg/eIOLwTRx9a9N6dGOsq1AtuFInbu+88w7w9ImXnp4e69ev57XXXmPAgAHAw9G47777jkaNGj3lRxJCCCE0x93dnVOnThUrMZGTk0NSUhINGjTQUmSiNOo2qsmABW25fyONU39cI+7cnYe14E4nEnsmkfpNbGg1ujF1G1X+WnBlLsCricTrypUr6hE4KNyCZMiQIZiamhIUFFTWkIQQQogKVVJdsNmzZ7Np0yZ+++23R04TEpVHzQYW9J7bkvS7WZzecI2o4wko8/+/Ftzle2z/8Di2Lpa0HN4YB5/a2g73kcq1PvbKlSv4+vqq//0g8Zo9ezYJCQlPvN7NzY3du3cXO96sWTOuXLlSnpCEEEKIZ2bTpk188803JCUlMXToUO7cuaPtkEQpmdcyoevrXoz7uhtNezthUOPhStOkqFR2LTnNpjcPEn7oRonbomlbuRK3p0285s6dy2+//cbKlSu5efMmUPgKduvWraUq6iuEEEJoU48ePdRvnVatWkXt2pV3hEaUzNjCiPYTmzL+m+54D3WhhvnD/CPlZgYHvrnAHzODuRgYg7JAqcVIiyrXXqVz585l+vTpJCcnM3LkSOzs7MqUeDVq1IjVq1ezYsUKxo4di6mpKQUFBeTn5/Pmm2+WJyQhhBDimbGxsWHbtm3s3LmTgQMHajsc8RQMjQ1oNcod3+cacTEwhosBMWTezwEg4242x3+6wvm/I2jSywnPQc4Y1ij3Nu8aUe46bpGRkaxYsYLQ0NBiiVf//v3V5z2pAO/NmzcJDw9HoVDg7u5O3bp1yxOOQOq4CSFEZbB+/XpSU1OZPn26Tu+ZqatUShXXDsYTsjWK1NuZRdqMzAzwGuRCk56OGJlq5w1hudNGV1dXvvrqqycmXk/KC+3s7KR+mxBCCJ1w/vx5XnvtNbKzszl69Cg///wzBgbaHaERZaPQU+De1YHGXeyJPX2bs39FcC82DYDcjHxO/XGNuu421HPXzgrUp/5uelLideDAgaftQgghhKgSgoKCyM4u3HLJ2tpakrYqTKFQ0LB1PRq2rsfNy3c5s/Eat68lU8+jptaSNihH4qZUKomJicHS0rLYJrz5+flcvHgRb29vTcUnhBBCVBlvvvkmLi4ufP3116xYsULb4QgNsWtaC7uP2pF8I52CPO0uVCjTqtKEhAQmTpzIpEmTGDFiBPPnzyclJUXdnpqayqxZszQdoxBCCFFlPPfccwQFBWFsXHQ7paioKHJycrQUldAE6wbm1GpoqdUYypS4ffPNN9SuXZtNmzbx448/kpeXx7Rp00hKSlKfUxlrngghhBDP0r8XJdy7d48ePXrQqVMnYmNjtRSV0AVlStxCQkKYOnUqderUwcXFhaVLl+Lp6cn06dO5ffs2UHJ1aSGEEKI6e/XVV4mJieHUqVO8/vrr2g5HVGFlStyys7OL1GlTKBS8/fbbtG7dmhkzZnDjxg2NByiEEEJUde+99x4uLi7UqlWLb7/9VtvhiCqsTImbo6MjYWFhxY7PnTsXPz8/5s+fr7HAhBBCCF3h7e3NmTNnCAwMxMHBQdvhiCqsTIlb586d2bNnT4ltc+bMoXv37jLHTQghhCiBtbU1rVq1KnKsoKCASZMmceTIES1FJaqacu+cICof2TlBCCGqloULF/Lhhx9iYGDA6tWrmTJlirZDEpVcuTaZf+DBBvFCCCGEKJuCggJ1kXqlUombm5uWIxJVwVOVdB43bhwvvfQSzz//vKbiEUIIIaoFfX19du3axfvvv4+lpSXdunXTdkiiCniqxE2lUlFQUFDk2I4dO7h48SLz5s17qsCEEEIIXWdgYMB///vfEtvOnz8vOxGJYp7qVWlJEhMTCQgIKLHtt99+Y9q0aZruUgghhNAp/v7++Pj48Morr6j3PhUCKiBxe5ycnBwuXbr0LLsUQgghqpS7d++qpyCtWbOGP/74Q8sRicrkmSZuQgghhHi8WrVqsXLlSkxMTBg2bBgvvviitkMSlchTzXETQgghhOa98MIL+Pr64uDgIFtJiiJkxE0IIYSohJo3b46VlVWRYxEREQwZMoSEhAQtRSW07alH3LZs2UJ0dDQeHh64u7uTkZGhibiqveTkZD777DPOnz+Pra0ts2fPpnXr1toOSwghhJZkZWUxYsQIQkJCOHnyJLt27cLT01PbYYln7KkSN2dnZ65fv05wcDDBwcFFhnMXLlyIi4sLrq6uuLi4ULdu3acOtjpZsWIFNjY2bNu2jdOnT/Phhx/y+++/F/vrSwghRPUQGxtLUlISAFZWVjg7O2s5IqENT5W4rVu3jtzcXCIiIggPDycsLIxr164RHR3N3r172bt3rzqZMzMzo0aNGhoJWtdlZmZy6NAhfv/9d4yNjenYsSNubm4cPnyYAQMGaDs8IYQQWuDh4cHZs2eZMmUKn332GRYWFtoOSWjBU78qNTIyomnTpjRt2lR9LD8/n8jISK5du6ZO5qKiokhPT6+wSZZnzpxhz549XLx4kcTERMzNzXF3d2fixIkVvm9nZmYm69evJzw8nPDwcFJSUpg4cSKTJ08u8dzvv/+e/fv3k5aWhqOjI+PHj6dHjx7qc+Lj4zExMSkySuni4kJ0dHSFfg4hhBCVW506ddi6dWux4xkZGURGRsqr02qgQlaVGhgY4O7ujru7O4MGDQIKk7mYmBjCwsIqoku2bt1KSkoKI0aMoGHDhiQnJ7NhwwZee+01li5dSsuWLSukX4CUlBS2b9+Oq6srnTp1wt/f/5HnLliwgKtXr/Lqq6/i4OBAUFAQH3/8MUqlkl69egGF8xjMzMyKXGdmZkZycnKFfQYhhBBVk0qlYurUqWzcuJGvv/6al156SdshiQr0zMqBGBgY4ObmVmGb6M6ePZuaNWsWOdamTRvGjRvHL7/88sjELSMjg9DQUPz8/EpsP3r0KD4+PpiYmDyy73r16rFjxw4UCgXJycmPTNyOHTvG6dOn+eCDD+jZsycAvr6+JCQk8M0339C9e3f09fUxMTEptsgjIyPjsTEIIYSonjZv3szPP/8MwKxZs+jfvz/169fXclSiouhMOZB/J20ApqamODk5kZiY+Mjr/P39mT9/fonbdG3dupV33nmHXbt2PbZvhUJRqlfAhw4dwsTEhK5duxY53r9/f5KSkrh8+TIA9vb2ZGVlFYk7Ojr6kRNRg4KCmD9/PqtWrXpiDEIIIXTL4MGD1dtJ/vDDD5K06TidSdxKkp6eTnh4OA0bNnzkOaNHj2bEiBEsWrSoyLyBTZs2sWzZMiZMmMDQoUM1Ek90dDROTk4YGBQd6HR1dVW3Q2HC2bFjR9auXUtOTg5Hjx4lPDycDh06lHjfnj17smjRImbMmKGROIUQQlQdNWrU4KuvvuL06dOMGjVK2+GICqbTOyesWLGCrKwsXnjhhceeN336dGrUqMGyZcvIzc0lNzeX7777jpdeekmjW42kpKRgZ2dX7PiDlUGpqanqY3PmzOHTTz9l4MCB2Nra8tFHH2Ftba2xWIQQQuiWkqYEffXVV0RHR7No0SIMDQ21EJXQNJ1N3L7//nv27NnDG2+8UapVpVOmTMHIyEj9unHq1KmMHTtW43GVdlWttbU1S5Ys0Xj/Qgghqofjx48zZ84c8vLyOHnyJHv37sXIyEjbYYmnpJOvSteuXctPP/3ElClTGD58eKmv+2e5kvT0dI3HZWVlRUpKSrHjaWlpAFhaWmq8TyGEENXTtWvX1P/fz89PkjYdoXMjbmvXrmXt2rVMmjSJ559/vlTXqFQqvvjiC7Zu3cq8efPIy8tj+fLl5Obmqid8aoKLiwtBQUHk5+cXmecWFRUFIFWwhRBCaMwLL7yAu7s7K1eu5LPPPtN2OEJDdCpxW79+PWvXruWFF15g0qRJpbpGqVSyZMkSAgMDef/999WFcI2MjFi8eDE5OTnMnj1bI4WDO3XqxPbt2zlw4ECRgruBgYHY2toWKWIshBBCPK22bdvy22+/FTseEhKCg4MDNjY2WohKPA2dSdz++OMPfvjhB9q2bUu7du24dOlSkfZmzZqVeN2GDRvYvXs3CxcupFOnTurj/fr1w8jIiE8++QQnJ6cnvnI9fvw42dnZZGZmAoV7ygUHBwOFQ9TGxsb4+fnRqlUrli9fTmZmJg0aNGDv3r2cOHGCBQsWoK+v/xRfASGEEOLJbt++rf4dt3nzZlq1aqXtkEQZKFQqlUrbQWjCzJkzOX/+/CPbDx48WOLxnJwcwsPDad68eYntoaGheHh4PHE1zqhRo0hISCixbcOGDeq6OpmZmaxZs6bIllcTJkwoMgJXXmFhYUyZMoU1a9ZU+DZfQgghqqZRo0axadMmAPr27VtiHVNReelM4iYkcRNCCPFkcXFxjBo1itjYWM6dO1dkX2xR+enMq1IhhBBCPJmDgwMHDhwgJiamWNKmUqk0MqdbVBydLAcihBBCiEczMjKicePGRY7l5eUxcOBANmzYoKWoRGlI4iaEEEII3n33XXbu3MmYMWP4z3/+o+1wxCNI4iaEEEJUc0qlkjt37gBgaGhIr169tByReBSZ4yaEEEJUc3p6eqxdu5YOHTqQn5+Pn5+ftkMSjyCJmxBCCCFQKBRMmTKlxLbAwEB69eol9UYrAXlVKoQQQohH2rhxI/369aN///4kJSVpO5xqTxI3IYQQQpQoJSWFV199FYDdu3ezfft2LUckJHETQgghRImsrKz466+/qFOnDhMmTGDixInaDqnakzluQgghhHikbt26ce7cOaysrIoV55WCvc+ejLgJIYQQ4rHs7OwwMzMrcuzSpUu0bt2aS5cuaSmq6kkSNyGEEEKUSVpaGsOHD+fMmTO0adOGo0ePajukakMSNyGEEEKUSXJyMsbGxgA0atQIHx8fLUdUfUjiJoQQQogycXBw4NixY0ybNo3NmzdjYmKi7ZCqDUnchBBCCFFmJiYmfPXVV7i5uRU5npKSwu7du7UUle6TxE0IIYQQGqFSqZg4cSJ9+vRhwYIFFBQUaDsknSOJmxBCCCE0YsuWLWzZsgWA1atXc+vWLe0GpIMkcRNCCCGERgwdOpSlS5diaGjIzz//jL29vbZD0jmSuAkhhBBCIxQKBXPnziUiIoIBAwYUaVMqlahUKi1FpjskcRNCCCGERjk6OhY7tnjxYkaMGEFKSooWItIdsuWVEEIIISrU/v37ee+991AqlVy8eJHz589LCZFykhE3IYQQQlSonJwcLC0tARg3bpwkbU9BRtyEEEIIUaH69u3L2bNnWbVqFQsWLNB2OFWajLgJIYQQosI5OzuzfPly9PX1ixw/dOgQkZGRWoqq6pHETQghhBBacf36dYYNG0bLli3ZunWrtsOpEiRxE0IIIYRWvPvuu9y9e5eUlBR++OEHKRdSCjLHTQghhBBasXr1anJzczl16hTr169HoVBoO6RKTxI3IYQQQmiFpaUlGzZsIDExkZo1axZpy8/Px8BA0pR/k1elQgghhNAahUJB3bp1ixzLycmhY8eOfP755yiVSi1FVjlJKiuEEEKISmXWrFmcOHGCEydOcOPGDb788ktth1RpSOImhBBCiEpDpVJRp04dFAoFNWrU4KWXXtJ2SJWKJG5CCCGEqDQUCgUff/wx7dq14969e3h5eWk7pEpFEjchhBBCVDp9+/Yt8fi6desYNWoUpqamzziiykEWJwghhBCiSli7di2TJk3Cz8+Pa9euaTscrZDETQghhBCVXkZGBm+//TYAoaGhnDp1SssRaYckbkIIIYSo9MzMzDhw4ABNmjThtddeY/z48doOSStkjpsQQgghqoSmTZty8uTJEgvz5ubmYmRkpIWoni0ZcRNCCCFElWFubo6xsXGRY6dPn8bV1ZWgoCAtRfXsSOImhBBCiCrr3r17jBgxgvj4eHr37s3u3bu1HVKFksRNCCGEEFVa06ZNAfDz86Nr167aDaaCyRw3IYQQQlRZNjY2+Pv7s3TpUsaOHavz89xkxE0IIYQQVZqenh5vv/02Dg4ORY4nJSXx448/olKptBSZ5kniJoQQQgidU1BQwPjx43nppZeYMGEC6enp2g5JIyRxE0IIIYTOCQoKUi9UCAoKIjU1VcsRaYYkbkIIIYTQOX369GHTpk1YW1vzxx9/YGdnp+2QNEIWJwghhBBCJ40YMYJevXphZWVV5Hh+fj5KpbJKLmSQETchhBBC6Kx/J20AH374IZ06deL69etaiOjpyIibEEIIIaoNf39/PvvsMwDatGlDREQE5ubmWo6q9GTETQghhBDVhp2dHc7OzgC8+eabVSppAxlxE0IIIUQ14uvry5kzZ1izZg1z587VdjhlJiNuQgghhKhWatasydtvv41CoShyfOfOnRw7dkxLUZWOJG5CCCGEqPYiIyMZO3YsnTt3ZuXKlZV2twVJ3IQQQghR7S1dupTU1FTy8/M5evSotsN5JJnjJoQQQohqb9WqVVhYWLB9+3a+//77Yq9RKwsZcRNCCCFEtWdgYMDixYs5ffo0FhYWRdrS0tK0FFVxkrgJIYQQQvw/MzOzIv/OyMigXbt2TJ06lezsbC1F9ZC8KhVCCCGEKIFKpeK1117j0qVLXLp0ifT0dH7++WetxiQjbkIIIYQQJVAoFHTr1g1jY2PMzc1ZsGCBtkOSETchhBBCiEeZPHkyLVu2JC4uDnd3d22HI4mbEEIIIcTjeHl54eXlpe0wAHlVKoQQQghRZUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRRhoOwChOTk5OQDExsZqORIhhBBClJWTkxPGxsaPPUcSNx2SkJAAwCeffKLlSIQQQghRVmvWrMHd3f2x5yhUKpXqGcUjKlhycjInT55ky5YtvPHGG6W6ZtWqVcyYMeOJ58XGxvLJJ5+wYMECnJycnjZUnVDar502POvYKqo/Td33ae5TnmvLek1pzpdnsLjK/AyCPIeavE9FP4eV5XehjLhVM9bW1vTu3Zt9+/Y9MWN/wNzcvNTnQuE3VVnO12Vl/do9S886torqT1P3fZr7lOfasl5TlvPlGXyoMj+DIM+hJu9T0c9hVfpdKIsTdFDPnj0r5FxRVGX+2j3r2CqqP03d92nuU55ry3pNZf5eqswq+9dNnkPN3aein8PK/r30T/KqVJRKWFgYU6ZMKdX7dyGE5skzKIT2VYbnUEbcRKnUqlWLiRMnUqtWLW2HIkS1JM+gENpXGZ5DGXETQgghhKgiZMRNCCGEEKKKkMRNCCGEEKKKkMRNCCGEEKKKkMRNCCGEEKKKkMRNCCGEEKKKkMRNaERubi7//e9/GT58OH379uW1114jNDRU22EJUa189NFHDBkyhL59+zJx4kSOHj2q7ZCEqLYuXrxIly5dWL9+vUbvK+VAhEZkZWWxYcMG+vXrR+3atdm1axerV69m06ZNT9x3TQihGdHR0djb22NoaMjly5eZO3cuf/zxB1ZWVtoOTYhqRalUMnXqVBQKBe3atePFF1/U2L1lxE1ohImJCRMnTqRu3bro6enRr18/lEol8fHx2g5NiGrD2dkZQ0NDAPT19cnLyyMpKUnLUQlR/Wzbto0WLVrg6Oio8XvLJvPVVGZmJuvXryc8PJzw8HBSUlKYOHEikydPLvHc77//nv3795OWloajoyPjx4+nR48ej7x/bGwsOTk52NnZVeTHEKLKqqhncOHChRw8eJDc3Fz8/PxwcXF5Fh9HiCqpIp7DlJQUNm/ezLfffsuXX36p8ZglcaumUlJS2L59O66urnTq1Al/f/9HnrtgwQKuXr3Kq6++ioODA0FBQXz88ccolUp69epV7Pzs7Gw+/fRTXnjhBUxNTSvyYwhRZVXUM/jBBx+Qn5/P2bNniY2NRaFQVPRHEaLKqojn8H//+x+jRo3C3Ny8QmKWxK2aqlevHjt27EChUJCcnPzIb9Zjx45x+vRpPvjgA3r27AmAr68vCQkJfPPNN3Tv3h19fX31+fn5+Xz44Yc4OTnx/PPPP5PPIkRVVFHPIICBgQFt2rThzz//xN7ennbt2lX45xGiKtL0cxgWFsa1a9eYO3duhcUsc9yqKYVCUaq/xA8dOoSJiQldu3Ytcrx///4kJSVx+fJl9TGlUsmnn36Knp4e8+bNk7/0hXiMingG/02pVHLjxo2nDVUInaXp5zAkJISYmBiGDBnCoEGD2LdvH7/++iuffvqpxmKWETfxWNHR0Tg5OWFgUPRbxdXVVd3eokULAJYuXcrdu3dZsmRJsfOFEOVT2mfw7t27hIaG0rZtWwwNDTl48CDnzp3j1Vdf1UbYQuiU0j6HAwcOLJLcff3119SrV49x48ZpLBb57SoeKyUlpcQFBhYWFgCkpqYCkJCQgL+/P0ZGRgwePFh93uLFi/Hy8no2wQqhg0r7DAJs3ryZzz//HIVCgb29PR999BFubm7PLFYhdFVpn0NTU9Mic7tr1KiBqampRkvySOImnqg0w8j16tXj4MGDzyAaIaqf0jyDtWrV4quvvnoG0QhRPZVn+s+7776r8Thkjpt4LCsrK1JSUoodT0tLA8DS0vJZhyREtSLPoBDaV5meQ0ncxGO5uLgQGxtLfn5+keNRUVFAYcFPIUTFkWdQCO2rTM+hJG7isTp16kRWVhYHDhwocjwwMBBbW1uaNm2qpciEqB7kGRRC+yrTcyhz3Kqx48ePk52dTWZmJlC420FwcDAAfn5+GBsb4+fnR6tWrVi+fDmZmZk0aNCAvXv3cuLECRYsWFCsfpQQovTkGRRC+6racyibzFdjo0aNIiEhocS2DRs2UL9+faBwm481a9YU2eZjwoQJj93ySgjxZPIMCqF9Ve05lMRNCCGEEKKKkDluQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQghRTaxYsYJBgwapt/YB+PHHH+ncuTPnzp3TYmQPffrpp4wcOZKcnBxthyJEpSR7lQohqqRbt24xevTox57j5ubGjz/++Iwiqtzi4uLYtm0br7zyCqamphXa19atW1m2bBmDBw/mzTfffOy5L7/8MteuXWPNmjW4u7vz4osvEhQUxKZNm5gwYUKFxilEVSSJmxCiSmvQoAG9evUqsa1WrVrPOJrKa+3atRgZGTFkyJAK76tnz558/fXX7Nu3jxkzZlCjRo0Sz4uMjOTatWs0atQId3d3AOzt7enYsSO//fYbw4cPx8TEpMLjFaIqkcRNCFGlNWjQgMmTJ2s7jEotOTmZgwcP0rVr1wofbQMwMzOjS5cu7Nq1iwMHDtC7d+8Sz/P39wegf//+RY737t2bAwcOsHfvXgYOHFjh8QpRlcgcNyFEtdG5c2dmzpxJcnIyixYtYvDgwfTs2ZPXXnvtkXO8MjMz+fHHH3nhhRfo2bMn/fv358033+TChQvFzp05cyadO3cmNzeXH374gbFjx9KtW7cir2sPHDjAlClT6NmzJ0OGDGHx4sWkpaUxatQoRo0apT7v008/pXPnzly5cqXEuL755hs6d+7MwYMHn/i59+7dS25uLl27dn3iuQ9ERkYybNgwBg0axOXLl9XHb968yeeff86IESPo0aMHQ4cO5bPPPiMhIaHI9QMGDAAgICCgxPvn5eURFBSEkZFRscTOz88PExMTdu7cWep4haguJHETQlQr6enpvP7660RGRtKrVy86d+5MWFgYb775JlFRUUXOTU1NZerUqaxbtw5LS0uGDh2qPv+NN97g0KFDJfaxYMECdu7ciZeXFyNHjsTOzg6AHTt28P7773Pjxg369OlD3759uXTpEnPmzCE/P7/IPQYPHgw8HJX6p/z8fHbt2oWNjQ3t27d/4mc+c+YMAM2aNXvyFwgICQlhxowZ6Ovr89VXX9G0aVMALl++zMsvv0xgYCDu7u6MGDECLy8v9uzZw6uvvsrNmzfV9/D29sbe3p6zZ89y69atYn0cOXKElJQUOnfujIWFRZE2Q0NDGjduzJUrV8jKyipVzEJUF/KqVAhRpd24ceORCxCaNWtG27ZtixyLiIhg6NChzJo1Cz29wr9dfX19Wbx4MX/99VeRyfRffPEF0dHRzJ8/v8jrvHv37vHKK6+wZMkS2rRpU2wO1927d1m7di2WlpbqY2lpaXz55ZeYmpry/fffq5O5KVOm8PbbbxMWFka9evXU57do0QJnZ2f27t3L9OnTi8z1Onr0KPfu3WPcuHEYGDz5x/jFixepXbs2NWvWfOK5hw4d4uOPP8bOzo6lS5dSp04doDBZ/Oijj1AqlaxZswY3Nzf1NRcuXOCNN97gyy+/ZNGiRerj/fv353//+x+BgYFMmjSpSD87duwAHo7M/Zu7uzshISFcuXIFX1/fJ8YtRHUhI25CiCrtxo0brFu3rsT/nThxotj5JiYmvPbaa+qkDaBv377o6+tz9epV9bHk5GT2799Py5Yti83BsrGxYezYsSQnJ6tHs/5p0qRJRZI2gMOHD5OVlcXAgQPVSRuAgYEBL730UomfbfDgwWRmZrJv374ix/39/VEoFKWa/5WXl0dycnKpkjZ/f38++OADGjVqxFdffaVO2qAwWUxISGDs2LFFkjYAT09POnTowPHjx8nIyFAff/B1DQgIQKVSqY8nJSVx+vRp6tWr98ik7EG8d+7ceWLcQlQnMuImhKjS2rRpw9KlS0t9vr29fbEJ+gYGBtjY2JCenq4+dvXqVQoKCsjNzS1xRC8+Ph6A2NjYYq8rmzRpUuz8yMhIAJo3b16srUmTJujr6xc73rt3b7799lv8/f3VI1N37tzh1KlT6leRT5KSkgJQ7HXkv23cuJEjR47g5+fHwoULMTY2LtJ+6dIlAK5fv17i1+PevXsolUri4uLw8PAAwNbWlrZt23L06FHOnj1Ly5YtgcJ5bwUFBfTv3x+FQlFiPA8S3wfxCyEKSeImhKhWzMzMSjyur6+PUqlU/zs1NRWA0NBQQkNDH3m/7OzsYsdsbGyKHXswEmVtbV2sTU9PDysrq2LHLSws6NatG4GBgcTExNCwYUN27txJQUFBqVdbPniN+6SCtg8WW7Rt27ZY0gaFr3oB9uzZ89j7/PvrMWDAAI4ePUpAQECRxE1PT49+/fo98j4P4n1UKREhqitJ3IQQogQPErzRo0czbdq0Ml1b0ijSg/slJycXa1MqlaSkpFC7du1ibYMHDyYwMBB/f3+mTZtGQEAAlpaWdO7cuVSxWFhYYGBgoE5EH2XevHn89NNPfPnll+jp6TFs2LAi7Q9GKRctWlSqBREPtGvXDhsbGw4cOMDs2bOJiIggPj6eNm3aULdu3Ude9yDekhJdIaozmeMmhBAl8PDwQKFQqF8RPi1XV1egcKHAv125coWCgoISr2vevDkuLi7s2rWL48ePc/PmTXr16lWmkShnZ2cSEhKKrVz9JwsLC1asWEHjxo1ZsWIFf/31V5H2BytLy/r1MDAwoE+fPuTk5LB37151iY9HLUp4IC4uDgAXF5cy9SeErpPETQghSlCrVi26devGxYsX+f3334tMrn/g8uXLJb4qLUnHjh0xMTHB39+/SNmM/Px8fvjhh8deO2jQIFJSUliyZAlAmYvSent7k5ubq55n9ygWFhYsX74cDw8PvvjiC/78888i8detW5cNGzZw/vz5Ytfm5+eXWNsOHiZpW7ZsITg4GCsrKzp27PjYWC5fvkytWrVwcHB4wqcTonqRV6VCiCrtceVAgKfaVWHOnDnExcXxzTffsGvXLpo1a4a5uTmJiYmEhYURHx/P33//XeKcsH+zsLBg+vTpLFmyhJdffpnu3btjZmbG8ePHMTIywtbW9pET9fv06cN3331HUlISTZs2VY/elVanTp3YtGkTZ86cUW8t9bg4ly1bxty5c1m5ciUqlYoRI0ZgZGTEwoULefvtt5k5cyYtW7bE2dkZgNu3b3PhwgWsrKz45Zdfit3T0dGRFi1aqOcKDhw4EENDw0fGcOPGDW7dusXQoUPL9DmFqA4kcRNCVGkPyoE8ytMkbpaWlqxevZq//vqLffv2ERQUhFKpxMbGBjc3N1588cUSFxU8yqBBg7CwsODnn38mMDAQMzMzOnTowGuvvcbIkSNp0KBBideZm5vTsWNHgoKCyrUFlLe3N46OjuzevZtx48Y98fwHI29z587lyy+/RKVSMXLkSJo0acKPP/74f+3dvYriUBjG8UdEvAERQcR7ECwtjIVFevEDrMXewtJSsBEsbMTSUtEuN6A2IugFCFpErUQQFGG3WHCYWZdlApMxu/9fGU6SUz6c9+U9GgwGms1mWq1WCgQCCoVCSqVSymQyf/ymaZqP4PZxvMpHlmVJehtCDOCN78ez838AgGt2u52KxaLS6bQajcbTNeVyWfv9XsPh0NF9o+PxWK1WS91u99Gv9oru97tKpZIikYja7fZ3bwd4OfS4AYBLzuezbrfbu2fX61WdTkfSr5LmM9PpVJvNRtls1vEl8aZpKh6Pq9/vO3rfLZZlybZtVavV794K8JIolQKAS5bLpZrNppLJpMLhsE6nkxaLhWzbViKRkGEY79aPRiMdDgdNJhMFg0EVCgXH//b7/arX65rP57pcLo4D4Ffz+Xyq1Wp/7cUD/leUSgHAJdvtVr1eT+v1+jHPLRqNyjAM5fP530Z85HI5HY9HxWIxVSqVT81PA/BvIrgBAAB4BD1uAAAAHkFwAwAA8AiCGwAAgEcQ3AAAADyC4AYAAOARBDcAAACPILgBAAB4BMENAADAI34C4fcZMfdez38AAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -1658,7 +1658,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG7CAYAAAAizIoLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABvLUlEQVR4nO3dd3hVVf7+/XcqKaSQAmmkQEIaCZEggkpRohQVxsagWFAB+YrKjBX9oaLiDDbGXsCuzNgbqDhGARsWEoGQhBRILxBKeiHlPH/wcMYQShJy2Cn367q8Ls4+a+99nyM7fLL22mtZmUwmEyIiIiJ9mLXRAURERESMpoJIRERE+jwVRCIiItLnqSASERGRPk8FkYiIiPR5KohERESkz1NBJCIiIn2eCqJ2qK+vJyMjg/r6eqOjiIiIiAWoIGqHvLw85s2bR15entFRRERExAJUEImIiEifp4JIRERE+jwVRCIiItLnqSASERGRPs/W6AAiIr2VyWSiqamJ5uZmo6OI9Hp2dnbY2Nh0en8VRCIiFnDw4EFKSkqora01OopIn2BlZUVAQAD9+/fv1P4qiEREulhLSws5OTnY2Njg5+eHvb09VlZWRscS6bVMJhNlZWUUFhYSFhbWqZ4iFUQiIl3s4MGDtLS0MHjwYJycnIyOI9IneHt7k5ubS2NjY6cKIg2qFhGxEGtr/YgVOVVOthdWV6uIiIj0eSqIRET6iODgYCIiIoiLiyMyMpIrr7ySmpqaTh/vjTfeIDMz85jv//LLL8TExHDaaafx9ddfM23aNHbu3NmufbuDpUuXcscdd3TpMYODg9m+fXun9t28eTOzZ88GoLy8nMcee6zV+xMnTmTt2rUnnbGvUkEkItKHfPjhh2zZsoW0tDQqKyt54403On2sExU1b775Jtdccw1//PEHkydP5ssvv2To0KHt2lfaGjVqFKtXrwaOXhB1VlNTU5ccp6dTQSQicgo01jZSklxisf8aaxs7lKehoYGamhoGDBhg3vbEE08wevRoRo4cybRp0ygoKABgzZo1xMbGEhcXx/Dhw/nss8945ZVX2Lx5M7feeitxcXF8+eWXrY6/fPly3nvvPZ5++mni4uIoLy83946caF+A9PR0Jk+eTGxsLLGxsbz00ksAZGdnk5CQYM7z6aefmvexsrLi0Ucf5YwzziAkJITXX38dgHfeeYeLLrrI3M5kMhESEsK2bdsAeOyxx4iOjiYmJobZs2dTUVHRJs+wYcNISkoyv3799de55JJLACgtLWXmzJmMHj2a2NhY7r//fnO7H374gZiYGEaPHs3NN9+MyWQ66v+PsWPHsmnTJgBuu+02AgICzO8FBgZSUFDAhg0bGDVqFAALFiygvLycuLg487bD5xs3bhxDhw5lwYIFRz1Xbm4uXl5ePPTQQ4wbN45nn332mJ+hpaWFm2++mYiICEaMGEF8fDz19fXmY9xxxx2cccYZREdH891335nP8fbbbxMTE0NsbCwXXHABRUVFwKFCePLkyVxxxRXExMQwatQodu3aBUBWVhZnnXUWI0aMICYmhiVLlgDQ2NjI4sWLGT16NHFxccyaNYvy8vKjfraTYpIT2rFjh2ncuHGmHTt2GB1FRHqAuro6U1pamqmurs68rTip2LSUpRb7rzip+IS5goKCTOHh4aYRI0aYXF1dTeecc46psbHRZDKZTKtXrzbNmzfP1NTUZDKZTKa33nrLNH36dJPJZDLFxsaafvrpJ5PJZDI1NzebDhw4YDKZTKYJEyaY1qxZc8zzXXvttaZnn3221flTUlJOuG9jY6MpLCzM9N5775m3lZWVmUwmk2n06NGml19+2WQymUyZmZkmDw8PU35+vslkMpkA01NPPWUymUymtLQ0U//+/U2NjY2m2tpak6enp6mkpMRkMplM3333nWnkyJEmk8lk+vLLL00RERHmzzRv3jzTTTfdZDKZTKYHHnjAdPvtt5tMJpPpkUceMS1cuNCcZ/z48abPP//cZDKZTOeff75p48aN5uyTJ082ffzxx6b6+nqTn5+faf369SaTyWR67733TID5O/izJUuWmB588EGTyWQynXbaaabRo0eb0tPTTTt27DANGzbMZDKZTOvXrzfFx8ebTCaTKScnx+Tp6dnqGBMmTDBdeumlpqamJlNtba0pODjY9PPPP7c5V05OjgkwrV692rztWJ8hOTnZFBERYWpubjaZTCZTeXm5qbm52XyMN954w2QymUybNm0yDRo0yFRdXW1KSUkxDRo0yFRYWGgymUymZcuWmaZNm2YymUym119/3eTm5mbKzc01mUwm0913322aP3++yWQymW699VbTI488Ys60b98+83f/8MMPm7c/9NBDpltvvbXN5zraddcReuxeROQU8IrwYn7SfIsevz0+/PBDhg8fTlNTEzfeeCN33303Tz75JJ9++imbN28mPj4egObmZvOjy5MmTeJvf/sbl112Geeffz5xcXGW+hgAZGRk0NTUxMyZM83bvLy8qKqqYsuWLdxwww0AhIWFcfbZZ/Pjjz9yxRVXAJjH2ERGRmJra0tpaSkBAQFceumlvPPOO9xxxx28/vrrXHfddQAkJiYye/Zs3N3dAfi///s/Zs2a1SbTtddey2mnncaKFSsoKCggMzOTqVOnUlNTw3fffcfu3bvNbaurq9mxYwdDhw7FycmJiRMnAjBz5kzmzz/634GEhATuu+8+FixYgJ2dHTNnziQxMRErKysSEhLa/d3NmjULGxsbHB0diYuLY+fOnYwdO7ZNOwcHB/N3drzPcO6559LY2Mj111/POeecwwUXXGB+etLe3p6rr74agDFjxuDj48PWrVtJSkriwgsvxN/fH4CbbrqJZcuWmXvHzj77bIKCgoBDPWPPPvssAOPHj+fOO++kpqaGCRMmmD/3p59+SmVlJR9++CFwaFqLw7deu5IKIumUivwKavf2rBl4nbyccAt0MzqG9FF2Tnb4jvQ1OoaZra0tl156KXfeeSdPPvkkJpOJJUuWcP3117dpu2LFClJTU1m/fj3XXnsts2fP5q677jrlmQ//g3rk49V/fu3g4GD+s42NjXl8zHXXXcfcuXOZP38+a9eu5amnnjIf83jHO8zf35+RI0fy+eefs3XrVq6++mpsbW2pq6vDysqK33//HTs7u1b7bN26td2fbezYsWzfvp3PP/+cSZMmkZCQwNKlSwG45ppr2n2cY33+Izk7O5s/Z0tLyzE/A0BqaiobN25k/fr13HPPPXz//ffY2h69fLCysmrznR75fR4r46WXXsqZZ57JN998w3PPPcdTTz3Fl19+iclk4oUXXuDcc89t57fQOSqIpMMq8it4PvJ5Gmsb2ctebLBhAANoppnd7GYAA3DEkRpqqKACP/wA2Mc+rLDCAw9aaKGUUtxxxwknaqmlnHJ88MEaa/azHxMmPPEEoJhi3HDDGWfqqOMABxjEIGyw4QAHaKYZLw79hlxCCS640J/+1FPPfvYzkIE4OjmyMH2hiiKR/993331HeHg4ANOnT+fpp5/mL3/5Cx4eHjQ2NrJ9+3ZOO+00duzYQXR0NNHR0dja2vLf//4XAFdX16OOt2mP4+0bHh6Ovb09H3zwAZdffjkAe/fuxcvLi7i4ON58802uu+46du7cyU8//cRzzz13wvONGTOGlpYW7rrrLs477zw8PDwAOO+887jrrru49dZbcXFxYeXKlcfskbn++ut57bXXSE1N5auvvgLAxcWFcePGsXz5cu677z4AiouLaWlpISIigrq6Or7//nvGjx/Phx9+eMzPbG9vzxlnnMGyZct47bXXiI2NJS0tjb1795rHQh35/dXW1tLU1HTM4qS9jvcZ+vXrh42NDeeffz7nnXceGzduJC0tjdjYWA4ePMjq1au5+uqr+e233ygtLSU2NhZXV1ceffRRSktL8fHx4aWXXmLSpEknnCcoKyuLIUOGcM011zB69GjOPPNM4NDfzRUrVjBmzBicnJyora0lJyeH6Ojok/rcR9Kgaumw2r21NNY2cvE7F5MUn0TB1ALmJ81n1nezWMlKwh4PY37SfAYuGchKVjI/aT7zk+aTdlYaWedkMT9pPtdtuo6VrGTww4OZnzSfoEeCWMlKrvnxGuYnzWfXpF1sG7PNvO+rNq/ide+hWw4RKyJYyUpmJs5kftJ8Si4s4dcRv5rbrnZejfPfnZmfNJ+4F+JYyUrO/NeZNNY29rheLZGudtlllxEXF0d0dDTp6ek8/fTTAFx99dVcddVVTJw4kREjRhAXF8f69esBuOeee4iOjua0007j7bffNvdczJ8/n4ceeuiYA6OP53j72tra8tlnn7Fy5UrzwNyPPvoIgNWrV/POO+8wYsQILr30Ul555RUGDx7crnNed911vPzyy+bbZQBTp07l6quvZuzYscTExFBZWckjjzxy1P1nzJjBr7/+iq+vL1FRUebtq1evJj09nZiYGGJiYrj00kvZt28f/fr14z//+Q8LFy5k9OjR/PbbbwQGBh4z33nnnceePXs466yzsLKyIj4+ntDQUPPtvD/z8PBg9uzZ5oHJJ+tYn6GgoIDzzjuP2NhYYmJiGD58OFOnTgXA09OT7OxszjjjDK677jr+/e9/4+zsTHR0NP/85z85//zziY2N5YcffuDll18+YYYPPviA2NhYTjvtNGbNmmUeSL948WLi4uI444wziI2NZcyYMWzZsuWkP/ORrEymYwx5F7OMjAzmzZvHqlWrzL9N9WXf/OcbLrjyAr749xcExQdhZ2dHSEgITU1NbNu2jZCQEAYMGMDevXvJz89n5MiRwKGnQ6ytrRkyZAgtLS1s2bKF4OBgPDw82L9/P7m5uYwYMQIbGxt27dpFc3MzYWFhACQnJzN48GC8vb0pLy9n165dxMTEYGdnR25uLg0NDeb/N1u2bMHX15dBgwZRWVlJdnY29QX1/O0vf+P5tc9z+gWnG/bdSd9QX19PTk4OISEhrW4PiPQWubm5jBo1ir179xodxexkrzvdMjuOxMREEhMTqa6uNjpKt+Lj7cMkJuHj7cOwYcPM221tbc3FDxwaBOnl9b+BnqGhoeY/W1tbt2rr4eFh7sIGGDJkSKtz/rmtu7t7q9fBwcGt2v55wKerqysjR47k+5zvKaCAuvq6DnxSERHpK1QQHUdCQgIJCQnmHiI5xMvDizGMwcujfU+1dAdhIWEsYAFhIWFGRxER6fGCg4O7Ve9QV9AYIumwquoqssmmqrrK6CgiIiJdQgWRdFhOQQ7v8A45BTlGR2m3tKw0nuAJ0rLSjI4iIiLdkAoi6bCI0Aj+zt+JCI0wOkq7ebp7cjqn4+nuaXQUERHphlQQSYfZ29njhhv2dvZGR2m3Qd6DmMAEBnkPMjqKiIh0QyqIpMMKSwpZwxoKSwqNjtJuNbU1FFBATW2N0VFERKQbUkEkHVZXX0cJJT3qEfadeTt5lVfZmbfT6Cgihvn444+Jj48nLi6OyMhIJk2aREtLi9GxDLV06VIOHjxodAzpBvTYvXRYWEgY85nfox5hDwsJ4yZu6lGZRbpSaWkpCxYs4PfffzcvrJmcnHzC5RQ6oiuWkTjVHnzwQe644w7s7XvOEACxDPUQSZ/g6OB4aD0zB0ejo0gfVlJSQkpKivl1WloaBQUFwKFZdpOTk6mqOjSdxe7du1stDpqRkUFeXh4AjY2NJCcnd2gdsZKSEmxtbfH0/N+DBSNHjjQXRJs3b2bs2LHExsYyevRofvrpJ+DQjMR/nmC1urq6zcKdTz75JBMnTuSee+6hoqKCuXPnEhMTw4gRI8yLxTY2NrJ48WJGjx5NXFwcs2bNory8/KhZv/jiC04//XTzEiK//vorAOvWrWPkyJHExsYyYcIE0tIOPTW6YcOGVstXbN++3Txh6+H8999/v3kpjMNLhSxYsACAM888k7i4OPbs2cMrr7xCVFQUcXFxxMTEmM8tvV/PKuWlW0jLSuMxHuPsrLO71erdx1O8u5j/8l/O/PFMo6N0iJOXkxaj7UVefvllXnnlFQoLD42/mzVrFhMnTuSZZ56hsLCQ+Ph41q9fz8SJE3nrrbf45z//yf79+wGYM2cO0dHRvPLKK+zdu5f4+HjWrl3LBRdc0K5zjxgxgrFjxxIYGMiECRM488wzufLKK/H39+fgwYNccsklrFq1ismTJ/Pjjz9y2WWXkZ2d3a5jNzQ0sGHDBuDQemH9+/dn69atWFtbU1ZWBsDjjz9O//79+e233wB4+OGHeeCBB8xrqR2WmZnJDTfcwPfff8+wYcNobGyktraWPXv2cNVVV7F+/XpiYmJYvXo1M2fOZPv27SfMt2/fPuLj43nooYdYt24dixYtYtq0abz00ku8/PLL/Pzzz/Tv3x+A22+/nfT0dPz8/GhsbKShoaFd34H0fCqIpMO8BngxlrF4Deg5M1U32jWSaZXJp4s+5Wd+NjpOu9k52bEwfaGKol7ixhtv5NJLLzW/fvfdd3FxcQEgICCApKQk8/p911xzDeeff7657RtvvGFen8nLy4ukpCSGDh3a7nNbW1vz0UcfsWPHDjZu3MhXX33FI488wubNm6mrq8Pe3p7JkycDcPbZZzNw4EC2bduGr++Jf+k53AsEsHbtWpKSkrC2PnQDwtvbG4BPP/2UyspKPvzwQwAOHjx41PzffPMN06ZNMy8LZGdnh5ubG2vWrDH32gDMnj2bhQsXUlJScsJ8zs7OzJgxA4CxY8eyc+exxxKee+65XHPNNVx00UVMnTq11fJE0rupIJIOG+g1kHGMY6DXQKOjtNuYhDFk52bzx69/4Oriiu9AX+rq68jKySI0OBQnRyd2l+1mf/l+IsMiAcjclYmzkzP+Pv7UN9STuSuTIYFD6O/cn7J9ZezZt4foYdEAZOdmU11TTeKPicyaPov95fsJDgjG1cWVfQf2Uby7mJiIQz/Id+XvwtbGlkD/QJqbm0nNTCXQPxB3V3f2l++nsKSQmIgY9u7Yy3+u+g+1e2tVEPUSvr6+rQqMP6+Y7uDg0GqNvkGDBjFo0P+mifjzwtJ2dnat2nZEREQEERER3HjjjUyZMoXPP/+chISEo44lsrKywtbWlubmZvO2+vr6Nu0O964cj8lk4oUXXuDcc8/tVG6TydTpjH9e6NPGxqZV2yN9/PHHJCUlsWHDBqZNm8ayZcuYNWtWpzJLz6IxRNJhNbU15JHX4x5hdwt0Y+49c/lg4wf4jvSlun81U66awn77/fiO9OXTTZ9yze3X4DvSF9+Rvtzy0C28te4tfEf60uzdzJSrplDUXITvSF++3vI1M2+aaW571+N38fZXb+Pi64Kdvx1TrppCdnU2viN92bhjIxddd5G57QPPPcBT/34K35G+uIa7MuWqKWwv247vSF9+z/+dKVdNYeCIgVj7WPMxH/eo6Q2k+yoqKjKPCwI4cOAAOTk5DB06lIiICBoaGvjuu+8A+Pnnn9mzZw8xMTH4+PjQ1NRERkYGAG+99dZxzzN9+nQef/xx89Nrh2+ZTZ8+nRUrVlBbWwtAbW0tqampbfafPHkyX331FZmZmcChsUcVFRWMHTuWLVu2kJ6eDhzqXQsICMDHx4eQkBBycnLYt28fAG+//Xa7vxcXFxfzWKympiZ27tzJqFGjuOOOO7jsssvMt/ik91MPkXTYzrydvM7r/DXvr4SeHXriHbqRzz77DHd3dwDCwsJISkoy/+bdFbczgoKCaGxsbHU7Y+bMmZx55v/GLr344ovmJ3GcnZ1JSkoiJCQEgIsuuoikpCRsbGyoqq6ihRaampos9G1IX9LU1MRDDz1ETk4OTk5ONDU1ce2115pvJX300Ufceuut1NTU4ODgwAcffICzszMAzzzzDFOnTiUgIICpU6ce9zz/+te/+Pvf/87w4cOxt7fn9NNPZ9WqVSxevJgHH3yQM844w9zTc/fddxMdHd1q/9DQUF599VWuuOIKGhsbsbGx4eWXX2b06NG8/fbbzJ49m+bmZtzd3Xn//fcB8Pf354477mDUqFEEBwczfvz4dn8vt99+O+eeey6Ojo58/fXXXHfddRw4cABbW1u8vb15/fXX230s6dmsTCaTyegQ3d3h1e5XrVrVqtu6r8rZlMOKM1dw28+3ETI2xOg4vVZJcgkr41cyP2l+jxm8LofU19eTk5NDSEhIq9s1ImI5J3vd6ZaZdJhDPwe88MKhn37QW5LJZKKZZvQ7i4iI5akgkg4r3l3MOtZRvLvY6Ci9WsqOFB7mYVJ2pJy4sYiInBQVRNJh1TXV7GQn1TXVRkfp1QJ8A5jBDAJ8A4yOIp3U15fFEDmVTrY3XYOqpcOGDRnGQhYybIjm57AkD3cPTuM0PNw9jI4iHWRvb4+1tTXFxcV4e3tjb2/fpUtkiEhrJpOJsrIyrKyssLOz69QxVBCJdFPlleWkkkp5ZTm+aFB1T2JtbU1ISAglJSUUF+vWssipYGVlRUBAADY2Np3aXwWRdNiO7B38i38xPnu8nn6yoPyifD7gA24ouoFIIo2OIx1kb29PYGAgTU1Nx50IUES6hp2dXaeLIVBBJJ3g7uZOLLG4u7kbHaVXix4WzWIWm2fDlp7ncPd9Z7vwReTU0aBq6TAfbx8mMQkfbx+jo/RqNjY2OOBwUr/xiIhI+6ggkg6rraulmGJq62qNjtKr5Rfl8yEfkl+Ub3QUEZFeTwWRdFh2bjYrWUl2brbRUXq1puYmaqihqVlLd4iIWJoKIumw0OBQ5jOf0OCetY5ZTzMkcAjXci1DAocYHUVEpNdTQSQd5uTohB9+ODk6GR1FRESkS+gps26gIr+C2r09ZzxO6s+pfMu3TC+brvlxLOjw0h1jd4zV9AYiIhamgshgFfkVPB/5PA21DZRSijvuOOFELbWUU44PPlhjzX72Y8KEJ54AFFOMG24440wddRzgAIMYhA02HOAAzTTjhRcAJZTgggv96U899exnPwMZiC22lFNOI4144w1AKaU444wLLjTQwD724Y03dthRQQUNNGDCRIpVCvXW9YZ9b32B3yA/JjMZv0F+RkcREen1VBAZrHZvLY21jUx9ZSpj547l+Uee5+IpF/PRlx/x2H2PkbMph372/bjhjhs4ePAgbz/zNgB+8X48vuRxZl88my+/+5K5d84l9btUBrgN4OYlN1Oyp4SPVn4EwNCzhnLPzfcw94q5bPh5A1feciWbv9yM3yA/7nrkLlJ2pPDV218BMHzScG6cfSPzr5/Pr3/8ysVzL+b7j74nNDiUpSuWsmHTBjZ8sIF/ev0Tt0A3w763vsBzgCejGY3nAE+jo4iI9HpWppNdDa0H+eKLL3jnnXfYv38/3t7ePProo/j7+59wv4yMDObNm8eqVasIDw/v0ky/fP4LN8y4gVWfrsJhsAPBwcF4eHiwf/9+cnNziYuLw9raml27dtHS0kJo6KGBzMnJyQQGBuLl5cWBAwfIyckhNjYWW1tbcnJyaGxsZNiwQ2uNbdmyBT8/PwYOHEhlZSXZ2dkMHz4ce3t78vPzqa2tJSIiAoBt27YxcOBAfHx8qK6uJjMzk6ioKBwcHCgsLKSyspKoqKgu/Q7k6DI2ZvDQxIe4f8P9hE/o2r93IiLSWp/pIfrpp5/48MMP+ec//0lQUBBFRUW4uroaHYvmluZDt6FMJkaOHGne7uHhgYfH/xb1HDKk9ZNGf247YMAABgwYYH4dEhLSqm1cXJz5z66urq32DQwMbNU2NjbW/Of+/fu3ahsQoFXXT6Xcwlz+zb+5pvAawlFBJCJiSX2mIHrzzTe5+eabCQ4OBrrPP+5DAodwNVfr0WppIzI0ktu5nchQrWMmImJp3bIgqq2t5c033yQrK4usrCwqKiqYM2cO119//VHbvvLKK6xfv56qqioCAwOZPXs2kyZNMrdpbm4mKyuLnTt38o9//AMbGxumTp3KnDlzsLKyOpUfTaTd7OzscMFF62CJiJwC3XIeooqKCtasWUNjYyPjxo07btslS5awbt065syZw2OPPUZERAQPPvgg33zzjbnNgQMHaG5u5vfff+eNN97g6aef5ptvvmHdunWW/igntC19Gw/yINvStxkdRbqZwpJCPuMzCksKjY4iItLrdcseIh8fH7744gusrKwoLy9n7dq1R223adMmNm/ezP33309CQgJwaGxNaWkpL774Iueeey42Njb069cPgNmzZ+Pi4oKLiwvTp0/nt99+Y+rUqafscx2Nv48/F3AB/j4nHtwtfUt9Qz1llFHfoOkNREQsrVv2EFlZWbXrVtYPP/yAo6MjEydObLV92rRp7N27l7S0NABcXFzw8vJq9/n37t1LRkaG+b+8vLwO5e8IzwGejGKUHq2WNkKDQ5nLXC2RIiJyCnTLHqL2ysnJISgoCFvb1h9j6NCh5vdjYmIAmDp1Kv/5z38YNmwY1dXVrF27lmuuueaox/3888954403LJr9sIqqCnawg4qqCs36LCIiYpAeXRBVVFTg59d2Fl8XFxcAKisrzdvmzJnDv/71Ly699FKcnJy46KKLOP/884963OnTp3PWWWeZX+fl5bFs2bIuTv//H7swj3d5lzmFc4ggwiLnkJ4pNTOV5SznrMyztHSHiIiF9eiCCGj3U2J2dnbcdddd3HXXXSds6+Xl1aFbbCcjMjSSO7lTj1ZLGwM9BzKOcQz0HGh0FBGRXq9bjiFqLzc3NyoqKtpsr6qqAugWEy+eiJ2dHc4469FqacPb05uzOAtvT2+jo4iI9Ho9uodoyJAhJCYm0tTU1Goc0a5du4C2MzZ3RwXFBXzCJ0wtnqrbItJKdU01OeSQm5xrdJQOcfJy0jp3ItLj9OiCaNy4caxZs4aNGze2mohx3bp1eHl5nfSaW4mJiSQmJlJdXX2yUY+p4WAD+9lPw8EGi51DeqbiymLe5E36zeuHHz1nxXs7JzsWpi9UUSQiPUq3LYh++eUX6uvrqa2tBQ4NbN6wYQMAY8aMwcHBgTFjxjBq1ChWrFhBbW0t/v7+fPvtt/z6668sWbIEGxubk8qQkJBAQkKCeXFXSwgNDuUGbtCj1dLGGZPOIHljMu527jj0c7DIOWrLakn7OI2oS6Jw8nY66eOVpZfxyVWfULu3VgWRiPQo3bYgWrFiBaWlpebX69evZ/369QC89957+Poeur20bNkyVq1axauvvmpeuuOBBx5o1WMk0hM5ODhw2vjTLH6eoZOHWvwcIiLdXbctiN5///12tXNycmLRokUsWrTIwoksY3vGdv7BPzgz40yNIZJWCgoKePzxx7nzzjsZPHiw0XFERHq1Hv2UWW8wyGsQE5nIIK9BRkeRbqaqqooNGzaYn5oUERHLUUFkMG9Pb87kTD1aLW1ERUWxbds2mpubKSkpAaCmpobk5GTq6uoAKCoqIjU11bxPamoqhYWHFoOtq6sjOTnZ/FBASUkJ27b9bxHh9PR08vPzAWhoaCA5Odk8menu3bvZsmWLuW1GRga5ubkANDY2kpycTHl5OQBlZWUkJyeb29ZR14XfgojIqaGC6DgSExNZvHgxzz77rMXOUVVdxU52UlWtXgA5uqlTp/Lyyy8DkJaWRnx8PFlZWQA899xzzJgxw9z2kksu4emnnwYOTT8RHx9PSkoKAK+++iqTJ082t509ezaPPvoocKhYio+P57fffgNg9erVjB8/3tz2hhtuYOnSpQCUl5cTHx/P999/D8DHH3/M6NGjAdh3YB8f8iGFJYVd/j2IiFiSlclkMhkdors7/JTZqlWrCA8P79Jjf736a6ZcNYV176xj8uzJJ95B+pyUlBS8vLzw9fWlpqaGjIwMIiMjcXR0pKioiPLycqKjo4FDPURubm4EBARQV1dHeno6w4YNo3///pSUlFBWVkZsbCxwqIfI2dmZwMBAGhoaSE1NJTQ0FFdXV3bv3k1JSQlxcXHAoWugX79+BAcH09jYSEpKCkOGDMHd3Z2ysjIKCgoYOXIkv3z+C9fOuJY3P3uTMdPHGPWViYh0mAqidrBkQZT7Sy5PjX2Kv236G8Fjgrv02CKnWklyCSvjVzI/ab4eEhCRHkW3zAzWz74fAxhAP/t+RkcROWnNzc0c5CDNzc1GRxER6RAVRAYrLCnkC77QmAvpFVIzU/kH/yA1M/XEjUVEuhEVRAarq6+jgALq6vVkjvR8g/0GcymXMthP8yaJSM+igshgYSFhLGABYSFhRkcROWkD3AYQQwwD3AYYHUVEpENUEIlIlzlQcYCtbOVAxQGjo4iIdEi3XbqjOzgVq92nZaXxBE9wdtbZeipHeryC4gI+4RNuLL6RKKKMjiMi0m4qiI7jVKx27+nuyemcjqe7p0WOL3IqDQ8fzhKWMDx8uNFRREQ6RLfMDDbIexATmMAgb61lJj2ftbU1tthiba0fLSLSs+inlsFqamsooICa2hqjo4ictLzCPN7lXfIK84yOIiLSISqIDLYzbyev8io783YaHUXkpLWYWmimmRZTi9FRREQ6RAWRwcJCwriJm/TYvfQKIYNDmM1sQgaHGB1FRKRDVBAZzNHBkYEMxNHB0egoIiIifZYKIoMV7y7mv/yX4t3FRkcROWnb0rexlKVsS99mdBQRkQ7RY/fHcSrmIaqqriKDDKqqqyx2DpFTxd/Hn4u4CH8ff6OjiIh0iAqi4zgV8xCFDw3nFm4hfGi4RY4vcip5DvAknng8B2heLRHpWXTLTES6THllOWmkUV5ZbnQUEZEOUUFksIydGTzN02TszDA6ishJyy/K533eJ78o3+goIiIdooLIYK4urkQTjauLq9FRRE5aVFgUd3EXUWFax0xEehYVRAbzHehLAgn4DtTCrtLz2dra4oQTtrYanigiPYsKIoPV1ddRSil19XVGRxE5aflF+XzER7plJiI9jgoig2XlZPESL5GVk2V0FJGT1tjUSCWVNDY1Gh1FRKRDVBAZLDQ4lHnMIzQ41OgoIidtaNBQruM6hgYNNTqKiEiHqCAymJOjE/744+ToZHQUERGRPksjH4/jVMxUvbtsN+tZz4yyGfiigdXSs23P2M4jPMKZGWfiO1J/n0Wk51BBdBynYqbq/eX7SSaZ/eX7LXJ8kVPJx9uHSUzCx9vH6CgiIh2iW2YGiwyL5HZuJzIs0ugoIifNy8OLMYzBy8PL6CgiIh2iHiIR6TJV1VVkk01OUo7RUTrEycsJt0A3o2OIiIFUEBksc1cmL/ACE3dN1JgL6fFKqkp4h3dwmu+EH35Gx2k3Oyc7FqYvVFEk0oepIDKYs5MzwQTj7ORsdBSRkzb2vLGk/pKKM87Y29kbHaddytLL+OSqT6jdW6uCSKQPU0FkMH8ff6YxDX8ff6OjiJw0e3t7os7QOmYi0vNoULXB6hvq2cc+6hvqjY4ictLy8/O58cYbyc/X0h0i0rOoIDJY5q5MnuVZMndlGh1F5KTV1taSnJxMbW2t0VFERDpEt8wMNiRwCNdyLUMChxgdReSkRURE8PvvvxsdQ0Skw9RDZLD+zv0JIYT+zv2NjiIiItJnqSA6jsTERBYvXsyzzz5rsXOU7SvjJ36ibF+Zxc4hcqps27YNb29vtm3bZnQUEZEO0S2z4zgVS3fs2beHH/iBPfv2WOT4IqfSwIEDue222xg4cKDRUUREOkQ9RAaLHhbNYhYTPSza6CgiJ83Hx4dbbrmF4uJi6usPPTlZWFhIWlqauc327dspLi4G2g7CLi4uZvv27ea2aWlpFBYWAlBfX09ycrJ5seXS0tJWPVE7duwwP9128OBBkpOTqaysBGDPnj1s2bLF3DYzM5OcnEOzaTc1NVFOeVd+DSLSA6kgEpEutWXLFuLj48nLywNgxYoVXH755eb3L7zwQl544QXgUBETHx/Pjh07AHjhhRe48MILzW0vv/xyVqxYAUBeXh7x8fEkJiaydOlSnn76aSZNmmRue/XVV/PII48Ahwqg+Ph4Nm3aBMC7777LWWedZW47f/587rvvPgByC3N5iqcoLCns8u9CRHoO3TIzWHZuNq/wCufmnqulO6RXiIuLIykpiaCgIABuu+025s6da35/7dq1eHh4AIeeSktKSiIiIgKAm266iVmzZpnbfvDBB7i6ugIQFBREUlISrq6ubNmyhVmzZnHFFVeY27799ts4OTkBh27dJSUlERoaCsCsWbMYP368ue3KlSuxs7MDYIDbAC7kQj3YINLHqSAymEM/B7zxxqGfg9FRRLpE//79GTlypPl1QEBAq/eHDx9u/rOTk1Ortn5+fvj5/W8NtKio/8167eDgYG67dOnSNuc9XFTBoRmz/3zcgQMHthrXNGzYMPOfPQd4MopRuLu6t+fjiUgvpVtmBgvwDWAGMwjwDThxYxHpcvsO7COJJPYd2Gd0FBExkAoigzU2NlJFFY2NjUZHEemTikqLWMMaikqLjI4iIgZSQWSw9Ox0nuRJ0rPTjY4i0ifFRsaylKXERsYaHUVEDKSCyGDBAcFcyZUEBwQbHUVERKTPUkFkMFcXV4YxDFcXV6OjiPRJOQU5rGY1OQU5RkcREQOpIDLYvgP7+I3fNKBTxCDWVtbYYIO1lX4civRl+glgsOLdxXzN1xTvLjY6ikifFBQQxCxmERQQZHQUETGQCiKDxUTEcB/3ERMRY3QUkT6ppaWFJppoaWkxOoqIGEgFkYj0adsztrOMZWzP2H7ixiLSa6kgMtiu/F28yZvsyt9ldBSRPmmw32Au5mIG+w02OoqIGEhLdxxHYmIiiYmJ5tW1LcHWxhZnnLG10f8KESMMcBvACEYwwG2A0VFExED6V/g4EhISSEhIICMjg3nz5lnkHIH+gVzGZQT6B1rk+CJyfAcqDpBCCgcqDuCLFlgW6at0y8xgzc3N1FNPc3Oz0VFE+qSC4gI+4iMKiguMjiIiBlJBZLDUzFSWs5zUzFSjo4j0SdHDormXe4keFm10FBExkAoigwX6B3I5l+uWmYhBbGxssMceGxsbo6OIiIFUEBnM3dWdaKJxd3U3OopIn5RXmMf7vE9eYZ7RUUTEQCqIDLa/fD9/8Af7y/cbHUWkT2puaaaBBppbNI5PpC9TQWSwwpJCPuMzCksKjY4i0icNCRzC1VzNkMAhRkcREQOpIDKYlu4QERExngoig1lZWWGDDVZWVkZHEemTtqVv40EeZFv6NqOjiIiBVBAZLLcgl3/zb3ILco2OItIn+fv4cwEX4O/jb3QUETGQCiIR6dM8B3gyilF4DvA0OoqIGEgFkcGCBwdzJVcSPDjY6CgifVJFVQU72EFFVYXRUUTEQCqIDGYymWimGZPJZHQUkT4przCPd3lX8xCJ9HFa3NVgKTtSeJiHOWvHWfjF+xkdR6TPiQyN5E7uxKvJi5LkEouco7aslrSP04i6JAonb6cuOaaTlxNugW5dciwRUUFkuADfAGYwgwDfAKOjiPRJbr5uuDu5s3bOWoufK3llcpcdy87JjoXpC1UUiXQRFUQG83D34DROw8Pdw+goIn3SgZYDbJ+2nb9d+zcG+w02Ok67lKWX8clVn1C7t1YFkUgXUUFksPLKclJJpbyyHF98jY4j0uc0NDSQX5KPW5gbvuG6BkX6Kg2qNlh+UT4f8AH5RflGRxHpk8LDw/nxxx8JDw83OoqIGEgFkcGih0WzmMVED4s2OoqIiEifpYLIYDY2NjjggI2NjdFRRPqkLVu24OrqypYtW4yOIiIG0hii40hMTCQxMZHq6mqLnSO/KJ8P+ZApRVPwHanxCyKnmq+vL0uXLsXXV9efSF+mgug4EhISSEhIICMjg3nz5lnkHE3NTdRQQ1Nzk0WOLyLHN2jQIG677TajY4iIwXTLzGBDAodwLdcyJHCI0VFE+qTKykoSExOprKw0OoqIGEgFkYj0adnZ2Zx33nlkZ2cbHUVEDKSCyGCHl+5I2ZFidBSRPik6OpqcnByio/Wkp0hfpjFEBvMb5MdkJuM3SOuYiRihX79+BAcHGx1DRAymHiKDeQ7wZDSj8RzgaXQUkT4pPz+fhQsXkp+vyVFF+jIVRAarrKokk0wqqzSgU8QINTU1bNq0iZqaGrZt20ZJyaEV76urq0lOTqaurg6AwsJCUlNTzfulpqZSVFQEQF1dHcnJydTU1ABQUlJCSsr/boOnpaVRUFAAQH19PcnJyVRVVQGwe/dutm7dam6bkZFBXl4eAI2NjSQnJ1NRUQFAWVkZf/zxh0W+B5G+TgWRwXILc/k3/ya3MNfoKCJ9UmRkJMnJyURGRjJ58mReffVVAFJSUoiPj2fXrl0APP3001xyySXm/WbMmMFzzz0HQFZWFvHx8aSlpQHw8ssvM3XqVHPbWbNm8fjjjwOHCqv4+HiSkpIAeOuttzjnnHPMbefMmcPDDz8MwN69e4mPj+fHH38E4P3332fMmDEW+R5E+jork8lkMjpEd3d4HqJVq1Z1+XpH+b/m88yYZ7j1l1sJPCOwS48tIh2zbds2vL298fX1pbq6mszMTCIjI3F0dKSwsJCKigrz4OvU1FTc3d3x9/enrq6O9PR0wsPDcXZ2pqSkhL179xITEwMc6iFycXFh8ODB1NfXk5aWRlhYGC4uLuzevZvS0lJGjBgBHPp54+DgQFBQEI2NjaSkpDB06FDc3NwoKyujsLCQ2rxarr74at7+5G3O+stZhn1fIr2JBlUbzM7ODhdcsLOzMzqKSJ8XGxtr/nP//v0ZOXKk+XVAQAABAQHm139+Ks3R0bFVW19f31YzX0dFRZn/7ODg0KrtoEGDGDRokPn1n3/psrOza9XW29sbb29vfi38FWecsbXRj3CRrqJbZgYrLCnkMz6jsKTQ6Cgi0kME+gdyGZcR6K9eZZGuooLIYPUN9ZRRRn1DvdFRRKSHaG5upp56mpubjY4i0mt0uiDKyclh3bp15qcqABoaGnjyySe55JJLuOKKK1izZk2XhOzNQoNDmctcQoNDjY4iIj1EamYqy1lOambqiRuLSLt0uiB6++23efnll3FycjJvW7lyJZ9//jm1tbXs2bOHJ5980vwkhYiIdI1A/0Au53LdMhPpQp0uiNLT0znttNOwsrICoKmpiS+//JLIyEg+++wz3nvvPdzd3Xn//fe7LGxvpN/0RKSj3F3diSYad1d3o6OI9BqdLoj279/f6smItLQ0amtrmTFjBv369cPLy4uzzjpLCyaewEDPgYxjHAM9BxodRUR6iP3l+/mDP9hfvt/oKCK9RqcLIhsbGxobG82vt23bhpWVFaeddpp5m5ubm3mGVTk6b09vzuIsvD29jY4iIj2Enk4V6XqdLoh8fHxaTSG/YcMGfH198fHxMW8rKyvDzc3t5BL2ctU11eSQQ3VNtdFRRKSHiImI4T7uIyYixugoIr1Gpwui888/n+zsbBYsWMDNN99MdnY2kyZNatUmMzOz1URm0tau/F28yZvsyt9ldBQR6SGsrKywwcY8hlNETl6nC6JLLrmEiRMnsmPHDlJSUjj99NO5+uqrze+np6eTm5vbapZVaWvYkGHcwi0MGzLM6Cgi0kPkFvz/ayAW5BodRaTX6PS87/b29jz44IPU1NRgZWXV6vF7ODR1/auvvtrqFpq05dDPAU88cejnYHQUERGRPqvTPURbtmxh9+7dODs7tymGANzd3XF1ddVTZidQVFrEl3xJUWmR0VFEpIcIHhzMlVxJ8OBgo6OI9BqdLoj+9re/8dVXXx23zTfffMPf/va3zp6iT6iprSGXXGpqa07cWEQEMJlMNNOMyWQyOopIr9Hpgqg9F6LJZNKgvxMYNmQYN3GTxhCJSLul7EjhYR4mZUeK0VFEeg2LLu5aWFiIs7OzJU8hItLnBPgGMIMZBPjqKV6RrtKhQdXLly9v9fqHH36gtLS0Tbvm5mbKysrYunUrZ5xxxskl7OXSs9J5kicZlzUO35G+RscRkR7Aw92D0zgND3cPo6OI9BodKoj+PGbIysqK7OzsYw6atrKyIiIigptvvvnkEvZyHu4ejGSkfrCJSLuVV5aTSirlleX4ol+kRLpChwqi9957Dzg0NmjWrFlcfvnlXHbZZW3aWVtb4+LigqOjY9ek7MUGeQ/iHM5hkPegEzcWEQHyi/L5gA+4oegGIok0Oo5Ir9ChgujPcwotXryYYcOGaZ6hk1RbV0sRRdTW1RodRUR6iOhh0SxmMdHDoo2OItJrdHpQ9dSpUxk6dGhXZumTsnOzWcUqsnM1X5OItI+NjQ0OOGBjY2N0FJFeo9MzVR+WlpbGjh07qK6upqWlpc37VlZWXHvttSd7mpN26623kpaWZv4BEhERwdNPP21wKggLCWMBCwgLCTM6ioj0EPlF+XzIh5y+8XSjo3SYk5cTboFa9Fu6n04XRJWVldx7771s3779uHMSdZeCCOCuu+7i/PPPNzpGK44Ojvjgg6ODxluJSPvYudpRZ13HutvW8Tu/Gx2nQ+yc7FiYvlBFkXQ7nS6InnvuOVJSUoiLi2PKlCkMHDhQ3bedULKnhEQSuWjPRXpaRETaZeSEkSTlJFG7t2eNPSxLL+OTqz6hdm+tCiLpdjpdEG3atInIyEieeuqpLp+Nura2ljfffJOsrCyysrKoqKhgzpw5XH/99Udt+8orr7B+/XqqqqoIDAxk9uzZTJo0qU3bZ599lmeffZahQ4eycOFCwsKMv01VWVVJKqlUVlUaHUVEehC3QDcVFSJdqNODqg8ePMiIESMssjRHRUUFa9asobGxkXHjxh237ZIlS1i3bh1z5szhscceIyIiggcffJBvvvmmVbsFCxbw3nvv8eGHHzJ27FjuvPNOqquruzx7R4UPDWcRiwgfGm50FBHpIf744w/69evHH3/8YXQUkV6j0z1EYWFhR52luiv4+PjwxRdfYGVlRXl5OWvXrj1qu02bNrF582buv/9+EhISABg5ciSlpaW8+OKLnHvuuebbeFFRUeb9/vrXv/Lll1+yfft2xowZ0+a4e/fuZd++febXeXl5XfnxREROSkBAACtWrCAgQEt3iHSVThdE1113HXfffTepqalER3ftXBjt7XX64YcfcHR0ZOLEia22T5s2jYceeoi0tDRiYmKOeY5jDQb//PPPeeONNzoSudMydmbwLM8yYecELd0hIu3i7e3NwoULjY4h0qt0uiAqKytj7Nix3HrrrZx33nmEhYUdcyHXKVOmdDrg8eTk5BAUFIStbeuPcXh+pJycHGJiYqiqqmLHjh3mW3yfffYZ+/fvZ/jw4Uc97vTp0znrrLPMr/Py8li2bJlFPoNLfxfCCcelv4tFji8ivU9FRQU//vgjZ599Nm5uGkck0hU6XRD985//NPeyfPXVV3z11VdtenZMJhNWVlYWK4gqKirw8/Nrs93F5VBxUVl5aKByc3MzK1euJD8/H1tbW0JDQ3nsscfM7Y7k5eWFl5eXRTIfyW+QH+dzPn6D2n4OEZGj2blzJxdeeCFJSUmMHDnS6DgivUKnC6LFixd3ZY5Oa8/tNXd3d1atWnUK0nRcXX0de9hDXX2d0VFEpIeIiYmhuLj4lP3iJtIXdLogmjp1alfm6BQ3NzcqKirabK+qqgLA1dX1VEfqsKycLF7gBabnTGfImUOMjiMiPYCdnR2+vhpzKNKVOv3YfXcwZMgQ8vLyaGpqarV9165dAISEhBgRq0OGBg3lBm5gaJDWhROR9snLy2Pu3Ll6AlakC3W6h2j37t3tbjto0KDOnua4xo0bx5o1a9i4cWOriRjXrVuHl5dXq0ftOyMxMZHExESLzlfk7OTMYAbj7HT0AekiIkeqr68nNTWV+vp6o6OI9BqdLohmzpzZrvE7VlZWrF+/vsPH/+WXX6ivr6e29tDU9Hl5eWzYsAGAMWPG4ODgwJgxYxg1ahQrVqygtrYWf39/vv32W3799VeWLFly0kuJJCQkkJCQQEZGBvPmzTupYx3L7rLdbGQjM8pmaOkOEWmX8PBwNm3aZHQMkV6l0wXR5MmTj1oQVVdXs3PnTkpKSoiLi8PHx6dTx1+xYkWriR/Xr19vLqzee+898/3zZcuWsWrVKl599VXz0h0PPPDAUZfu6I72le/jd35nX/m+EzcWERERi+h0QXTvvfce8z2TycS7777Lf/7zH+6+++5OHf/9999vVzsnJycWLVrEokWLOnUeo0WFRXEHdxAVdnK390Sk79i6dSvnnHMO69evZ8SIEUbHEekVLDKo2srKiiuuuIKQkBBeeOEFS5xCRKTP8vHx4Z577ul0D7yItGXRp8zCw8NJTk625Cl6vKycLF7iJbJysoyOIiI9xKBBg7jzzjst9sCKSF/U6Vtm7VFUVERzc7MlT2FRp+IpM0cHRwYzGEcHR4udQ0R6l6qqKpKSkoiPjz/mjPsi0jFd3kPU0tLC7t27efPNN/npp5+6fOHXUykhIYHly5dzyy23WOwcAb4BXMAFBPhq1WoRaZ+srCzOOeccsrKyKCgoIC0tzfxeSkoKJSUlANTU1JCcnExd3aGZ8IuKikhNTTW3TU1NpbCwEIC6ujqSk5PNvwCWlJTw7bffsnTpUkpKSkhPTyc/Px+AhoYGkpOTzcsj7d69my1btpiPm5GRQW5uLgCNjY0kJydTXl5uke9CpKt0uiCaMGECEydObPPfueeey1//+ldee+01nJ2duemmm7oyb6/TcLCBAxyg4WCD0VFEpIeIiooiKyuLqKgoHn/8cWbNmmV+b+rUqbz88ssApKWlER8fT1bWoVvyzz33HDNmzDC3veSSS3j66aeBQxPaxsfHk5KSAsCrr77KFVdcYW47e/ZsHn30UeBQsRQfH89vv/0GwOrVqxk/fry57Q033MDSpUsBKC8vJz4+nu+//559B/axmc3sO6CnaqX7sTKZTKbO7Hjrrbce9bF7KysrXFxcCA8PZ9q0aXh4eJx0SKMdnodo1apVhIeHd+mxv179NVOumsK6d9YxefbkLj22iPR+BQUFVFVVmSeiTUlJwcvLC19fX2pqasjIyCAyMhJHR0eKioooLy8399ynpqbi5uZGQEAAdXV1pKenM2zYMPr3709JSQllZWXExsYCkJ6ejrOzM4GBgTQ0NJCamkpoaCiurq7s3r3bPNUKHPqZ2a9fP4KDg2lsbCQlJYUhQ4bw6xe/MvWqqXz1zlf6eSfdTqcLor7EkgVR5veZLJuwjCUblzBs/LAuPbaISHdSklzCyviVzE+aj+9ITUQr3UuPXsusN3Dp78JQhuLSXwMjRUREjNIlT5mlpKSQnZ1NTU0NTk5OhIWFERMT0xWH7vXK9pXxMz9z8b6LtXSHiPRqu/J38TZvk5CfoB4i6XZOqiBKS0vjH//4h/kpBZPJZB5XFBAQwOLFixk+fPjJp+zFdu/dzQY2sHtv+xfLFRHpiWysbehHP2ysT26dSRFL6HRBlJuby9///nfq6+sZPXo0cXFxeHh4cODAAf744w9+++037rjjDl566SWCg4O7MPKpcyrmIRoePpx7uZfh4SocRaR3CwoIYiYzCQoIMjqKSBudLojeeOMNmpqaeOKJJzj99NNbvXfllVeyefNm7r77bt544w3z45c9zalY7V5EpK9obm7mIAd79IS90nt1elD1H3/8wYQJE9oUQ4eNGjWKCRMm8Mcff3Q6XF+QnZvNq7xKdm620VFERCwqNTOVf/APUjNTT9xY5BTrdEFUU1ODr+/xB8UdngdDjq2ffT888KCffT+jo4iIWNRgv8FcyqUM9htsdBSRNjpdEHl6eraaAv5o0tLS8PT07Owp+oTBfoO5mIv1A0JEer0BbgOIIYYBbgOMjiLSRqcLorPPPpstW7bwyiuv0NDQetmJhoYGXnvtNf744w/OPvvskw7ZmzU2NlJDDY2NjUZHERGxqAMVB9jKVg5UHDA6ikgbnR5Ufe211/Lzzz/zzjvv8PnnnxMZGcmAAQM4cOAAO3bsoLy8HD8/P6699tquzNvrpGen8ziPMyl7EoFnBBodR0TEYgqKC/iET7ix+EaiiDI6jkgrnS6IXF1defnll3nhhRf47rvv+OWXX8zv2dvbM3XqVBYsWICrq2uXBO2tggKCmMUsPYYqIr3e8PDhLGGJphmRbumkJmZ0dXVl8eLF3HHHHeTl5VFbW4uTkxNBQUHY2nbJJNiGOhXzELm5uBFBBG4ubhY7h4hId2BtbY0ttlhba9Uo6X46/LfyrbfeYuXKlTQ1NZm32draMnToUGJiYhg6dCgmk4lVq1bxzjvvdGnYUy0hIYHly5dzyy23WOwc+w7sYzOb2Xdgn8XOISLSHeQV5vEu75JXmGd0FJE2OlQQbd68mddeew1XV9fj9gDZ2dnh6urKK6+8QlJS0kmH7M2KSov4gi8oKi0yOoqIiEW1mFpoppkWU4vRUUTa6FBB9PXXX+Pi4sIll1xywrYXX3wxLi4ufPXVV50O1xfERsbyAA8QGxlrdBQREYsKGRzCbGYTMjjE6CgibXSoINq+fTvx8fHY29ufsK29vT2jRo1i+/btnQ4nIiIicip0qCDau3cvfn5+7W7v6+vLvn0aG3M8u/J38TZvsyt/l9FRREQsalv6NpaylG3p24yOItJGhwoia2vrVoOpT6SpqUlPE5yAjbUN/eiHjbWN0VFERCzK38efi7gIfx9/o6OItNGhasXT05OcnJx2t8/JycHLy6vDofqSoIAgZjJT8xCJSK/nOcCTeOLxHKAlnaT76VBBFBsbS3JyMiUlJSdsW1JSQnJyMiNGjOh0uL6gubmZgxykubnZ6CgiIhZVXllOGmmUV5YbHUWkjQ4VRBdffDFNTU3cf//9lJeXH7NdRUUFDzzwAM3NzcyYMeNkM/ZqqZmp/IN/kJp5/IVyRUR6uvyifN7nffKL8o2OItJGh6aTDg8P5/LLL+eDDz7gmmuuYcaMGZx22ml4e3sDhwZdJyUlsWbNGsrLy5k5cybh4eEWCX4qnIqZqgf7DeZSLtVq9yLS60WFRXEXd+Hd7E1J8onvNHRGbVktaR+nEXVJFE7eTl1yTCcvJ9wCtZpAb2dlMplMHdnh8CzU//nPfzjariaTCWtra6688krmzp2LlZVVl4U1SkZGBvPmzWPVqlVdXuCVJJewMn4l85Pm4zvSt0uPLSLSnVTkV/B85PM01jYaHaVD7JzsWJi+UEVRL9fhBcesrKyYP38+F1xwAV9++SXbt29n//79AHh4eBATE8PUqVPx99dTBO1xoOIAW9nKgYoD+KKCSER6r/3N+9l6/lZuu/42Av0DjY7TLmXpZXxy1SfU7q1VQdTLdXoFVn9/f+bNm9eVWfqkguICPuETbiy+kSiijI4jImIxjY2N7D6wmwHhA/Adpl8ApXvp+UvS93DDw4ezhCUMDx9udBQREYsaNmwYGzZsMDqGyFFp1kSDWVtbY4utJrAUERExkP4VNlheYR7v8i55hXlGRxERsagtW7bg7OzMli1bjI4i0oYKIoO1mFpoppkWU4vRUURELMrPz49//vOfHVoTU+RU0Rgig4UMDmE2swkZHGJ0FBERixo4cCC33nqr0TFEjko9RCIickpUVlby9ddfU1lZaXQUkTZUEBlsW/o2lrKUbenbjI4iImJR2dnZTJkyhezsbKOjiLShW2bHcSqW7vD38eciLsLfRxNZikjvNnz4cAoKChg4cKDRUUTaUEF0HAkJCSQkJJiX7rAEzwGexBOP5wBPixxfRKS7sLe3JyAgwOgYIkelW2YGK68sJ400yivLjY4iImJR+fn53HjjjeTna7V76X5UEBksvyif93mf/CL9gBCR3q22tpbk5GRqa2uNjiLShm6ZGSwqLIq7uIuoMK1jJiK9W0REBL///rvRMUSOSj1EBrO1tcUJJ2xtVZuKiIgYRQWRwfKL8vmIj3TLTER6vW3btuHt7c22bZpmRLofFUQGa2xqpJJKGpsajY4iImJRAwcO5LbbbtNj99It6T6NwYYGDeU6rmNo0FCjo4iIWJSPjw/33HOP0TFEjko9RCIickpUV1fz448/WnSyW5HOUkFksO0Z23mER9iesd3oKCIiFpWZmcm4cePIzMw0OopIGyqIDObj7cMkJuHj7WN0FBERi4qKimLHjh24urqSlpZm3r59+3aKi4uBtnMVFRcXs337/35hTEtLo7CwEID6+nqSk5PNPU6lpaV8++23LF26lJKSEnbs2GGeBPLgwYMkJyebF5bds2cPW7ZsMR83MzOTnJwcAJqamkhOTubAgQMW+iakO1JBZDAvDy/GMAYvDy+jo4iIWJSDgwPh4eG88MILXH755ebtF154IS+88AIAO3bsID4+nh07dgDwwgsvcOGFF5rbXn755axYsQKAvLw84uPjzYXN66+/zsyZM81tr776ah555BHgUAEUHx/Ppk2bAHj33Xc566yzzG3nz5/PfffdB0BlZSXx8fGsX7+efQf2kUQS+w7s6+qvQ7oZDao2WFV1FdlkU1VdhS++RscREbG42267jblz55pfr127Fg8PD+DQ5I1JSUlEREQAcNNNNzFr1ixz2w8++ABXV1cAgoKCSEpKYtiwYQBcd911XHDBBcTGxgLw9ttv4+TkBBx6wi0pKYnQ0FAAZs2axfjx483HXblyJXZ2dgC4urqSlJRESEgIv335G2tYw8LShQxnuEW+D+kerEwmk8noEN3d4cVdV61aRXh4eJce++vVXzPlqimse2cdk2dP7tJji4jIySlJLmFl/ErmJ83Hd6R+ae3NdMvMYBGhEfydvxMRGmF0FBERkT5Lt8yOIzExkcTERIs+ImpvZ48bbtjb2VvsHCIi0jk5BTmsZjXnFZynHqJeTj1Ex5GQkMDy5cu55ZZbLHaOwpJC1rCGwpJCi51DREQ6x9rKGhtssLbSP5e9nf4PG6yuvo4SSqirrzM6ioiIHCEoIIhZzCIoIMjoKGJhKogMFhYSxnzmExYSZnQUERE5QktLC0000dLSYnQUsTAVRCIiIsewPWM7y1im1QT6ABVEBkvLSuMxHiMtK+3EjUVE5JQa7DeYi7mYwX6DjY4iFqaCyGBeA7wYy1i8BmimahGR7maA2wBGMIIBbgOMjiIWpoLIYAO9BjKOcQz0Gmh0FBEROcKBigOkkMKBCq1r1tupIDJYTW0NeeRRU1tjdBQRETlCQXEBH/ERBcUFRkcRC1NBZLCdeTt5ndfZmbfT6CgiInKE6GHR3Mu9RA+LNjqKWJgKIoMNGzKMm7mZYUOGGR1FRESOYGNjgz322NjYGB1FLEwFkcEc+jnghRcO/RyMjiIiIkfIK8zjfd4nrzDP6ChiYSqIDFa8u5h1rKN4d7HRUURE5AjNLc000EBzS7PRUcTCVBAZrLqmmp3spLrGcgvIiohI5wwJHMLVXM2QwCFGRxELU0FksGFDhrGQhRpDJCIiYiBbowOIiIh0V9vSt/EgDxLxZQTjGW90nHZz8nLCLdDN6Bg9igoig+3I3sG/+Bfjs8fjO9LX6DgiIvInoVGhTLebTtJ9Sey4b4fRcdrNzsmOhekLVRR1gAoig7m7uRNLLO5u7kZHERGRIww9bShvZr9J7d5ai52jtqyWtI/TiLokCidvp5M+Xll6GZ9c9Qm1e2tVEHWACiKD+Xj7MIlJ+Hj7GB1FRESOUF5ezvdbvmf8+PG4u7tb7DxDJw+12LGlfTSo2mC1dbUUU0xtneV++xARkc7ZtWsXM2bMYNeuXUZHEQtTQWSw7NxsVrKS7Nxso6OIiMgRYmJi2LNnDzExMUZHEQvTLbPjSExMJDExkepqy80RFBocynzmExocarFziIhI59jZ2eHt7W10DDkF1EN0HAkJCSxfvpxbbrnFYudwcnTCDz+cHE9+IJ2IiHSt3Nxc5syZQ25urtFRxMJUEBmstKyUb/mW0rJSo6OIiMgRGhoayM7OpqGhwegoYmG6ZWaw8opytrGN8opyo6OIiMgRwsPD+fHHH42OIaeAeogMFhEawd/5OxGhEUZHERER6bNUEImIiBzDli1bcHV1ZcuWLUZHEQtTQWSwzF2ZPM/zZO7KNDqKiIgcwdfXl6VLl+Lrq6WVejuNITJYf+f+DGUo/Z37Gx1FRESOMGjQIG677TajY8gpoB4ig/kN8mMKU/Ab5Gd0FBEROUJlZSWJiYlUVlYaHUUsTAWRweob6tnLXuob6o2OIiIiR8jOzua8884jO1urCfR2KogMlrkrk+d4TmOIRES6oejoaHJycoiOjjY6iliYxhAZbGjQUK7jOoYGaaVjEZHupl+/fgQHBxsdQ04B9RAZzNnJmSCCcHZyNjqKiIgcIT8/n4ULF5Kfn290FLEwFUQG27N3Dz/wA3v27jE6ioiIHKGmpoZNmzZRU1NjdBSxMN0yM9jeA3vZxCb2HthrdBQRETlCZGQkycnJRseQU0A9RAaLCoviLu4iKizK6CgiIiJ9lgoiERGRY9i2bRu+vr5s27bN6ChiYSqIDJaVk8VKVpKVk2V0FBEROYK3tzcLFy7E29vb6ChiYRpDZDBHB0d88cXRwdHoKCIicgRfX1+WLFlidAw5BdRDZLAA3wAu4iICfAOMjiIiIkeorq5m06ZNVFdXGx1FLEwFkcEONh6kggoONh40OoqIiBwhMzOTM888k8zMTAoLC0lNTTW/l5qaSlFREQB1dXUkJyebH88vKSkhJSXF3DYtLY2CggIA6uvrSU5OpqqqCoDdu3ezdetWc9uMjAzy8vIAaGxsJDk5mYqKCgDKysr4448/zG2zsrLIyckBoLm5meTkZMory7v6a+gTVBAZbEf2Dv7Fv9iRvcPoKCIicoTIyEi2b99OZGQkTz/9NJdccon5vRkzZvDcc88BhwqT+Ph40tLSAHj55ZeZOnWque2sWbN4/PHHASgsLCQ+Pp6kpCQA3nrrLc455xxz2zlz5vDwww8DsHfvXuLj4/nxxx8BeP/99xkzZoy57f/93/9x7733AofmTIqPj+eHX3/o8u+hL9AYIoOFDA7hKq4iZHCI0VFEROQIjo6O5nXMFi1axJw5c8zvffbZZ7i7uwMQFhZGUlIS4eHhANx4441ceuml5rbvvvsuLi4uAAQEBJCUlERYWBgA11xzDeeff7657RtvvIGDgwMAXl5eJCUlMXTooeWdZs6cyZlnnmlu++KLL2Jre+ifcmdnZ5KSkqgvqOdLvmR/+X588e3Kr6NXszKZTCajQ3R3GRkZzJs3j1WrVpn/sneVkuQSVsavZH7SfHxH6i+uiIicnK9Xf82Uq6aw7p11TJ492eg4PYZumRls7/69/MIv7N2vmapFROTkxUTEcB/3ERMRY3SUHkUFkcFKy0r5lm8pLSs1OoqIiPQCVlZW2GCDlZWV0VF6FBVEBhsePpz/x/9jePhwo6OIiEgvkFuQy7/5N7kFuUZH6VFUEImIiEifp4LIYDvzdvI6r7Mzb6fRUUREpBcIHhzMlVxJ8OBgo6P0KCqIDGZna4crrtjZ2hkdRUREegGTyUQzzegh8o5RQWSwQP9ALuVSAv0DjY4iIiK9QMqOFB7mYVJ2pJy4sZj1uYJo+/btTJgwgTfffNPoKAA0NTVRSy1NTU1GRxERkV4gwDeAGczQGpkd1KcKopaWFp599lkiIyONjmKWlpXGYzxGWlaa0VFERKQX8HD34DROw8Pdw+goPUqfKog+//xzYmJiCAzsPrenAv0DmclM3TITEZEuUV5ZTiqpWuS1g7plQVRbW8uLL77IbbfdxkUXXcT48eN57bXXjtn2mWee4eKLLyYhIYHrr7+eb7/9tk27iooKPvzww1br0HQH7q7uRBGFu6u70VFERKQXyC/K5wM+IL8o3+goPUq3LIgqKipYs2YNjY2NjBs37rhtlyxZwrp165gzZw6PPfYYERERPPjgg3zzzTet2q1cuZKZM2fSv39/S0bvsH0H9pFEEvsO7DM6ioiI9ALRw6JZzGKih0UbHaVH6Zar3fv4+PDFF19gZWVFeXk5a9euPWq7TZs2sXnzZu6//34SEhIAGDlyJKWlpbz44ouce+652NjYkJGRQWZmJrfffnu7zr9371727ftfgZKXl3fyH+oYikqLWMMaFpYuZDiarVpERE6OjY0NDjhgY2NjdJQepVsWRO1df+WHH37A0dGRiRMntto+bdo0HnroIdLS0oiJiWHr1q3k5uYyY8YMAOrq6rC2tqawsJD/9//+X5vjfv7557zxxhsn+zHaJTYylqUsJTYy9pScT0REerf8onw+5EOmFE3Bd6Sv0XF6jG5ZELVXTk4OQUFB2Nq2/hhDhw41vx8TE8OFF17Yqmh6/vnn8fHx4corrzzqcadPn85ZZ51lfp2Xl8eyZcu6/gOIiIh0sabmJmqooalZ07l0RI8uiCoqKvDz82uz3cXFBYDKykoAnJyccHJyMr/fr18/nJyccHNzO+pxvby88PLyskDitnIKcljNas4rOE+VvIiInLQhgUO4lmsZEjjE6Cg9So8uiKD9t9f+7N5777VAks6xtrLGBhusrbrl+HYREZE+oUf/K+zm5kZFRUWb7VVVVQC4urqe6kgdFhQQxCxmERQQZHQUERHpBbR0R+f06IJoyJAh5OXltVn2YteuXQCEhIQYEatDWlpaaKKJlpYWo6OIiEgv4DfIj8lMxm9Q2yElcmw9uiAaN24cdXV1bNy4sdX2devW4eXlRVRU1EkdPzExkcWLF/Pss8+e1HGOZ3vGdpaxjO0Z2y12DhER6Ts8B3gymtF4DvA0OkqP0m3HEP3yyy/U19dTW1sLHHrSa8OGDQCMGTMGBwcHxowZw6hRo1ixYgW1tbX4+/vz7bff8uuvv7JkyZKTnoMhISGBhIQEMjIymDdv3sl+pKMa7DeYi7mYwX6DLXJ8ERHpWyqrKskkk8qqSnzRwzrt1W0LohUrVlBaWmp+vX79etavXw/Ae++9h6/vof/Jy5YtY9WqVbz66qtUVVURGBjIAw88wKRJkwzJ3VED3AYwghEMcBtgdBQREekFcgtz+Tf/5prCawgn3Og4PUa3LYjef//9drVzcnJi0aJFLFq0yMKJLONAxQFSSOFAxQFV8iIictIiQyO5nduJDI00OkqP0qPHEPUGBcUFfMRHFBQXGB1FRER6ATs7O1xwwc7OzugoPYoKIoNFD4vmXu7VInwiItIlCksK+YzPKCwpNDpKj9Jtb5l1B4mJiSQmJlJdXW2xc9jY2GCPvRbhExGRLlHfUE8ZZdQ31BsdpUdRD9FxJCQksHz5cm655RaLnSOvMI/3eZ+8wjyLnUNERPqO0OBQ5jKX0OBQo6P0KCqIDNbc0kwDDTS3NBsdRUREpM9SQWSwIYFDuJqrtQifiIh0idTMVJaznNTMVKOj9CgqiERERHqRgZ4DGcc4BnoONDpKj6KCyGDb0rfxIA+yLX2b0VFERKQX8Pb05izOwtvT2+goPYoKIoP5+/hzARfg7+NvdBQREekFqmuqySGH6hrLPSHdG+mxe4N5DvBkFKO0CJ+IiHSJXfm7eJM3mbpxKv2d+xsdp92cvJxwC3Qz7PwqiI7jVMxDVFFVwQ52UFFVoaU7RETkpMWdHsdtDreRcl8KO+7bYXScdrNzsmNh+kLDiiIVRMdxKla7zyvM413eZU7hHCKIsMg5RESk7xg0bBD3Z9xP7d5ai52jtqyWtI/TiLokCidvp5M+Xll6GZ9c9Qm1e2tVEPVVkaGR3MmdWoRPRES6REFBAY8/8Th33nkngwcPtth5hk4earFjG0GDqg1mZ2eHM85ahE9ERLpEVVUVGzZsoKqqyugoPYoKIoMVFBfwCZ9otXsREekSUVFRbNu2jaioKKOj9CgqiAzWcLCB/eyn4WCD0VFERET6LBVEBgsNDuUGbtAifCIi0iVSUlIICAggJSXF6Cg9igoiERGRXsTLy4u5c+fi5eVldJQeRU+ZHcepmIdoe8Z2/sE/ODPjTHxHah4iERE5Ob6+vixdutToGD2OeoiOIyEhgeXLl3PLLbdY7ByDvAYxkYkM8hpksXOIiEjfUVNTw++//05NTY3RUXoUFUQG8/b05kzO1CJ8IiLSJTIyMhg9ejQZGRlGR+lRVBAZrKq6ip3spKpa80WIiMjJi4yMZOvWrURGasLfjlBBZLCcghze5m1yCnKMjiIiIr2Ao6MjsbGxODo6Gh2lR1FBZLDwoeEsYhHhQ8ONjiIiIr1AUVER99xzD0VFRUZH6VFUEBmsn30/BjCAfvb9jI4iIiK9QHl5OR988AHl5eVGR+lRVBAZrLCkkC/4gsKSQqOjiIhILxAdHU12djbR0dFGR+lRVBAZrK6+jgIKqKuvMzqKiIhIn6WJGY/jVEzMGBYSxgIWEBYSZrFziIhI35Gamsoll1zCxx9/rF6iDlBBdBwJCQkkJCSQkZHBvHnzjI4jIiJyQm5ubkyfPh03Nzejo/QoumVmsLSsNJ7gCdKy0oyOIiIivUBAQACPP/44AQEBRkfpUVQQGczT3ZPTOR1Pd0+jo4iISC9QV1dHamoqdXUam9oRKogMNsh7EBOYwCBvrWUmIiInLz09neHDh5Oenm50lB5FBZHBamprKKCAmlotwiciIidv2LBh/PzzzwwbNszoKD2KCiKD7czbyau8ys68nUZHERGRXqB///6MHTuW/v37Gx2lR1FBZLCwkDBu4iY9di8iIl2ipKSEZcuWUVJSYnSUHkUFkcEcHRwZyEAcHbQIn4iInLyysjKef/55ysrKjI7So6ggMljx7mL+y38p3l1sdBQREekFYmNjKSkpITY21ugoPYoKIoNVVVeRQQZV1VVGRxEREemzVBAZLHxoOLdwC+FDw42OIiIivUB6ejojR44kPT2dhoYGkpOTqaysBGD37t1s2bLF3DYjI4Pc3FwAGhsbSU5Opry8HDh06y05OdncNisri127dgFQWFjIjTfeSFraoUmF9+/fT3JyMi0tLQDs2rWL7Oxs877Jycns3bsXgAMHDpCcnExTUxMAOTk53eLBIhVEx5GYmMjixYt59tlnjY4iIiLSLs7OzowdOxYvLy9KSkqIj4/nt99+A2D16tWMHz/e3PaGG25g6dKlAJSXlxMfH8/3338PwMcff8zo0aPNbW+++WbuvvtuAPLy8li5ciWffvopAF9++SXx8fE0NjYCcMcdd7Bo0SLzvvHx8ea269evJz4+3lyk3Xfffdz1yF1d/0V0kJXJZDIZHaK7O7yW2apVqwgP79qenA0fbOCSmZfw8fsfM/HyiV16bBER6Zvq6upwdHSkoaGB1NRUQkNDcXV1Zffu3ZSUlBAXFwcc+vetX79+BAcH09jYSEpKCkOGDMHd3Z2ysjIKCgoYOXIkcKiHyMbGhiFDhlBYWMjDDz/MokWLiIqKYv/+/eTm5hIXF4e1tTW7du2ipaWF0NBQ4FAPUWBgIF5eXhw4cICcnBxiY2OxtbUlJyeHoi1FfHvJt8xPmo/vSF9DvjMt7mowVxdXoonG1cXV6CgiItJLODoeenK5X79+5oIGYNCgQQwa9L+VEf78S76dnV2rtt7e3nh7e5tfh4X9b3qYgIAAXn75ZfNrDw8PPDw8zK+HDBnSKs+fjztgwAAGDBhgfh0SEkL2L9k8wiOcmXGmYQWRbpkZzHegLwkk4DvQmL8AIiIiRvPx9mESk/Dx9jEsgwoig9XV11FKKXX1WoRPRET6Ji8PL8YwBi8PL8MyqCAyWFZOFi/xElk5WUZHERERMURVdRXZZBs6BY0KIoOFBocyj3mEBocaHUVERMQQOQU5vMM75BTkGJZBBZHBnByd8McfJ0cno6OIiIgYIiI0gr/zdyJCIwzLoILIYLvLdrOe9ewu2210FBEREUPY29njhhv2dvaGZVBBZLD95ftJJpn95fuNjiIiImKIwpJC1rCGwpJCwzKoIDJYZFgkt3M7kWGRRkcRERExRF19HSWUGPrEtQoiERERMVRYSBjzmU9YSNiJG1uICiKDZe7K5AVeIHNXptFRRERE+iwVRAZzdnImmGCcnZyNjiIiImKItKw0HuMx0rLSDMuggshg/j7+TGMa/j7+RkcRERExhNcAL8YyFq8Bmqm6z6pvqGcf+6hvqDc6ioiIiCEGeg1kHOMY6DXQsAxa7f44EhMTSUxMpLq62mLnyNyVybM8ywW7LiBkbIjFziMiItJd1dTWkEceNbU1hmVQQXQcCQkJJCQksG3bNm6++Wby8vK6/Bw2NjbMcp6FjY0NGRkZXX58ERGR7m7T5k287/w+4zePp9m7ucuPHxQUhIODw3HbWJlMJlOXn7mX+e9//8uyZcuMjiEiIiKdsGrVKsLDw4/bRgVRO5SXl/Pbb7/x6aefsmjRonbv9+yzz3LLLbcct01eXh7Lli1jyZIlBAUFnWzUXqE935tRjMhmqXN2xXFP5hid3bcj++ka7JzufA3Cqc/Xna/Bkz1OZ/bt6D7d4TpsTw+Rbpm1g7u7O+effz7ffffdCSvMP+vfv3+72wcFBXXo2L1ZR763U82IbJY6Z1cc92SO0dl9O7KfrsHO6c7XIJz6fN35GjzZ43Rm347u01OuQz1l1gEJCQkWbS+HdOfvzYhsljpnVxz3ZI7R2X07sl93/rvUnXX37+1U5+vO1+DJHqcz+/bWfwt1y8xgGRkZzJs3r133N0Wk6+kaFDFed7gO1UNkME9PT+bMmYOnp6fRUUT6JF2DIsbrDteheohERESkz1MPkYiIiPR5KohERESkz1NBJCIiIn2eCiIRERHp81QQiYiISJ+ngqibO3jwIP/85z+59NJLmTJlCgsWLCAlJcXoWCJ9ytKlS5kxYwZTpkxhzpw5/Pzzz0ZHEumztm/fzoQJE3jzzTe79Lh67L6bq6ur47333mPq1Kl4e3vz9ddf88ILL/DBBx+ccF0WEekaOTk5BAQEYGdnR1paGrfffjvvvvsubm5uRkcT6VNaWlr4v//7P6ysrBg7dizXXnttlx1bPUTdnKOjI3PmzGHQoEFYW1szdepUWlpaKCwsNDqaSJ8REhKCnZ0dADY2NjQ2NrJ3716DU4n0PZ9//jkxMTEEBgZ2+bG1uGsXq62t5c033yQrK4usrCwqKiqYM2cO119//VHbvvLKK6xfv56qqioCAwOZPXs2kyZNOubx8/LyaGhowM/Pz5IfQ6THstQ1+NBDD/H9999z8OBBxowZw5AhQ07FxxHpkSxxHVZUVPDhhx/y0ksv8cwzz3R5ZhVEXayiooI1a9YwdOhQxo0bx9q1a4/ZdsmSJezYsYMbb7yRwYMHk5iYyIMPPkhLSwvnnXdem/b19fU88sgjXHPNNTg5OVnyY4j0WJa6Bu+//36amppITk4mLy8PKysrS38UkR7LEtfhypUrmTlzJv3797dIZhVEXczHx4cvvvgCKysrysvLj/mXYNOmTWzevJn777/fvBLwyJEjKS0t5cUXX+Tcc8/FxsbG3L6pqYkHHniAoKAgrr766lPyWUR6IktdgwC2traMHj2ajz76iICAAMaOHWvxzyPSE3X1dZiRkUFmZia33367xTJrDFEXs7Kyatdvjj/88AOOjo5MnDix1fZp06axd+9e0tLSzNtaWlp45JFHsLa25u6779ZvpiLHYYlr8EgtLS0UFRWdbFSRXqurr8OtW7eSm5vLjBkzuOiii/juu+9YvXo1jzzySJdlVg+RQXJycggKCsLWtvX/gqFDh5rfj4mJAeCJJ55g3759PP74423ai0jntPca3LdvHykpKZxxxhnY2dnx/fff88cff3DjjTcaEVukV2nvdXjhhRe2Kpqef/55fHx8uPLKK7ssi/51NUhFRcVRB0a7uLgAUFlZCUBpaSlr167F3t6e6dOnm9s99thjjBgx4tSEFemF2nsNAnz44Yc8+uijWFlZERAQwNKlSwkNDT1lWUV6q/Zeh05OTq3Gzvbr1w8nJ6cunfpCBZGB2tOd6OPjw/fff38K0oj0Pe25Bj09PXnuuedOQRqRvqkzw0DuvffeLs+hMUQGcXNzo6Kios32qqoqAFxdXU91JJE+RdegiPG603WogsggQ4YMIS8vj6amplbbd+3aBRyaCE5ELEfXoIjxutN1qILIIOPGjaOuro6NGze22r5u3Tq8vLyIiooyKJlI36BrUMR43ek61BgiC/jll1+or6+ntrYWODS79IYNGwAYM2YMDg4OjBkzhlGjRrFixQpqa2vx9/fn22+/5ddff2XJkiVt5j8RkfbTNShivJ52HWpxVwuYOXMmpaWlR33vvffew9fXFzg0XfmqVataTVd+1VVXHXfpDhE5MV2DIsbradehCiIRERHp8zSGSERERPo8FUQiIiLS56kgEhERkT5PBZGIiIj0eSqIREREpM9TQSQiIiJ9ngoiERER6fNUEImIiEifp4JIROQk/etf/+Kiiy4yL1EA8NprrzF+/Hj++OMPA5P9zyOPPMLll19OQ0OD0VFEuiWtZSYirZSUlPDXv/71uG1CQ0N57bXXTlGi7q2goIDPP/+c+fPn4+TkZNFzffbZZzz55JNMnz6dO+6447ht586dS2ZmJqtWrSI8PJxrr72WxMREPvjgA6666iqL5hTpiVQQichR+fv7c9555x31PU9Pz1Ocpvt6/fXXsbe3Z8aMGRY/V0JCAs8//zzfffcdt9xyC/369Ttqu507d5KZmUlYWBjh4eEABAQEcPbZZ/Pvf/+bSy+9FEdHR4vnFelJVBCJyFH5+/tz/fXXGx2jWysvL+f7779n4sSJFu8dAnB2dmbChAl8/fXXbNy4kfPPP/+o7dauXQvAtGnTWm0///zz2bhxI99++y0XXnihxfOK9CQaQyQiJ238+PHceuutlJeXs3z5cqZPn05CQgILFiw45hia2tpaXnvtNa655hoSEhKYNm0ad9xxB9u2bWvT9tZbb2X8+PEcPHiQV199lSuuuIJzzjmn1W27jRs3Mm/ePBISEpgxYwaPPfYYVVVVzJw5k5kzZ5rbPfLII4wfP5709PSj5nrxxRcZP34833///Qk/97fffsvBgweZOHHiCdsetnPnTi6++GIuuugi0tLSzNuLi4t59NFHueyyy5g0aRJ/+ctf+Mc//tFmtfALLrgAgK+++uqox29sbCQxMRF7e/s2BdOYMWNwdHTkyy+/bHdekb5CBZGIdInq6mpuuukmdu7cyXnnncf48ePJyMjgjjvuYNeuXa3aVlZW8n//93+88cYbuLq68pe//MXcftGiRfzwww9HPceSJUv48ssvGTFiBJdffjl+fn4AfPHFF9x3330UFRUxefJkpkyZQmpqKrfddhtNTU2tjjF9+nTgf70of9bU1MTXX3+Nh4cHZ5555gk/c1JSEgDR0dEn/oKArVu3csstt2BjY8Nzzz1HVFQUAGlpacydO5d169YRHh7OZZddxogRI/jmm2+48cYbKS4uNh8jLi6OgIAAkpOTKSkpaXOOn376iYqKCsaPH4+Li0ur9+zs7Bg2bBjp6enU1dW1K7NIX6FbZiJyVEVFRcccOB0dHc0ZZ5zRalt2djZ/+ctf+Nvf/oa19aHftUaOHMljjz3Gxx9/3GoQ8FNPPUVOTg6LFy9udVtn//79zJ8/n8cff5zRo0e3GSOzb98+Xn/9dVxdXc3bqqqqeOaZZ3BycuKVV14xF0nz5s3jrrvuIiMjAx8fH3P7mJgYQkJC+Pbbb7n55ptbjaX5+eef2b9/P1deeSW2tif+8bh9+3a8vb0ZMGDACdv+8MMPPPjgg/j5+fHEE08wcOBA4FARtnTpUlpaWli1ahWhoaHmfbZt28aiRYt45plnWL58uXn7tGnTWLlyJevWreO6665rdZ4vvvgC+F9P0pHCw8PZunUr6enpjBw58oS5RfoK9RCJyFEVFRXxxhtvHPW/X3/9tU17R0dHFixYYC6GAKZMmYKNjQ07duwwbysvL2f9+vXEx8e3GePi4eHBFVdcQXl5ubn35c+uu+66VsUQwI8//khdXR0XXnihuRgCsLW15YYbbjjqZ5s+fTq1tbV89913rbavXbsWKyurdo2vaWxspLy8vF3F0Nq1a7n//vsJCwvjueeeMxdDcKgIKy0t5YorrmhVDAHExsZy1lln8csvv1BTU2Pefvh7/eqrrzCZTObte/fuZfPmzfj4+Byz2Dmct6ys7IS5RfoS9RCJyFGNHj2aJ554ot3tAwIC2gwstrW1xcPDg+rqavO2HTt20NzczMGDB4/aA1VYWAhAXl5em9tWkZGRbdrv3LkTgOHDh7d5LzIyEhsbmzbbzz//fF566SXWrl1r7kkpKyvj999/N9+SOpGKigqANreljvT+++/z008/MWbMGB566CEcHBxavZ+amgpAfn7+Ub+P/fv309LSQkFBAREREQB4eXlxxhln8PPPP5OcnEx8fDxwaFxRc3Mz06ZNw8rK6qh5DheUh/OLyCEqiESkSzg7Ox91u42NDS0tLebXlZWVAKSkpJCSknLM49XX17fZ5uHh0Wbb4Z4Td3f3Nu9ZW1vj5ubWZruLiwvnnHMO69atIzc3l+DgYL788kuam5vb/fTV4dt5J5ro8PAg8TPOOKNNMQSHbvkBfPPNN8c9zpHfxwUXXMDPP//MV1991aogsra2ZurUqcc8zuG8x3pkX6SvUkEkIqfU4cLpr3/9KwsXLuzQvkfr9Th8vPLy8jbvtbS0UFFRgbe3d5v3pk+fzrp161i7di0LFy7kq6++wtXVlfHjx7cri4uLC7a2tuYC71juvvtu3nrrLZ555hmsra25+OKLW71/uFdt+fLl7RrIfdjYsWPx8PBg48aN/P3vfyc7O5vCwkJGjx7NoEGDjrnf4bxHKyBF+jKNIRKRUyoiIgIrKyvzraKTNXToUODQAOcjpaen09zcfNT9hg8fzpAhQ/j666/55ZdfKC4u5rzzzutQz0lISAilpaVtnmT7MxcXF/71r38xbNgw/vWvf/Hxxx+3ev/wk2Yd/T5sbW2ZPHkyDQ0NfPvtt+ZH6Y81mPqwgoICAIYMGdKh84n0diqIROSU8vT05JxzzmH79u385z//aTUo+LC0tLSj3jI7mrPPPhtHR0fWrl3b6vH0pqYmXn311ePue9FFF1FRUcHjjz8O0OHJCuPi4jh48KB5HNOxuLi4sGLFCiIiInjqqaf46KOPWuUfNGgQ7733Hlu2bGmzb1NT01HnZoL/FT+ffvopGzZswM3NjbPPPvu4WdLS0vD09GTw4MEn+HQifYtumYnIUR3vsXvgpGaxvu222ygoKODFF1/k66+/Jjo6mv79+7Nnzx4yMjIoLCzkk08+OeqYmyO5uLhw88038/jjjzN37lzOPfdcnJ2d+eWXX7C3t8fLy+uYA4wnT57Myy+/zN69e4mKijL3NrXXuHHj+OCDD0hKSjIvkXG8nE8++SS33347Tz/9NCaTicsuuwx7e3seeugh7rrrLm699Vbi4+MJCQkBYPfu3Wzbtg03NzfeeeedNscMDAwkJibGPBbrwgsvxM7O7pgZioqKKCkp4S9/+UuHPqdIX6CCSESO6vBj98dyMgWRq6srL7zwAh9//DHfffcdiYmJtLS04OHhQWhoKNdee+1RB0Mfy0UXXYSLiwtvv/0269atw9nZmbPOOosFCxZw+eWX4+/vf9T9+vfvz9lnn01iYmKnlrKIi4sjMDCQ//73v1x55ZUnbH+4p+j222/nmWeewWQycfnllxMZGclrr73Gf/7zH3755RdSUlKws7PDy8uLcePGMWnSpGMe84ILLjAXREdOY3Ck//73v8D/JqcUkf+xMh2tv1pEpBcoLCzkyiuv5JxzzuHBBx88aptrrrmG3bt388knn3RqPbLPP/+cJ554gpdeesk8Hqg7ampqYvbs2fj4+PD0008bHUek29EYIhHp8aqqqjh48GCrbQ0NDTz33HPAoVtbR7Np0yZyc3OZPHlypxdnveCCCwgKCuL111/v1P6nyn//+19KS0u56aabjI4i0i3plpmI9Hhbtmzh0Ucf5fTTT2fgwIFUVFSQnJxMaWkpI0eO5Nxzz23V/tNPP2XPnj2sWbOGfv36ccUVV3T63DY2Ntxzzz38+uuv1NbWnpJV7zvDysqKO++884RjnUT6Kt0yE5Eer6CggFdffZXt27eb5yPy9/fn3HPPZdasWW0epZ85cyZlZWUMHjyYBQsWdGj+HxHpnVQQiYiISJ+nMUQiIiLS56kgEhERkT5PBZGIiIj0eSqIREREpM9TQSQiIiJ9ngoiERER6fNUEImIiEifp4JIRERE+rz/D+lLeKBtdJtKAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG7CAYAAAAizIoLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABvLUlEQVR4nO3dd3hVVf7+/XcqKaSQAmmkQEIaCZEggkpRohQVxsagWFAB+YrKjBX9oaLiDDbGXsCuzNgbqDhGARsWEoGQhBRILxBKeiHlPH/wcMYQShJy2Cn367q8Ls4+a+99nyM7fLL22mtZmUwmEyIiIiJ9mLXRAURERESMpoJIRERE+jwVRCIiItLnqSASERGRPk8FkYiIiPR5KohERESkz1NBJCIiIn2eCqJ2qK+vJyMjg/r6eqOjiIiIiAWoIGqHvLw85s2bR15entFRRERExAJUEImIiEifp4JIRERE+jwVRCIiItLnqSASERGRPs/W6AAiIr2VyWSiqamJ5uZmo6OI9Hp2dnbY2Nh0en8VRCIiFnDw4EFKSkqora01OopIn2BlZUVAQAD9+/fv1P4qiEREulhLSws5OTnY2Njg5+eHvb09VlZWRscS6bVMJhNlZWUUFhYSFhbWqZ4iFUQiIl3s4MGDtLS0MHjwYJycnIyOI9IneHt7k5ubS2NjY6cKIg2qFhGxEGtr/YgVOVVOthdWV6uIiIj0eSqIRET6iODgYCIiIoiLiyMyMpIrr7ySmpqaTh/vjTfeIDMz85jv//LLL8TExHDaaafx9ddfM23aNHbu3NmufbuDpUuXcscdd3TpMYODg9m+fXun9t28eTOzZ88GoLy8nMcee6zV+xMnTmTt2rUnnbGvUkEkItKHfPjhh2zZsoW0tDQqKyt54403On2sExU1b775Jtdccw1//PEHkydP5ssvv2To0KHt2lfaGjVqFKtXrwaOXhB1VlNTU5ccp6dTQSQicgo01jZSklxisf8aaxs7lKehoYGamhoGDBhg3vbEE08wevRoRo4cybRp0ygoKABgzZo1xMbGEhcXx/Dhw/nss8945ZVX2Lx5M7feeitxcXF8+eWXrY6/fPly3nvvPZ5++mni4uIoLy83946caF+A9PR0Jk+eTGxsLLGxsbz00ksAZGdnk5CQYM7z6aefmvexsrLi0Ucf5YwzziAkJITXX38dgHfeeYeLLrrI3M5kMhESEsK2bdsAeOyxx4iOjiYmJobZs2dTUVHRJs+wYcNISkoyv3799de55JJLACgtLWXmzJmMHj2a2NhY7r//fnO7H374gZiYGEaPHs3NN9+MyWQ66v+PsWPHsmnTJgBuu+02AgICzO8FBgZSUFDAhg0bGDVqFAALFiygvLycuLg487bD5xs3bhxDhw5lwYIFRz1Xbm4uXl5ePPTQQ4wbN45nn332mJ+hpaWFm2++mYiICEaMGEF8fDz19fXmY9xxxx2cccYZREdH891335nP8fbbbxMTE0NsbCwXXHABRUVFwKFCePLkyVxxxRXExMQwatQodu3aBUBWVhZnnXUWI0aMICYmhiVLlgDQ2NjI4sWLGT16NHFxccyaNYvy8vKjfraTYpIT2rFjh2ncuHGmHTt2GB1FRHqAuro6U1pamqmurs68rTip2LSUpRb7rzip+IS5goKCTOHh4aYRI0aYXF1dTeecc46psbHRZDKZTKtXrzbNmzfP1NTUZDKZTKa33nrLNH36dJPJZDLFxsaafvrpJ5PJZDI1NzebDhw4YDKZTKYJEyaY1qxZc8zzXXvttaZnn3221flTUlJOuG9jY6MpLCzM9N5775m3lZWVmUwmk2n06NGml19+2WQymUyZmZkmDw8PU35+vslkMpkA01NPPWUymUymtLQ0U//+/U2NjY2m2tpak6enp6mkpMRkMplM3333nWnkyJEmk8lk+vLLL00RERHmzzRv3jzTTTfdZDKZTKYHHnjAdPvtt5tMJpPpkUceMS1cuNCcZ/z48abPP//cZDKZTOeff75p48aN5uyTJ082ffzxx6b6+nqTn5+faf369SaTyWR67733TID5O/izJUuWmB588EGTyWQynXbaaabRo0eb0tPTTTt27DANGzbMZDKZTOvXrzfFx8ebTCaTKScnx+Tp6dnqGBMmTDBdeumlpqamJlNtba0pODjY9PPPP7c5V05OjgkwrV692rztWJ8hOTnZFBERYWpubjaZTCZTeXm5qbm52XyMN954w2QymUybNm0yDRo0yFRdXW1KSUkxDRo0yFRYWGgymUymZcuWmaZNm2YymUym119/3eTm5mbKzc01mUwm0913322aP3++yWQymW699VbTI488Ys60b98+83f/8MMPm7c/9NBDpltvvbXN5zraddcReuxeROQU8IrwYn7SfIsevz0+/PBDhg8fTlNTEzfeeCN33303Tz75JJ9++imbN28mPj4egObmZvOjy5MmTeJvf/sbl112Geeffz5xcXGW+hgAZGRk0NTUxMyZM83bvLy8qKqqYsuWLdxwww0AhIWFcfbZZ/Pjjz9yxRVXAJjH2ERGRmJra0tpaSkBAQFceumlvPPOO9xxxx28/vrrXHfddQAkJiYye/Zs3N3dAfi///s/Zs2a1SbTtddey2mnncaKFSsoKCggMzOTqVOnUlNTw3fffcfu3bvNbaurq9mxYwdDhw7FycmJiRMnAjBz5kzmzz/634GEhATuu+8+FixYgJ2dHTNnziQxMRErKysSEhLa/d3NmjULGxsbHB0diYuLY+fOnYwdO7ZNOwcHB/N3drzPcO6559LY2Mj111/POeecwwUXXGB+etLe3p6rr74agDFjxuDj48PWrVtJSkriwgsvxN/fH4CbbrqJZcuWmXvHzj77bIKCgoBDPWPPPvssAOPHj+fOO++kpqaGCRMmmD/3p59+SmVlJR9++CFwaFqLw7deu5IKIumUivwKavf2rBl4nbyccAt0MzqG9FF2Tnb4jvQ1OoaZra0tl156KXfeeSdPPvkkJpOJJUuWcP3117dpu2LFClJTU1m/fj3XXnsts2fP5q677jrlmQ//g3rk49V/fu3g4GD+s42NjXl8zHXXXcfcuXOZP38+a9eu5amnnjIf83jHO8zf35+RI0fy+eefs3XrVq6++mpsbW2pq6vDysqK33//HTs7u1b7bN26td2fbezYsWzfvp3PP/+cSZMmkZCQwNKlSwG45ppr2n2cY33+Izk7O5s/Z0tLyzE/A0BqaiobN25k/fr13HPPPXz//ffY2h69fLCysmrznR75fR4r46WXXsqZZ57JN998w3PPPcdTTz3Fl19+iclk4oUXXuDcc89t57fQOSqIpMMq8it4PvJ5Gmsb2ctebLBhAANoppnd7GYAA3DEkRpqqKACP/wA2Mc+rLDCAw9aaKGUUtxxxwknaqmlnHJ88MEaa/azHxMmPPEEoJhi3HDDGWfqqOMABxjEIGyw4QAHaKYZLw79hlxCCS640J/+1FPPfvYzkIE4OjmyMH2hiiKR/993331HeHg4ANOnT+fpp5/mL3/5Cx4eHjQ2NrJ9+3ZOO+00duzYQXR0NNHR0dja2vLf//4XAFdX16OOt2mP4+0bHh6Ovb09H3zwAZdffjkAe/fuxcvLi7i4ON58802uu+46du7cyU8//cRzzz13wvONGTOGlpYW7rrrLs477zw8PDwAOO+887jrrru49dZbcXFxYeXKlcfskbn++ut57bXXSE1N5auvvgLAxcWFcePGsXz5cu677z4AiouLaWlpISIigrq6Or7//nvGjx/Phx9+eMzPbG9vzxlnnMGyZct47bXXiI2NJS0tjb1795rHQh35/dXW1tLU1HTM4qS9jvcZ+vXrh42NDeeffz7nnXceGzduJC0tjdjYWA4ePMjq1au5+uqr+e233ygtLSU2NhZXV1ceffRRSktL8fHx4aWXXmLSpEknnCcoKyuLIUOGcM011zB69GjOPPNM4NDfzRUrVjBmzBicnJyora0lJyeH6Ojok/rcR9Kgaumw2r21NNY2cvE7F5MUn0TB1ALmJ81n1nezWMlKwh4PY37SfAYuGchKVjI/aT7zk+aTdlYaWedkMT9pPtdtuo6VrGTww4OZnzSfoEeCWMlKrvnxGuYnzWfXpF1sG7PNvO+rNq/ide+hWw4RKyJYyUpmJs5kftJ8Si4s4dcRv5rbrnZejfPfnZmfNJ+4F+JYyUrO/NeZNNY29rheLZGudtlllxEXF0d0dDTp6ek8/fTTAFx99dVcddVVTJw4kREjRhAXF8f69esBuOeee4iOjua0007j7bffNvdczJ8/n4ceeuiYA6OP53j72tra8tlnn7Fy5UrzwNyPPvoIgNWrV/POO+8wYsQILr30Ul555RUGDx7crnNed911vPzyy+bbZQBTp07l6quvZuzYscTExFBZWckjjzxy1P1nzJjBr7/+iq+vL1FRUebtq1evJj09nZiYGGJiYrj00kvZt28f/fr14z//+Q8LFy5k9OjR/PbbbwQGBh4z33nnnceePXs466yzsLKyIj4+ntDQUPPtvD/z8PBg9uzZ5oHJJ+tYn6GgoIDzzjuP2NhYYmJiGD58OFOnTgXA09OT7OxszjjjDK677jr+/e9/4+zsTHR0NP/85z85//zziY2N5YcffuDll18+YYYPPviA2NhYTjvtNGbNmmUeSL948WLi4uI444wziI2NZcyYMWzZsuWkP/ORrEymYwx5F7OMjAzmzZvHqlWrzL9N9WXf/OcbLrjyAr749xcExQdhZ2dHSEgITU1NbNu2jZCQEAYMGMDevXvJz89n5MiRwKGnQ6ytrRkyZAgtLS1s2bKF4OBgPDw82L9/P7m5uYwYMQIbGxt27dpFc3MzYWFhACQnJzN48GC8vb0pLy9n165dxMTEYGdnR25uLg0NDeb/N1u2bMHX15dBgwZRWVlJdnY29QX1/O0vf+P5tc9z+gWnG/bdSd9QX19PTk4OISEhrW4PiPQWubm5jBo1ir179xodxexkrzvdMjuOxMREEhMTqa6uNjpKt+Lj7cMkJuHj7cOwYcPM221tbc3FDxwaBOnl9b+BnqGhoeY/W1tbt2rr4eFh7sIGGDJkSKtz/rmtu7t7q9fBwcGt2v55wKerqysjR47k+5zvKaCAuvq6DnxSERHpK1QQHUdCQgIJCQnmHiI5xMvDizGMwcujfU+1dAdhIWEsYAFhIWFGRxER6fGCg4O7Ve9QV9AYIumwquoqssmmqrrK6CgiIiJdQgWRdFhOQQ7v8A45BTlGR2m3tKw0nuAJ0rLSjI4iIiLdkAoi6bCI0Aj+zt+JCI0wOkq7ebp7cjqn4+nuaXQUERHphlQQSYfZ29njhhv2dvZGR2m3Qd6DmMAEBnkPMjqKiIh0QyqIpMMKSwpZwxoKSwqNjtJuNbU1FFBATW2N0VFERKQbUkEkHVZXX0cJJT3qEfadeTt5lVfZmbfT6Cgihvn444+Jj48nLi6OyMhIJk2aREtLi9GxDLV06VIOHjxodAzpBvTYvXRYWEgY85nfox5hDwsJ4yZu6lGZRbpSaWkpCxYs4PfffzcvrJmcnHzC5RQ6oiuWkTjVHnzwQe644w7s7XvOEACxDPUQSZ/g6OB4aD0zB0ejo0gfVlJSQkpKivl1WloaBQUFwKFZdpOTk6mqOjSdxe7du1stDpqRkUFeXh4AjY2NJCcnd2gdsZKSEmxtbfH0/N+DBSNHjjQXRJs3b2bs2LHExsYyevRofvrpJ+DQjMR/nmC1urq6zcKdTz75JBMnTuSee+6hoqKCuXPnEhMTw4gRI8yLxTY2NrJ48WJGjx5NXFwcs2bNory8/KhZv/jiC04//XTzEiK//vorAOvWrWPkyJHExsYyYcIE0tIOPTW6YcOGVstXbN++3Txh6+H8999/v3kpjMNLhSxYsACAM888k7i4OPbs2cMrr7xCVFQUcXFxxMTEmM8tvV/PKuWlW0jLSuMxHuPsrLO71erdx1O8u5j/8l/O/PFMo6N0iJOXkxaj7UVefvllXnnlFQoLD42/mzVrFhMnTuSZZ56hsLCQ+Ph41q9fz8SJE3nrrbf45z//yf79+wGYM2cO0dHRvPLKK+zdu5f4+HjWrl3LBRdc0K5zjxgxgrFjxxIYGMiECRM488wzufLKK/H39+fgwYNccsklrFq1ismTJ/Pjjz9y2WWXkZ2d3a5jNzQ0sGHDBuDQemH9+/dn69atWFtbU1ZWBsDjjz9O//79+e233wB4+OGHeeCBB8xrqR2WmZnJDTfcwPfff8+wYcNobGyktraWPXv2cNVVV7F+/XpiYmJYvXo1M2fOZPv27SfMt2/fPuLj43nooYdYt24dixYtYtq0abz00ku8/PLL/Pzzz/Tv3x+A22+/nfT0dPz8/GhsbKShoaFd34H0fCqIpMO8BngxlrF4Deg5M1U32jWSaZXJp4s+5Wd+NjpOu9k52bEwfaGKol7ixhtv5NJLLzW/fvfdd3FxcQEgICCApKQk8/p911xzDeeff7657RtvvGFen8nLy4ukpCSGDh3a7nNbW1vz0UcfsWPHDjZu3MhXX33FI488wubNm6mrq8Pe3p7JkycDcPbZZzNw4EC2bduGr++Jf+k53AsEsHbtWpKSkrC2PnQDwtvbG4BPP/2UyspKPvzwQwAOHjx41PzffPMN06ZNMy8LZGdnh5ubG2vWrDH32gDMnj2bhQsXUlJScsJ8zs7OzJgxA4CxY8eyc+exxxKee+65XHPNNVx00UVMnTq11fJE0rupIJIOG+g1kHGMY6DXQKOjtNuYhDFk52bzx69/4Oriiu9AX+rq68jKySI0OBQnRyd2l+1mf/l+IsMiAcjclYmzkzP+Pv7UN9STuSuTIYFD6O/cn7J9ZezZt4foYdEAZOdmU11TTeKPicyaPov95fsJDgjG1cWVfQf2Uby7mJiIQz/Id+XvwtbGlkD/QJqbm0nNTCXQPxB3V3f2l++nsKSQmIgY9u7Yy3+u+g+1e2tVEPUSvr6+rQqMP6+Y7uDg0GqNvkGDBjFo0P+mifjzwtJ2dnat2nZEREQEERER3HjjjUyZMoXPP/+chISEo44lsrKywtbWlubmZvO2+vr6Nu0O964cj8lk4oUXXuDcc8/tVG6TydTpjH9e6NPGxqZV2yN9/PHHJCUlsWHDBqZNm8ayZcuYNWtWpzJLz6IxRNJhNbU15JHX4x5hdwt0Y+49c/lg4wf4jvSlun81U66awn77/fiO9OXTTZ9yze3X4DvSF9+Rvtzy0C28te4tfEf60uzdzJSrplDUXITvSF++3vI1M2+aaW571+N38fZXb+Pi64Kdvx1TrppCdnU2viN92bhjIxddd5G57QPPPcBT/34K35G+uIa7MuWqKWwv247vSF9+z/+dKVdNYeCIgVj7WPMxH/eo6Q2k+yoqKjKPCwI4cOAAOTk5DB06lIiICBoaGvjuu+8A+Pnnn9mzZw8xMTH4+PjQ1NRERkYGAG+99dZxzzN9+nQef/xx89Nrh2+ZTZ8+nRUrVlBbWwtAbW0tqampbfafPHkyX331FZmZmcChsUcVFRWMHTuWLVu2kJ6eDhzqXQsICMDHx4eQkBBycnLYt28fAG+//Xa7vxcXFxfzWKympiZ27tzJqFGjuOOOO7jsssvMt/ik91MPkXTYzrydvM7r/DXvr4SeHXriHbqRzz77DHd3dwDCwsJISkoy/+bdFbczgoKCaGxsbHU7Y+bMmZx55v/GLr344ovmJ3GcnZ1JSkoiJCQEgIsuuoikpCRsbGyoqq6ihRaampos9G1IX9LU1MRDDz1ETk4OTk5ONDU1ce2115pvJX300Ufceuut1NTU4ODgwAcffICzszMAzzzzDFOnTiUgIICpU6ce9zz/+te/+Pvf/87w4cOxt7fn9NNPZ9WqVSxevJgHH3yQM844w9zTc/fddxMdHd1q/9DQUF599VWuuOIKGhsbsbGx4eWXX2b06NG8/fbbzJ49m+bmZtzd3Xn//fcB8Pf354477mDUqFEEBwczfvz4dn8vt99+O+eeey6Ojo58/fXXXHfddRw4cABbW1u8vb15/fXX230s6dmsTCaTyegQ3d3h1e5XrVrVqtu6r8rZlMOKM1dw28+3ETI2xOg4vVZJcgkr41cyP2l+jxm8LofU19eTk5NDSEhIq9s1ImI5J3vd6ZaZdJhDPwe88MKhn37QW5LJZKKZZvQ7i4iI5akgkg4r3l3MOtZRvLvY6Ci9WsqOFB7mYVJ2pJy4sYiInBQVRNJh1TXV7GQn1TXVRkfp1QJ8A5jBDAJ8A4yOIp3U15fFEDmVTrY3XYOqpcOGDRnGQhYybIjm57AkD3cPTuM0PNw9jI4iHWRvb4+1tTXFxcV4e3tjb2/fpUtkiEhrJpOJsrIyrKyssLOz69QxVBCJdFPlleWkkkp5ZTm+aFB1T2JtbU1ISAglJSUUF+vWssipYGVlRUBAADY2Np3aXwWRdNiO7B38i38xPnu8nn6yoPyifD7gA24ouoFIIo2OIx1kb29PYGAgTU1Nx50IUES6hp2dXaeLIVBBJJ3g7uZOLLG4u7kbHaVXix4WzWIWm2fDlp7ncPd9Z7vwReTU0aBq6TAfbx8mMQkfbx+jo/RqNjY2OOBwUr/xiIhI+6ggkg6rraulmGJq62qNjtKr5Rfl8yEfkl+Ub3QUEZFeTwWRdFh2bjYrWUl2brbRUXq1puYmaqihqVlLd4iIWJoKIumw0OBQ5jOf0OCetY5ZTzMkcAjXci1DAocYHUVEpNdTQSQd5uTohB9+ODk6GR1FRESkS+gps26gIr+C2r09ZzxO6s+pfMu3TC+brvlxLOjw0h1jd4zV9AYiIhamgshgFfkVPB/5PA21DZRSijvuOOFELbWUU44PPlhjzX72Y8KEJ54AFFOMG24440wddRzgAIMYhA02HOAAzTTjhRcAJZTgggv96U899exnPwMZiC22lFNOI4144w1AKaU444wLLjTQwD724Y03dthRQQUNNGDCRIpVCvXW9YZ9b32B3yA/JjMZv0F+RkcREen1VBAZrHZvLY21jUx9ZSpj547l+Uee5+IpF/PRlx/x2H2PkbMph372/bjhjhs4ePAgbz/zNgB+8X48vuRxZl88my+/+5K5d84l9btUBrgN4OYlN1Oyp4SPVn4EwNCzhnLPzfcw94q5bPh5A1feciWbv9yM3yA/7nrkLlJ2pPDV218BMHzScG6cfSPzr5/Pr3/8ysVzL+b7j74nNDiUpSuWsmHTBjZ8sIF/ev0Tt0A3w763vsBzgCejGY3nAE+jo4iI9HpWppNdDa0H+eKLL3jnnXfYv38/3t7ePProo/j7+59wv4yMDObNm8eqVasIDw/v0ky/fP4LN8y4gVWfrsJhsAPBwcF4eHiwf/9+cnNziYuLw9raml27dtHS0kJo6KGBzMnJyQQGBuLl5cWBAwfIyckhNjYWW1tbcnJyaGxsZNiwQ2uNbdmyBT8/PwYOHEhlZSXZ2dkMHz4ce3t78vPzqa2tJSIiAoBt27YxcOBAfHx8qK6uJjMzk6ioKBwcHCgsLKSyspKoqKgu/Q7k6DI2ZvDQxIe4f8P9hE/o2r93IiLSWp/pIfrpp5/48MMP+ec//0lQUBBFRUW4uroaHYvmluZDt6FMJkaOHGne7uHhgYfH/xb1HDKk9ZNGf247YMAABgwYYH4dEhLSqm1cXJz5z66urq32DQwMbNU2NjbW/Of+/fu3ahsQoFXXT6Xcwlz+zb+5pvAawlFBJCJiSX2mIHrzzTe5+eabCQ4OBrrPP+5DAodwNVfr0WppIzI0ktu5nchQrWMmImJp3bIgqq2t5c033yQrK4usrCwqKiqYM2cO119//VHbvvLKK6xfv56qqioCAwOZPXs2kyZNMrdpbm4mKyuLnTt38o9//AMbGxumTp3KnDlzsLKyOpUfTaTd7OzscMFF62CJiJwC3XIeooqKCtasWUNjYyPjxo07btslS5awbt065syZw2OPPUZERAQPPvgg33zzjbnNgQMHaG5u5vfff+eNN97g6aef5ptvvmHdunWW/igntC19Gw/yINvStxkdRbqZwpJCPuMzCksKjY4iItLrdcseIh8fH7744gusrKwoLy9n7dq1R223adMmNm/ezP33309CQgJwaGxNaWkpL774Iueeey42Njb069cPgNmzZ+Pi4oKLiwvTp0/nt99+Y+rUqafscx2Nv48/F3AB/j4nHtwtfUt9Qz1llFHfoOkNREQsrVv2EFlZWbXrVtYPP/yAo6MjEydObLV92rRp7N27l7S0NABcXFzw8vJq9/n37t1LRkaG+b+8vLwO5e8IzwGejGKUHq2WNkKDQ5nLXC2RIiJyCnTLHqL2ysnJISgoCFvb1h9j6NCh5vdjYmIAmDp1Kv/5z38YNmwY1dXVrF27lmuuueaox/3888954403LJr9sIqqCnawg4qqCs36LCIiYpAeXRBVVFTg59d2Fl8XFxcAKisrzdvmzJnDv/71Ly699FKcnJy46KKLOP/884963OnTp3PWWWeZX+fl5bFs2bIuTv//H7swj3d5lzmFc4ggwiLnkJ4pNTOV5SznrMyztHSHiIiF9eiCCGj3U2J2dnbcdddd3HXXXSds6+Xl1aFbbCcjMjSSO7lTj1ZLGwM9BzKOcQz0HGh0FBGRXq9bjiFqLzc3NyoqKtpsr6qqAugWEy+eiJ2dHc4469FqacPb05uzOAtvT2+jo4iI9Ho9uodoyJAhJCYm0tTU1Goc0a5du4C2MzZ3RwXFBXzCJ0wtnqrbItJKdU01OeSQm5xrdJQOcfJy0jp3ItLj9OiCaNy4caxZs4aNGze2mohx3bp1eHl5nfSaW4mJiSQmJlJdXX2yUY+p4WAD+9lPw8EGi51DeqbiymLe5E36zeuHHz1nxXs7JzsWpi9UUSQiPUq3LYh++eUX6uvrqa2tBQ4NbN6wYQMAY8aMwcHBgTFjxjBq1ChWrFhBbW0t/v7+fPvtt/z6668sWbIEGxubk8qQkJBAQkKCeXFXSwgNDuUGbtCj1dLGGZPOIHljMu527jj0c7DIOWrLakn7OI2oS6Jw8nY66eOVpZfxyVWfULu3VgWRiPQo3bYgWrFiBaWlpebX69evZ/369QC89957+Poeur20bNkyVq1axauvvmpeuuOBBx5o1WMk0hM5ODhw2vjTLH6eoZOHWvwcIiLdXbctiN5///12tXNycmLRokUsWrTIwoksY3vGdv7BPzgz40yNIZJWCgoKePzxx7nzzjsZPHiw0XFERHq1Hv2UWW8wyGsQE5nIIK9BRkeRbqaqqooNGzaYn5oUERHLUUFkMG9Pb87kTD1aLW1ERUWxbds2mpubKSkpAaCmpobk5GTq6uoAKCoqIjU11bxPamoqhYWHFoOtq6sjOTnZ/FBASUkJ27b9bxHh9PR08vPzAWhoaCA5Odk8menu3bvZsmWLuW1GRga5ubkANDY2kpycTHl5OQBlZWUkJyeb29ZR14XfgojIqaGC6DgSExNZvHgxzz77rMXOUVVdxU52UlWtXgA5uqlTp/Lyyy8DkJaWRnx8PFlZWQA899xzzJgxw9z2kksu4emnnwYOTT8RHx9PSkoKAK+++iqTJ082t509ezaPPvoocKhYio+P57fffgNg9erVjB8/3tz2hhtuYOnSpQCUl5cTHx/P999/D8DHH3/M6NGjAdh3YB8f8iGFJYVd/j2IiFiSlclkMhkdors7/JTZqlWrCA8P79Jjf736a6ZcNYV176xj8uzJJ95B+pyUlBS8vLzw9fWlpqaGjIwMIiMjcXR0pKioiPLycqKjo4FDPURubm4EBARQV1dHeno6w4YNo3///pSUlFBWVkZsbCxwqIfI2dmZwMBAGhoaSE1NJTQ0FFdXV3bv3k1JSQlxcXHAoWugX79+BAcH09jYSEpKCkOGDMHd3Z2ysjIKCgoYOXIkv3z+C9fOuJY3P3uTMdPHGPWViYh0mAqidrBkQZT7Sy5PjX2Kv236G8Fjgrv02CKnWklyCSvjVzI/ab4eEhCRHkW3zAzWz74fAxhAP/t+RkcROWnNzc0c5CDNzc1GRxER6RAVRAYrLCnkC77QmAvpFVIzU/kH/yA1M/XEjUVEuhEVRAarq6+jgALq6vVkjvR8g/0GcymXMthP8yaJSM+igshgYSFhLGABYSFhRkcROWkD3AYQQwwD3AYYHUVEpENUEIlIlzlQcYCtbOVAxQGjo4iIdEi3XbqjOzgVq92nZaXxBE9wdtbZeipHeryC4gI+4RNuLL6RKKKMjiMi0m4qiI7jVKx27+nuyemcjqe7p0WOL3IqDQ8fzhKWMDx8uNFRREQ6RLfMDDbIexATmMAgb61lJj2ftbU1tthiba0fLSLSs+inlsFqamsooICa2hqjo4ictLzCPN7lXfIK84yOIiLSISqIDLYzbyev8io783YaHUXkpLWYWmimmRZTi9FRREQ6RAWRwcJCwriJm/TYvfQKIYNDmM1sQgaHGB1FRKRDVBAZzNHBkYEMxNHB0egoIiIifZYKIoMV7y7mv/yX4t3FRkcROWnb0rexlKVsS99mdBQRkQ7RY/fHcSrmIaqqriKDDKqqqyx2DpFTxd/Hn4u4CH8ff6OjiIh0iAqi4zgV8xCFDw3nFm4hfGi4RY4vcip5DvAknng8B2heLRHpWXTLTES6THllOWmkUV5ZbnQUEZEOUUFksIydGTzN02TszDA6ishJyy/K533eJ78o3+goIiIdooLIYK4urkQTjauLq9FRRE5aVFgUd3EXUWFax0xEehYVRAbzHehLAgn4DtTCrtLz2dra4oQTtrYanigiPYsKIoPV1ddRSil19XVGRxE5aflF+XzER7plJiI9jgoig2XlZPESL5GVk2V0FJGT1tjUSCWVNDY1Gh1FRKRDVBAZLDQ4lHnMIzQ41OgoIidtaNBQruM6hgYNNTqKiEiHqCAymJOjE/744+ToZHQUERGRPksjH4/jVMxUvbtsN+tZz4yyGfiigdXSs23P2M4jPMKZGWfiO1J/n0Wk51BBdBynYqbq/eX7SSaZ/eX7LXJ8kVPJx9uHSUzCx9vH6CgiIh2iW2YGiwyL5HZuJzIs0ugoIifNy8OLMYzBy8PL6CgiIh2iHiIR6TJV1VVkk01OUo7RUTrEycsJt0A3o2OIiIFUEBksc1cmL/ACE3dN1JgL6fFKqkp4h3dwmu+EH35Gx2k3Oyc7FqYvVFEk0oepIDKYs5MzwQTj7ORsdBSRkzb2vLGk/pKKM87Y29kbHaddytLL+OSqT6jdW6uCSKQPU0FkMH8ff6YxDX8ff6OjiJw0e3t7os7QOmYi0vNoULXB6hvq2cc+6hvqjY4ictLy8/O58cYbyc/X0h0i0rOoIDJY5q5MnuVZMndlGh1F5KTV1taSnJxMbW2t0VFERDpEt8wMNiRwCNdyLUMChxgdReSkRURE8PvvvxsdQ0Skw9RDZLD+zv0JIYT+zv2NjiIiItJnqSA6jsTERBYvXsyzzz5rsXOU7SvjJ36ibF+Zxc4hcqps27YNb29vtm3bZnQUEZEO0S2z4zgVS3fs2beHH/iBPfv2WOT4IqfSwIEDue222xg4cKDRUUREOkQ9RAaLHhbNYhYTPSza6CgiJ83Hx4dbbrmF4uJi6usPPTlZWFhIWlqauc327dspLi4G2g7CLi4uZvv27ea2aWlpFBYWAlBfX09ycrJ5seXS0tJWPVE7duwwP9128OBBkpOTqaysBGDPnj1s2bLF3DYzM5OcnEOzaTc1NVFOeVd+DSLSA6kgEpEutWXLFuLj48nLywNgxYoVXH755eb3L7zwQl544QXgUBETHx/Pjh07AHjhhRe48MILzW0vv/xyVqxYAUBeXh7x8fEkJiaydOlSnn76aSZNmmRue/XVV/PII48Ahwqg+Ph4Nm3aBMC7777LWWedZW47f/587rvvPgByC3N5iqcoLCns8u9CRHoO3TIzWHZuNq/wCufmnqulO6RXiIuLIykpiaCgIABuu+025s6da35/7dq1eHh4AIeeSktKSiIiIgKAm266iVmzZpnbfvDBB7i6ugIQFBREUlISrq6ubNmyhVmzZnHFFVeY27799ts4OTkBh27dJSUlERoaCsCsWbMYP368ue3KlSuxs7MDYIDbAC7kQj3YINLHqSAymEM/B7zxxqGfg9FRRLpE//79GTlypPl1QEBAq/eHDx9u/rOTk1Ortn5+fvj5/W8NtKio/8167eDgYG67dOnSNuc9XFTBoRmz/3zcgQMHthrXNGzYMPOfPQd4MopRuLu6t+fjiUgvpVtmBgvwDWAGMwjwDThxYxHpcvsO7COJJPYd2Gd0FBExkAoigzU2NlJFFY2NjUZHEemTikqLWMMaikqLjI4iIgZSQWSw9Ox0nuRJ0rPTjY4i0ifFRsaylKXERsYaHUVEDKSCyGDBAcFcyZUEBwQbHUVERKTPUkFkMFcXV4YxDFcXV6OjiPRJOQU5rGY1OQU5RkcREQOpIDLYvgP7+I3fNKBTxCDWVtbYYIO1lX4civRl+glgsOLdxXzN1xTvLjY6ikifFBQQxCxmERQQZHQUETGQCiKDxUTEcB/3ERMRY3QUkT6ppaWFJppoaWkxOoqIGEgFkYj0adsztrOMZWzP2H7ixiLSa6kgMtiu/F28yZvsyt9ldBSRPmmw32Au5mIG+w02OoqIGEhLdxxHYmIiiYmJ5tW1LcHWxhZnnLG10f8KESMMcBvACEYwwG2A0VFExED6V/g4EhISSEhIICMjg3nz5lnkHIH+gVzGZQT6B1rk+CJyfAcqDpBCCgcqDuCLFlgW6at0y8xgzc3N1FNPc3Oz0VFE+qSC4gI+4iMKiguMjiIiBlJBZLDUzFSWs5zUzFSjo4j0SdHDormXe4keFm10FBExkAoigwX6B3I5l+uWmYhBbGxssMceGxsbo6OIiIFUEBnM3dWdaKJxd3U3OopIn5RXmMf7vE9eYZ7RUUTEQCqIDLa/fD9/8Af7y/cbHUWkT2puaaaBBppbNI5PpC9TQWSwwpJCPuMzCksKjY4i0icNCRzC1VzNkMAhRkcREQOpIDKYlu4QERExngoig1lZWWGDDVZWVkZHEemTtqVv40EeZFv6NqOjiIiBVBAZLLcgl3/zb3ILco2OItIn+fv4cwEX4O/jb3QUETGQCiIR6dM8B3gyilF4DvA0OoqIGEgFkcGCBwdzJVcSPDjY6CgifVJFVQU72EFFVYXRUUTEQCqIDGYymWimGZPJZHQUkT4przCPd3lX8xCJ9HFa3NVgKTtSeJiHOWvHWfjF+xkdR6TPiQyN5E7uxKvJi5LkEouco7aslrSP04i6JAonb6cuOaaTlxNugW5dciwRUUFkuADfAGYwgwDfAKOjiPRJbr5uuDu5s3bOWoufK3llcpcdy87JjoXpC1UUiXQRFUQG83D34DROw8Pdw+goIn3SgZYDbJ+2nb9d+zcG+w02Ok67lKWX8clVn1C7t1YFkUgXUUFksPLKclJJpbyyHF98jY4j0uc0NDSQX5KPW5gbvuG6BkX6Kg2qNlh+UT4f8AH5RflGRxHpk8LDw/nxxx8JDw83OoqIGEgFkcGih0WzmMVED4s2OoqIiEifpYLIYDY2NjjggI2NjdFRRPqkLVu24OrqypYtW4yOIiIG0hii40hMTCQxMZHq6mqLnSO/KJ8P+ZApRVPwHanxCyKnmq+vL0uXLsXXV9efSF+mgug4EhISSEhIICMjg3nz5lnkHE3NTdRQQ1Nzk0WOLyLHN2jQIG677TajY4iIwXTLzGBDAodwLdcyJHCI0VFE+qTKykoSExOprKw0OoqIGEgFkYj0adnZ2Zx33nlkZ2cbHUVEDKSCyGCHl+5I2ZFidBSRPik6OpqcnByio/Wkp0hfpjFEBvMb5MdkJuM3SOuYiRihX79+BAcHGx1DRAymHiKDeQ7wZDSj8RzgaXQUkT4pPz+fhQsXkp+vyVFF+jIVRAarrKokk0wqqzSgU8QINTU1bNq0iZqaGrZt20ZJyaEV76urq0lOTqaurg6AwsJCUlNTzfulpqZSVFQEQF1dHcnJydTU1ABQUlJCSsr/boOnpaVRUFAAQH19PcnJyVRVVQGwe/dutm7dam6bkZFBXl4eAI2NjSQnJ1NRUQFAWVkZf/zxh0W+B5G+TgWRwXILc/k3/ya3MNfoKCJ9UmRkJMnJyURGRjJ58mReffVVAFJSUoiPj2fXrl0APP3001xyySXm/WbMmMFzzz0HQFZWFvHx8aSlpQHw8ssvM3XqVHPbWbNm8fjjjwOHCqv4+HiSkpIAeOuttzjnnHPMbefMmcPDDz8MwN69e4mPj+fHH38E4P3332fMmDEW+R5E+jork8lkMjpEd3d4HqJVq1Z1+XpH+b/m88yYZ7j1l1sJPCOwS48tIh2zbds2vL298fX1pbq6mszMTCIjI3F0dKSwsJCKigrz4OvU1FTc3d3x9/enrq6O9PR0wsPDcXZ2pqSkhL179xITEwMc6iFycXFh8ODB1NfXk5aWRlhYGC4uLuzevZvS0lJGjBgBHPp54+DgQFBQEI2NjaSkpDB06FDc3NwoKyujsLCQ2rxarr74at7+5G3O+stZhn1fIr2JBlUbzM7ODhdcsLOzMzqKSJ8XGxtr/nP//v0ZOXKk+XVAQAABAQHm139+Ks3R0bFVW19f31YzX0dFRZn/7ODg0KrtoEGDGDRokPn1n3/psrOza9XW29sbb29vfi38FWecsbXRj3CRrqJbZgYrLCnkMz6jsKTQ6Cgi0kME+gdyGZcR6K9eZZGuooLIYPUN9ZRRRn1DvdFRRKSHaG5upp56mpubjY4i0mt0uiDKyclh3bp15qcqABoaGnjyySe55JJLuOKKK1izZk2XhOzNQoNDmctcQoNDjY4iIj1EamYqy1lOambqiRuLSLt0uiB6++23efnll3FycjJvW7lyJZ9//jm1tbXs2bOHJ5980vwkhYiIdI1A/0Au53LdMhPpQp0uiNLT0znttNOwsrICoKmpiS+//JLIyEg+++wz3nvvPdzd3Xn//fe7LGxvpN/0RKSj3F3diSYad1d3o6OI9BqdLoj279/f6smItLQ0amtrmTFjBv369cPLy4uzzjpLCyaewEDPgYxjHAM9BxodRUR6iP3l+/mDP9hfvt/oKCK9RqcLIhsbGxobG82vt23bhpWVFaeddpp5m5ubm3mGVTk6b09vzuIsvD29jY4iIj2Enk4V6XqdLoh8fHxaTSG/YcMGfH198fHxMW8rKyvDzc3t5BL2ctU11eSQQ3VNtdFRRKSHiImI4T7uIyYixugoIr1Gpwui888/n+zsbBYsWMDNN99MdnY2kyZNatUmMzOz1URm0tau/F28yZvsyt9ldBQR6SGsrKywwcY8hlNETl6nC6JLLrmEiRMnsmPHDlJSUjj99NO5+uqrze+np6eTm5vbapZVaWvYkGHcwi0MGzLM6Cgi0kPkFvz/ayAW5BodRaTX6PS87/b29jz44IPU1NRgZWXV6vF7ODR1/auvvtrqFpq05dDPAU88cejnYHQUERGRPqvTPURbtmxh9+7dODs7tymGANzd3XF1ddVTZidQVFrEl3xJUWmR0VFEpIcIHhzMlVxJ8OBgo6OI9BqdLoj+9re/8dVXXx23zTfffMPf/va3zp6iT6iprSGXXGpqa07cWEQEMJlMNNOMyWQyOopIr9Hpgqg9F6LJZNKgvxMYNmQYN3GTxhCJSLul7EjhYR4mZUeK0VFEeg2LLu5aWFiIs7OzJU8hItLnBPgGMIMZBPjqKV6RrtKhQdXLly9v9fqHH36gtLS0Tbvm5mbKysrYunUrZ5xxxskl7OXSs9J5kicZlzUO35G+RscRkR7Aw92D0zgND3cPo6OI9BodKoj+PGbIysqK7OzsYw6atrKyIiIigptvvvnkEvZyHu4ejGSkfrCJSLuVV5aTSirlleX4ol+kRLpChwqi9957Dzg0NmjWrFlcfvnlXHbZZW3aWVtb4+LigqOjY9ek7MUGeQ/iHM5hkPegEzcWEQHyi/L5gA+4oegGIok0Oo5Ir9ChgujPcwotXryYYcOGaZ6hk1RbV0sRRdTW1RodRUR6iOhh0SxmMdHDoo2OItJrdHpQ9dSpUxk6dGhXZumTsnOzWcUqsnM1X5OItI+NjQ0OOGBjY2N0FJFeo9MzVR+WlpbGjh07qK6upqWlpc37VlZWXHvttSd7mpN26623kpaWZv4BEhERwdNPP21wKggLCWMBCwgLCTM6ioj0EPlF+XzIh5y+8XSjo3SYk5cTboFa9Fu6n04XRJWVldx7771s3779uHMSdZeCCOCuu+7i/PPPNzpGK44Ojvjgg6ODxluJSPvYudpRZ13HutvW8Tu/Gx2nQ+yc7FiYvlBFkXQ7nS6InnvuOVJSUoiLi2PKlCkMHDhQ3bedULKnhEQSuWjPRXpaRETaZeSEkSTlJFG7t2eNPSxLL+OTqz6hdm+tCiLpdjpdEG3atInIyEieeuqpLp+Nura2ljfffJOsrCyysrKoqKhgzpw5XH/99Udt+8orr7B+/XqqqqoIDAxk9uzZTJo0qU3bZ599lmeffZahQ4eycOFCwsKMv01VWVVJKqlUVlUaHUVEehC3QDcVFSJdqNODqg8ePMiIESMssjRHRUUFa9asobGxkXHjxh237ZIlS1i3bh1z5szhscceIyIiggcffJBvvvmmVbsFCxbw3nvv8eGHHzJ27FjuvPNOqquruzx7R4UPDWcRiwgfGm50FBHpIf744w/69evHH3/8YXQUkV6j0z1EYWFhR52luiv4+PjwxRdfYGVlRXl5OWvXrj1qu02bNrF582buv/9+EhISABg5ciSlpaW8+OKLnHvuuebbeFFRUeb9/vrXv/Lll1+yfft2xowZ0+a4e/fuZd++febXeXl5XfnxREROSkBAACtWrCAgQEt3iHSVThdE1113HXfffTepqalER3ftXBjt7XX64YcfcHR0ZOLEia22T5s2jYceeoi0tDRiYmKOeY5jDQb//PPPeeONNzoSudMydmbwLM8yYecELd0hIu3i7e3NwoULjY4h0qt0uiAqKytj7Nix3HrrrZx33nmEhYUdcyHXKVOmdDrg8eTk5BAUFIStbeuPcXh+pJycHGJiYqiqqmLHjh3mW3yfffYZ+/fvZ/jw4Uc97vTp0znrrLPMr/Py8li2bJlFPoNLfxfCCcelv4tFji8ivU9FRQU//vgjZ599Nm5uGkck0hU6XRD985//NPeyfPXVV3z11VdtenZMJhNWVlYWK4gqKirw8/Nrs93F5VBxUVl5aKByc3MzK1euJD8/H1tbW0JDQ3nsscfM7Y7k5eWFl5eXRTIfyW+QH+dzPn6D2n4OEZGj2blzJxdeeCFJSUmMHDnS6DgivUKnC6LFixd3ZY5Oa8/tNXd3d1atWnUK0nRcXX0de9hDXX2d0VFEpIeIiYmhuLj4lP3iJtIXdLogmjp1alfm6BQ3NzcqKirabK+qqgLA1dX1VEfqsKycLF7gBabnTGfImUOMjiMiPYCdnR2+vhpzKNKVOv3YfXcwZMgQ8vLyaGpqarV9165dAISEhBgRq0OGBg3lBm5gaJDWhROR9snLy2Pu3Ll6AlakC3W6h2j37t3tbjto0KDOnua4xo0bx5o1a9i4cWOriRjXrVuHl5dXq0ftOyMxMZHExESLzlfk7OTMYAbj7HT0AekiIkeqr68nNTWV+vp6o6OI9BqdLohmzpzZrvE7VlZWrF+/vsPH/+WXX6ivr6e29tDU9Hl5eWzYsAGAMWPG4ODgwJgxYxg1ahQrVqygtrYWf39/vv32W3799VeWLFly0kuJJCQkkJCQQEZGBvPmzTupYx3L7rLdbGQjM8pmaOkOEWmX8PBwNm3aZHQMkV6l0wXR5MmTj1oQVVdXs3PnTkpKSoiLi8PHx6dTx1+xYkWriR/Xr19vLqzee+898/3zZcuWsWrVKl599VXz0h0PPPDAUZfu6I72le/jd35nX/m+EzcWERERi+h0QXTvvfce8z2TycS7777Lf/7zH+6+++5OHf/9999vVzsnJycWLVrEokWLOnUeo0WFRXEHdxAVdnK390Sk79i6dSvnnHMO69evZ8SIEUbHEekVLDKo2srKiiuuuIKQkBBeeOEFS5xCRKTP8vHx4Z577ul0D7yItGXRp8zCw8NJTk625Cl6vKycLF7iJbJysoyOIiI9xKBBg7jzzjst9sCKSF/U6Vtm7VFUVERzc7MlT2FRp+IpM0cHRwYzGEcHR4udQ0R6l6qqKpKSkoiPjz/mjPsi0jFd3kPU0tLC7t27efPNN/npp5+6fOHXUykhIYHly5dzyy23WOwcAb4BXMAFBPhq1WoRaZ+srCzOOeccsrKyKCgoIC0tzfxeSkoKJSUlANTU1JCcnExd3aGZ8IuKikhNTTW3TU1NpbCwEIC6ujqSk5PNvwCWlJTw7bffsnTpUkpKSkhPTyc/Px+AhoYGkpOTzcsj7d69my1btpiPm5GRQW5uLgCNjY0kJydTXl5uke9CpKt0uiCaMGECEydObPPfueeey1//+ldee+01nJ2duemmm7oyb6/TcLCBAxyg4WCD0VFEpIeIiooiKyuLqKgoHn/8cWbNmmV+b+rUqbz88ssApKWlER8fT1bWoVvyzz33HDNmzDC3veSSS3j66aeBQxPaxsfHk5KSAsCrr77KFVdcYW47e/ZsHn30UeBQsRQfH89vv/0GwOrVqxk/fry57Q033MDSpUsBKC8vJz4+nu+//559B/axmc3sO6CnaqX7sTKZTKbO7Hjrrbce9bF7KysrXFxcCA8PZ9q0aXh4eJx0SKMdnodo1apVhIeHd+mxv179NVOumsK6d9YxefbkLj22iPR+BQUFVFVVmSeiTUlJwcvLC19fX2pqasjIyCAyMhJHR0eKioooLy8399ynpqbi5uZGQEAAdXV1pKenM2zYMPr3709JSQllZWXExsYCkJ6ejrOzM4GBgTQ0NJCamkpoaCiurq7s3r3bPNUKHPqZ2a9fP4KDg2lsbCQlJYUhQ4bw6xe/MvWqqXz1zlf6eSfdTqcLor7EkgVR5veZLJuwjCUblzBs/LAuPbaISHdSklzCyviVzE+aj+9ITUQr3UuPXsusN3Dp78JQhuLSXwMjRUREjNIlT5mlpKSQnZ1NTU0NTk5OhIWFERMT0xWH7vXK9pXxMz9z8b6LtXSHiPRqu/J38TZvk5CfoB4i6XZOqiBKS0vjH//4h/kpBZPJZB5XFBAQwOLFixk+fPjJp+zFdu/dzQY2sHtv+xfLFRHpiWysbehHP2ysT26dSRFL6HRBlJuby9///nfq6+sZPXo0cXFxeHh4cODAAf744w9+++037rjjDl566SWCg4O7MPKpcyrmIRoePpx7uZfh4SocRaR3CwoIYiYzCQoIMjqKSBudLojeeOMNmpqaeOKJJzj99NNbvXfllVeyefNm7r77bt544w3z45c9zalY7V5EpK9obm7mIAd79IS90nt1elD1H3/8wYQJE9oUQ4eNGjWKCRMm8Mcff3Q6XF+QnZvNq7xKdm620VFERCwqNTOVf/APUjNTT9xY5BTrdEFUU1ODr+/xB8UdngdDjq2ffT888KCffT+jo4iIWNRgv8FcyqUM9htsdBSRNjpdEHl6eraaAv5o0tLS8PT07Owp+oTBfoO5mIv1A0JEer0BbgOIIYYBbgOMjiLSRqcLorPPPpstW7bwyiuv0NDQetmJhoYGXnvtNf744w/OPvvskw7ZmzU2NlJDDY2NjUZHERGxqAMVB9jKVg5UHDA6ikgbnR5Ufe211/Lzzz/zzjvv8PnnnxMZGcmAAQM4cOAAO3bsoLy8HD8/P6699tquzNvrpGen8ziPMyl7EoFnBBodR0TEYgqKC/iET7ix+EaiiDI6jkgrnS6IXF1defnll3nhhRf47rvv+OWXX8zv2dvbM3XqVBYsWICrq2uXBO2tggKCmMUsPYYqIr3e8PDhLGGJphmRbumkJmZ0dXVl8eLF3HHHHeTl5VFbW4uTkxNBQUHY2nbJJNiGOhXzELm5uBFBBG4ubhY7h4hId2BtbY0ttlhba9Uo6X46/LfyrbfeYuXKlTQ1NZm32draMnToUGJiYhg6dCgmk4lVq1bxzjvvdGnYUy0hIYHly5dzyy23WOwc+w7sYzOb2Xdgn8XOISLSHeQV5vEu75JXmGd0FJE2OlQQbd68mddeew1XV9fj9gDZ2dnh6urKK6+8QlJS0kmH7M2KSov4gi8oKi0yOoqIiEW1mFpoppkWU4vRUUTa6FBB9PXXX+Pi4sIll1xywrYXX3wxLi4ufPXVV50O1xfERsbyAA8QGxlrdBQREYsKGRzCbGYTMjjE6CgibXSoINq+fTvx8fHY29ufsK29vT2jRo1i+/btnQ4nIiIicip0qCDau3cvfn5+7W7v6+vLvn0aG3M8u/J38TZvsyt/l9FRREQsalv6NpaylG3p24yOItJGhwoia2vrVoOpT6SpqUlPE5yAjbUN/eiHjbWN0VFERCzK38efi7gIfx9/o6OItNGhasXT05OcnJx2t8/JycHLy6vDofqSoIAgZjJT8xCJSK/nOcCTeOLxHKAlnaT76VBBFBsbS3JyMiUlJSdsW1JSQnJyMiNGjOh0uL6gubmZgxykubnZ6CgiIhZVXllOGmmUV5YbHUWkjQ4VRBdffDFNTU3cf//9lJeXH7NdRUUFDzzwAM3NzcyYMeNkM/ZqqZmp/IN/kJp5/IVyRUR6uvyifN7nffKL8o2OItJGh6aTDg8P5/LLL+eDDz7gmmuuYcaMGZx22ml4e3sDhwZdJyUlsWbNGsrLy5k5cybh4eEWCX4qnIqZqgf7DeZSLtVq9yLS60WFRXEXd+Hd7E1J8onvNHRGbVktaR+nEXVJFE7eTl1yTCcvJ9wCtZpAb2dlMplMHdnh8CzU//nPfzjariaTCWtra6688krmzp2LlZVVl4U1SkZGBvPmzWPVqlVdXuCVJJewMn4l85Pm4zvSt0uPLSLSnVTkV/B85PM01jYaHaVD7JzsWJi+UEVRL9fhBcesrKyYP38+F1xwAV9++SXbt29n//79AHh4eBATE8PUqVPx99dTBO1xoOIAW9nKgYoD+KKCSER6r/3N+9l6/lZuu/42Av0DjY7TLmXpZXxy1SfU7q1VQdTLdXoFVn9/f+bNm9eVWfqkguICPuETbiy+kSiijI4jImIxjY2N7D6wmwHhA/Adpl8ApXvp+UvS93DDw4ezhCUMDx9udBQREYsaNmwYGzZsMDqGyFFp1kSDWVtbY4utJrAUERExkP4VNlheYR7v8i55hXlGRxERsagtW7bg7OzMli1bjI4i0oYKIoO1mFpoppkWU4vRUURELMrPz49//vOfHVoTU+RU0Rgig4UMDmE2swkZHGJ0FBERixo4cCC33nqr0TFEjko9RCIickpUVlby9ddfU1lZaXQUkTZUEBlsW/o2lrKUbenbjI4iImJR2dnZTJkyhezsbKOjiLShW2bHcSqW7vD38eciLsLfRxNZikjvNnz4cAoKChg4cKDRUUTaUEF0HAkJCSQkJJiX7rAEzwGexBOP5wBPixxfRKS7sLe3JyAgwOgYIkelW2YGK68sJ400yivLjY4iImJR+fn53HjjjeTna7V76X5UEBksvyif93mf/CL9gBCR3q22tpbk5GRqa2uNjiLShm6ZGSwqLIq7uIuoMK1jJiK9W0REBL///rvRMUSOSj1EBrO1tcUJJ2xtVZuKiIgYRQWRwfKL8vmIj3TLTER6vW3btuHt7c22bZpmRLofFUQGa2xqpJJKGpsajY4iImJRAwcO5LbbbtNj99It6T6NwYYGDeU6rmNo0FCjo4iIWJSPjw/33HOP0TFEjko9RCIickpUV1fz448/WnSyW5HOUkFksO0Z23mER9iesd3oKCIiFpWZmcm4cePIzMw0OopIGyqIDObj7cMkJuHj7WN0FBERi4qKimLHjh24urqSlpZm3r59+3aKi4uBtnMVFRcXs337/35hTEtLo7CwEID6+nqSk5PNPU6lpaV8++23LF26lJKSEnbs2GGeBPLgwYMkJyebF5bds2cPW7ZsMR83MzOTnJwcAJqamkhOTubAgQMW+iakO1JBZDAvDy/GMAYvDy+jo4iIWJSDgwPh4eG88MILXH755ebtF154IS+88AIAO3bsID4+nh07dgDwwgsvcOGFF5rbXn755axYsQKAvLw84uPjzYXN66+/zsyZM81tr776ah555BHgUAEUHx/Ppk2bAHj33Xc566yzzG3nz5/PfffdB0BlZSXx8fGsX7+efQf2kUQS+w7s6+qvQ7oZDao2WFV1FdlkU1VdhS++RscREbG42267jblz55pfr127Fg8PD+DQ5I1JSUlEREQAcNNNNzFr1ixz2w8++ABXV1cAgoKCSEpKYtiwYQBcd911XHDBBcTGxgLw9ttv4+TkBBx6wi0pKYnQ0FAAZs2axfjx483HXblyJXZ2dgC4urqSlJRESEgIv335G2tYw8LShQxnuEW+D+kerEwmk8noEN3d4cVdV61aRXh4eJce++vVXzPlqimse2cdk2dP7tJji4jIySlJLmFl/ErmJ83Hd6R+ae3NdMvMYBGhEfydvxMRGmF0FBERkT5Lt8yOIzExkcTERIs+ImpvZ48bbtjb2VvsHCIi0jk5BTmsZjXnFZynHqJeTj1Ex5GQkMDy5cu55ZZbLHaOwpJC1rCGwpJCi51DREQ6x9rKGhtssLbSP5e9nf4PG6yuvo4SSqirrzM6ioiIHCEoIIhZzCIoIMjoKGJhKogMFhYSxnzmExYSZnQUERE5QktLC0000dLSYnQUsTAVRCIiIsewPWM7y1im1QT6ABVEBkvLSuMxHiMtK+3EjUVE5JQa7DeYi7mYwX6DjY4iFqaCyGBeA7wYy1i8BmimahGR7maA2wBGMIIBbgOMjiIWpoLIYAO9BjKOcQz0Gmh0FBEROcKBigOkkMKBCq1r1tupIDJYTW0NeeRRU1tjdBQRETlCQXEBH/ERBcUFRkcRC1NBZLCdeTt5ndfZmbfT6CgiInKE6GHR3Mu9RA+LNjqKWJgKIoMNGzKMm7mZYUOGGR1FRESOYGNjgz322NjYGB1FLEwFkcEc+jnghRcO/RyMjiIiIkfIK8zjfd4nrzDP6ChiYSqIDFa8u5h1rKN4d7HRUURE5AjNLc000EBzS7PRUcTCVBAZrLqmmp3spLrGcgvIiohI5wwJHMLVXM2QwCFGRxELU0FksGFDhrGQhRpDJCIiYiBbowOIiIh0V9vSt/EgDxLxZQTjGW90nHZz8nLCLdDN6Bg9igoig+3I3sG/+Bfjs8fjO9LX6DgiIvInoVGhTLebTtJ9Sey4b4fRcdrNzsmOhekLVRR1gAoig7m7uRNLLO5u7kZHERGRIww9bShvZr9J7d5ai52jtqyWtI/TiLokCidvp5M+Xll6GZ9c9Qm1e2tVEHWACiKD+Xj7MIlJ+Hj7GB1FRESOUF5ezvdbvmf8+PG4u7tb7DxDJw+12LGlfTSo2mC1dbUUU0xtneV++xARkc7ZtWsXM2bMYNeuXUZHEQtTQWSw7NxsVrKS7Nxso6OIiMgRYmJi2LNnDzExMUZHEQvTLbPjSExMJDExkepqy80RFBocynzmExocarFziIhI59jZ2eHt7W10DDkF1EN0HAkJCSxfvpxbbrnFYudwcnTCDz+cHE9+IJ2IiHSt3Nxc5syZQ25urtFRxMJUEBmstKyUb/mW0rJSo6OIiMgRGhoayM7OpqGhwegoYmG6ZWaw8opytrGN8opyo6OIiMgRwsPD+fHHH42OIaeAeogMFhEawd/5OxGhEUZHERER6bNUEImIiBzDli1bcHV1ZcuWLUZHEQtTQWSwzF2ZPM/zZO7KNDqKiIgcwdfXl6VLl+Lrq6WVejuNITJYf+f+DGUo/Z37Gx1FRESOMGjQIG677TajY8gpoB4ig/kN8mMKU/Ab5Gd0FBEROUJlZSWJiYlUVlYaHUUsTAWRweob6tnLXuob6o2OIiIiR8jOzua8884jO1urCfR2KogMlrkrk+d4TmOIRES6oejoaHJycoiOjjY6iliYxhAZbGjQUK7jOoYGaaVjEZHupl+/fgQHBxsdQ04B9RAZzNnJmSCCcHZyNjqKiIgcIT8/n4ULF5Kfn290FLEwFUQG27N3Dz/wA3v27jE6ioiIHKGmpoZNmzZRU1NjdBSxMN0yM9jeA3vZxCb2HthrdBQRETlCZGQkycnJRseQU0A9RAaLCoviLu4iKizK6CgiIiJ9lgoiERGRY9i2bRu+vr5s27bN6ChiYSqIDJaVk8VKVpKVk2V0FBEROYK3tzcLFy7E29vb6ChiYRpDZDBHB0d88cXRwdHoKCIicgRfX1+WLFlidAw5BdRDZLAA3wAu4iICfAOMjiIiIkeorq5m06ZNVFdXGx1FLEwFkcEONh6kggoONh40OoqIiBwhMzOTM888k8zMTAoLC0lNTTW/l5qaSlFREQB1dXUkJyebH88vKSkhJSXF3DYtLY2CggIA6uvrSU5OpqqqCoDdu3ezdetWc9uMjAzy8vIAaGxsJDk5mYqKCgDKysr4448/zG2zsrLIyckBoLm5meTkZMory7v6a+gTVBAZbEf2Dv7Fv9iRvcPoKCIicoTIyEi2b99OZGQkTz/9NJdccon5vRkzZvDcc88BhwqT+Ph40tLSAHj55ZeZOnWque2sWbN4/PHHASgsLCQ+Pp6kpCQA3nrrLc455xxz2zlz5vDwww8DsHfvXuLj4/nxxx8BeP/99xkzZoy57f/93/9x7733AofmTIqPj+eHX3/o8u+hL9AYIoOFDA7hKq4iZHCI0VFEROQIjo6O5nXMFi1axJw5c8zvffbZZ7i7uwMQFhZGUlIS4eHhANx4441ceuml5rbvvvsuLi4uAAQEBJCUlERYWBgA11xzDeeff7657RtvvIGDgwMAXl5eJCUlMXTooeWdZs6cyZlnnmlu++KLL2Jre+ifcmdnZ5KSkqgvqOdLvmR/+X588e3Kr6NXszKZTCajQ3R3GRkZzJs3j1WrVpn/sneVkuQSVsavZH7SfHxH6i+uiIicnK9Xf82Uq6aw7p11TJ492eg4PYZumRls7/69/MIv7N2vmapFROTkxUTEcB/3ERMRY3SUHkUFkcFKy0r5lm8pLSs1OoqIiPQCVlZW2GCDlZWV0VF6FBVEBhsePpz/x/9jePhwo6OIiEgvkFuQy7/5N7kFuUZH6VFUEImIiEifp4LIYDvzdvI6r7Mzb6fRUUREpBcIHhzMlVxJ8OBgo6P0KCqIDGZna4crrtjZ2hkdRUREegGTyUQzzegh8o5RQWSwQP9ALuVSAv0DjY4iIiK9QMqOFB7mYVJ2pJy4sZj1uYJo+/btTJgwgTfffNPoKAA0NTVRSy1NTU1GRxERkV4gwDeAGczQGpkd1KcKopaWFp599lkiIyONjmKWlpXGYzxGWlaa0VFERKQX8HD34DROw8Pdw+goPUqfKog+//xzYmJiCAzsPrenAv0DmclM3TITEZEuUV5ZTiqpWuS1g7plQVRbW8uLL77IbbfdxkUXXcT48eN57bXXjtn2mWee4eKLLyYhIYHrr7+eb7/9tk27iooKPvzww1br0HQH7q7uRBGFu6u70VFERKQXyC/K5wM+IL8o3+goPUq3LIgqKipYs2YNjY2NjBs37rhtlyxZwrp165gzZw6PPfYYERERPPjgg3zzzTet2q1cuZKZM2fSv39/S0bvsH0H9pFEEvsO7DM6ioiI9ALRw6JZzGKih0UbHaVH6Zar3fv4+PDFF19gZWVFeXk5a9euPWq7TZs2sXnzZu6//34SEhIAGDlyJKWlpbz44ouce+652NjYkJGRQWZmJrfffnu7zr9371727ftfgZKXl3fyH+oYikqLWMMaFpYuZDiarVpERE6OjY0NDjhgY2NjdJQepVsWRO1df+WHH37A0dGRiRMntto+bdo0HnroIdLS0oiJiWHr1q3k5uYyY8YMAOrq6rC2tqawsJD/9//+X5vjfv7557zxxhsn+zHaJTYylqUsJTYy9pScT0REerf8onw+5EOmFE3Bd6Sv0XF6jG5ZELVXTk4OQUFB2Nq2/hhDhw41vx8TE8OFF17Yqmh6/vnn8fHx4corrzzqcadPn85ZZ51lfp2Xl8eyZcu6/gOIiIh0sabmJmqooalZ07l0RI8uiCoqKvDz82uz3cXFBYDKykoAnJyccHJyMr/fr18/nJyccHNzO+pxvby88PLyskDitnIKcljNas4rOE+VvIiInLQhgUO4lmsZEjjE6Cg9So8uiKD9t9f+7N5777VAks6xtrLGBhusrbrl+HYREZE+oUf/K+zm5kZFRUWb7VVVVQC4urqe6kgdFhQQxCxmERQQZHQUERHpBbR0R+f06IJoyJAh5OXltVn2YteuXQCEhIQYEatDWlpaaKKJlpYWo6OIiEgv4DfIj8lMxm9Q2yElcmw9uiAaN24cdXV1bNy4sdX2devW4eXlRVRU1EkdPzExkcWLF/Pss8+e1HGOZ3vGdpaxjO0Z2y12DhER6Ts8B3gymtF4DvA0OkqP0m3HEP3yyy/U19dTW1sLHHrSa8OGDQCMGTMGBwcHxowZw6hRo1ixYgW1tbX4+/vz7bff8uuvv7JkyZKTnoMhISGBhIQEMjIymDdv3sl+pKMa7DeYi7mYwX6DLXJ8ERHpWyqrKskkk8qqSnzRwzrt1W0LohUrVlBaWmp+vX79etavXw/Ae++9h6/vof/Jy5YtY9WqVbz66qtUVVURGBjIAw88wKRJkwzJ3VED3AYwghEMcBtgdBQREekFcgtz+Tf/5prCawgn3Og4PUa3LYjef//9drVzcnJi0aJFLFq0yMKJLONAxQFSSOFAxQFV8iIictIiQyO5nduJDI00OkqP0qPHEPUGBcUFfMRHFBQXGB1FRER6ATs7O1xwwc7OzugoPYoKIoNFD4vmXu7VInwiItIlCksK+YzPKCwpNDpKj9Jtb5l1B4mJiSQmJlJdXW2xc9jY2GCPvRbhExGRLlHfUE8ZZdQ31BsdpUdRD9FxJCQksHz5cm655RaLnSOvMI/3eZ+8wjyLnUNERPqO0OBQ5jKX0OBQo6P0KCqIDNbc0kwDDTS3NBsdRUREpM9SQWSwIYFDuJqrtQifiIh0idTMVJaznNTMVKOj9CgqiERERHqRgZ4DGcc4BnoONDpKj6KCyGDb0rfxIA+yLX2b0VFERKQX8Pb05izOwtvT2+goPYoKIoP5+/hzARfg7+NvdBQREekFqmuqySGH6hrLPSHdG+mxe4N5DvBkFKO0CJ+IiHSJXfm7eJM3mbpxKv2d+xsdp92cvJxwC3Qz7PwqiI7jVMxDVFFVwQ52UFFVoaU7RETkpMWdHsdtDreRcl8KO+7bYXScdrNzsmNh+kLDiiIVRMdxKla7zyvM413eZU7hHCKIsMg5RESk7xg0bBD3Z9xP7d5ai52jtqyWtI/TiLokCidvp5M+Xll6GZ9c9Qm1e2tVEPVVkaGR3MmdWoRPRES6REFBAY8/8Th33nkngwcPtth5hk4earFjG0GDqg1mZ2eHM85ahE9ERLpEVVUVGzZsoKqqyugoPYoKIoMVFBfwCZ9otXsREekSUVFRbNu2jaioKKOj9CgqiAzWcLCB/eyn4WCD0VFERET6LBVEBgsNDuUGbtAifCIi0iVSUlIICAggJSXF6Cg9igoiERGRXsTLy4u5c+fi5eVldJQeRU+ZHcepmIdoe8Z2/sE/ODPjTHxHah4iERE5Ob6+vixdutToGD2OeoiOIyEhgeXLl3PLLbdY7ByDvAYxkYkM8hpksXOIiEjfUVNTw++//05NTY3RUXoUFUQG8/b05kzO1CJ8IiLSJTIyMhg9ejQZGRlGR+lRVBAZrKq6ip3spKpa80WIiMjJi4yMZOvWrURGasLfjlBBZLCcghze5m1yCnKMjiIiIr2Ao6MjsbGxODo6Gh2lR1FBZLDwoeEsYhHhQ8ONjiIiIr1AUVER99xzD0VFRUZH6VFUEBmsn30/BjCAfvb9jI4iIiK9QHl5OR988AHl5eVGR+lRVBAZrLCkkC/4gsKSQqOjiIhILxAdHU12djbR0dFGR+lRVBAZrK6+jgIKqKuvMzqKiIhIn6WJGY/jVEzMGBYSxgIWEBYSZrFziIhI35Gamsoll1zCxx9/rF6iDlBBdBwJCQkkJCSQkZHBvHnzjI4jIiJyQm5ubkyfPh03Nzejo/QoumVmsLSsNJ7gCdKy0oyOIiIivUBAQACPP/44AQEBRkfpUVQQGczT3ZPTOR1Pd0+jo4iISC9QV1dHamoqdXUam9oRKogMNsh7EBOYwCBvrWUmIiInLz09neHDh5Oenm50lB5FBZHBamprKKCAmlotwiciIidv2LBh/PzzzwwbNszoKD2KCiKD7czbyau8ys68nUZHERGRXqB///6MHTuW/v37Gx2lR1FBZLCwkDBu4iY9di8iIl2ipKSEZcuWUVJSYnSUHkUFkcEcHRwZyEAcHbQIn4iInLyysjKef/55ysrKjI7So6ggMljx7mL+y38p3l1sdBQREekFYmNjKSkpITY21ugoPYoKIoNVVVeRQQZV1VVGRxEREemzVBAZLHxoOLdwC+FDw42OIiIivUB6ejojR44kPT2dhoYGkpOTqaysBGD37t1s2bLF3DYjI4Pc3FwAGhsbSU5Opry8HDh06y05OdncNisri127dgFQWFjIjTfeSFraoUmF9+/fT3JyMi0tLQDs2rWL7Oxs877Jycns3bsXgAMHDpCcnExTUxMAOTk53eLBIhVEx5GYmMjixYt59tlnjY4iIiLSLs7OzowdOxYvLy9KSkqIj4/nt99+A2D16tWMHz/e3PaGG25g6dKlAJSXlxMfH8/3338PwMcff8zo0aPNbW+++WbuvvtuAPLy8li5ciWffvopAF9++SXx8fE0NjYCcMcdd7Bo0SLzvvHx8ea269evJz4+3lyk3Xfffdz1yF1d/0V0kJXJZDIZHaK7O7yW2apVqwgP79qenA0fbOCSmZfw8fsfM/HyiV16bBER6Zvq6upwdHSkoaGB1NRUQkNDcXV1Zffu3ZSUlBAXFwcc+vetX79+BAcH09jYSEpKCkOGDMHd3Z2ysjIKCgoYOXIkcKiHyMbGhiFDhlBYWMjDDz/MokWLiIqKYv/+/eTm5hIXF4e1tTW7du2ipaWF0NBQ4FAPUWBgIF5eXhw4cICcnBxiY2OxtbUlJyeHoi1FfHvJt8xPmo/vSF9DvjMt7mowVxdXoonG1cXV6CgiItJLODoeenK5X79+5oIGYNCgQQwa9L+VEf78S76dnV2rtt7e3nh7e5tfh4X9b3qYgIAAXn75ZfNrDw8PPDw8zK+HDBnSKs+fjztgwAAGDBhgfh0SEkL2L9k8wiOcmXGmYQWRbpkZzHegLwkk4DvQmL8AIiIiRvPx9mESk/Dx9jEsgwoig9XV11FKKXX1WoRPRET6Ji8PL8YwBi8PL8MyqCAyWFZOFi/xElk5WUZHERERMURVdRXZZBs6BY0KIoOFBocyj3mEBocaHUVERMQQOQU5vMM75BTkGJZBBZHBnByd8McfJ0cno6OIiIgYIiI0gr/zdyJCIwzLoILIYLvLdrOe9ewu2210FBEREUPY29njhhv2dvaGZVBBZLD95ftJJpn95fuNjiIiImKIwpJC1rCGwpJCwzKoIDJYZFgkt3M7kWGRRkcRERExRF19HSWUGPrEtQoiERERMVRYSBjzmU9YSNiJG1uICiKDZe7K5AVeIHNXptFRRERE+iwVRAZzdnImmGCcnZyNjiIiImKItKw0HuMx0rLSDMuggshg/j7+TGMa/j7+RkcRERExhNcAL8YyFq8Bmqm6z6pvqGcf+6hvqDc6ioiIiCEGeg1kHOMY6DXQsAxa7f44EhMTSUxMpLq62mLnyNyVybM8ywW7LiBkbIjFziMiItJd1dTWkEceNbU1hmVQQXQcCQkJJCQksG3bNm6++Wby8vK6/Bw2NjbMcp6FjY0NGRkZXX58ERGR7m7T5k287/w+4zePp9m7ucuPHxQUhIODw3HbWJlMJlOXn7mX+e9//8uyZcuMjiEiIiKdsGrVKsLDw4/bRgVRO5SXl/Pbb7/x6aefsmjRonbv9+yzz3LLLbcct01eXh7Lli1jyZIlBAUFnWzUXqE935tRjMhmqXN2xXFP5hid3bcj++ka7JzufA3Cqc/Xna/Bkz1OZ/bt6D7d4TpsTw+Rbpm1g7u7O+effz7ffffdCSvMP+vfv3+72wcFBXXo2L1ZR763U82IbJY6Z1cc92SO0dl9O7KfrsHO6c7XIJz6fN35GjzZ43Rm347u01OuQz1l1gEJCQkWbS+HdOfvzYhsljpnVxz3ZI7R2X07sl93/rvUnXX37+1U5+vO1+DJHqcz+/bWfwt1y8xgGRkZzJs3r133N0Wk6+kaFDFed7gO1UNkME9PT+bMmYOnp6fRUUT6JF2DIsbrDteheohERESkz1MPkYiIiPR5KohERESkz1NBJCIiIn2eCiIRERHp81QQiYiISJ+ngqibO3jwIP/85z+59NJLmTJlCgsWLCAlJcXoWCJ9ytKlS5kxYwZTpkxhzpw5/Pzzz0ZHEumztm/fzoQJE3jzzTe79Lh67L6bq6ur47333mPq1Kl4e3vz9ddf88ILL/DBBx+ccF0WEekaOTk5BAQEYGdnR1paGrfffjvvvvsubm5uRkcT6VNaWlr4v//7P6ysrBg7dizXXnttlx1bPUTdnKOjI3PmzGHQoEFYW1szdepUWlpaKCwsNDqaSJ8REhKCnZ0dADY2NjQ2NrJ3716DU4n0PZ9//jkxMTEEBgZ2+bG1uGsXq62t5c033yQrK4usrCwqKiqYM2cO119//VHbvvLKK6xfv56qqioCAwOZPXs2kyZNOubx8/LyaGhowM/Pz5IfQ6THstQ1+NBDD/H9999z8OBBxowZw5AhQ07FxxHpkSxxHVZUVPDhhx/y0ksv8cwzz3R5ZhVEXayiooI1a9YwdOhQxo0bx9q1a4/ZdsmSJezYsYMbb7yRwYMHk5iYyIMPPkhLSwvnnXdem/b19fU88sgjXHPNNTg5OVnyY4j0WJa6Bu+//36amppITk4mLy8PKysrS38UkR7LEtfhypUrmTlzJv3797dIZhVEXczHx4cvvvgCKysrysvLj/mXYNOmTWzevJn777/fvBLwyJEjKS0t5cUXX+Tcc8/FxsbG3L6pqYkHHniAoKAgrr766lPyWUR6IktdgwC2traMHj2ajz76iICAAMaOHWvxzyPSE3X1dZiRkUFmZia33367xTJrDFEXs7Kyatdvjj/88AOOjo5MnDix1fZp06axd+9e0tLSzNtaWlp45JFHsLa25u6779ZvpiLHYYlr8EgtLS0UFRWdbFSRXqurr8OtW7eSm5vLjBkzuOiii/juu+9YvXo1jzzySJdlVg+RQXJycggKCsLWtvX/gqFDh5rfj4mJAeCJJ55g3759PP74423ai0jntPca3LdvHykpKZxxxhnY2dnx/fff88cff3DjjTcaEVukV2nvdXjhhRe2Kpqef/55fHx8uPLKK7ssi/51NUhFRcVRB0a7uLgAUFlZCUBpaSlr167F3t6e6dOnm9s99thjjBgx4tSEFemF2nsNAnz44Yc8+uijWFlZERAQwNKlSwkNDT1lWUV6q/Zeh05OTq3Gzvbr1w8nJ6cunfpCBZGB2tOd6OPjw/fff38K0oj0Pe25Bj09PXnuuedOQRqRvqkzw0DuvffeLs+hMUQGcXNzo6Kios32qqoqAFxdXU91JJE+RdegiPG603WogsggQ4YMIS8vj6amplbbd+3aBRyaCE5ELEfXoIjxutN1qILIIOPGjaOuro6NGze22r5u3Tq8vLyIiooyKJlI36BrUMR43ek61BgiC/jll1+or6+ntrYWODS79IYNGwAYM2YMDg4OjBkzhlGjRrFixQpqa2vx9/fn22+/5ddff2XJkiVt5j8RkfbTNShivJ52HWpxVwuYOXMmpaWlR33vvffew9fXFzg0XfmqVataTVd+1VVXHXfpDhE5MV2DIsbradehCiIRERHp8zSGSERERPo8FUQiIiLS56kgEhERkT5PBZGIiIj0eSqIREREpM9TQSQiIiJ9ngoiERER6fNUEImIiEifp4JIROQk/etf/+Kiiy4yL1EA8NprrzF+/Hj++OMPA5P9zyOPPMLll19OQ0OD0VFEuiWtZSYirZSUlPDXv/71uG1CQ0N57bXXTlGi7q2goIDPP/+c+fPn4+TkZNFzffbZZzz55JNMnz6dO+6447ht586dS2ZmJqtWrSI8PJxrr72WxMREPvjgA6666iqL5hTpiVQQichR+fv7c9555x31PU9Pz1Ocpvt6/fXXsbe3Z8aMGRY/V0JCAs8//zzfffcdt9xyC/369Ttqu507d5KZmUlYWBjh4eEABAQEcPbZZ/Pvf/+bSy+9FEdHR4vnFelJVBCJyFH5+/tz/fXXGx2jWysvL+f7779n4sSJFu8dAnB2dmbChAl8/fXXbNy4kfPPP/+o7dauXQvAtGnTWm0///zz2bhxI99++y0XXnihxfOK9CQaQyQiJ238+PHceuutlJeXs3z5cqZPn05CQgILFiw45hia2tpaXnvtNa655hoSEhKYNm0ad9xxB9u2bWvT9tZbb2X8+PEcPHiQV199lSuuuIJzzjmn1W27jRs3Mm/ePBISEpgxYwaPPfYYVVVVzJw5k5kzZ5rbPfLII4wfP5709PSj5nrxxRcZP34833///Qk/97fffsvBgweZOHHiCdsetnPnTi6++GIuuugi0tLSzNuLi4t59NFHueyyy5g0aRJ/+ctf+Mc//tFmtfALLrgAgK+++uqox29sbCQxMRF7e/s2BdOYMWNwdHTkyy+/bHdekb5CBZGIdInq6mpuuukmdu7cyXnnncf48ePJyMjgjjvuYNeuXa3aVlZW8n//93+88cYbuLq68pe//MXcftGiRfzwww9HPceSJUv48ssvGTFiBJdffjl+fn4AfPHFF9x3330UFRUxefJkpkyZQmpqKrfddhtNTU2tjjF9+nTgf70of9bU1MTXX3+Nh4cHZ5555gk/c1JSEgDR0dEn/oKArVu3csstt2BjY8Nzzz1HVFQUAGlpacydO5d169YRHh7OZZddxogRI/jmm2+48cYbKS4uNh8jLi6OgIAAkpOTKSkpaXOOn376iYqKCsaPH4+Li0ur9+zs7Bg2bBjp6enU1dW1K7NIX6FbZiJyVEVFRcccOB0dHc0ZZ5zRalt2djZ/+ctf+Nvf/oa19aHftUaOHMljjz3Gxx9/3GoQ8FNPPUVOTg6LFy9udVtn//79zJ8/n8cff5zRo0e3GSOzb98+Xn/9dVxdXc3bqqqqeOaZZ3BycuKVV14xF0nz5s3jrrvuIiMjAx8fH3P7mJgYQkJC+Pbbb7n55ptbjaX5+eef2b9/P1deeSW2tif+8bh9+3a8vb0ZMGDACdv+8MMPPPjgg/j5+fHEE08wcOBA4FARtnTpUlpaWli1ahWhoaHmfbZt28aiRYt45plnWL58uXn7tGnTWLlyJevWreO6665rdZ4vvvgC+F9P0pHCw8PZunUr6enpjBw58oS5RfoK9RCJyFEVFRXxxhtvHPW/X3/9tU17R0dHFixYYC6GAKZMmYKNjQ07duwwbysvL2f9+vXEx8e3GePi4eHBFVdcQXl5ubn35c+uu+66VsUQwI8//khdXR0XXnihuRgCsLW15YYbbjjqZ5s+fTq1tbV89913rbavXbsWKyurdo2vaWxspLy8vF3F0Nq1a7n//vsJCwvjueeeMxdDcKgIKy0t5YorrmhVDAHExsZy1lln8csvv1BTU2Pefvh7/eqrrzCZTObte/fuZfPmzfj4+Byz2Dmct6ys7IS5RfoS9RCJyFGNHj2aJ554ot3tAwIC2gwstrW1xcPDg+rqavO2HTt20NzczMGDB4/aA1VYWAhAXl5em9tWkZGRbdrv3LkTgOHDh7d5LzIyEhsbmzbbzz//fF566SXWrl1r7kkpKyvj999/N9+SOpGKigqANreljvT+++/z008/MWbMGB566CEcHBxavZ+amgpAfn7+Ub+P/fv309LSQkFBAREREQB4eXlxxhln8PPPP5OcnEx8fDxwaFxRc3Mz06ZNw8rK6qh5DheUh/OLyCEqiESkSzg7Ox91u42NDS0tLebXlZWVAKSkpJCSknLM49XX17fZ5uHh0Wbb4Z4Td3f3Nu9ZW1vj5ubWZruLiwvnnHMO69atIzc3l+DgYL788kuam5vb/fTV4dt5J5ro8PAg8TPOOKNNMQSHbvkBfPPNN8c9zpHfxwUXXMDPP//MV1991aogsra2ZurUqcc8zuG8x3pkX6SvUkEkIqfU4cLpr3/9KwsXLuzQvkfr9Th8vPLy8jbvtbS0UFFRgbe3d5v3pk+fzrp161i7di0LFy7kq6++wtXVlfHjx7cri4uLC7a2tuYC71juvvtu3nrrLZ555hmsra25+OKLW71/uFdt+fLl7RrIfdjYsWPx8PBg48aN/P3vfyc7O5vCwkJGjx7NoEGDjrnf4bxHKyBF+jKNIRKRUyoiIgIrKyvzraKTNXToUODQAOcjpaen09zcfNT9hg8fzpAhQ/j666/55ZdfKC4u5rzzzutQz0lISAilpaVtnmT7MxcXF/71r38xbNgw/vWvf/Hxxx+3ev/wk2Yd/T5sbW2ZPHkyDQ0NfPvtt+ZH6Y81mPqwgoICAIYMGdKh84n0diqIROSU8vT05JxzzmH79u385z//aTUo+LC0tLSj3jI7mrPPPhtHR0fWrl3b6vH0pqYmXn311ePue9FFF1FRUcHjjz8O0OHJCuPi4jh48KB5HNOxuLi4sGLFCiIiInjqqaf46KOPWuUfNGgQ7733Hlu2bGmzb1NT01HnZoL/FT+ffvopGzZswM3NjbPPPvu4WdLS0vD09GTw4MEn+HQifYtumYnIUR3vsXvgpGaxvu222ygoKODFF1/k66+/Jjo6mv79+7Nnzx4yMjIoLCzkk08+OeqYmyO5uLhw88038/jjjzN37lzOPfdcnJ2d+eWXX7C3t8fLy+uYA4wnT57Myy+/zN69e4mKijL3NrXXuHHj+OCDD0hKSjIvkXG8nE8++SS33347Tz/9NCaTicsuuwx7e3seeugh7rrrLm699Vbi4+MJCQkBYPfu3Wzbtg03NzfeeeedNscMDAwkJibGPBbrwgsvxM7O7pgZioqKKCkp4S9/+UuHPqdIX6CCSESO6vBj98dyMgWRq6srL7zwAh9//DHfffcdiYmJtLS04OHhQWhoKNdee+1RB0Mfy0UXXYSLiwtvv/0269atw9nZmbPOOosFCxZw+eWX4+/vf9T9+vfvz9lnn01iYmKnlrKIi4sjMDCQ//73v1x55ZUnbH+4p+j222/nmWeewWQycfnllxMZGclrr73Gf/7zH3755RdSUlKws7PDy8uLcePGMWnSpGMe84ILLjAXREdOY3Ck//73v8D/JqcUkf+xMh2tv1pEpBcoLCzkyiuv5JxzzuHBBx88aptrrrmG3bt388knn3RqPbLPP/+cJ554gpdeesk8Hqg7ampqYvbs2fj4+PD0008bHUek29EYIhHp8aqqqjh48GCrbQ0NDTz33HPAoVtbR7Np0yZyc3OZPHlypxdnveCCCwgKCuL111/v1P6nyn//+19KS0u56aabjI4i0i3plpmI9Hhbtmzh0Ucf5fTTT2fgwIFUVFSQnJxMaWkpI0eO5Nxzz23V/tNPP2XPnj2sWbOGfv36ccUVV3T63DY2Ntxzzz38+uuv1NbWnpJV7zvDysqKO++884RjnUT6Kt0yE5Eer6CggFdffZXt27eb5yPy9/fn3HPPZdasWW0epZ85cyZlZWUMHjyYBQsWdGj+HxHpnVQQiYiISJ+nMUQiIiLS56kgEhERkT5PBZGIiIj0eSqIREREpM9TQSQiIiJ9ngoiERER6fNUEImIiEifp4JIRERE+rz/D+lLeKBtdJtKAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -1710,7 +1710,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHDCAYAAABsyc0zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB82UlEQVR4nO3deVyVZf7/8deRHQWURUEQRDY33HBcyq1ETUutLMvUtEWzspy+NuaUrWPLWGll06KW2m7aNKmVFaXmZFpKrigiIgKCgrLvy/n94c8zoaiA4M2B93Me83h07nPd9/0+x3Pgw3Vf93WZzGazGRERERG5opoZHUBERESkKVIRJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBlARJiIiImIAW6MDNGYjRoyo9LioqIj777+f22+/3aBEIiIi0lCYtHbklZGRkcGtt97Kxx9/TNu2bY2OIyIiIgbT5cgr5IcffqBLly4qwERERATQ5UiLgoICVq5cSVxcHHFxcWRnZzN16lTuvvvuKtsuW7aMjRs3kpubi7+/PxMnTmTo0KEXPP7333/PzTffXJ8vQURERKyIesL+v+zsbNatW0dpaSkDBw68aNt58+axYcMGpk6dyoIFC+jYsSPPPvssP/zwQ5Xt4+PjSUpKYsiQIfWQXERERKyResL+P29vb77++mtMJhNZWVmsX7++yna//vorO3bs4KmnniIyMhKAXr16kZaWxttvv821116LjY1NpX2+++47rr76alxcXKqdp6ioiMTERAICAnB0dKz9CxMREZEGST1h/5/JZMJkMl2y3ZYtW3BycjqvV2vUqFFkZGQQExNTaXtFRQVRUVEMHz78osfNyMggNjbW8v+ff/6ZadOmkZiYWOPXIiIiIg2fesJqKCEhgYCAAGxtK791QUFBlufDw8Mt23fu3ElZWRl9+/a96HHXrl3LihUr6jyviIiINEwqwmooOzu7yjscz15qzMnJqbT9+++/Z+jQoecVbecaM2YMV199teVxYmIi8+fPr4PEIiIi0hCpCKuF6ly2POuJJ56oVjtPT088PT1rG0lERESsjMaE1ZCbmxvZ2dnnbc/NzQXA1dX1SkcSERERK6QirIY6dOhAYmIiZWVllbYfOXIEgMDAQCNiiYiIiJVREVZDAwcOpLCwkM2bN1favmHDBjw9PencubNByURERMSaaEzYn2zbto2ioiIKCgqAM4PjN23aBEC/fv1wdHSkX79+9O7dm4ULF1JQUICvry8//vgj27dvZ968eefNESYiIiJSFS3g/Sfjx48nLS2tyudWrVqFj48PcGbZoqVLl1ZatmjSpEkXXbaopmJjY5k2bRpLly4lLCyszo4rIiIiDYOKsAZKRZiIiEjjpjFhIiIiIgZQESYiIiJiABVhIiIiIgZQESYiIiJiABVhIiIiIgZQESYiIiJiAE3WKiKVZB/LpiCjwOgYNeLs6Yybv5vRMUREakRFmIhYZB/LZkHHBZwqPIUPZyYnPsUpmtGMVrSiggrSSKMVrXDCiQIKyCILH3wwYeI0pwFwxx0zZlJJpSUtccaZQgrJJBNvvGlGMzLJpIIKPPAAIJVUXHGlOc0poojTnKYNbbDBhiyyKKMMTzwBSCONFv//f8UUU+ZYxhOxT6gQExGroiJMRCwKMgrYVbiLH2x/IHF7IgDj7x+PRysPHnvhMXLzcgkbHMa7L73L6GGjWbV2FQueXcCx7cewtbVlyiNTAFi5aCVlZWX49/Vn0dOLuG3Mbaz7YR33zb2P2M2xuLRw4f7H7+dU5ik+f/tzANr3a8/T//c0d42/i6gtUdz51zv5Y8MftPFqw+znZnPoyCHWrVgHQOdrOjPzrplMv3M6H6/4mL8t/hu37r2Vv/j/xZg3TkSkFlSEiUglXejCrJWz8Ol1pifs/Y/ex9bWFp9AH1qXt2bnzp0EBgbSqlUrJgdMZtCYQfj19MNkMvH2+28D4BPkg9lsZufOnQQEBODh4cGtgbfSe1hvgroHYWNjw6K3F1FWVoZPyJnzbNu+DT8/P7y8vBgTNIadA3fSJbwLdnZ2vPj6ixQVFeETdqbtpp834e3tTZs2bbgu8zoOLj6Ip7unMW+YiEgtqQgTEYuc3BxSSCHAN8CyLSQkxPLfNjY29OrVy/LYw8MDDw8Py+OgoCDLf5tMpkptW7VqRatWrSyPAwMDK527Z8+elv92c3OrtG9AQECltt27d/9fhlYetKMdjg6O1XuRIiINhIqwBiYqKoqoqCjy8vKMjiJN0NHko3zCJ9yZfCdhWMeapSlpKXzDN1yfdr1lHJuIiDVQEdbAREZGEhkZaVnAW+RK6hTcidnMplNwJ6OjVFt+QT5HOUp+Qb7RUUREakTzhImIhZ2dHS64YGdnZ3SUagvtEMoDPEBoh1Cjo4iI1IiKMBGxSE5N5iu+Ijk12egoIiKNnoowEbEoKi4inXSKiouMjlJtB+IO8CqvciDugNFRRERqREWYiFgEtw/mXu4luH2w0VGqzb2lO73ohXtLd6OjiIjUiIowEbFqbbzacA3X0MarjdFRRERqREWYiFjsP7Sfl3iJ/Yf2Gx2l2goKC0ghhYJC61rvUkRERZiIWLT2aM1ABtLao7XRUart8NHDLGUph48eNjqKiEiNqAgTEQsvDy+u5mq8PLyMjlJtIYEhzGAGIYEhl24sItKAqAgTEYu8/DwSSCAv33pWbHBydMIbb5wcnYyOIiJSIyrCRMTiyLEjrGQlR44dMTpKtaWeTCWKKFJPphodRUSkRrRskUg9yj6WTUFGAdm52SQmJ9IpuBN2dnYkHU+iuKTYMhXEvth9tPFsg5eHF7l5uSQkJRAWFIaDvQPJqckUFhVaLrfFxMXg0dKDNl5tyC/IJz4xnpDAEJwcnTh+4ji5ebmEBZ1Z9zE2PhZXF1d8WvtQWFRIXEIcwe2DcXZy5kT6CU5nnaZTyJklig4dOURpWikP8ZBVzT6fk5vDfvaTk5tjdBQRkRpRESZST+L/iGd239mEloaSRBKf8Rl/4280pzlf8iWnOc093APAC7zAEIZwFVcRTzwf8iGzmEUrWvE1X5NEEjOYAcArvMJf+AuDGUwSSbzHezzAA7SmNd/zPbHE8hAPAfA6r9OFLkQSSRppvMM7TGMavviykY1EE81sZgPwFm/RnvaMdR6Lu6/1zLkVFhTGLGZZCk8REWuhIkyknhyOOcza0rV8+o9PuXvg3UxNnmrpCRt5fGSlnrCrYq+q1BM2MWmipSdsVOqoSj1hA+IGVOoJuzXxVktP2A0nbqjUEzY4fnClnrAbE2609ISNTR9bqSdsyJEhNHduTkjXENz83Yx500REmhAVYSL1pFunbjzN0wwaNQifXj50pKPlOZ9ePpXa/vmxDz6EElrp8YXaAgQPCK522w5Xdah2W2sRGx/LYhYzOH6w1b4GEWmaVISJiFVzaeFCGGGUppaSGm09g/OdPZ3V4yjSxKkIE6knR44d4UM+JPJYpHpo6lFwl2CGOw1nzaw1bGQjDjiQSy755OONNwDppGOHHS1pSRllnOQk7rjjiCN55JFLrqVnMIMMbLChFa0op5wTnKAVrXDCiXzyySabtrQF4BSnMGHCHXcqqCCNNFrSEmecKaCALLLwxptmNOM0pzFjxgMPAPId83ki9gkVYiJNmIowkXpi08wGBxywaWZjdJRGzc3fjRFrR9B/WH/WLl9L7269eW3Za/z783+z6/tdAAy/YzgR3SKYM3cOSceT6Du6L5+99RmD+g7i3Y/e5Z0l73Do50MAjL17LIHtAnns2cc4lXmK8Mhwli9czojBI/jwiw9Z+M+FJP2WBMCEByfg0tyFuQvmUlBYQPCAYP71/L+46bqb+OKbL1jw5AISfk3Awd6Bex69h5KSEj5840Nit8dyzQPXcOveW/mL/1+MeutExGAms9lsNjqEnC82NpZp06axdOlSwsJ015c1So1OZUnEEqbvnK6esHpWWFjIgQMHCA0NpUWLFqSmppKenk63bt0AOHDgAM2bN8ff35/i4mL2799PcHAwrq6unDhxgtTUVHr06AGc+e45ODjQvn17SktL2bt3Lx06dKBly5akp6eTlJREr169AIiLi8PGxoYOHTpQXl7O7t27ad++Pe7u7pw+fZqjR4/So0cPmjVrxpEjR6ioqCA4OJh9P+7jr5F/5bWo1+g6tKtRb5uIGEw9YSL1pLy8nBJKKC8vNzpKo+fk5GQpjAB8fHzw8flf4dupUyfLfzs4OFRq26ZNG9q0aWN5/Oc/euzs7Cq19fLywsvrf0s6hYT8b6kkGxubSm3d3d1xd//fVB8dOvzvpgiPVh4MZCAerTxq9kJFpFHRjPki9WT/of28wAvsP7Tf6CjSwGTlZBFDDFk5WUZHEREDqQgTqSft2rZjHONo17ad0VGkgTmWcozP+ZxjKceMjiIiBtLlyAYmKiqKqKgo8vKsZwFlqVort1aEE04rt1ZGR5EGpnNIZ+Ywh84hnY2OIiIGUhHWwERGRhIZGWkZmC/WKzM7k93sJjM787yJUaVps7W1xRlnbG31I1ikKdPlSJF6knQ8iS/5kqTjSUZHkQbmWMoxvuALXY4UaeJUhInUk65hXZnHPLqGaQoCqay0rJQccigtKzU6iogYSEWYSD1p1qwZttjSrJm+ZlJZUEAQd3EXQQFBRkcREQPpt4NIPUlMTuQzPiMxOdHoKCIi0gCpCBOpJxXmCsopp8JcYXQUaWD2xe7jeZ5nX+w+o6OIiIFUhInUk8B2gUxkIoHtAo2OIg2Mt5c3QxmKt5e30VFExEAqwkRErjBPd0/60Q9Pd0+jo4iIgVSEidSTPQf28AzPsOfAHqOjSAOTm5fLYQ6Tm5drdBQRMZCKMJF64uvty2hG4+vta3QUaWASkhL4iI9ISEowOoqIGEhFmEg98WjlQQQReLTyMDqKNDAdgzvyCI/QMbij0VFExEAqwkTqSVZOFjHEkJWTZXQUaWDs7exxww17O3ujo4iIgVSEidSTYynH+JzPtTSNnCc5NZl1rCM5NdnoKCJiIBVhIvWkc0hn5jCHziGdjY4iDUxhUSGppFJYVGh0FBExkIowkXpia2uLM87Y2toaHUUamJDAEKYznZDAEKOjiIiBVISJ1JNjKcf4gi90OVJERKqkIkyknpSWlZJDDqVlpUZHkQYmJi6GBSwgJi7G6CgiYiAVYSL1JCggiLu4i6CAIKOjSAPj2cqT/vTHs5VmzBdpylSEiYhcYa09WzOQgbT2bG10FBExkIowkXqyL3Yfz/M8+2L3GR1FGpj8gnwSSSS/IN/oKCJiIBVhIvXE28uboQzF28vb6CjSwMQnxrOc5cQnxhsdRUQMpCJMpJ54unvSj354umvcj1QW2iGUmcwktEOo0VFExEAqwkTqSW5eLoc5TG5ertFRpIFxdHDEE08cHRyNjiIiBtIskiL1JCEpgY/4iElJkwhFPR7yP8dPHGcta7nqv1cBcPDwQVq6tcTby5uCwgIOHz1McPtgnJ2cSUtPIys7y7LY96Ejh2jRvAVt27SlqLiIQ0cOERQQRHPn5pzMOElGZoZllYa4hDicHJ3w8/GjpLSEg4cPEtguEJcWLmScziAtPY2uYV2BM5dI7Wzt8Pf1p6ysjJi4GPx9/Wnp2pJTmadISUuh38B+uPm7GfOmiTRCKsIamKioKKKiosjLyzM6ilymjsEdeYRHLL88Rc5yaOlAsimZH2b9wFa2sohFdKMbQxnKcY6zhCVMZzptacuP/Mge9vAIjwDwL/5FEEFcx3VkkMGbvMld3EUAAWxhC7/yK3OYA8ASluCDD6MZTTbZLGIRk5hEMMFsYxs/8iNP8AQAy1mOK66MYxwFFLCABYxnPJ3pzE52so51PO/8PA8eeFCFmEgdMZnNZrPRIeR8sbGxTJs2jaVLlxIWFmZ0HKmF1OhUlkQsYfrO6fj08jE6jjQwh6MP05zmgHX0hO3/dT8Hnzyoz7NIHVJPmEg9SU5NZh3rGJU6Ch/0S0sqC+4VbPnvc4uaoKv/N8HvuZ+dc9sG9g+sdtuAvgGV2oYTfsG27fq0q9Q2Jy+HJ3mSYUnDVISJ1BENzBepJ4VFhaSSSmFRodFRRC5bM1MzbLChmUm/NkTqir5NIvUkJDCE6UwnJDDE6Cgily3AL4DbuZ0Av4BLNxaRalERJiIil1RRUUEZZVRUVBgdRaTRUBEmUk9i4mJYwAJi4mKMjiJy2fbF7mM+87UMl0gdUhEmUk88W3nSn/54ttKM+WL92rVtx03cRLu27S7dWESqRUWYSD1p7dmagQyktWdro6OIXLZWbq3oTndaubUyOopIo6EiTKSe5Bfkk0gi+QX5RkcRuWyZ2ZnsZS+Z2ZlGRxFpNFSEidST+MR4lrOc+MR4o6OIXLak40l8wRckHU8yOopIo6EiTKSehHYIZSYzCe2gdSPF+nUJ7cLjPE6X0C5GRxFpNFSEidQTRwdHPPHE0cHR6Cgil83GxgZ77LGxsTE6ikijoSJMpJ4cP3GcDWzg+InjRkcRuWyJyYl8zuckJicaHUWk0VARJlJP8vLziCeevPw8o6OIXLbyinKKKaa8otzoKCKNhoowkXoS2iGUB3lQY8KkUejg34HJTKaDfwejo4g0GirCRERERAygIkyknhw8fJBFLOLg4YNGRxG5bHsO7OFZnmXPgT1GRxFpNFSEidSTlm4t6UY3Wrq1NDqKyGXz9fbleq7H19vX6CgijYaKMJF64u3lzVCG4u3lbXQUkcvm0cqD3vTGo5WH0VFEGg0VYSL1pKCwgOMcp6CwwOgoIpctOzebgxwkOzfb6CgijYaKMJF6cvjoYZawhMNHDxsdReSyJSYn8hmfaZ4wkTqkIkykngS3D2Y60wluH2x0FJHL1im4E3/jb3QK7mR0FJFGw9boAE3F119/zUcffcTp06fx8vLin//8J76+GuBaE/t+3Uezoma0cmtFZnYmSceT6BrWlWbNmpGYnEiFuYLAdoHAmTu5fL198WjlQVZOFsdSjtE5pDO2trYcSzlGaVkpQQFBZ44buw9vL2883T3JzcslISmBjsEdsbezJzk1mcKiQkICQwCIiYvBs5UnrT1bk1+QT3xiPKEdQnF0cOT4iePk5edZ5gXbtWUXbrjh7ORszBsmUofs7OxoTnPs7OyMjiLSaKgIuwJ++eUX1qxZw4svvkhAQAApKSm4uroaHcuq7Pt1H+FXhXMd19GPfuxmN1/yJfOYhy22fMZnlFPORCYC8AzPMJrRRBBBDDF8zufMYQ7OOPMFX5BDDndxFwDP8zxDGUo/+nGYw3zERzzCI7jhxjrWkUoq05kOwAIW0J/+DGQgiSSynOXMZCaeeLKBDcQTz4M8CMDrvE532+7YuuprJtYv6XgSX/IlI4+PxKeXj9FxRBoF/Xa4AlauXMnMmTNp3749AH5+fsYGskItbVsyi1nc9PZNhPYJJTM7k/uO32fpCRuRPKJST1i/A/0q9YTdnXK3pSfsupTrKvWEXRV7VaWesElJkyw9YaNSR1XqCRsQN6BST9htibdZesJuOHFDpZ6wQYcH4dXOC69gL2PeNJE6VFxSzGlOU1xSbHQUkUajQRdhe/bs4cMPP2T//v2UlJTg5eXFddddx5QpU+rtnAUFBaxcuZK4uDji4uLIzs5m6tSp3H333VW2XbZsGRs3biQ3Nxd/f38mTpzI0KFDLW3Ky8uJi4sjPj6eF154ARsbG0aOHMnUqVMxmUz19joaGxsbG1rRitA+ofj08sEHHzrT2fL8uX+Z//mxDz50olO124YSWunxhdoCBA8IrnZbEWsW3D6Ye7hHYxxF6lCDLcJ++OEHnn/+ea655hqeeOIJnJycOH78OBkZGfV63uzsbNatW0dQUBADBw5k/fr1F2w7b948Dh48yH333Ue7du2Iiori2WefpaKigmHDhgGQmZlJeXk5v//+OytWrCAvL4/Zs2fj7e3NyJEj6/W1NCaJyYl8zueMSB6h4kZERBqFBlmEpaen88orrzBmzBj+7//+z7K9V69eF90vPz+fvXv30q9fvyqf37p1Kz179sTJyemCx/D29ubrr7/GZDKRlZV1wSLs119/ZceOHTz11FNERkZa8qWlpfH2229z7bXXYmNjg4ODAwATJ07ExcUFFxcXxowZw2+//aYirAbKK8opppjyinKjo4g0Sfti9/ECL3BV7FX6Q0ikjjTIKSrWr19PYWEhd9xxR433mzt3Lt9+++15z3311Vf8/e9/57vvvrvoMUwmU7UuE27ZsgUnJyeGDBlSafuoUaPIyMggJiYGABcXFzw9Pav/IqRKHfw7MJnJdPDvYHQUkSapjWcbhjCENp5tjI4i0mg0yJ6w3bt34+rqyrFjx3j88cdJSEjAxcWFQYMGcf/999O8efMq97vttttIT0/npZdeoqSkhLFjxwKwevVqFi9ezOTJk7nxxhvrJGNCQgIBAQHY2lZ+C4OCgizPh4eHAzBy5Eg+/fRTQkNDycvLY/369dx5551VHjcqKoqoqCjy8vLqJKeISF3w8vDiKq7Cy0M3mojUlQZZhGVkZFBUVMRTTz3FpEmT6NKlCwcPHuT9998nISGBN99884K9VTNnzsTBwYFXX32VkpISSkpKePfdd7nnnnvqdEB/dnY2bdu2PW+7i4sLADk5OZZtU6dOZdGiRYwbNw5nZ2dGjx7N8OHDqzxuZGQkkZGRxMbGMm3atDrLa+32HNjDszxLvwP9dClExAC5ebnEE09uXu55N6GISO00yCKsoqKCkpISpk6dyqRJkwDo2bMntra2LF68mJ07d9K7d+8L7j9t2jTs7e1ZvHgxAPfffz8TJkyo85zVvbvRzs6OOXPmMGfOnDrP0FT4evtyPdfj660JbkWMkJCUwId8yMSkiZXuIBaR2muQY8Lc3NwA6NOnT6XtZwfcHzp06JLHyMvLsxRJ9XFpz83Njezs8xeyzc3NBdBkrHXMo5UHvemNRysPo6OINElhQWHMYhZhQWFGRxFpNBpkEdahQ9WDr81mM3DxHiiz2cyiRYtYvXo1jz32GLNnz+ajjz7iX//6V51nTExMpKysrNL2I0eOABAYGFin52vqsnOzOchBsnPPL3xFpP452DvQilY42DsYHUWk0WiQRdjgwYMB2L59e6Xt27ZtA6BLly5V7ldRUcGCBQtYu3YtTz75JKNGjWLs2LHMnTuXNWvWsHDhQkshd7kGDhxIYWEhmzdvrrR9w4YNeHp60rlz5wvsKbWRmJzIZ3xGYnKi0VFEmqTk1GS+5muSU5ONjiLSaDTIMWF9+vThqquuYuXKlVRUVFgG5q9YsYKrrrqKbt26VbnfqlWr+P7773nuuecYOHCgZfvIkSOxt7dn/vz5BAQEMG7cuIuef9u2bRQVFVFQUABAYmIimzZtAs5cEnV0dKRfv3707t2bhQsXUlBQgK+vLz/++CPbt29n3rx52NjY1M2bIQB0Cu7E3/gbnYI7XbqxiNS5wqJCkkiisKjQ6CgijYbJXFddQ3WsuLiY5cuXExUVxalTp/D09GTYsGFMnToVe3v7C+4TFxdH165dq3x+7969dOzYETs7u4uee/z48aSlpVX53KpVq/DxOXNnUEFBAUuXLq20bNGkSZMqLVtUW2fvjly6dClhYRqDkRqdypKIJUzfOV13R4oYQN9BkbrXIHvCABwcHJgxYwYzZsyo0T4XKsAAy7xdl/L5559Xq52zszOzZs1i1qxZ1WovtZd0PIkv+ZKRx0fqF4CIiDQKDXJMmMi5ikuKOc1pikuKjY4i0iTFxMXwCq8QExdjdBSRRkNFmFiF4PbB3MM9BLcPNjqKSJPk0dKDv/AXPFpqmhiRuqIiTERELqmNVxsGM5g2Xlo7UqSuqAgTq7Avdh8v8AL7YvcZHUWkScovyOcgBzmVeQqA5ORk9u/fb3l+//79pKSkAFBYWEh0dDT5+fkApKamsnfvXkvbmJgYkpKSACgqKiI6Otoy0fWJEyfYvXu3pW1sbCyJiWempiktLSU6OtoyUXZ6ejp//PGHpW1cXBwJCQkAlJeXEx0dTWZmZt2+ESJ1SEWYWIU2nm0YwhDaeOqvcBEjZGZn8hmfsf2n7aRGp/L8488z5voxpEankhqdyg3X3cBL814iNTqVrWu3EhERwc///pnU6FReeeYVRkSOsLS9ZewtPPO3Z0iNTiX6u2giIiL4/tPv2fXdLm4deyuDBgyytJ1460T+PuvvpEansv+n/URERLB2xVpSo1NZ+upS+vXtZ2l796S7eeT+R0iNTiX+l/gzbT9ba/RbJ3JBDXaKiqZOU1RUptvjRYyVfSyb58Oex77IHjvsyCabYoppTWsATnISRxxxxZVSSkknHU88sceeXHIpoIA2tLG0dcABN9wsbT3woIQStrKVYIIJIgiADDKwxZaWtKScck5wAnfcccSRfPLJIceyoPgpTtGMZrSiFRVUkEYarZ1a8+jBR3HzdzPmjRO5iAY7RYXIn+Xm5RJPPLl5uZYfuCJy5bj5u/FE7BMUZBTU63lmM7vOjhX3WxwL719I8uFkFWHSIKkIE6uQkJTAh3zIxKSJhBJqdByRJsnN382qipk9B/bwFV9xf+r9dKHq5e5EjKQxYWIVwoLCmMUswoJ0aVZEqie8YzhP8iThHas3UbfIlaYiTKyCg70DrWiFg72D0VFExEqYTCZssMFkMhkdRaRKKsLEKiSnJvM1X5Ocmmx0FBGxEkeTjvIJn3A06ajRUUSqpCJMrEJhUSFJJFFYVGh0FBERkTqhIkysQkhgCDOYQUhgiNFRRMRKtG/Xnju4g/bt2hsdRaRKKsJERKRRMpvNlFOOpsOUhkpFmFiFmLgYXuEVYuJijI4iIlZi78G9/IN/sPfg3ks3FjGAijCxCh4tPfgLf8GjpYfRUUTESvj5+DGWsfj5+BkdRaRKKsLEKrTxasNgBtPGS2tHikj1uLd0pyc9cW/pbnQUkSqpCBOrkF+QTxJJ5BfkGx1FRKxEVk4W+9lPVk6W0VFEqqQiTKxCfGI87/Ee8YnxRkcREStxLOUYq1nNsZRjRkcRqZKKMLEKIYEhPMADmqJCRKqtS2gX5jKXLqFaN1IaJhVhYhWcHJ1oTWucHJ2MjiIiVsLGxgZHHLGxsTE6ikiVVISJVTh+4jjf8z3HTxw3OoqIWIljKcdYwxpdjpQGS0WYWIXcvFxiiSU3L9foKCJiJcrKy8gnn7LyMqOjiFRJRZhYhbCgMB7iIcKCwoyOIiJWooN/B6YwhQ7+HYyOIlIlFWEiIiIiBrA1OoBUFhUVRVRUFHl5eUZHaVBi42N5ndcZHD8Yn14+RscREStwdtmi/gf76+eGNEgqwhqYyMhIIiMjiY2NZdq0aUbHaTBcXVzpQhdcXVyNjiIiVqJtm7aMYARt27Q1OopIlXQ5UqyCT2sfIonEp7X+mhWR6vFo5UEf+uDRSmvOSsOkIkysQmFRIWmkUVhUaHQUEbESObk5HOIQObk5RkcRqZKKMLEKcQlxvMM7xCXEGR1FRKzE0eSjfMInHE0+anQUkSqpCBOrENw+mGlMI7h9sNFRRMRKdAruxGxm0ym4k9FRRKqkIkysgrOTM7744uzkbHQUEbESdnZ2uOCCnZ2d0VFEqqQiTKzCifQTbGQjJ9JPGB1FRKxEcmoyX/EVyanJRkcRqZKKMLEKp7NOE000p7NOGx1FRKxEUXER6aRTVFxkdBSRKqkIE6vQKeT/j+0I0dgOEame4PbB3Mu9GksqDZaKMBEREREDqAgTq3DoyCHe4i0OHTlkdBQRsRL7D+3nJV5i/6H9RkcRqZKKMLEKzZ2b0572NHdubnQUEbESrT1aM5CBtPZobXQUkSqpCBOr4OvtyyhG4evta3QUEbESXh5eXM3VeHl4GR1FpEoqwsQqFBUXcYpTustJRKotLz+PBBLIy88zOopIlVSEiVU4dOQQi1msMWEiUm1Hjh1hJSs5cuyI0VFEqqQiTKxCB/8OTGEKHfw7GB1FRKxEaIdQHuIhQjuEGh1FpEoqwsQqtGjegkACadG8hdFRRMRKODo44oEHjg6ORkcRqZKKMLEK6afS+YVfSD+VbnQUEbESKWkpfMM3pKSlGB1FpEoqwsQqnDx1ki1s4eSpk0ZHERErkV+Qz1GOkl+Qb3QUkSqpCBOr0CW0C3OZS5fQLkZHERErEdohlAd4QGPCpMFSESYiIiJigFoXYQkJCWzYsIH8/P918xYXF/Pqq69y8803M2HCBNatW1cnIUUOHz3MMpZx+Ohho6OIiJU4EHeAV3mVA3EHjI4iUqVaF2Effvgh7777Ls7OzpZtS5YsYe3atRQUFHDy5EleffVVdu7cWSdBpWlzdHDECy/d5SQi1ebe0p1e9MK9pbvRUUSqVOsi7MCBA/Ts2ROTyQRAWVkZ33zzDZ06deKrr75i1apVtGzZks8//7zOwkrT5efjx1jG4ufjZ3QUEbESbbzacA3X0MarjdFRRKpU6yLs9OnTtGnzvw92TEwMBQUFjB07FgcHBzw9Pbn66qs5fFiXj+TylZaWkksupaWlRkcREStRUFhACikUFBYYHUWkSrUuwmxsbCr9QtyzZw8mk4mePXtatrm5uZGdnX15CUWAA4f//9iOwxrbISLVc/joYZayVGNJpcGqdRHm7e3NH3/8YXm8adMmfHx88Pb2tmxLT0/Hzc3t8hKKAO392nMHd9Der73RUUTESoQEhjCDGYQEhhgdRaRKtrXdcfjw4bz99tvMmDEDW1tbDh8+zKRJkyq1OXToEH5+GsMjl8/VxZVQQnF1cTU6iohYCSdHJ7zxxsnRyegoIlWqdU/YzTffzJAhQzh48CB79+7lL3/5C5MnT7Y8f+DAAY4ePUqvXr3qJKg0bacyT/Ebv3Eq85TRUUTESqSeTCWKKFJPphodRaRKte4Js7e359lnnyU/Px+TyVRpqgoAHx8f3nvvvUqXJ0Vq6/iJ43zHd8w6MYuudDU6johYgZzcHPazn5zcHKOjiFSp1j1hu3bt4sSJEzRv3vy8AgygZcuWuLq66u5IqRPhHcN5kicJ7xhudBQRsRJhQWHMYhZhQWFGRxGpUq2LsL/+9a98++23F23zww8/8Ne//rW2pxARERFptGpdhJnN5mq1OTuZq8jlOHLsCCtZyZFjR4yOIiJWIjY+lsUsJjY+1ugoIlWq1wW8k5OTad68eX2eQpoIWxtbmtMcW5taD2MUkSbGpYULYYTh0sLF6CgiVarRb7SXXnqp0uMtW7aQlpZ2Xrvy8nLS09PZvXs3ffv2vbyEIoC/rz+3cAv+vv5GRxERK9G2TVuGM5y2bdoaHUWkSjUqwv48BsxkMnH48OELDrw3mUx07NiRmTNnXl7CRuLrr7/mo48+4vTp03h5efHPf/4TX19fo2NZjfLycoooory83OgoImIlCosKOclJCosKjY4iUqUaFWGrVq0Czoz1uv3227n11lu55ZZbzmvXrFkzXFxccHLSBHkAv/zyC2vWrOHFF18kICCAlJQUXF016WhN7D+0n5d4iSGHhuD3F00ALCKXFpcQx1u8xZiEMXS4qoPRcUTOU6Mi7M9zfs2dO5fQ0FDNA1YNK1euZObMmbRv3x5AqwjUgr+vP7dyqy5Hiki1BQUEcQ/3EBQQZHQUkSrVepTzyJEj6zLHRa1fv54FCxbg5OTEd999V6/nKigoYOXKlcTFxREXF0d2djZTp07l7rvvrrLtsmXL2LhxI7m5ufj7+zNx4kSGDh1qaVNeXk5cXBzx8fG88MIL2NjYMHLkSKZOnao7R2ugpWtLutCFlq4tjY4iIlaiuXNz2tGO5s66QUwapsu+1SwmJoaDBw+Sl5dHRUXFec+bTCamTJlS6+Onp6fz1ltv4enpSX5+/uVErZbs7GzWrVtHUFAQAwcOZP369RdsO2/ePA4ePMh9991Hu3btiIqK4tlnn6WiooJhw4YBkJmZSXl5Ob///jsrVqwgLy+P2bNn4+3tfUULWWt3Ous0f/AHp7NO44OP0XFExAqcSD/BZjYzNn2sfm5Ig1TrIiwnJ4fHH3+cffv2XXTOsMstwl599VW6deuGq6srmzdvvmjb/Px89u7dS79+/ap8fuvWrfTs2fOiY9W8vb35+uuvMZlMZGVlXbAI+/XXX9mxYwdPPfUUkZGRAPTq1Yu0tDTefvttrr32WmxsbHBwcABg4sSJuLi44OLiwpgxY/jtt99UhNVAcmoyX/EV96feTxe6GB1HRKzAqaxT/M7vnMrSmrPSMNW6CHvzzTfZu3cvPXr04LrrrqN169bY2NjUZTa+//57du3axQcffMCyZcsu2X79+vW8/fbbPPbYY+cVOF999RULFy7kkUce4cYbb7zgMap7iXDLli04OTkxZMiQSttHjRrFc889R0xMDOHh4bi4uODp6VmtY8qFadkiEampziGdeZRH6RzS2egoIlWqdRH266+/0qlTJ1577bV6GduUmZnJ4sWLue+++2jdunW19rnttttIT0/npZdeoqSkhLFjxwKwevVqFi9ezOTJky9agNVEQkICAQEB2NpWfguDgoIsz4eHnykYRo4cyaeffkpoaCh5eXmsX7+eO++8s8rjRkVFERUVRV5eXp3kbCxMJhM22GgcnYiINBq1LsJKSkro3r17vf1SXLhwIe3atatx0TRz5kwcHBx49dVXKSkpoaSkhHfffZd77rnnsi6Lnis7O5u2bc+fANDF5czMzDk5OZZtU6dOZdGiRYwbNw5nZ2dGjx7N8OHDqzxuZGQkkZGRxMbGMm3atDrLa+2OJh3lEz5heNJwfHppbIeIXFpcQhzv8A7XJFyjnxvSINW6CAsJCalytvy6sGnTJrZu3cp7771XqyJv2rRp2Nvbs3jxYgDuv/9+JkyYUNcxq53Nzs6OOXPmMGfOnDrPICIiVXNydKId7XBy1JyV0jDVeu3Iu+66i19++YX9+/fXZR4KCgp47bXXuPnmm/Hw8CA3N5fc3FzKysoAyM3NpbDw0rMf5+XlWYqk+ri05+bmRnZ29nnbc3NzATQZax1r3649d3AH7du1NzqKiFgJPx8/rud6/Hw0N6M0TLXuCUtPT6d///48/PDDDBs2jJCQkAsu1n3ddddV+7jZ2dmcPn2aVatWWWbo/7Prr7+eAQMG8MILL1S5v9ls5rXXXuOrr77iscceo7S0lIULF1JSUsKDDz5Y7RyX0qFDB6KioigrK6s0LuzIkSMABAYG1tm55My/aznlF70TV0Tkz4pLikkhhUO/HQIg/VQ6JzJO0DWsKwCHjx7Gwd6Bdm3bUVpayoHDBwjwC8DNxY1TmadISUuhW6duABw5dgSbZjYE+AVQXl7O/kP7ade2Ha3cWpGZnUnS8SS6hnWlWbNmJCYnUmGuILDdmd8Dew7swdfbF49WHmTlZHEs5RidQzpja2vLsZRjlJaVWiaU3Re7j8CwQIJ7BRvwjsmVVusi7MUXX8RkMmE2m/n222/59ttvz7s8ZzabMZlMNSrC3N3def3118/b/vHHH7Nr1y5efvll3Nzcqty3oqKCl19+mQ0bNvDkk09aJk21t7dnwYIFFBcX88gjj9TJOLaBAweybt06Nm/eXGly1g0bNuDp6Unnzrobpy7tPbiXf/APrj54NW0jtBiviFxanjmPpSzl9P2nCSecrWxlE5t4nMcBeI/3cMedm7iJfPJ5mZe5ndvpSEd2sIOv+ZqneRqAD/kQBxwYz3hKKOEFXmAc4wgnnP3sJ510BjAAW2z5jM8op5yJTATgGZ5hNKOJIIIYYvicz5nDHJxx5gu+IIcc7uIuAJ7neYbbDefjwx/j5l/17zppPGpdhM2dO7cuc1g4ODjQs2fP87Z/++232NjYVPncWatWreL777/nueeeY+DAgZbtI0eOxN7envnz5xMQEMC4ceMummHbtm0UFRVRUFAAQGJiIps2bQKgX79+ODo60q9fP3r37s3ChQspKCjA19eXH3/8ke3btzNv3rw6n66jqfPz8WMsY3VZQUSqrWv/ruzduhf7UntcWrhw06mbKvWEXXv02ko9YUMPD7X0hI3LHMfMtJmWnrDIY5GVesIGHRpk6Qk7fuQ4f3zyB4OnD6ZF6xaMSB5RqSes34F+lXrC7k6529ITdl3KdZV6wjpt6MTvT/xOQUaBirAmwGS2kus7L7zwAps3b77oskXFxcXExcXRtWvXKp/fu3cvHTt2xM7O7qLnGj9+/AVvOli1ahU+PmfusikoKGDp0qWVli2aNGlSpZ6x2jp7d+TSpUsJCwu77ONZu9ToVJZELGH6zum6y0lEGq1DPx/iH4P/wZObnyR0UKjRcaSeWU0R1tSoCKvswKYDPH3N0zy78Vk6DelkdBwRkXrx3cffcd2k69jw0QZGTBxhdBypZ7W+HHnixIlqt23Tpk1tTyMCwLGUY6xmNfek3EMnVISJSOPUMbgjj/AIHYM7Gh1FroBaF2Hjx4+v1gB3k8nExo0ba3saEQC6hHZhLnPpEqp1I0Wk8bK3s8cNN+zt7I2OIldArYuwESNGVFmE5eXlER8fT2pqKj169MDb2/uyAooA2NjY4IijbngQkUYtOTWZdaxjVOoofND418au1kXY448/fsHnzGYzn332GZ9++imPPfZYbU8hYnEs5RhrWMN1KddpYL6INFqFRYWkkkph0aUnJRfrV+sZ8y/GZDIxYcIEAgMDeeutt+rjFNLElJWXkU8+ZeVlRkcREak3IYEhTGc6IYEhRkeRK6BeirCzwsLCiI6Ors9TSBPRwb8DU5hCB/8ORkcRERGpE/VahKWkpFBeXl6fpxAREWk0YuJiWMACYuJijI4iV0CdF2EVFRWcOHGClStX8ssvv9Cli+5mk8t3dtmivQf3Gh1FRKTeeLbypD/98WzlaXQUuQJqPTB/8ODBF52iwmw206JFCx544IHankLEom2btoxgBG3baN1IEWm8Wnu2ZiADae3Z2ugocgXUugjr3r17lUWYyWTCxcWFsLAwRo0ahbu7+2UFFAHwaOVBH/rg0crD6CgiIvUmvyCfRBLJL8g3OopcAbUuwt544426zCFyUTm5ORziEDm5OZo7R0QarfjEeJaznNsSbyN4QLDRcaSe1evAfJG6cjT5KJ/wCUeTjxodRUSk3oR2CGUmMwntoMW7m4Ja94T92d69ezl8+DD5+fk4OzsTEhJCeHh4XRxaBIBOwZ2YzWw6BWvdSBFpvBwdHPHEE0cHR6OjyBVwWUVYTEwML7zwAsnJycCZwfhnx4n5+fkxd+5cunbtevkppcmzs7PDBRfs7OyMjiIiUm+OnzjOBjZww4kbNPSiCah1EXb06FEeeeQRioqK6NOnDz169MDd3Z3MzEz++OMPfvvtNx599FHeeecd2rdvX4eRpSlKTk3mK77Semoi0qjl5ecRTzx5+XlGR5EroNZF2IoVKygrK+OVV17hL3/5S6Xn7rjjDnbs2MFjjz3GihUreOaZZy43pzRxRcVFpJNOUXGR0VFEROpNaIdQHuRBjQlrImo9MP+PP/5g8ODB5xVgZ/Xu3ZvBgwfzxx9/1DqcyFnB7YO5l3sJbq+7hUREpHGodRGWn5+Pj8/FLwv5+PiQn6+5TkRERKrj4OGDLGIRBw8fNDqKXAG1LsI8PDzYv3//RdvExMTg4aHJNeXy7T+0n5d4if2HLv6ZExGxZi3dWtKNbrR0a2l0FLkCal2EDRgwgF27drFs2TKKi4srPVdcXMz777/PH3/8wYABAy47pEhrj/+/lIeHlvIQkcbL28uboQzF28vb6ChyBdR6YP6UKVPYunUrH330EWvXrqVTp060atWKzMxMDh48SFZWFm3btmXKlCl1mVeaKC8PL67marw8vIyOIiJSbwoKCzjOcQoKC4yOIldArXvCXF1deffdd7nuuusoKipi27ZtfPvtt2zbto2CggJGjhzJ22+/jaura13mlSYqLz+PBBJ027aINGqHjx5mCUs4fPSw0VHkCrisyVpdXV2ZO3cujz76KImJiRQUFODs7ExAQAC2tnUyGb8IAEeOHWElK5lwbAIhhBgdR0SkXgS3D2Y603UneBNR40rpgw8+oKioiLvvvttSaNna2hIUFGRpU1paytKlS3FycmLSpEl1l1aarNAOoTzEQ5o7R0QaNWcnZ9rSFmcnZ6OjyBVQo8uRO3bs4P3338fV1fWiPV12dna4urqybNkydu7cedkhRRwdHPHAQ+upiUijlpaexo/8SFp6mtFR5AqoURH23Xff4eLiws0333zJtjfddBMuLi58++23tQ4nclZKWgrf8A0paSlGRxERqTdZ2VnsYQ9Z2VlGR5EroEZF2L59+4iIiMDe3v6Sbe3t7enduzf79u2rdTiRs/IL8jnKUfILNPmviDReHYM78giP0DG4o9FR5AqoURGWkZFB27Ztq93ex8eHU6dO1TiUyLlCO4TyAA9oTJiIiDQaNSrCmjVrRllZWbXbl5WV0axZrWfBEBERaVIOHTnEv/gXh44cMjqKXAE1qpA8PDxISEiodvuEhAQ8PT1rHErkXAfiDvAqr3Ig7oDRUURE6k2L5i0IIogWzVsYHUWugBoVYd26dSM6OprU1NRLtk1NTSU6Opru3bvXOpzIWe4t3elFL9xbuhsdRUSk3rRt05bruI62bao/9EesV42KsJtuuomysjKeeuopsrKyLtguOzubp59+mvLycsaOHXu5GUVo49WGa7iGNl5tjI4iIlJvioqLyCCDouIio6PIFVCjyVrDwsK49dZbWb16NXfeeSdjx46lZ8+eeHmdWc8vIyODnTt3sm7dOrKyshg/fjxhYWH1ElyaloLCAlJI0XpqItKoHTpyiDd5kxuO3EBg/0Cj40g9q/GM+Q8++CD29vZ8+umnfPjhh3z44YeVnjebzTRr1oxJkyZx77331llQadoOHz3MUpYy7ug4gq4OuvQOIiJWKCggiLu4i6AA/ZxrCmpchJlMJqZPn87111/PN998w759+zh9+jQA7u7uhIeHM3LkSHx9fes8rDRdIYEhzGAGIYFaN1JEGq/mzs0JIIDmzs2NjiJXQK1X2fb19WXatGl1mUXkgpwcnfDGGydHJ6OjiIjUm5MZJ9nCFm7MuBEffIyOI/VMk3iJVUg9mUoUUaSevPSduSIi1iojM4Nf+ZWMzAyjo8gVoCJMrEJObg772U9Obo7RUURE6k3nkM7MYQ6dQzobHUWuABVhYhXCgsKYxSzCgnS3rYiINA4qwq6Qr7/+mgkTJjBixAgmTZpESkqK0ZFERKSBiUuIYwlLiEuIMzqKXAG1Hpgv1ffLL7+wZs0aXnzxRQICAkhJScHV1dXoWFYlNj6WxSxmcPxgfHppsKqINE5Ojk744KObkJoIFWFXwMqVK5k5cybt27cHwM/Pz9hAVsilhQthhOHSwsXoKCIi9cbPx4/RjMbPR78nmoIGWYTFxcWxdOlSjhw5QlZWFg4ODvj7+3PTTTcxfPjwej13QUEBK1euJC4ujri4OLKzs5k6dSp33313lW2XLVvGxo0byc3Nxd/fn4kTJzJ06FBLm/LycuLi4oiPj+eFF17AxsaGkSNHMnXqVEwmU72+lsakbZu2DGe41lMTkUatpLSEbLIpKS0xOopcAQ2yCMvLy6N169ZERkbi6elJUVERP/zwA/Pnzyc1NZUpU6bU27mzs7NZt24dQUFBDBw4kPXr11+w7bx58zh48CD33Xcf7dq1IyoqimeffZaKigqGDRsGQGZmJuXl5fz++++sWLGCvLw8Zs+ejbe3NyNHjqy319HYFBYVcpKTFBYVGh1FRKTeHDx8kEUsYsThEQT0DTA6jtSzBlmE9ezZk549e1badtVVV5Gamsq6desuWITl5+ezd+9e+vXrV+XzW7dupWfPnjg5Xfhau7e3N19//TUmk4msrKwLFmG//vorO3bs4KmnniIyMhKAXr16kZaWxttvv821116LjY0NDg4OAEycOBEXFxdcXFwYM2YMv/32m4qwGohLiOMt3mJMwhg6XNXB6DgiIvUisF0gk5hEYDutG9kUWNXdkW5ubtjY2Fzw+fXr1zN37ly+/fbb85776quv+Pvf/85333130XOYTKZqXSbcsmULTk5ODBkypNL2UaNGkZGRQUxMDAAuLi54enpe8nhycUEBQdzDPVpPTUQaNZcWLgQTrPGvTUSD7Ak7q6KigoqKCvLy8ti4cSO//fYbf/3rXy/Y/rbbbiM9PZ2XXnqJkpISxo4dC8Dq1atZvHgxkydP5sYbb6yTbAkJCQQEBGBrW/ktDAoKsjwfHh4OwMiRI/n0008JDQ0lLy+P9evXc+edd1Z53KioKKKiosjLy6uTnI1Fc+fmtKOd1lMTkUYt43QG29jGzadv1rJFTUCDLsIWLlzI2rVrAbCzs2PWrFmWwupCZs6ciYODA6+++iolJSWUlJTw7rvvcs8999TpWLLs7Gzatj1/kLiLy5m/XnJy/jez+9SpU1m0aBHjxo3D2dmZ0aNHX/AGg8jISCIjI4mNjdXanH9yIv0Em9nM2PSx+sEkIo1WWnoaP/IjaelphBNudBypZw26CJs8eTI33HADmZmZbN26lddee43CwkImTJhw0f2mTZuGvb09ixcvBuD++++/5D61Ud27G+3s7JgzZw5z5syp8wxNxamsU/zO75zKOmV0FBGRetM1rCtP8ARdw7oaHUWugAZdhLVp04Y2bdoA0L9/fwCWLFnCyJEjadmy5UX3zcvLw2QyYTab6+XSnpubG9nZ2edtz83NBdBkrHWsc0hnHuVRracmIiKNhlUNzO/UqRPl5eUcP378gm3MZjOLFi1i9erVPPbYY8yePZuPPvqIf/3rX3WapUOHDiQmJlJWVlZp+5EjRwAIDNSdLSIiUjPxifEsZznxifFGR5ErwKqKsD/++INmzZpVORYLzgzkX7BgAWvXruXJJ59k1KhRjB07lrlz57JmzRoWLlyI2WyukywDBw6ksLCQzZs3V9q+YcMGPD096dxZPTZ1KS4hjnd4R+upiUijZmdrhyuu2NnaGR1FroAGeTny5ZdfxtnZmU6dOuHu7k5WVhabNm3ip59+YsKECRe8FLlq1Sq+//57nnvuOQYOHGjZPnLkSOzt7Zk/fz4BAQGMGzfuoufftm0bRUVFFBQUAJCYmMimTZsA6NevH46OjvTr14/evXuzcOFCCgoK8PX15ccff2T79u3MmzfvolNpSM05OTrRjnZaT01EGjV/X3/GMQ5/X3+jo8gV0CCLsC5duvDNN9+wYcMG8vLycHJyIjg4mHnz5l102aKbb76Z8PBwunY9f0Dj0KFDad26NR07drzk+RcuXEhaWprl8caNG9m4cSNwptDz8Tlzd978+fNZunQp7733nmXZoqeffrrSskVSN/x8/Lie67Wemog0amVlZRRQcN5QF2mcGmQRNmrUKEaNGlXj/RwcHKoswM46O2/XpXz++efVaufs7MysWbOYNWtWtdpL7RWXFJNJJsUlxUZHERGpNzFxMSxgAdfGXUu7Pu2MjiP1zKrGhEnTFRsfy+u8Tmx8rNFRRETqjb+vP+MZr8uRTYSKMLEKge0CmcxkracmIo1aS9eWdKYzLV1bGh1FrgAVYWIVXFq4EESQ1lMTkUbtVOYpdrKTU5mamLopUBEmViH9VDpb2Ur6qXSjo4iI1JuUtBTWsY6UtBSjo8gVoCJMrMKJjBNsYhMnMk4YHUVEpN5069SNZ3gGlxYulsm/KyoqiI6O5vTp0wCcPn2a6OhoysvLgTOThMfF/W8OxejoaNLTz/zBmpWVRXR0NKWlpQAcPXqU2Nj/ja3dtWsXJ06c+bmak5NDdHQ0xcVnboA6duwYBw4csLTds2cPqampwJlVaaKjoyksLAQgOTmZY8eO1f0b0sipCBOr0DWsK4/zuNZTE5EmYe7Tc5l570xSo1M59tsxIiIi+OStT0iNTuWzdz4jIiKCo9uOkhqdyqzps5h25zRSo1NJjU6lT58+LH9tOanRqfxn+X+IiIgg9udYUqNTeeyhx5h822RL24EDBvL2P98mNTqVbz/+loiICHb/sJvU6FSeevQpxt803tJ22LXDeO0fr5EancrGNRuJiIhg+/rtpEan8vhfH2foNUMtBZ1Uj8lcV1PIS52KjY1l2rRpLF26lLCwMKPjGC41OpUlEUuYvnM6Pr18jI4jIlIvso9l869O/yKtIA0TJtxxp4IK0kijJS1xxpkCCsgiC2+8aUYzTnMaM2Y88ADgOMdxw43mNKeQQjLJpA1tsMGGTDIppxxPPAFIJRUXXGhBC4oo4jSnaU1rbLEliyxKKcULLwDSSKM5zXHBhWKKOcUpvPDCDjuyycbJyYk5B+fg5u9m2PtnbRrkPGEi5zp89DDv8R7XHr1WRZiINFpu/m48eOBBCjIKjI5SI+kH0vly0pcUZBSoCKsBFWFiFRzsHXDHHQd7B6OjiIjUKzd/N6srZM7O5Tg4frD+UK4BjQkTq9CubTtu4ibatdUM0iIiDY2riytd6IKri6vRUayKijCxCqWlpeSTb7nDR0REGg6f1j5EEolPa/WC1YSKMLEKBw4f4GVe5sDhA5duLCIiV1RhUSFppFFYVGh0FKuiIkysQoBfALdzOwF+AUZHERGRc8QlxPEO7xCXEHfpxmKhIkysgpuLGx3piJuLdQ1WFRFpCoLbBzONaQS3DzY6ilVRESZW4VTmKXawQ+upiYg0QM5Ozvjii7OTs9FRrIqKMLEKKWkpfM3XWk9NRKQBOpF+go1s5ES6ZsyvCRVhYhW6derG0zxNt07djI4iIiLnOJ11mmiiOZ112ugoVkVFmIiIiFyWTiGdmM1sOoV0MjqKVVERJlbhyLEjfMiHHDl2xOgoIiIidUJFmFgFm2Y2OOCATTMbo6OIiMg5Dh05xFu8xaEjh4yOYlVUhIlVCPALYDzjNU+YiEgD1Ny5Oe1pT3Pn5kZHsSoqwsQqlJeXU0IJ5eXlRkcREZFz+Hr7MopR+Hr7Gh3FqqgIE6uw/9B+XuAF9h/ab3QUERE5R1FxEac4RVFxkdFRrIqKMLEK7dq2YxzjaNe2ndFRRETkHIeOHGIxizUmrIZUhIlVaOXWinDCaeXWyugoIiJyjg7+HZjCFDr4dzA6ilVRESZWITM7k93sJjM70+goIiJyjhbNWxBIIC2atzA6ilVRESZWIel4El/yJUnHk4yOIiIi50g/lc4v/EL6qXSjo1gVFWFiFbqGdWUe8+ga1tXoKCIico6Tp06yhS2cPHXS6ChWRUWYWIVmzZphiy3NmukjKyLS0HQJ7cJc5tIltIvRUayKfqOJVUhMTuQzPiMxOdHoKCIiInVCRZhYhQpzBeWUU2GuMDqKiIic4/DRwyxjGYePHjY6ilVRESZWIbBdIBOZSGC7QKOjiIjIORwdHPHCC0cHR6OjWBUVYSIiInJZ/Hz8GMtY/Hz8jI5iVVSEiVXYc2APz/AMew7sMTqKiIico7S0lFxyKS0tNTqKVVERJlbB19uX0YzW4rAiIg3QgcMHeJVXOXD4gNFRrIqKMLEKHq08iCACj1YeRkcREZFztPdrzx3cQXu/9kZHsSq2RgcQY2Qfy6Ygo8DoGNUWvyOeGGLIysnCBx+j44iIyJ+4urgSSiiuLq5GR7EqKsKaoOxj2fyr07/IK8jjFKfwwgs77Mgmm2KKaU1rAE5wAieccMWVEkrIIANPPLHHnhxyKKSQNrQB4CQnccABN9wopZR00vHAAwccyCWXfPLxxhuAdNKxw46WtKSMMk5yEnfcccSRPPLIJddSaGWQgQ02FFLI53zOA/kP0IlOxrxxIiJSpVOZp/iN3xiXOU5/KNeALkc2QQUZBZQWlBL6ZChLWMKIL0Ywfed08ifmE9Uhiuk7pzN953TW+ayj/J5ypu+czqCPBrGEJQz6aBDTd06n/J5y1vmss7SN6hBF/sR8pu+czogvRrCEJfRZ1ofpO6dj/6A9n7f83NL2v53/S8bNGUzfOZ0bv7mRJSyh2+JuTN85HddHXfnA8QNL250RO0kamcS87fNI2J3A1SOuNvrtExGRcxw/cZzv+I7jJ44bHcWqmMxms9noEHK+2NhYpk2bxtKlSwkLC6vTY+/+fjezR8zmuf88h2M7Rzp37oyjoyPJycnk5OTQuXNnAPbt24e7uztt27aloKCAgwcP0rFjR5ydnTl+/DinT5+ma9czaznGxMTg6uqKn58fRUVFxMTEEBoaSosWLUhLS+PkyZN069YNgIMHD+Ls7Iy/vz8lJSXs27eP4OBgXF1dOXnyJMePH6dHjx4AHDp0CDs7OwIDNT+YiEhDlRqdypKIJUzfOR2fXuoJqy5djmyCMjIz+JVfKSwq5KpeV1m2+/lVnt/lbIEF4OzsTK9evSyP27ZtS9u2bS2PzxZuAI6OjpXaent74+3tbXncsWNHy3/b29tXatu6dWtat25teRwaGlrj1yciImINdDmyCeoc0pk5zKFzSOdLNxYREbmEI8eOsJKVHDl2xOgoVkVFmIiIiFwWWxtbmtMcWxtdYKsJFWFNUFxCHEtYQlxCnNFRRESkEfD39ecWbsHf19/oKFZFRVgT5OTohA8+ODk6GR1FREQagfLycoooory83OgoVkVFWBPk5+PHaEZroVUREakT+w/t5yVeYv+h/UZHsSoqwpqgktISssmmpLTE6CgiItII+Pv6cyu36nJkDakIa4IOHj7IIhZx8PBBo6OIiEgj0NK1JV3oQkvXlkZHsSoqwpqgwHaBTGISge00AaqIiFy+01mn+YM/OJ112ugoVkVFWBPk0sKFYIJxaeFidBQREWkEklOT+YqvSE5NNjqKVVER1gRlnM5gG9vIOJ1hdBQREWkEwjuG8yRPEt4x3OgoVkVFWBOUlp7Gj/xIWnqa0VFERKQRMJlM2GCDyWQyOopVURHWBHUN68oTPEHXsK6XbiwiInIJR5OO8gmfcDTpqNFRrIqKMBEREREDqAhrguIT41nOcuIT442OIiIijUD7du25gzto36690VGsioqwJsjO1g5XXLGztTM6ioiINAJms5lyyjGbzUZHsSoqwpogf19/xjFOMxuLiEid2HtwL//gH+w9uNfoKFZFRVgTVFZWRgEFlJWVGR1FREQaAT8fP8YyVmsS15CKsCYoJi6GBSwgJi7G6CgiItIIuLd0pyc9cW/pbnQUq6IirAny9/VnPON1OVJEROpEVk4W+9lPVk6W0VGsioqwJqila0s601kLrYqISJ04lnKM1azmWMoxo6NYFRVhV8jXX3/NhAkTGDFiBJMmTSIlJcWwLKcyT7GTnZzKPGVYBhERaTy6hHZhLnPpEtrF6ChWxdboAE3BL7/8wpo1a3jxxRcJCAggJSUFV1dXw/KkpKWwjnU8mPYgXdGs+SIicnlsbGxwxBEbGxujo1gV9YRdAStXrmTmzJm0b98ek8mEn58fLi4uhuXp1qkbz/AM3Tp1MyyDiIg0HsdSjrGGNbocWUMNsids586d/PDDD+zbt4+TJ0/SokULwsLCmDp1KmFhYfV67oKCAlauXElcXBxxcXFkZ2czdepU7r777irbLlu2jI0bN5Kbm4u/vz8TJ05k6NChljbl5eXExcURHx/PCy+8gI2NDSNHjmTq1Kla6FRERBqFsvIy8smnrFxTH9VEg+wJ++qrr0hNTeWWW25hwYIFPPzww2RlZTFjxgx27txZr+fOzs5m3bp1lJaWMnDgwIu2nTdvHhs2bGDq1KksWLCAjh078uyzz/LDDz9Y2mRmZlJeXs7vv//OihUreP311/nhhx/YsGFDvb6Oi0lISuBjPiYhKcGwDCIi0nh08O/AFKbQwb+D0VGsSoPsCXvkkUdo1apVpW19+vThjjvu4KOPPiIiIqLK/fLz89m7dy/9+vWr8vmtW7fSs2dPnJycLnhub29vvv76a0wmE1lZWaxfv77Kdr/++is7duzgqaeeIjIyEoBevXqRlpbG22+/zbXXXouNjQ0ODg4ATJw4ERcXF1xcXBgzZgy//fYbI0eOvOR7UR+amZphgw3NTA2yBhcREWkSGuRv4XMLMABnZ2cCAgI4efLkBfdbv349c+fO5dtvvz3vua+++oq///3vfPfddxc9t8lkqtZlwi1btuDk5MSQIUMqbR81ahQZGRnExJyZCNXFxQVPT89LHu9KCvAL4HZuJ8AvwOgoIiLSCGjZotppkD1hVcnLyyMuLo6ePXtesM1tt91Geno6L730EiUlJYwdOxaA1atXs3jxYiZPnsyNN95YJ3kSEhIICAjA1rbyWxgUFGR5Pjw8HICRI0fy6aefEhoaSl5eHuvXr+fOO++s8rhRUVFERUWRl5dXJzmrUlFRQRllVFRU1Ns5RESk6Wjbpi0jGEHbNm2NjmJVrKYIW7RoEYWFhRcsXs6aOXMmDg4OvPrqq5SUlFBSUsK7777LPffcw5QpU+osT3Z2Nm3bnv9hO3vXY05OjmXb1KlTWbRoEePGjcPZ2ZnRo0czfPjwKo8bGRlJZGQksbGxTJs2rc7y/tm+2H3MZz4DYgfg29u3Xs4hIiJNh0crD/rQB49WHkZHsSpWUYQtW7aMH374gVmzZlXr7shp06Zhb2/P4sWLAbj//vuZMGFCneeq7t2NdnZ2zJkzhzlz5tR5htpo17YdN3ET7dq2MzqKiIg0Ajm5ORziEDm5OfjgY3Qcq9Egx4T92fLly/nggw+YNm0a48aNq/Z+eXl5liKpPi7tubm5kZ2dfd723NxcAEMnY72UVm6t6E53WrmdP/ZORESkpo4mH+UTPuFo8lGjo1iVBt0Ttnz5cpYvX85dd93F5MmTq7WP2Wzmtdde46uvvuKxxx6jtLSUhQsXUlJSwoMPPlhn2Tp06EBUVBRlZWWVxoUdOXIEgMDAwDo7V13LzM5kL3vJzM7UXywiInLZOgV3Yjaz6RTcyegoVqXB9oStXLmS5cuXc+edd3LXXXdVa5+KigoWLFjA2rVrefLJJxk1ahRjx45l7ty5rFmzhoULF2I2m+sk38CBAyksLGTz5s2Vtm/YsAFPT086d+5cJ+epD0nHk/iCL0g6nmR0FBERaQTs7OxwwQU7Ozujo1iVBtkT9tlnn/Hee+/Rt29f+vfvz/79+ys936VL1QuErlq1iu+//57nnnuu0kSrI0eOxN7envnz5xMQEHDJy5rbtm2jqKiIgoICABITE9m0aRMA/fr1w9HRkX79+tG7d28WLlxIQUEBvr6+/Pjjj2zfvp158+Y16PWzuoR24XEe10KrIiJSJ5JTk/mKrxiVOkpXWGqgQRZhW7duBWD79u1s3779vOd//vnnKve7+eabCQ8Pp2vX8xelHjp0KK1bt6Zjx46XPP/ChQtJS0uzPN64cSMbN24EzhR6Pj5nPmDz589n6dKlvPfee5Zli55++ulKyxY1RDY2Nthj36ALRRERsR5FxUWkk05RcZHRUayKyVxX1+ekTp2domLp0qV1vl7mtrXbuGfsPbz31Xv0G1P16gIiIiLVlRqdypKIJUzfOR2fXuoJq64GOyZM6k95RTnFFFNeUW50FBERkSZLRVgT1MG/A5OZrIVWRUSkTuw/tJ+XeIn9h/ZfurFYqAgTERGRy9LaozUDGUhrj9ZGR7EqKsKaoD0H9vAsz7LnwB6jo4iISCPg5eHF1VyNl4eX0VGsioqwJsjX25fruR5fb60bKSIily8vP48EEsjLr/sVahozFWFNkEcrD3rTWwutiohInThy7AgrWcmRY0eMjmJVVIQ1Qdm52RzkINm55699KSIiUlOhHUJ5iIcI7RBqdBSroiKsCUpMTuQzPiMxOdHoKCIi0gg4OjjigQeODo5GR7EqKsKaoE7Bnfgbf9NCqyIiUidS0lL4hm9ISUsxOopVURHWBNnZ2dGc5lpoVURE6kR+QT5HOUp+Qb7RUayKirAmKOl4El/yJUnHk4yOIiIijUBoh1Ae4AGNCashFWFNUHFJMac5TXFJsdFRREREmixbowNI7ZSXl1NaWlqrfQMCAng44GECAgIoKtKK9yLScNnZ2WFjY2N0DLmEA3EHeJVXGRg3UAt414CKMCuUl5dHcnIyZrO5VvuX25Zz9TtXk2ObQ36Crt+LSMNlMpnw8/OjRYsWRkeRi3Bv6U4veuHe0t3oKFZFRZiVKS8vJzk5GWdnZ7y8vDCZTDU+Rl5mHsWlxXi39qZFK/1gE5GGyWw2k56eTnJyMiEhIeoRa8DaeLXhGq6hjVcbo6NYFRVhVqa0tBSz2YyXlxdOTk61OkZF8wpccMG5uTOOjprTRUQaLi8vL44ePUppaamKsAasoLCAFFIoKCwwOopV0cB8K1WbHrCzbG1saUELbG1Ug4tIw3Y5P+vkyjl89DBLWcrho4eNjmJVVIQ1QRUVFRRTTEVFhdFRRESkEQgJDGEGMwgJDDE6ilVREdYEFZcUc4pTdTZFRfv27enYsSM9evSgU6dO3HHHHeTn137A/4oVKzh06NAFn9+2bRvh4eH07NmT7777jlGjRhEfH1+tfRuCZ555hkcffbROj9m+fXv27dtXq3137NjBxIkTAcjKymLBggWVnh8yZAjr16+/7IyN0dGjR/H09Kyz402dOpU333yzzo5nTf92l/MZFuM5OTrhjTdOjrUbJtNUqQhrghwdHGlN6zpd42vNmjXs2rWLmJgYcnJyWLFiRa2PdalCauXKldx555388ccfjBgxgm+++YagoKBq7Svn6927Nx9//DFQdRFWW2VlZXVyHDGW/h2lOlJPphJFFKknU42OYlVUhFm50oJSUqNTa/T/E7tPkHUwixO7T1yybWlBzeYiKy4uJj8/n1atWlm2vfLKK/Tp04devXoxatQokpLOzNS/bt06unXrRo8ePejatStfffUVy5YtY8eOHTz88MP06NGDb775ptLxX3rpJVatWsXrr79Ojx49yMrKsvwFfal9AQ4cOMCIESPo1q0b3bp145133gHg8OHDREZGWvL85z//sexjMpn45z//Sd++fQkMDGT58uUAfPTRR4wePdrSzmw2ExgYyJ49ewBYsGABXbp0ITw8nIkTJ5KdnX1entDQUHbu3Gl5vHz5cm6++WYA0tLSGD9+PH369KFbt2489dRTlnZbtmwhPDycPn36MHPmzAtOV9K/f39+/fVXAP7v//4PPz8/y3P+/v4kJSWxadMmevfuDcCMGTPIysqiR48elm1nzzdw4ECCgoKYMWNGlec62yv03HPPMXDgQBYvXnzB11BRUcHMmTPp2LEj3bt3JyIigqKiIssxHn30Ufr27UuXLl346aefLOf48MMPCQ8Pp1u3blx//fWkpJxZp27FihWMGDGCCRMmEB4eTu/evTly5AgAcXFxXH311XTv3p3w8HDmzZsHnLnJZe7cufTp04cePXpw++23k5WVdcHXdaFMf2YymcjLy7M89vT05OjRoxd8vVXZvXs3Q4cOpWPHjkydOpXi4jM91p988gl9+/alZ8+e532+L/S5/rM1a9bQo0cPS6/xE088QXBwMH379uVvf/ub5d9706ZN9OjRg4cffpj+/fvz5ZdfsmPHDvr370+3bt3o06cPv/zyS6X35qy8vLxKY7gu9N2B6n+GxTrk5Oawn/3k5OYYHcW6mKVBOnjwoHngwIHmgwcPVtpeWFhojomJMRcWFprNZrP5+M7j5md4pt7+f3zn8UtmDQgIMIeFhZm7d+9udnV1NV9zzTXm0tJSs9lsNn/88cfmadOmmcvKysxms9n8wQcfmMeMGWM2m83mbt26mX/55Rez2Ww2l5eXmzMzM81ms9k8ePBg87p16y54vilTppgXL15c6fx79+695L6lpaXmkJAQ86pVqyzb0tPTzWaz2dynTx/zu+++azabzeZDhw6Z3d3dzceOHTObzWYzYH7ttdfMZrPZHBMTY27RooW5tLTUXFBQYPbw8DCnpqaazWaz+aeffjL36tXLbDabzd988425Y8eOltc0bdo08wMPPGA2m83mp59+2jx79myz2Ww2P//88+YHH3zQkmfQoEHmtWvXms1ms3n48OHmzZs3W7KPGDHC/O9//9tcVFRkbtu2rXnjxo1ms9lsXrVqlRmwvAd/Nm/ePPOzzz5rNpvN5p49e5r79OljPnDggPngwYPm0NBQs9lsNm/cuNEcERFhNpvN5oSEBLOHh0elYwwePNg8btw4c1lZmbmgoMDcvn1789atW887V0JCghkwf/zxx5ZtF3oN0dHR5o4dO5rLy8vNZrPZnJWVZS4vL7ccY8WKFWaz2Wz+9ddfzW3atDHn5eWZ9+7da27Tpo05OTnZbDabzfPnzzePGjXKbDabzcuXLze7ubmZjx49ajabzebHHnvMPH36dLPZbDY//PDD5ueff96S6dSpU5b3/h//+Idl+3PPPWd++OGHL/i6qsp07vsFmHNzcy2PPTw8zAkJCRd8veeaMmWKOTw83Jybm2suKyszjx492vzPf/7TbDabzRkZGeaKigpLJh8fH3NJSclFP9dnvw+vvPKKedCgQZbXvnbtWnO3bt3MeXl55vLycvNNN91k+Qxs3LjRbDKZzFu2bDGbzWZzcXGxuV27duYNGzaYzWazecuWLWZvb+8qX39ubq75z79WLvTdqcln+NyfedIwnf1dVJ3fGfI/uj3Oynl29GT6zuk12ic/J5+U5BR8/Xxp7tr8ksevjjVr1tC1a1fKysq47777eOyxx3j11Vf5z3/+w44dO4iIiADOzHN29jbzoUOH8te//pVbbrmF4cOH06NHjxq9jpqKjY2lrKyM8ePHW7Z5enqSm5vLrl27uOeeewAICQlhwIAB/Pe//2XChAkAljFTnTp1wtbWlrS0NPz8/Bg3bhwfffQRjz76KMuXL+euu+4CICoqiokTJ9KyZUsA7r//fm6//fbzMk2ZMoWePXuycOFCkpKSOHToECNHjiQ/P5+ffvqJEydOWNrm5eVx8OBBgoKCcHZ2ZsiQIQCMHz+e6dOr/gxERkby5JNPMmPGDOzs7Bg/fjxRUVGYTCYiIyOr/d7dfvvt2NjY4OTkZOlN6d+//3ntHB0dLe/ZxV7DtddeS2lpKXfffTfXXHMN119/Pc2anemYt7e3Z/LkyQD069cPb29vdu/ezc6dO7nhhhvw9fUF4IEHHmD+/PmWHpQBAwYQEBAAnOkBXLx4MQCDBg3ib3/7G/n5+QwePNjyuv/zn/+Qk5PDmjVrACgpKbFc1j7XhTK1bdu2Wu9fhw4dLvh6z3XbbbdZJia9++67eeutt5gzZw4JCQlMnDiR5ORkbG1tycjIIDExkeLi4io/12c988wztG3blu+//x4HBwcANm7cyPjx42ne/Mz3f8qUKfzjH/+w7BMaGsqAAQOAM98be3t7RowYYXmfW7duzZ49e/DxufTM6FV9d06fPl3tz7BIY6YizMrZOdvVeImIkvwSnFs449nJE/vm9nWax9bWlnHjxvG3v/2NV199FbPZzLx587j77rvPa7tw4UL279/Pxo0bmTJlChMnTmTOnDl1mqc6zv4SP/dW+D8//vN8ajY2NpZxMnfddRf33nsv06dPZ/369bz22muWY17seGf5+vrSq1cv1q5dy+7du5k8eTK2trYUFhZiMpn4/fffsbOzq7TP7t27q/3a+vfvz759+1i7di1Dhw4lMjKSZ555BoA777yz2se50Os/V/PmzS2vs6Ki4oKvAWD//v1s3ryZjRs38ve//52ff/4ZW9uqfySZTKbz3tNz388LZRw3bhxXXXUVP/zwA2+++SavvfYa33zzDWazmbfeeotrr722mu/C+ZnOZWNjQ3l5ueXx2UuObm5uVb7e4ODgap/n9ttv55VXXuHGG28EwN3dnaKioktO4dC/f3++++47EhIS6NixI1D15/PP/jw7/YXamkwmbG1tq3y9f1bVv4tZlx4bndj4WBazmMHxg7VsUQ1oTJjUuZ9++omwsDAAxowZw1tvvcXp06eBM+Nw/vjjDwAOHjxIly5dmDlzJvfffz/btm0DwNXVtcrxU9VxsX3DwsKwt7dn9erVlm0ZGRm4urrSo0cPVq5cCUB8fDy//PILV1999SXP169fPyoqKpgzZw7Dhg3D3f3Mkh3Dhg3js88+Izc3F4AlS5ZcsOfp7rvv5v333+eDDz5g6tSpALi4uDBw4EBeeuklS7vjx4+TnJxMx44dKSws5OeffwbO9EJe6DXb29vTt29f5s+fbxnzFhMTw88//8w111xzXntXV1cKCgrqZDD2xV5Deno6+fn5DB8+nBdeeIH27dsTExMDnOmROnujwG+//UZaWhrdunVj6NChfPPNN6SlpQHwzjvvMHTo0EsWIXFxcbRu3Zo777yTBQsWWD5nY8aMYeHChRQUnJlcsqCggP3791d5jAtlOldQUBDbt28H4N///rflLuGLvd5zrV69mvz8fMrLy1m+fLnlc5OZmUn79u2BM+MRMzMzgQt/rs8aMWIEy5Yt44YbbmDXrl0AXHPNNaxevZqCggIqKir48MMPL/j+dezYkeLiYss4uK1bt3Ly5EnCw8Px9vamrKyM2NhYAD744IMLHufcY1b3MyzWwaWFC2GE4dLCxegoVkVFWBNUVFxEGmkUFdfd4t233HILPXr0oEuXLhw4cIDXX38dgMmTJzNp0iSGDBlC9+7d6dGjBxs3bgTg73//O126dKFnz558+OGHlh6a6dOn89xzz11wcP3FXGxfW1tbvvrqK5YsWWIZ3P3FF18A8PHHH/PRRx/RvXt3xo0bx7Jly2jXrl21znnXXXfx7rvvWi5FAowcOZLJkyfTv39/wsPDycnJ4fnnn69y/7Fjx7J9+3Z8fHzo3LmzZfvHH3/MgQMHCA8PJzw8nHHjxnHq1CkcHBz49NNPefDBB+nTpw+//fYb/v7+F8w3bNgwTp48ydVXX43JZCIiIoLg4GDLpdI/c3d3Z+LEiZbB7ZfrQq8hKSmJYcOG0a1bN8LDw+natSsjR44EwMPDg8OHD9O3b1/uuusuPvnkE5o3b06XLl148cUXGT58ON26dWPLli28++67l8ywevVqunXrRs+ePbn99tstg9bnzp1Ljx496Nu3L926daNfv36WIuVcF8p0rtdee40HH3yQq6++mujoaDw8PAAu+nrPNWjQIG688Ua6dOlCq1ateOihhwB4/fXXuemmmxgwYAC7d++2/Jtf7HP952N++umnjBs3jl9//ZUxY8YwYsQIunfvzjXXXENQUBBubm5V5rG3t+eLL77giSeeoFu3bvz1r39l9erVNG/eHFtbW9544w1GjhzJoEGDLDcRXEpNP8PS8LVt05bhDKdtm+pdopczTGb1CzdIsbGxTJs2jaVLl1p6leBMd39CQgKBgYG1XnKoILuApLgk2oW0w9nNua4ii1y2o0eP0rt370o9OUZriJnqQm5uLi4uLlRUVHDvvffStm1b5s+fb3Ss89TFzzypf0e2HuHVq19l9i+z6XBVB6PjWA31hDVBtra2uOBywfE3ItL43XnnnfTs2ZPOnTtTVFRkyHhMaTziEuJ4i7eIS4gzOopV0W/hJqiiooISSrRskTQ47du3b3A9Tg0xU1348ssvjY4gjUhQQBD3cA9BAVXfYSxVU09YE1RcUkwGGXW2bJGIiDRtzZ2b0452NHe++LRHUpmKsCbI0cERL7zqdNkiERFpuk6kn2AzmzmRfuLSjcVCRVgTZDKZsMPukrf2i4iIVMeprFP8zu+cyjpldBSroiKsCSotKyWHHErLarYupIiISFU6h3TmUR6lc0jnSzcWCxVhTVBFeQVFFFFRfvkD83v06EGPHj3o3Lkztra2lse33XZble137drF559/Xq1j/3lhaSNt2rSJ77//3ugYIiLSyKgIa4IcHBxoTWvLOnKXY9euXezatYtvvvmGli1bWh6vWrXqgu2rW4Q1FCrCREQuLi4hjnd4h7iEOIqLi4mOjiYnJweAEydOVJoIOTY2lqNHjwJnVlGJjo4mKysLOLO6RHR09P+OGxfHkSNHgDNrD0dHR1tWYDl9+jTR0dGWO/2PHDnC4cOHLftGR0db7mzOzMwkOjrashpIQkIChw4dqvs3ooZUhEm9+PDDDy2zd19//fWkpKRw8uRJnnrqKaKioujRowczZswAYNKkSfTu3Ztu3bpxww03cPLkyUsePzs7m3vvvZfw8HC6d+9uWZsyLy+Pu+++m65du9K1a1eeffZZyz5Dhgxh/fr1lse33HILK1asAGDq1Kk88MADREZGEhoays0330xJSQm7du3inXfe4YMPPqBHjx4899xzpKenM3z4cMvr+/NM+SIiTZGToxPtaEfFyQp2/7CbiIgIvv34W1KjU3n7n28zcMBAUqNTSY1OZfJtk3nsocdIjU4l9udYIiIi+M/y/5Aancry15bTp08fS9tpd05j1vRZpEancnTbUSIiIvjsnc9IjU7lk7c+ISIigmO/HSM1OpWZ985kxtQZln0jIiJY8foKUqNT+fd7/yYiIoJDWw6RGp3Kow8+ytQ7ppJ9zNjlsjRjfgNVkxnzU1NTycjIIDw8HICYmBhcXFxo164dRUVFxMTEEBISgouLCydOnCA+Nh4nZyeCOwRzPP04jo6OBAQEUFpayt69ey+6hMmF/HlW8X379hEZGcnOnTvx9fXl+eefZ+vWrXz99desWLGC9evXs2bNGsu+GRkZeHp6AvDSSy+RnJzMm2++yaZNm3j00UfZsWPHeee76667aNGiBa+//jrNmjUjPT0dLy8vHnvsMVJSUvjggw8oLCxkwIABPP7449x6660MGTKERx99lBtuuAE4U4TdcMMNTJ06lalTp3Lo0CF+/PFH7O3tGTRoEDNnzmTChAk888wz5OXl8corrwCwaNEiDhw4wJIlS4Azf42dXTNSROqWZsy3DtnHsnmt42tQCGWUcZKTuOOOI47kkUcuufhwZmHvDDKwwYZWtKKcck5wgla0wgkn8sknm2zacmb5o1OcwoQJd9ypoII00mhJS5xxpoACssjCG2+a0YzTnMaMGQ/OLBd2nOO44UZzmlNIIZlk0oY22GBDJpmUU46Psw8PHngQN/+a/c6rK5qstRF49913WbZsGcnJyQDcfvvtDBkyhDfeeIPk5GQiIiLYuHEjQ4YM4YMPPuDFF15k6w9baWbTjKlTp9KlSxeWLVtGRkYGERERrF+/nuuvv77WeTZu3MgNN9yAr68vAA888ADz58/nQvX+xx9/zIcffkhxcTGFhYV4e3tf8hzr169n586dNGt2pjPXy8sLgKioKEth1rx5c+68806ioqK49dZbL3nMm2++GScnJwD69OlDfHx8le369evHokWLmD17NoMHD2bEiBGXPLaISGPm5u/GXw/+lYKMAqOjVNuWDVuY9MQk/vLLXxjmP8yQDCrCGoH77ruPcePGWR5/9tlnuLicWcnez8+PnTt3EhISApxZquSagdfgiit2tnasWLHC8telp6cnO3fuJCjo8mY8NpvNlaa/uNhUGP/9739588032bp1K15eXqxdu5bnnnuuzs795/Pb2tpSXl5u2V5UVHkB8z//lW1jY2MZO3Cu/v37s2vXLqKiovjiiy+YN28ef/zxBzY2NrXOLSJi7dz83QzrUaqNTqc7MZSheHtd+g//+qIxYY2Aj4+P5VIkQOfOnWnXrh1wprDo1auXpShr06YN4V3DKaUUs9lMWFgYAQEBANjZ2dGrV68aX4o819ChQ/nmm29IS0sD4J133mHo0KGYTCZcXV3Jzv7fNfjMzExcXV1xd3enpKSEd999t1rnGDNmDC+//LJlQGZ6ejoAw4YNY+nSpZjNZvLz8/noo4+IjIwEICgoiO3btwNnBmX+97//rda5zs2ckJBAixYtGD9+PIsXL+bQoUPk5eVV61giItIweLp70o9+eLp7GpZBRVgTVFRcRDrpFBUXXbpxLXTp0oUXX3yR4cOH061bN7Zs2WIproYOHUp+fj7du3dnxowZjBw5kuDgYDp27MiIESPo0aNHtc6xaNEiCgoK6Nq1Kz169ODxxx8H4Mknn8RkMhEeHk7fvn0ZM2YMt9xyCwCPPfYYP/zwAxERETzxxBP07du3Wue66aab2LFjh2Vg/qZNm4iIiKBHjx5cffXVvPzyy5dduIqIyJWVm5fLYQ6Tm5drWAYNzG+gajIwv6aK8opIO5iGd0dvHFtooKuINFwamC/15buPv+O6Sdex4aMNjJhozNhe9YQ1Qc1MzbDHnmYm/fOLiEjT1DG4I4/wCB2DOxqWQb+Fm6CysjJyyb3gwHMREZHGzt7OHjfcsLezNyyDirAmqKy8jHzyKStXESYiIk1Tcmoy61hHcmqyYRlUhFmpyxnK5+jgiDfeODpofIWINGwatiz1pbCokFRSKSwqNCyD5gmzMnZ2dphMJssM8Rebg+tCSopLKKOMouIiKmwufxFvEZH6YDabSU9Px2QyYWdnZ3QcaWRCAkOYznRCAkMMy6AizMrY2Njg5+dHcnKyZQHUmioqKCI9Ix0vkxeOzuoNE5GGy2Qy4efnp8mQpVFSEWaFWrRoQUhICKWlpbXaf9/mfbw5402eevcpAgcH1nE6EZG6Y2dnpwJM6kVMXAwLWMCAuAH49PIxJIOKMCtlY2NT6x9Mvl6+RCRG4Ovlq3l3RESkSfJs5Ul/+uPZSjPmyxVUVFzEKU7V24z5IiIiDV1rz9YMZCCtPVsblkFFWBN06MghFrOYQ0cOGR1FRETEEPkF+SSSSH5BvmEZdDmygSouLgYgMTGxzo9tY2PD7c1vx8bGhtjY2Do/voiISEP3645f+bz55wzaMYhyr/I6P35AQMAlh/xo7cgG6vvvv2f+/PlGxxAREZFaOHft56qoCGugsrKy+O233/jPf/7DrFmzqrXP4sWLeeihhy7ZLjExkfnz5zNv3jwCAgIuN2qjUN33zghXOlt9na+ujns5x6nNvjXdpzrt9R08X0P+DoK+h3V5nPr+HjaU34XV6QnT5cgGqmXLlgwfPpyffvrpkpX0WS1atKh2WzjzAalJ+8aspu/dlXSls9XX+erquJdznNrsW9N9atJe38H/acjfQdD3sC6PU9/fQ2v6XaiB+Q1cZGRkvbSVyhrye3els9XX+erquJdznNrsW9N9GvJnqSFr6O+bvod1d5z6/h429M/Sn+lyZBMUGxvLtGnTqnW9WkTqnr6DIsZrCN9D9YQ1QR4eHkydOhUPDw+jo4g0SfoOihivIXwP1RMmIiIiYgD1hImIiIgYQEWYiIiIiAFUhImIiIgYQEWYiIiIiAFUhMl5SkpKePHFFxk3bhzXXXcdM2bMYO/evUbHEmlSnnnmGcaOHct1113H1KlT2bp1q9GRRJqsffv2MXjwYFauXFmnx9XdkXKewsJCVq1axciRI/Hy8uK7777jrbfeYvXq1ZdcgkFE6kZCQgJ+fn7Y2dkRExPD7Nmz+eyzz3BzczM6mkiTUlFRwf3334/JZKJ///5MmTKlzo6tnjA5j5OTE1OnTqVNmzY0a9aMkSNHUlFRQXJystHRRJqMwMBA7OzsALCxsaG0tJSMjAyDU4k0PWvXriU8PBx/f/86P7bWjmwECgoKWLlyJXFxccTFxZGdnc3UqVO5++67q2y7bNkyNm7cSG5uLv7+/kycOJGhQ4de8PiJiYkUFxfTtm3b+nwZIlarvr6Dzz33HD///DMlJSX069ePDh06XImXI2KV6uN7mJ2dzZo1a3jnnXd444036jyzirBGIDs7m3Xr1hEUFMTAgQNZv379BdvOmzePgwcPct9999GuXTuioqJ49tlnqaioYNiwYee1Lyoq4vnnn+fOO+/E2dm5Pl+GiNWqr+/gU089RVlZGdHR0SQmJmIymer7pYhYrfr4Hi5ZsoTx48fTokWLesmsIqwR8Pb25uuvv8ZkMpGVlXXBD96vv/7Kjh07eOqppywLnPbq1Yu0tDTefvttrr32WmxsbCzty8rKePrppwkICGDy5MlX5LWIWKP6+g4C2Nra0qdPH7744gv8/Pzo379/vb8eEWtU19/D2NhYDh06xOzZs+sts8aENQImk6lafyFv2bIFJycnhgwZUmn7qFGjyMjIICYmxrKtoqKC559/nmbNmvHYY4/pL3CRi6iP7+C5KioqSElJudyoIo1WXX8Pd+/ezdGjRxk7diyjR4/mp59+4uOPP+b555+vs8zqCWtCEhISCAgIwNa28j97UFCQ5fnw8HAAXnnlFU6dOsXLL798XnsRqZ3qfgdPnTrF3r176du3L3Z2dvz888/88ccf3HfffUbEFmlUqvs9vOGGGyoVav/617/w9vbmjjvuqLMs+u3ahGRnZ1c5uN7FxQWAnJwcANLS0li/fj329vaMGTPG0m7BggV07979yoQVaYSq+x0EWLNmDf/85z8xmUz4+fnxzDPPEBwcfMWyijRW1f0eOjs7VxoL7eDggLOzc51OE6MirImpTlett7c3P//88xVII9L0VOc76OHhwZtvvnkF0og0TbUZYvP444/XeQ6NCWtC3NzcyM7OPm97bm4uAK6urlc6kkiTou+giPEa0vdQRVgT0qFDBxITEykrK6u0/ciRI8CZySFFpP7oOyhivIb0PVQR1oQMHDiQwsJCNm/eXGn7hg0b8PT0pHPnzgYlE2ka9B0UMV5D+h5qTFgjsW3bNoqKiigoKADOzHK/adMmAPr164ejoyP9+vWjd+/eLFy4kIKCAnx9ffnxxx/Zvn078+bNO29+IhGpPn0HRYxnbd9DLeDdSIwfP560tLQqn1u1ahU+Pj7AmaUali5dWmmphkmTJl102SIRuTR9B0WMZ23fQxVhIiIiIgbQmDARERERA6gIExERETGAijARERERA6gIExERETGAijARERERA6gIExERETGAijARERERA6gIExERETGAijARESu0aNEiRo8ebVmeBeD9999n0KBB/PHHHwYm+5/nn3+eW2+9leLiYqOjiDRIWjtSRAyXmprKbbfddtE2wcHBvP/++1coUcOWlJTE2rVrmT59Os7OzvV6rq+++opXX32VMWPG8Oijj1607b333suhQ4dYunQpYWFhTJkyhaioKFavXs2kSZPqNaeINVIRJiINhq+vL8OGDavyOQ8PjyucpuFavnw59vb2jB07tt7PFRkZyb/+9S9++uknHnroIRwcHKpsFx8fz6FDhwgJCSEsLAwAPz8/BgwYwCeffMK4ceNwcnKq97wi1kRFmIg0GL6+vtx9991Gx2jQsrKy+PnnnxkyZEi994IBNG/enMGDB/Pdd9+xefNmhg8fXmW79evXAzBq1KhK24cPH87mzZv58ccfueGGG+o9r4g10ZgwEbFKgwYN4uGHHyYrK4uXXnqJMWPGEBkZyYwZMy44JqqgoID333+fO++8k8jISEaNGsWjjz7Knj17zmv78MMPM2jQIEpKSnjvvfeYMGEC11xzTaVLops3b2batGlERkYyduxYFixYQG5uLuPHj2f8+PGWds8//zyDBg3iwIEDVeZ6++23GTRoED///PMlX/ePP/5ISUkJQ4YMuWTbs+Lj47npppsYPXo0MTExlu3Hjx/nn//8J7fccgtDhw7lxhtv5IUXXiAtLa3S/tdffz0A3377bZXHLy0tJSoqCnt7+/OKtH79+uHk5MQ333xT7bwiTYWKMBGxWnl5eTzwwAPEx8czbNgwBg0aRGxsLI8++ihHjhyp1DYnJ4f777+fFStW4Orqyo033mhpP2vWLLZs2VLlOebNm8c333xD9+7dufXWW2nbti0AX3/9NU8++SQpKSmMGDGC6667jv379/N///d/lJWVVTrGmDFjgP/1Fv1ZWVkZ3333He7u7lx11VWXfM07d+4EoEuXLpd+g4Ddu3fz0EMPYWNjw5tvvknnzp0BiImJ4d5772XDhg2EhYVxyy230L17d3744Qfuu+8+jh8/bjlGjx498PPzIzo6mtTU1PPO8csvv5Cdnc2gQYNwcXGp9JydnR2hoaEcOHCAwsLCamUWaSp0OVJEGoyUlJQLDr7v0qULffv2rbTt8OHD3Hjjjfz1r3+lWbMzf1P26tWLBQsW8O9//7vSQPLXXnuNhIQE5s6dW+mS2enTp5k+fTovv/wyffr0OW/M06lTp1i+fDmurq6Wbbm5ubzxxhs4OzuzbNkyS2E2bdo05syZQ2xsLN7e3pb24eHhBAYG8uOPPzJz5sxKY6O2bt3K6dOnueOOO7C1vfSP5H379uHl5UWrVq0u2XbLli08++yztG3blldeeYXWrVsDZwq/Z555hoqKCpYuXUpwcLBlnz179jBr1izeeOMNXnrpJcv2UaNGsWTJEjZs2MBdd91V6Txff/018L8es3OFhYWxe/duDhw4QK9evS6ZW6SpUE+YiDQYKSkprFixosr/b9++/bz2Tk5OzJgxw1KAAVx33XXY2Nhw8OBBy7asrCw2btxIRETEeWOW3N3dmTBhAllZWZZepj+76667KhVgAP/9738pLCzkhhtusBRgALa2ttxzzz1VvrYxY8ZQUFDATz/9VGn7+vXrMZlM1RovVVpaSlZWVrUKsPXr1/PUU08REhLCm2++aSnA4Ezhl5aWxoQJEyoVYADdunXj6quvZtu2beTn51u2n31fv/32W8xms2V7RkYGO3bswNvb+4IF1tm86enpl8wt0pSoJ0xEGow+ffrwyiuvVLu9n5/feYPTbW1tcXd3Jy8vz7Lt4MGDlJeXU1JSUmVPW3JyMgCJiYnnXRLs1KnTee3j4+MB6Nq163nPderUCRsbm/O2Dx8+nHfeeYf169dbeozS09P5/fffLZf7LiU7OxvgvEt+5/r888/55Zdf6NevH8899xyOjo6Vnt+/fz8Ax44dq/L9OH36NBUVFSQlJdGxY0cAPD096du3L1u3biU6OpqIiAjgzDix8vJyRo0ahclkqjLP2SL2bH4ROUNFmIhYrebNm1e53cbGhoqKCsvjnJwcAPbu3cvevXsveLyioqLztrm7u5+37WwPUcuWLc97rlmzZri5uZ233cXFhWuuuYYNGzZw9OhR2rdvzzfffEN5eXm17xo8e6n0UpOfnr3RoG/fvucVYHDmcirADz/8cNHjnPt+XH/99WzdupVvv/22UhHWrFkzRo4cecHjnM17oektRJoqFWEi0uidLdZuu+02HnzwwRrtW1XvztnjZWVlnfdcRUUF2dnZeHl5nffcmDFj2LBhA+vXr+fBBx/k22+/xdXVlUGDBlUri4uLC7a2tpai8kIee+wxPvjgA9544w2aNWvGTTfdVOn5s72HL730UrVuBjirf//+uLu7s3nzZh555BEOHz5McnIyffr0oU2bNhfc72zeqopWkaZMY8JEpNHr2LEjJpPJchnucgUFBQFnBsmf68CBA5SXl1e5X9euXenQoQPfffcd27Zt4/jx4wwbNqxGPUSBgYGkpaWddwfmn7m4uLBo0SJCQ0NZtGgR//73vys9f/YOyZq+H7a2towYMYLi4mJ+/PFHy7QTFxqQf1ZSUhIAHTp0qNH5RBo7FWEi0uh5eHhwzTXXsG/fPj799NNKA8vPiomJqfJyZFUGDBiAk5MT69evrzSVQ1lZGe+9995F9x09ejTZ2dm8/PLLADWewLRHjx6UlJRYxqVdiIuLCwsXLqRjx4689tprfPHFF5Xyt2nThlWrVrFr167z9i0rK6ty7jT4X8H1n//8h02bNuHm5saAAQMumiUmJgYPDw/atWt3iVcn0rTocqSINBgXm6ICuKzZ9P/v//6PpKQk3n77bb777ju6dOlCixYtOHnyJLGxsSQnJ/Pll19WOYbqXC4uLsycOZOXX36Ze++9l2uvvZbmzZuzbds27O3t8fT0vOAg9REjRvDuu++SkZFB586dLb1q1TVw4EBWr17Nzp07LcsDXSznq6++yuzZs3n99dcxm83ccsst2Nvb89xzzzFnzhwefvhhIiIiCAwMBODEiRPs2bMHNzc3Pvroo/OO6e/vT3h4uGVs3Q033ICdnd0FM6SkpJCamsqNN95Yo9cp0hSoCBORBuPsFBUXcjlFmKurK2+99Rb//ve/+emnn4iKiqKiogJ3d3eCg4OZMmVKlQPqL2T06NG4uLjw4YcfsmHDBpo3b87VV1/NjBkzuPXWW/H19a1yvxYtWjBgwACioqJqtYxPjx498Pf35/vvv+eOO+64ZPuzPWKzZ8/mjTfewGw2c+utt9KpUyfef/99Pv30U7Zt28bevXuxs7PD09OTgQMHMnTo0Ase8/rrr7cUYedO+XGu77//HvjfhLUi8j8mc1X98iIiUivJycnccccdXHPNNTz77LNVtrnzzjs5ceIEX375Za3Wf1y7di2vvPIK77zzjmV8V0NUVlbGxIkT8fb25vXXXzc6jkiDozFhIiK1kJubS0lJSaVtxcXFvPnmm8CZy4ZV+fXXXzl69CgjRoyo9QLc119/PQEBASxfvrxW+18p33//PWlpaTzwwANGRxFpkHQ5UkSkFnbt2sU///lP/vKXv9C6dWuys7OJjo4mLS2NXr16ce2111Zq/5///IeTJ0+ybt06HBwcmDBhQq3PbWNjw9///ne2b99OQUFBrYu5+mYymfjb3/52ybFrIk2VLkeKiNRCUlIS7733Hvv27bPMF+br68u1117L7bffft60E+PHjyc9PZ127doxY8aMGs3PJSKNk4owEREREQNoTJiIiIiIAVSEiYiIiBhARZiIiIiIAVSEiYiIiBhARZiIiIiIAVSEiYiIiBhARZiIiIiIAVSEiYiIiBhARZiIiIiIAf4f4azNui3rSmMAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHDCAYAAABsyc0zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB82UlEQVR4nO3deVyVZf7/8deRHQWURUEQRDY33HBcyq1ETUutLMvUtEWzspy+NuaUrWPLWGll06KW2m7aNKmVFaXmZFpKrigiIgKCgrLvy/n94c8zoaiA4M2B93Me83h07nPd9/0+x3Pgw3Vf93WZzGazGRERERG5opoZHUBERESkKVIRJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBlARJiIiImIAW6MDNGYjRoyo9LioqIj777+f22+/3aBEIiIi0lCYtHbklZGRkcGtt97Kxx9/TNu2bY2OIyIiIgbT5cgr5IcffqBLly4qwERERATQ5UiLgoICVq5cSVxcHHFxcWRnZzN16lTuvvvuKtsuW7aMjRs3kpubi7+/PxMnTmTo0KEXPP7333/PzTffXJ8vQURERKyIesL+v+zsbNatW0dpaSkDBw68aNt58+axYcMGpk6dyoIFC+jYsSPPPvssP/zwQ5Xt4+PjSUpKYsiQIfWQXERERKyResL+P29vb77++mtMJhNZWVmsX7++yna//vorO3bs4KmnniIyMhKAXr16kZaWxttvv821116LjY1NpX2+++47rr76alxcXKqdp6ioiMTERAICAnB0dKz9CxMREZEGST1h/5/JZMJkMl2y3ZYtW3BycjqvV2vUqFFkZGQQExNTaXtFRQVRUVEMHz78osfNyMggNjbW8v+ff/6ZadOmkZiYWOPXIiIiIg2fesJqKCEhgYCAAGxtK791QUFBlufDw8Mt23fu3ElZWRl9+/a96HHXrl3LihUr6jyviIiINEwqwmooOzu7yjscz15qzMnJqbT9+++/Z+jQoecVbecaM2YMV199teVxYmIi8+fPr4PEIiIi0hCpCKuF6ly2POuJJ56oVjtPT088PT1rG0lERESsjMaE1ZCbmxvZ2dnnbc/NzQXA1dX1SkcSERERK6QirIY6dOhAYmIiZWVllbYfOXIEgMDAQCNiiYiIiJVREVZDAwcOpLCwkM2bN1favmHDBjw9PencubNByURERMSaaEzYn2zbto2ioiIKCgqAM4PjN23aBEC/fv1wdHSkX79+9O7dm4ULF1JQUICvry8//vgj27dvZ968eefNESYiIiJSFS3g/Sfjx48nLS2tyudWrVqFj48PcGbZoqVLl1ZatmjSpEkXXbaopmJjY5k2bRpLly4lLCyszo4rIiIiDYOKsAZKRZiIiEjjpjFhIiIiIgZQESYiIiJiABVhIiIiIgZQESYiIiJiABVhIiIiIgZQESYiIiJiAE3WKiKVZB/LpiCjwOgYNeLs6Yybv5vRMUREakRFmIhYZB/LZkHHBZwqPIUPZyYnPsUpmtGMVrSiggrSSKMVrXDCiQIKyCILH3wwYeI0pwFwxx0zZlJJpSUtccaZQgrJJBNvvGlGMzLJpIIKPPAAIJVUXHGlOc0poojTnKYNbbDBhiyyKKMMTzwBSCONFv//f8UUU+ZYxhOxT6gQExGroiJMRCwKMgrYVbiLH2x/IHF7IgDj7x+PRysPHnvhMXLzcgkbHMa7L73L6GGjWbV2FQueXcCx7cewtbVlyiNTAFi5aCVlZWX49/Vn0dOLuG3Mbaz7YR33zb2P2M2xuLRw4f7H7+dU5ik+f/tzANr3a8/T//c0d42/i6gtUdz51zv5Y8MftPFqw+znZnPoyCHWrVgHQOdrOjPzrplMv3M6H6/4mL8t/hu37r2Vv/j/xZg3TkSkFlSEiUglXejCrJWz8Ol1pifs/Y/ex9bWFp9AH1qXt2bnzp0EBgbSqlUrJgdMZtCYQfj19MNkMvH2+28D4BPkg9lsZufOnQQEBODh4cGtgbfSe1hvgroHYWNjw6K3F1FWVoZPyJnzbNu+DT8/P7y8vBgTNIadA3fSJbwLdnZ2vPj6ixQVFeETdqbtpp834e3tTZs2bbgu8zoOLj6Ip7unMW+YiEgtqQgTEYuc3BxSSCHAN8CyLSQkxPLfNjY29OrVy/LYw8MDDw8Py+OgoCDLf5tMpkptW7VqRatWrSyPAwMDK527Z8+elv92c3OrtG9AQECltt27d/9fhlYetKMdjg6O1XuRIiINhIqwBiYqKoqoqCjy8vKMjiJN0NHko3zCJ9yZfCdhWMeapSlpKXzDN1yfdr1lHJuIiDVQEdbAREZGEhkZaVnAW+RK6hTcidnMplNwJ6OjVFt+QT5HOUp+Qb7RUUREakTzhImIhZ2dHS64YGdnZ3SUagvtEMoDPEBoh1Cjo4iI1IiKMBGxSE5N5iu+Ijk12egoIiKNnoowEbEoKi4inXSKiouMjlJtB+IO8CqvciDugNFRRERqREWYiFgEtw/mXu4luH2w0VGqzb2lO73ohXtLd6OjiIjUiIowEbFqbbzacA3X0MarjdFRRERqREWYiFjsP7Sfl3iJ/Yf2Gx2l2goKC0ghhYJC61rvUkRERZiIWLT2aM1ABtLao7XRUart8NHDLGUph48eNjqKiEiNqAgTEQsvDy+u5mq8PLyMjlJtIYEhzGAGIYEhl24sItKAqAgTEYu8/DwSSCAv33pWbHBydMIbb5wcnYyOIiJSIyrCRMTiyLEjrGQlR44dMTpKtaWeTCWKKFJPphodRUSkRrRskUg9yj6WTUFGAdm52SQmJ9IpuBN2dnYkHU+iuKTYMhXEvth9tPFsg5eHF7l5uSQkJRAWFIaDvQPJqckUFhVaLrfFxMXg0dKDNl5tyC/IJz4xnpDAEJwcnTh+4ji5ebmEBZ1Z9zE2PhZXF1d8WvtQWFRIXEIcwe2DcXZy5kT6CU5nnaZTyJklig4dOURpWikP8ZBVzT6fk5vDfvaTk5tjdBQRkRpRESZST+L/iGd239mEloaSRBKf8Rl/4280pzlf8iWnOc093APAC7zAEIZwFVcRTzwf8iGzmEUrWvE1X5NEEjOYAcArvMJf+AuDGUwSSbzHezzAA7SmNd/zPbHE8hAPAfA6r9OFLkQSSRppvMM7TGMavviykY1EE81sZgPwFm/RnvaMdR6Lu6/1zLkVFhTGLGZZCk8REWuhIkyknhyOOcza0rV8+o9PuXvg3UxNnmrpCRt5fGSlnrCrYq+q1BM2MWmipSdsVOqoSj1hA+IGVOoJuzXxVktP2A0nbqjUEzY4fnClnrAbE2609ISNTR9bqSdsyJEhNHduTkjXENz83Yx500REmhAVYSL1pFunbjzN0wwaNQifXj50pKPlOZ9ePpXa/vmxDz6EElrp8YXaAgQPCK522w5Xdah2W2sRGx/LYhYzOH6w1b4GEWmaVISJiFVzaeFCGGGUppaSGm09g/OdPZ3V4yjSxKkIE6knR44d4UM+JPJYpHpo6lFwl2CGOw1nzaw1bGQjDjiQSy755OONNwDppGOHHS1pSRllnOQk7rjjiCN55JFLrqVnMIMMbLChFa0op5wTnKAVrXDCiXzyySabtrQF4BSnMGHCHXcqqCCNNFrSEmecKaCALLLwxptmNOM0pzFjxgMPAPId83ki9gkVYiJNmIowkXpi08wGBxywaWZjdJRGzc3fjRFrR9B/WH/WLl9L7269eW3Za/z783+z6/tdAAy/YzgR3SKYM3cOSceT6Du6L5+99RmD+g7i3Y/e5Z0l73Do50MAjL17LIHtAnns2cc4lXmK8Mhwli9czojBI/jwiw9Z+M+FJP2WBMCEByfg0tyFuQvmUlBYQPCAYP71/L+46bqb+OKbL1jw5AISfk3Awd6Bex69h5KSEj5840Nit8dyzQPXcOveW/mL/1+MeutExGAms9lsNjqEnC82NpZp06axdOlSwsJ015c1So1OZUnEEqbvnK6esHpWWFjIgQMHCA0NpUWLFqSmppKenk63bt0AOHDgAM2bN8ff35/i4mL2799PcHAwrq6unDhxgtTUVHr06AGc+e45ODjQvn17SktL2bt3Lx06dKBly5akp6eTlJREr169AIiLi8PGxoYOHTpQXl7O7t27ad++Pe7u7pw+fZqjR4/So0cPmjVrxpEjR6ioqCA4OJh9P+7jr5F/5bWo1+g6tKtRb5uIGEw9YSL1pLy8nBJKKC8vNzpKo+fk5GQpjAB8fHzw8flf4dupUyfLfzs4OFRq26ZNG9q0aWN5/Oc/euzs7Cq19fLywsvrf0s6hYT8b6kkGxubSm3d3d1xd//fVB8dOvzvpgiPVh4MZCAerTxq9kJFpFHRjPki9WT/of28wAvsP7Tf6CjSwGTlZBFDDFk5WUZHEREDqQgTqSft2rZjHONo17ad0VGkgTmWcozP+ZxjKceMjiIiBtLlyAYmKiqKqKgo8vKsZwFlqVort1aEE04rt1ZGR5EGpnNIZ+Ywh84hnY2OIiIGUhHWwERGRhIZGWkZmC/WKzM7k93sJjM787yJUaVps7W1xRlnbG31I1ikKdPlSJF6knQ8iS/5kqTjSUZHkQbmWMoxvuALXY4UaeJUhInUk65hXZnHPLqGaQoCqay0rJQccigtKzU6iogYSEWYSD1p1qwZttjSrJm+ZlJZUEAQd3EXQQFBRkcREQPpt4NIPUlMTuQzPiMxOdHoKCIi0gCpCBOpJxXmCsopp8JcYXQUaWD2xe7jeZ5nX+w+o6OIiIFUhInUk8B2gUxkIoHtAo2OIg2Mt5c3QxmKt5e30VFExEAqwkRErjBPd0/60Q9Pd0+jo4iIgVSEidSTPQf28AzPsOfAHqOjSAOTm5fLYQ6Tm5drdBQRMZCKMJF64uvty2hG4+vta3QUaWASkhL4iI9ISEowOoqIGEhFmEg98WjlQQQReLTyMDqKNDAdgzvyCI/QMbij0VFExEAqwkTqSVZOFjHEkJWTZXQUaWDs7exxww17O3ujo4iIgVSEidSTYynH+JzPtTSNnCc5NZl1rCM5NdnoKCJiIBVhIvWkc0hn5jCHziGdjY4iDUxhUSGppFJYVGh0FBExkIowkXpia2uLM87Y2toaHUUamJDAEKYznZDAEKOjiIiBVISJ1JNjKcf4gi90OVJERKqkIkyknpSWlZJDDqVlpUZHkQYmJi6GBSwgJi7G6CgiYiAVYSL1JCggiLu4i6CAIKOjSAPj2cqT/vTHs5VmzBdpylSEiYhcYa09WzOQgbT2bG10FBExkIowkXqyL3Yfz/M8+2L3GR1FGpj8gnwSSSS/IN/oKCJiIBVhIvXE28uboQzF28vb6CjSwMQnxrOc5cQnxhsdRUQMpCJMpJ54unvSj354umvcj1QW2iGUmcwktEOo0VFExEAqwkTqSW5eLoc5TG5ertFRpIFxdHDEE08cHRyNjiIiBtIskiL1JCEpgY/4iElJkwhFPR7yP8dPHGcta7nqv1cBcPDwQVq6tcTby5uCwgIOHz1McPtgnJ2cSUtPIys7y7LY96Ejh2jRvAVt27SlqLiIQ0cOERQQRHPn5pzMOElGZoZllYa4hDicHJ3w8/GjpLSEg4cPEtguEJcWLmScziAtPY2uYV2BM5dI7Wzt8Pf1p6ysjJi4GPx9/Wnp2pJTmadISUuh38B+uPm7GfOmiTRCKsIamKioKKKiosjLyzM6ilymjsEdeYRHLL88Rc5yaOlAsimZH2b9wFa2sohFdKMbQxnKcY6zhCVMZzptacuP/Mge9vAIjwDwL/5FEEFcx3VkkMGbvMld3EUAAWxhC7/yK3OYA8ASluCDD6MZTTbZLGIRk5hEMMFsYxs/8iNP8AQAy1mOK66MYxwFFLCABYxnPJ3pzE52so51PO/8PA8eeFCFmEgdMZnNZrPRIeR8sbGxTJs2jaVLlxIWFmZ0HKmF1OhUlkQsYfrO6fj08jE6jjQwh6MP05zmgHX0hO3/dT8Hnzyoz7NIHVJPmEg9SU5NZh3rGJU6Ch/0S0sqC+4VbPnvc4uaoKv/N8HvuZ+dc9sG9g+sdtuAvgGV2oYTfsG27fq0q9Q2Jy+HJ3mSYUnDVISJ1BENzBepJ4VFhaSSSmFRodFRRC5bM1MzbLChmUm/NkTqir5NIvUkJDCE6UwnJDDE6Cgily3AL4DbuZ0Av4BLNxaRalERJiIil1RRUUEZZVRUVBgdRaTRUBEmUk9i4mJYwAJi4mKMjiJy2fbF7mM+87UMl0gdUhEmUk88W3nSn/54ttKM+WL92rVtx03cRLu27S7dWESqRUWYSD1p7dmagQyktWdro6OIXLZWbq3oTndaubUyOopIo6EiTKSe5Bfkk0gi+QX5RkcRuWyZ2ZnsZS+Z2ZlGRxFpNFSEidST+MR4lrOc+MR4o6OIXLak40l8wRckHU8yOopIo6EiTKSehHYIZSYzCe2gdSPF+nUJ7cLjPE6X0C5GRxFpNFSEidQTRwdHPPHE0cHR6Cgil83GxgZ77LGxsTE6ikijoSJMpJ4cP3GcDWzg+InjRkcRuWyJyYl8zuckJicaHUWk0VARJlJP8vLziCeevPw8o6OIXLbyinKKKaa8otzoKCKNhoowkXoS2iGUB3lQY8KkUejg34HJTKaDfwejo4g0GirCRERERAygIkyknhw8fJBFLOLg4YNGRxG5bHsO7OFZnmXPgT1GRxFpNFSEidSTlm4t6UY3Wrq1NDqKyGXz9fbleq7H19vX6CgijYaKMJF64u3lzVCG4u3lbXQUkcvm0cqD3vTGo5WH0VFEGg0VYSL1pKCwgOMcp6CwwOgoIpctOzebgxwkOzfb6CgijYaKMJF6cvjoYZawhMNHDxsdReSyJSYn8hmfaZ4wkTqkIkykngS3D2Y60wluH2x0FJHL1im4E3/jb3QK7mR0FJFGw9boAE3F119/zUcffcTp06fx8vLin//8J76+GuBaE/t+3Uezoma0cmtFZnYmSceT6BrWlWbNmpGYnEiFuYLAdoHAmTu5fL198WjlQVZOFsdSjtE5pDO2trYcSzlGaVkpQQFBZ44buw9vL2883T3JzcslISmBjsEdsbezJzk1mcKiQkICQwCIiYvBs5UnrT1bk1+QT3xiPKEdQnF0cOT4iePk5edZ5gXbtWUXbrjh7ORszBsmUofs7OxoTnPs7OyMjiLSaKgIuwJ++eUX1qxZw4svvkhAQAApKSm4uroaHcuq7Pt1H+FXhXMd19GPfuxmN1/yJfOYhy22fMZnlFPORCYC8AzPMJrRRBBBDDF8zufMYQ7OOPMFX5BDDndxFwDP8zxDGUo/+nGYw3zERzzCI7jhxjrWkUoq05kOwAIW0J/+DGQgiSSynOXMZCaeeLKBDcQTz4M8CMDrvE532+7YuuprJtYv6XgSX/IlI4+PxKeXj9FxRBoF/Xa4AlauXMnMmTNp3749AH5+fsYGskItbVsyi1nc9PZNhPYJJTM7k/uO32fpCRuRPKJST1i/A/0q9YTdnXK3pSfsupTrKvWEXRV7VaWesElJkyw9YaNSR1XqCRsQN6BST9htibdZesJuOHFDpZ6wQYcH4dXOC69gL2PeNJE6VFxSzGlOU1xSbHQUkUajQRdhe/bs4cMPP2T//v2UlJTg5eXFddddx5QpU+rtnAUFBaxcuZK4uDji4uLIzs5m6tSp3H333VW2XbZsGRs3biQ3Nxd/f38mTpzI0KFDLW3Ky8uJi4sjPj6eF154ARsbG0aOHMnUqVMxmUz19joaGxsbG1rRitA+ofj08sEHHzrT2fL8uX+Z//mxDz50olO124YSWunxhdoCBA8IrnZbEWsW3D6Ye7hHYxxF6lCDLcJ++OEHnn/+ea655hqeeOIJnJycOH78OBkZGfV63uzsbNatW0dQUBADBw5k/fr1F2w7b948Dh48yH333Ue7du2Iiori2WefpaKigmHDhgGQmZlJeXk5v//+OytWrCAvL4/Zs2fj7e3NyJEj6/W1NCaJyYl8zueMSB6h4kZERBqFBlmEpaen88orrzBmzBj+7//+z7K9V69eF90vPz+fvXv30q9fvyqf37p1Kz179sTJyemCx/D29ubrr7/GZDKRlZV1wSLs119/ZceOHTz11FNERkZa8qWlpfH2229z7bXXYmNjg4ODAwATJ07ExcUFFxcXxowZw2+//aYirAbKK8opppjyinKjo4g0Sfti9/ECL3BV7FX6Q0ikjjTIKSrWr19PYWEhd9xxR433mzt3Lt9+++15z3311Vf8/e9/57vvvrvoMUwmU7UuE27ZsgUnJyeGDBlSafuoUaPIyMggJiYGABcXFzw9Pav/IqRKHfw7MJnJdPDvYHQUkSapjWcbhjCENp5tjI4i0mg0yJ6w3bt34+rqyrFjx3j88cdJSEjAxcWFQYMGcf/999O8efMq97vttttIT0/npZdeoqSkhLFjxwKwevVqFi9ezOTJk7nxxhvrJGNCQgIBAQHY2lZ+C4OCgizPh4eHAzBy5Eg+/fRTQkNDycvLY/369dx5551VHjcqKoqoqCjy8vLqJKeISF3w8vDiKq7Cy0M3mojUlQZZhGVkZFBUVMRTTz3FpEmT6NKlCwcPHuT9998nISGBN99884K9VTNnzsTBwYFXX32VkpISSkpKePfdd7nnnnvqdEB/dnY2bdu2PW+7i4sLADk5OZZtU6dOZdGiRYwbNw5nZ2dGjx7N8OHDqzxuZGQkkZGRxMbGMm3atDrLa+32HNjDszxLvwP9dClExAC5ebnEE09uXu55N6GISO00yCKsoqKCkpISpk6dyqRJkwDo2bMntra2LF68mJ07d9K7d+8L7j9t2jTs7e1ZvHgxAPfffz8TJkyo85zVvbvRzs6OOXPmMGfOnDrP0FT4evtyPdfj660JbkWMkJCUwId8yMSkiZXuIBaR2muQY8Lc3NwA6NOnT6XtZwfcHzp06JLHyMvLsxRJ9XFpz83Njezs8xeyzc3NBdBkrHXMo5UHvemNRysPo6OINElhQWHMYhZhQWFGRxFpNBpkEdahQ9WDr81mM3DxHiiz2cyiRYtYvXo1jz32GLNnz+ajjz7iX//6V51nTExMpKysrNL2I0eOABAYGFin52vqsnOzOchBsnPPL3xFpP452DvQilY42DsYHUWk0WiQRdjgwYMB2L59e6Xt27ZtA6BLly5V7ldRUcGCBQtYu3YtTz75JKNGjWLs2LHMnTuXNWvWsHDhQkshd7kGDhxIYWEhmzdvrrR9w4YNeHp60rlz5wvsKbWRmJzIZ3xGYnKi0VFEmqTk1GS+5muSU5ONjiLSaDTIMWF9+vThqquuYuXKlVRUVFgG5q9YsYKrrrqKbt26VbnfqlWr+P7773nuuecYOHCgZfvIkSOxt7dn/vz5BAQEMG7cuIuef9u2bRQVFVFQUABAYmIimzZtAs5cEnV0dKRfv3707t2bhQsXUlBQgK+vLz/++CPbt29n3rx52NjY1M2bIQB0Cu7E3/gbnYI7XbqxiNS5wqJCkkiisKjQ6CgijYbJXFddQ3WsuLiY5cuXExUVxalTp/D09GTYsGFMnToVe3v7C+4TFxdH165dq3x+7969dOzYETs7u4uee/z48aSlpVX53KpVq/DxOXNnUEFBAUuXLq20bNGkSZMqLVtUW2fvjly6dClhYRqDkRqdypKIJUzfOV13R4oYQN9BkbrXIHvCABwcHJgxYwYzZsyo0T4XKsAAy7xdl/L5559Xq52zszOzZs1i1qxZ1WovtZd0PIkv+ZKRx0fqF4CIiDQKDXJMmMi5ikuKOc1pikuKjY4i0iTFxMXwCq8QExdjdBSRRkNFmFiF4PbB3MM9BLcPNjqKSJPk0dKDv/AXPFpqmhiRuqIiTERELqmNVxsGM5g2Xlo7UqSuqAgTq7Avdh8v8AL7YvcZHUWkScovyOcgBzmVeQqA5ORk9u/fb3l+//79pKSkAFBYWEh0dDT5+fkApKamsnfvXkvbmJgYkpKSACgqKiI6Otoy0fWJEyfYvXu3pW1sbCyJiWempiktLSU6OtoyUXZ6ejp//PGHpW1cXBwJCQkAlJeXEx0dTWZmZt2+ESJ1SEWYWIU2nm0YwhDaeOqvcBEjZGZn8hmfsf2n7aRGp/L8488z5voxpEankhqdyg3X3cBL814iNTqVrWu3EhERwc///pnU6FReeeYVRkSOsLS9ZewtPPO3Z0iNTiX6u2giIiL4/tPv2fXdLm4deyuDBgyytJ1460T+PuvvpEansv+n/URERLB2xVpSo1NZ+upS+vXtZ2l796S7eeT+R0iNTiX+l/gzbT9ba/RbJ3JBDXaKiqZOU1RUptvjRYyVfSyb58Oex77IHjvsyCabYoppTWsATnISRxxxxZVSSkknHU88sceeXHIpoIA2tLG0dcABN9wsbT3woIQStrKVYIIJIgiADDKwxZaWtKScck5wAnfcccSRfPLJIceyoPgpTtGMZrSiFRVUkEYarZ1a8+jBR3HzdzPmjRO5iAY7RYXIn+Xm5RJPPLl5uZYfuCJy5bj5u/FE7BMUZBTU63lmM7vOjhX3WxwL719I8uFkFWHSIKkIE6uQkJTAh3zIxKSJhBJqdByRJsnN382qipk9B/bwFV9xf+r9dKHq5e5EjKQxYWIVwoLCmMUswoJ0aVZEqie8YzhP8iThHas3UbfIlaYiTKyCg70DrWiFg72D0VFExEqYTCZssMFkMhkdRaRKKsLEKiSnJvM1X5Ocmmx0FBGxEkeTjvIJn3A06ajRUUSqpCJMrEJhUSFJJFFYVGh0FBERkTqhIkysQkhgCDOYQUhgiNFRRMRKtG/Xnju4g/bt2hsdRaRKKsJERKRRMpvNlFOOpsOUhkpFmFiFmLgYXuEVYuJijI4iIlZi78G9/IN/sPfg3ks3FjGAijCxCh4tPfgLf8GjpYfRUUTESvj5+DGWsfj5+BkdRaRKKsLEKrTxasNgBtPGS2tHikj1uLd0pyc9cW/pbnQUkSqpCBOrkF+QTxJJ5BfkGx1FRKxEVk4W+9lPVk6W0VFEqqQiTKxCfGI87/Ee8YnxRkcREStxLOUYq1nNsZRjRkcRqZKKMLEKIYEhPMADmqJCRKqtS2gX5jKXLqFaN1IaJhVhYhWcHJ1oTWucHJ2MjiIiVsLGxgZHHLGxsTE6ikiVVISJVTh+4jjf8z3HTxw3OoqIWIljKcdYwxpdjpQGS0WYWIXcvFxiiSU3L9foKCJiJcrKy8gnn7LyMqOjiFRJRZhYhbCgMB7iIcKCwoyOIiJWooN/B6YwhQ7+HYyOIlIlFWEiIiIiBrA1OoBUFhUVRVRUFHl5eUZHaVBi42N5ndcZHD8Yn14+RscREStwdtmi/gf76+eGNEgqwhqYyMhIIiMjiY2NZdq0aUbHaTBcXVzpQhdcXVyNjiIiVqJtm7aMYARt27Q1OopIlXQ5UqyCT2sfIonEp7X+mhWR6vFo5UEf+uDRSmvOSsOkIkysQmFRIWmkUVhUaHQUEbESObk5HOIQObk5RkcRqZKKMLEKcQlxvMM7xCXEGR1FRKzE0eSjfMInHE0+anQUkSqpCBOrENw+mGlMI7h9sNFRRMRKdAruxGxm0ym4k9FRRKqkIkysgrOTM7744uzkbHQUEbESdnZ2uOCCnZ2d0VFEqqQiTKzCifQTbGQjJ9JPGB1FRKxEcmoyX/EVyanJRkcRqZKKMLEKp7NOE000p7NOGx1FRKxEUXER6aRTVFxkdBSRKqkIE6vQKeT/j+0I0dgOEame4PbB3Mu9GksqDZaKMBEREREDqAgTq3DoyCHe4i0OHTlkdBQRsRL7D+3nJV5i/6H9RkcRqZKKMLEKzZ2b0572NHdubnQUEbESrT1aM5CBtPZobXQUkSqpCBOr4OvtyyhG4evta3QUEbESXh5eXM3VeHl4GR1FpEoqwsQqFBUXcYpTustJRKotLz+PBBLIy88zOopIlVSEiVU4dOQQi1msMWEiUm1Hjh1hJSs5cuyI0VFEqqQiTKxCB/8OTGEKHfw7GB1FRKxEaIdQHuIhQjuEGh1FpEoqwsQqtGjegkACadG8hdFRRMRKODo44oEHjg6ORkcRqZKKMLEK6afS+YVfSD+VbnQUEbESKWkpfMM3pKSlGB1FpEoqwsQqnDx1ki1s4eSpk0ZHERErkV+Qz1GOkl+Qb3QUkSqpCBOr0CW0C3OZS5fQLkZHERErEdohlAd4QGPCpMFSESYiIiJigFoXYQkJCWzYsIH8/P918xYXF/Pqq69y8803M2HCBNatW1cnIUUOHz3MMpZx+Ohho6OIiJU4EHeAV3mVA3EHjI4iUqVaF2Effvgh7777Ls7OzpZtS5YsYe3atRQUFHDy5EleffVVdu7cWSdBpWlzdHDECy/d5SQi1ebe0p1e9MK9pbvRUUSqVOsi7MCBA/Ts2ROTyQRAWVkZ33zzDZ06deKrr75i1apVtGzZks8//7zOwkrT5efjx1jG4ufjZ3QUEbESbbzacA3X0MarjdFRRKpU6yLs9OnTtGnzvw92TEwMBQUFjB07FgcHBzw9Pbn66qs5fFiXj+TylZaWkksupaWlRkcREStRUFhACikUFBYYHUWkSrUuwmxsbCr9QtyzZw8mk4mePXtatrm5uZGdnX15CUWAA4f//9iOwxrbISLVc/joYZayVGNJpcGqdRHm7e3NH3/8YXm8adMmfHx88Pb2tmxLT0/Hzc3t8hKKAO392nMHd9Der73RUUTESoQEhjCDGYQEhhgdRaRKtrXdcfjw4bz99tvMmDEDW1tbDh8+zKRJkyq1OXToEH5+GsMjl8/VxZVQQnF1cTU6iohYCSdHJ7zxxsnRyegoIlWqdU/YzTffzJAhQzh48CB79+7lL3/5C5MnT7Y8f+DAAY4ePUqvXr3qJKg0bacyT/Ebv3Eq85TRUUTESqSeTCWKKFJPphodRaRKte4Js7e359lnnyU/Px+TyVRpqgoAHx8f3nvvvUqXJ0Vq6/iJ43zHd8w6MYuudDU6johYgZzcHPazn5zcHKOjiFSp1j1hu3bt4sSJEzRv3vy8AgygZcuWuLq66u5IqRPhHcN5kicJ7xhudBQRsRJhQWHMYhZhQWFGRxGpUq2LsL/+9a98++23F23zww8/8Ne//rW2pxARERFptGpdhJnN5mq1OTuZq8jlOHLsCCtZyZFjR4yOIiJWIjY+lsUsJjY+1ugoIlWq1wW8k5OTad68eX2eQpoIWxtbmtMcW5taD2MUkSbGpYULYYTh0sLF6CgiVarRb7SXXnqp0uMtW7aQlpZ2Xrvy8nLS09PZvXs3ffv2vbyEIoC/rz+3cAv+vv5GRxERK9G2TVuGM5y2bdoaHUWkSjUqwv48BsxkMnH48OELDrw3mUx07NiRmTNnXl7CRuLrr7/mo48+4vTp03h5efHPf/4TX19fo2NZjfLycoooory83OgoImIlCosKOclJCosKjY4iUqUaFWGrVq0Czoz1uv3227n11lu55ZZbzmvXrFkzXFxccHLSBHkAv/zyC2vWrOHFF18kICCAlJQUXF016WhN7D+0n5d4iSGHhuD3F00ALCKXFpcQx1u8xZiEMXS4qoPRcUTOU6Mi7M9zfs2dO5fQ0FDNA1YNK1euZObMmbRv3x5AqwjUgr+vP7dyqy5Hiki1BQUEcQ/3EBQQZHQUkSrVepTzyJEj6zLHRa1fv54FCxbg5OTEd999V6/nKigoYOXKlcTFxREXF0d2djZTp07l7rvvrrLtsmXL2LhxI7m5ufj7+zNx4kSGDh1qaVNeXk5cXBzx8fG88MIL2NjYMHLkSKZOnao7R2ugpWtLutCFlq4tjY4iIlaiuXNz2tGO5s66QUwapsu+1SwmJoaDBw+Sl5dHRUXFec+bTCamTJlS6+Onp6fz1ltv4enpSX5+/uVErZbs7GzWrVtHUFAQAwcOZP369RdsO2/ePA4ePMh9991Hu3btiIqK4tlnn6WiooJhw4YBkJmZSXl5Ob///jsrVqwgLy+P2bNn4+3tfUULWWt3Ous0f/AHp7NO44OP0XFExAqcSD/BZjYzNn2sfm5Ig1TrIiwnJ4fHH3+cffv2XXTOsMstwl599VW6deuGq6srmzdvvmjb/Px89u7dS79+/ap8fuvWrfTs2fOiY9W8vb35+uuvMZlMZGVlXbAI+/XXX9mxYwdPPfUUkZGRAPTq1Yu0tDTefvttrr32WmxsbHBwcABg4sSJuLi44OLiwpgxY/jtt99UhNVAcmoyX/EV96feTxe6GB1HRKzAqaxT/M7vnMrSmrPSMNW6CHvzzTfZu3cvPXr04LrrrqN169bY2NjUZTa+//57du3axQcffMCyZcsu2X79+vW8/fbbPPbYY+cVOF999RULFy7kkUce4cYbb7zgMap7iXDLli04OTkxZMiQSttHjRrFc889R0xMDOHh4bi4uODp6VmtY8qFadkiEampziGdeZRH6RzS2egoIlWqdRH266+/0qlTJ1577bV6GduUmZnJ4sWLue+++2jdunW19rnttttIT0/npZdeoqSkhLFjxwKwevVqFi9ezOTJky9agNVEQkICAQEB2NpWfguDgoIsz4eHnykYRo4cyaeffkpoaCh5eXmsX7+eO++8s8rjRkVFERUVRV5eXp3kbCxMJhM22GgcnYiINBq1LsJKSkro3r17vf1SXLhwIe3atatx0TRz5kwcHBx49dVXKSkpoaSkhHfffZd77rnnsi6Lnis7O5u2bc+fANDF5czMzDk5OZZtU6dOZdGiRYwbNw5nZ2dGjx7N8OHDqzxuZGQkkZGRxMbGMm3atDrLa+2OJh3lEz5heNJwfHppbIeIXFpcQhzv8A7XJFyjnxvSINW6CAsJCalytvy6sGnTJrZu3cp7771XqyJv2rRp2Nvbs3jxYgDuv/9+JkyYUNcxq53Nzs6OOXPmMGfOnDrPICIiVXNydKId7XBy1JyV0jDVeu3Iu+66i19++YX9+/fXZR4KCgp47bXXuPnmm/Hw8CA3N5fc3FzKysoAyM3NpbDw0rMf5+XlWYqk+ri05+bmRnZ29nnbc3NzATQZax1r3649d3AH7du1NzqKiFgJPx8/rud6/Hw0N6M0TLXuCUtPT6d///48/PDDDBs2jJCQkAsu1n3ddddV+7jZ2dmcPn2aVatWWWbo/7Prr7+eAQMG8MILL1S5v9ls5rXXXuOrr77iscceo7S0lIULF1JSUsKDDz5Y7RyX0qFDB6KioigrK6s0LuzIkSMABAYG1tm55My/aznlF70TV0Tkz4pLikkhhUO/HQIg/VQ6JzJO0DWsKwCHjx7Gwd6Bdm3bUVpayoHDBwjwC8DNxY1TmadISUuhW6duABw5dgSbZjYE+AVQXl7O/kP7ade2Ha3cWpGZnUnS8SS6hnWlWbNmJCYnUmGuILDdmd8Dew7swdfbF49WHmTlZHEs5RidQzpja2vLsZRjlJaVWiaU3Re7j8CwQIJ7BRvwjsmVVusi7MUXX8RkMmE2m/n222/59ttvz7s8ZzabMZlMNSrC3N3def3118/b/vHHH7Nr1y5efvll3Nzcqty3oqKCl19+mQ0bNvDkk09aJk21t7dnwYIFFBcX88gjj9TJOLaBAweybt06Nm/eXGly1g0bNuDp6Unnzrobpy7tPbiXf/APrj54NW0jtBiviFxanjmPpSzl9P2nCSecrWxlE5t4nMcBeI/3cMedm7iJfPJ5mZe5ndvpSEd2sIOv+ZqneRqAD/kQBxwYz3hKKOEFXmAc4wgnnP3sJ510BjAAW2z5jM8op5yJTATgGZ5hNKOJIIIYYvicz5nDHJxx5gu+IIcc7uIuAJ7neYbbDefjwx/j5l/17zppPGpdhM2dO7cuc1g4ODjQs2fP87Z/++232NjYVPncWatWreL777/nueeeY+DAgZbtI0eOxN7envnz5xMQEMC4ceMummHbtm0UFRVRUFAAQGJiIps2bQKgX79+ODo60q9fP3r37s3ChQspKCjA19eXH3/8ke3btzNv3rw6n66jqfPz8WMsY3VZQUSqrWv/ruzduhf7UntcWrhw06mbKvWEXXv02ko9YUMPD7X0hI3LHMfMtJmWnrDIY5GVesIGHRpk6Qk7fuQ4f3zyB4OnD6ZF6xaMSB5RqSes34F+lXrC7k6529ITdl3KdZV6wjpt6MTvT/xOQUaBirAmwGS2kus7L7zwAps3b77oskXFxcXExcXRtWvXKp/fu3cvHTt2xM7O7qLnGj9+/AVvOli1ahU+PmfusikoKGDp0qWVli2aNGlSpZ6x2jp7d+TSpUsJCwu77ONZu9ToVJZELGH6zum6y0lEGq1DPx/iH4P/wZObnyR0UKjRcaSeWU0R1tSoCKvswKYDPH3N0zy78Vk6DelkdBwRkXrx3cffcd2k69jw0QZGTBxhdBypZ7W+HHnixIlqt23Tpk1tTyMCwLGUY6xmNfek3EMnVISJSOPUMbgjj/AIHYM7Gh1FroBaF2Hjx4+v1gB3k8nExo0ba3saEQC6hHZhLnPpEqp1I0Wk8bK3s8cNN+zt7I2OIldArYuwESNGVFmE5eXlER8fT2pqKj169MDb2/uyAooA2NjY4IijbngQkUYtOTWZdaxjVOoofND418au1kXY448/fsHnzGYzn332GZ9++imPPfZYbU8hYnEs5RhrWMN1KddpYL6INFqFRYWkkkph0aUnJRfrV+sZ8y/GZDIxYcIEAgMDeeutt+rjFNLElJWXkU8+ZeVlRkcREak3IYEhTGc6IYEhRkeRK6BeirCzwsLCiI6Ors9TSBPRwb8DU5hCB/8ORkcRERGpE/VahKWkpFBeXl6fpxAREWk0YuJiWMACYuJijI4iV0CdF2EVFRWcOHGClStX8ssvv9Cli+5mk8t3dtmivQf3Gh1FRKTeeLbypD/98WzlaXQUuQJqPTB/8ODBF52iwmw206JFCx544IHankLEom2btoxgBG3baN1IEWm8Wnu2ZiADae3Z2ugocgXUugjr3r17lUWYyWTCxcWFsLAwRo0ahbu7+2UFFAHwaOVBH/rg0crD6CgiIvUmvyCfRBLJL8g3OopcAbUuwt544426zCFyUTm5ORziEDm5OZo7R0QarfjEeJaznNsSbyN4QLDRcaSe1evAfJG6cjT5KJ/wCUeTjxodRUSk3oR2CGUmMwntoMW7m4Ja94T92d69ezl8+DD5+fk4OzsTEhJCeHh4XRxaBIBOwZ2YzWw6BWvdSBFpvBwdHPHEE0cHR6OjyBVwWUVYTEwML7zwAsnJycCZwfhnx4n5+fkxd+5cunbtevkppcmzs7PDBRfs7OyMjiIiUm+OnzjOBjZww4kbNPSiCah1EXb06FEeeeQRioqK6NOnDz169MDd3Z3MzEz++OMPfvvtNx599FHeeecd2rdvX4eRpSlKTk3mK77Semoi0qjl5ecRTzx5+XlGR5EroNZF2IoVKygrK+OVV17hL3/5S6Xn7rjjDnbs2MFjjz3GihUreOaZZy43pzRxRcVFpJNOUXGR0VFEROpNaIdQHuRBjQlrImo9MP+PP/5g8ODB5xVgZ/Xu3ZvBgwfzxx9/1DqcyFnB7YO5l3sJbq+7hUREpHGodRGWn5+Pj8/FLwv5+PiQn6+5TkRERKrj4OGDLGIRBw8fNDqKXAG1LsI8PDzYv3//RdvExMTg4aHJNeXy7T+0n5d4if2HLv6ZExGxZi3dWtKNbrR0a2l0FLkCal2EDRgwgF27drFs2TKKi4srPVdcXMz777/PH3/8wYABAy47pEhrj/+/lIeHlvIQkcbL28uboQzF28vb6ChyBdR6YP6UKVPYunUrH330EWvXrqVTp060atWKzMxMDh48SFZWFm3btmXKlCl1mVeaKC8PL67marw8vIyOIiJSbwoKCzjOcQoKC4yOIldArXvCXF1deffdd7nuuusoKipi27ZtfPvtt2zbto2CggJGjhzJ22+/jaura13mlSYqLz+PBBJ027aINGqHjx5mCUs4fPSw0VHkCrisyVpdXV2ZO3cujz76KImJiRQUFODs7ExAQAC2tnUyGb8IAEeOHWElK5lwbAIhhBgdR0SkXgS3D2Y603UneBNR40rpgw8+oKioiLvvvttSaNna2hIUFGRpU1paytKlS3FycmLSpEl1l1aarNAOoTzEQ5o7R0QaNWcnZ9rSFmcnZ6OjyBVQo8uRO3bs4P3338fV1fWiPV12dna4urqybNkydu7cedkhRRwdHPHAQ+upiUijlpaexo/8SFp6mtFR5AqoURH23Xff4eLiws0333zJtjfddBMuLi58++23tQ4nclZKWgrf8A0paSlGRxERqTdZ2VnsYQ9Z2VlGR5EroEZF2L59+4iIiMDe3v6Sbe3t7enduzf79u2rdTiRs/IL8jnKUfILNPmviDReHYM78giP0DG4o9FR5AqoURGWkZFB27Ztq93ex8eHU6dO1TiUyLlCO4TyAA9oTJiIiDQaNSrCmjVrRllZWbXbl5WV0axZrWfBEBERaVIOHTnEv/gXh44cMjqKXAE1qpA8PDxISEiodvuEhAQ8PT1rHErkXAfiDvAqr3Ig7oDRUURE6k2L5i0IIogWzVsYHUWugBoVYd26dSM6OprU1NRLtk1NTSU6Opru3bvXOpzIWe4t3elFL9xbuhsdRUSk3rRt05bruI62bao/9EesV42KsJtuuomysjKeeuopsrKyLtguOzubp59+mvLycsaOHXu5GUVo49WGa7iGNl5tjI4iIlJvioqLyCCDouIio6PIFVCjyVrDwsK49dZbWb16NXfeeSdjx46lZ8+eeHmdWc8vIyODnTt3sm7dOrKyshg/fjxhYWH1ElyaloLCAlJI0XpqItKoHTpyiDd5kxuO3EBg/0Cj40g9q/GM+Q8++CD29vZ8+umnfPjhh3z44YeVnjebzTRr1oxJkyZx77331llQadoOHz3MUpYy7ug4gq4OuvQOIiJWKCggiLu4i6AA/ZxrCmpchJlMJqZPn87111/PN998w759+zh9+jQA7u7uhIeHM3LkSHx9fes8rDRdIYEhzGAGIYFaN1JEGq/mzs0JIIDmzs2NjiJXQK1X2fb19WXatGl1mUXkgpwcnfDGGydHJ6OjiIjUm5MZJ9nCFm7MuBEffIyOI/VMk3iJVUg9mUoUUaSevPSduSIi1iojM4Nf+ZWMzAyjo8gVoCJMrEJObg772U9Obo7RUURE6k3nkM7MYQ6dQzobHUWuABVhYhXCgsKYxSzCgnS3rYiINA4qwq6Qr7/+mgkTJjBixAgmTZpESkqK0ZFERKSBiUuIYwlLiEuIMzqKXAG1Hpgv1ffLL7+wZs0aXnzxRQICAkhJScHV1dXoWFYlNj6WxSxmcPxgfHppsKqINE5Ojk744KObkJoIFWFXwMqVK5k5cybt27cHwM/Pz9hAVsilhQthhOHSwsXoKCIi9cbPx4/RjMbPR78nmoIGWYTFxcWxdOlSjhw5QlZWFg4ODvj7+3PTTTcxfPjwej13QUEBK1euJC4ujri4OLKzs5k6dSp33313lW2XLVvGxo0byc3Nxd/fn4kTJzJ06FBLm/LycuLi4oiPj+eFF17AxsaGkSNHMnXqVEwmU72+lsakbZu2DGe41lMTkUatpLSEbLIpKS0xOopcAQ2yCMvLy6N169ZERkbi6elJUVERP/zwA/Pnzyc1NZUpU6bU27mzs7NZt24dQUFBDBw4kPXr11+w7bx58zh48CD33Xcf7dq1IyoqimeffZaKigqGDRsGQGZmJuXl5fz++++sWLGCvLw8Zs+ejbe3NyNHjqy319HYFBYVcpKTFBYVGh1FRKTeHDx8kEUsYsThEQT0DTA6jtSzBlmE9ezZk549e1badtVVV5Gamsq6desuWITl5+ezd+9e+vXrV+XzW7dupWfPnjg5Xfhau7e3N19//TUmk4msrKwLFmG//vorO3bs4KmnniIyMhKAXr16kZaWxttvv821116LjY0NDg4OAEycOBEXFxdcXFwYM2YMv/32m4qwGohLiOMt3mJMwhg6XNXB6DgiIvUisF0gk5hEYDutG9kUWNXdkW5ubtjY2Fzw+fXr1zN37ly+/fbb85776quv+Pvf/85333130XOYTKZqXSbcsmULTk5ODBkypNL2UaNGkZGRQUxMDAAuLi54enpe8nhycUEBQdzDPVpPTUQaNZcWLgQTrPGvTUSD7Ak7q6KigoqKCvLy8ti4cSO//fYbf/3rXy/Y/rbbbiM9PZ2XXnqJkpISxo4dC8Dq1atZvHgxkydP5sYbb6yTbAkJCQQEBGBrW/ktDAoKsjwfHh4OwMiRI/n0008JDQ0lLy+P9evXc+edd1Z53KioKKKiosjLy6uTnI1Fc+fmtKOd1lMTkUYt43QG29jGzadv1rJFTUCDLsIWLlzI2rVrAbCzs2PWrFmWwupCZs6ciYODA6+++iolJSWUlJTw7rvvcs8999TpWLLs7Gzatj1/kLiLy5m/XnJy/jez+9SpU1m0aBHjxo3D2dmZ0aNHX/AGg8jISCIjI4mNjdXanH9yIv0Em9nM2PSx+sEkIo1WWnoaP/IjaelphBNudBypZw26CJs8eTI33HADmZmZbN26lddee43CwkImTJhw0f2mTZuGvb09ixcvBuD++++/5D61Ud27G+3s7JgzZw5z5syp8wxNxamsU/zO75zKOmV0FBGRetM1rCtP8ARdw7oaHUWugAZdhLVp04Y2bdoA0L9/fwCWLFnCyJEjadmy5UX3zcvLw2QyYTab6+XSnpubG9nZ2edtz83NBdBkrHWsc0hnHuVRracmIiKNhlUNzO/UqRPl5eUcP378gm3MZjOLFi1i9erVPPbYY8yePZuPPvqIf/3rX3WapUOHDiQmJlJWVlZp+5EjRwAIDNSdLSIiUjPxifEsZznxifFGR5ErwKqKsD/++INmzZpVORYLzgzkX7BgAWvXruXJJ59k1KhRjB07lrlz57JmzRoWLlyI2WyukywDBw6ksLCQzZs3V9q+YcMGPD096dxZPTZ1KS4hjnd4R+upiUijZmdrhyuu2NnaGR1FroAGeTny5ZdfxtnZmU6dOuHu7k5WVhabNm3ip59+YsKECRe8FLlq1Sq+//57nnvuOQYOHGjZPnLkSOzt7Zk/fz4BAQGMGzfuoufftm0bRUVFFBQUAJCYmMimTZsA6NevH46OjvTr14/evXuzcOFCCgoK8PX15ccff2T79u3MmzfvolNpSM05OTrRjnZaT01EGjV/X3/GMQ5/X3+jo8gV0CCLsC5duvDNN9+wYcMG8vLycHJyIjg4mHnz5l102aKbb76Z8PBwunY9f0Dj0KFDad26NR07drzk+RcuXEhaWprl8caNG9m4cSNwptDz8Tlzd978+fNZunQp7733nmXZoqeffrrSskVSN/x8/Lie67Wemog0amVlZRRQcN5QF2mcGmQRNmrUKEaNGlXj/RwcHKoswM46O2/XpXz++efVaufs7MysWbOYNWtWtdpL7RWXFJNJJsUlxUZHERGpNzFxMSxgAdfGXUu7Pu2MjiP1zKrGhEnTFRsfy+u8Tmx8rNFRRETqjb+vP+MZr8uRTYSKMLEKge0CmcxkracmIo1aS9eWdKYzLV1bGh1FrgAVYWIVXFq4EESQ1lMTkUbtVOYpdrKTU5mamLopUBEmViH9VDpb2Ur6qXSjo4iI1JuUtBTWsY6UtBSjo8gVoCJMrMKJjBNsYhMnMk4YHUVEpN5069SNZ3gGlxYulsm/KyoqiI6O5vTp0wCcPn2a6OhoysvLgTOThMfF/W8OxejoaNLTz/zBmpWVRXR0NKWlpQAcPXqU2Nj/ja3dtWsXJ06c+bmak5NDdHQ0xcVnboA6duwYBw4csLTds2cPqampwJlVaaKjoyksLAQgOTmZY8eO1f0b0sipCBOr0DWsK4/zuNZTE5EmYe7Tc5l570xSo1M59tsxIiIi+OStT0iNTuWzdz4jIiKCo9uOkhqdyqzps5h25zRSo1NJjU6lT58+LH9tOanRqfxn+X+IiIgg9udYUqNTeeyhx5h822RL24EDBvL2P98mNTqVbz/+loiICHb/sJvU6FSeevQpxt803tJ22LXDeO0fr5EancrGNRuJiIhg+/rtpEan8vhfH2foNUMtBZ1Uj8lcV1PIS52KjY1l2rRpLF26lLCwMKPjGC41OpUlEUuYvnM6Pr18jI4jIlIvso9l869O/yKtIA0TJtxxp4IK0kijJS1xxpkCCsgiC2+8aUYzTnMaM2Y88ADgOMdxw43mNKeQQjLJpA1tsMGGTDIppxxPPAFIJRUXXGhBC4oo4jSnaU1rbLEliyxKKcULLwDSSKM5zXHBhWKKOcUpvPDCDjuyycbJyYk5B+fg5u9m2PtnbRrkPGEi5zp89DDv8R7XHr1WRZiINFpu/m48eOBBCjIKjI5SI+kH0vly0pcUZBSoCKsBFWFiFRzsHXDHHQd7B6OjiIjUKzd/N6srZM7O5Tg4frD+UK4BjQkTq9CubTtu4ibatdUM0iIiDY2riytd6IKri6vRUayKijCxCqWlpeSTb7nDR0REGg6f1j5EEolPa/WC1YSKMLEKBw4f4GVe5sDhA5duLCIiV1RhUSFppFFYVGh0FKuiIkysQoBfALdzOwF+AUZHERGRc8QlxPEO7xCXEHfpxmKhIkysgpuLGx3piJuLdQ1WFRFpCoLbBzONaQS3DzY6ilVRESZW4VTmKXawQ+upiYg0QM5Ozvjii7OTs9FRrIqKMLEKKWkpfM3XWk9NRKQBOpF+go1s5ES6ZsyvCRVhYhW6derG0zxNt07djI4iIiLnOJ11mmiiOZ112ugoVkVFmIiIiFyWTiGdmM1sOoV0MjqKVVERJlbhyLEjfMiHHDl2xOgoIiIidUJFmFgFm2Y2OOCATTMbo6OIiMg5Dh05xFu8xaEjh4yOYlVUhIlVCPALYDzjNU+YiEgD1Ny5Oe1pT3Pn5kZHsSoqwsQqlJeXU0IJ5eXlRkcREZFz+Hr7MopR+Hr7Gh3FqqgIE6uw/9B+XuAF9h/ab3QUERE5R1FxEac4RVFxkdFRrIqKMLEK7dq2YxzjaNe2ndFRRETkHIeOHGIxizUmrIZUhIlVaOXWinDCaeXWyugoIiJyjg7+HZjCFDr4dzA6ilVRESZWITM7k93sJjM70+goIiJyjhbNWxBIIC2atzA6ilVRESZWIel4El/yJUnHk4yOIiIi50g/lc4v/EL6qXSjo1gVFWFiFbqGdWUe8+ga1tXoKCIico6Tp06yhS2cPHXS6ChWRUWYWIVmzZphiy3NmukjKyLS0HQJ7cJc5tIltIvRUayKfqOJVUhMTuQzPiMxOdHoKCIiInVCRZhYhQpzBeWUU2GuMDqKiIic4/DRwyxjGYePHjY6ilVRESZWIbBdIBOZSGC7QKOjiIjIORwdHPHCC0cHR6OjWBUVYSIiInJZ/Hz8GMtY/Hz8jI5iVVSEiVXYc2APz/AMew7sMTqKiIico7S0lFxyKS0tNTqKVVERJlbB19uX0YzW4rAiIg3QgcMHeJVXOXD4gNFRrIqKMLEKHq08iCACj1YeRkcREZFztPdrzx3cQXu/9kZHsSq2RgcQY2Qfy6Ygo8DoGNUWvyOeGGLIysnCBx+j44iIyJ+4urgSSiiuLq5GR7EqKsKaoOxj2fyr07/IK8jjFKfwwgs77Mgmm2KKaU1rAE5wAieccMWVEkrIIANPPLHHnhxyKKSQNrQB4CQnccABN9wopZR00vHAAwccyCWXfPLxxhuAdNKxw46WtKSMMk5yEnfcccSRPPLIJddSaGWQgQ02FFLI53zOA/kP0IlOxrxxIiJSpVOZp/iN3xiXOU5/KNeALkc2QQUZBZQWlBL6ZChLWMKIL0Ywfed08ifmE9Uhiuk7pzN953TW+ayj/J5ypu+czqCPBrGEJQz6aBDTd06n/J5y1vmss7SN6hBF/sR8pu+czogvRrCEJfRZ1ofpO6dj/6A9n7f83NL2v53/S8bNGUzfOZ0bv7mRJSyh2+JuTN85HddHXfnA8QNL250RO0kamcS87fNI2J3A1SOuNvrtExGRcxw/cZzv+I7jJ44bHcWqmMxms9noEHK+2NhYpk2bxtKlSwkLC6vTY+/+fjezR8zmuf88h2M7Rzp37oyjoyPJycnk5OTQuXNnAPbt24e7uztt27aloKCAgwcP0rFjR5ydnTl+/DinT5+ma9czaznGxMTg6uqKn58fRUVFxMTEEBoaSosWLUhLS+PkyZN069YNgIMHD+Ls7Iy/vz8lJSXs27eP4OBgXF1dOXnyJMePH6dHjx4AHDp0CDs7OwIDNT+YiEhDlRqdypKIJUzfOR2fXuoJqy5djmyCMjIz+JVfKSwq5KpeV1m2+/lVnt/lbIEF4OzsTK9evSyP27ZtS9u2bS2PzxZuAI6OjpXaent74+3tbXncsWNHy3/b29tXatu6dWtat25teRwaGlrj1yciImINdDmyCeoc0pk5zKFzSOdLNxYREbmEI8eOsJKVHDl2xOgoVkVFmIiIiFwWWxtbmtMcWxtdYKsJFWFNUFxCHEtYQlxCnNFRRESkEfD39ecWbsHf19/oKFZFRVgT5OTohA8+ODk6GR1FREQagfLycoooory83OgoVkVFWBPk5+PHaEZroVUREakT+w/t5yVeYv+h/UZHsSoqwpqgktISssmmpLTE6CgiItII+Pv6cyu36nJkDakIa4IOHj7IIhZx8PBBo6OIiEgj0NK1JV3oQkvXlkZHsSoqwpqgwHaBTGISge00AaqIiFy+01mn+YM/OJ112ugoVkVFWBPk0sKFYIJxaeFidBQREWkEklOT+YqvSE5NNjqKVVER1gRlnM5gG9vIOJ1hdBQREWkEwjuG8yRPEt4x3OgoVkVFWBOUlp7Gj/xIWnqa0VFERKQRMJlM2GCDyWQyOopVURHWBHUN68oTPEHXsK6XbiwiInIJR5OO8gmfcDTpqNFRrIqKMBEREREDqAhrguIT41nOcuIT442OIiIijUD7du25gzto36690VGsioqwJsjO1g5XXLGztTM6ioiINAJms5lyyjGbzUZHsSoqwpogf19/xjFOMxuLiEid2HtwL//gH+w9uNfoKFZFRVgTVFZWRgEFlJWVGR1FREQaAT8fP8YyVmsS15CKsCYoJi6GBSwgJi7G6CgiItIIuLd0pyc9cW/pbnQUq6IirAny9/VnPON1OVJEROpEVk4W+9lPVk6W0VGsioqwJqila0s601kLrYqISJ04lnKM1azmWMoxo6NYFRVhV8jXX3/NhAkTGDFiBJMmTSIlJcWwLKcyT7GTnZzKPGVYBhERaTy6hHZhLnPpEtrF6ChWxdboAE3BL7/8wpo1a3jxxRcJCAggJSUFV1dXw/KkpKWwjnU8mPYgXdGs+SIicnlsbGxwxBEbGxujo1gV9YRdAStXrmTmzJm0b98ek8mEn58fLi4uhuXp1qkbz/AM3Tp1MyyDiIg0HsdSjrGGNbocWUMNsids586d/PDDD+zbt4+TJ0/SokULwsLCmDp1KmFhYfV67oKCAlauXElcXBxxcXFkZ2czdepU7r777irbLlu2jI0bN5Kbm4u/vz8TJ05k6NChljbl5eXExcURHx/PCy+8gI2NDSNHjmTq1Kla6FRERBqFsvIy8smnrFxTH9VEg+wJ++qrr0hNTeWWW25hwYIFPPzww2RlZTFjxgx27txZr+fOzs5m3bp1lJaWMnDgwIu2nTdvHhs2bGDq1KksWLCAjh078uyzz/LDDz9Y2mRmZlJeXs7vv//OihUreP311/nhhx/YsGFDvb6Oi0lISuBjPiYhKcGwDCIi0nh08O/AFKbQwb+D0VGsSoPsCXvkkUdo1apVpW19+vThjjvu4KOPPiIiIqLK/fLz89m7dy/9+vWr8vmtW7fSs2dPnJycLnhub29vvv76a0wmE1lZWaxfv77Kdr/++is7duzgqaeeIjIyEoBevXqRlpbG22+/zbXXXouNjQ0ODg4ATJw4ERcXF1xcXBgzZgy//fYbI0eOvOR7UR+amZphgw3NTA2yBhcREWkSGuRv4XMLMABnZ2cCAgI4efLkBfdbv349c+fO5dtvvz3vua+++oq///3vfPfddxc9t8lkqtZlwi1btuDk5MSQIUMqbR81ahQZGRnExJyZCNXFxQVPT89LHu9KCvAL4HZuJ8AvwOgoIiLSCGjZotppkD1hVcnLyyMuLo6ePXtesM1tt91Geno6L730EiUlJYwdOxaA1atXs3jxYiZPnsyNN95YJ3kSEhIICAjA1rbyWxgUFGR5Pjw8HICRI0fy6aefEhoaSl5eHuvXr+fOO++s8rhRUVFERUWRl5dXJzmrUlFRQRllVFRU1Ns5RESk6Wjbpi0jGEHbNm2NjmJVrKYIW7RoEYWFhRcsXs6aOXMmDg4OvPrqq5SUlFBSUsK7777LPffcw5QpU+osT3Z2Nm3bnv9hO3vXY05OjmXb1KlTWbRoEePGjcPZ2ZnRo0czfPjwKo8bGRlJZGQksbGxTJs2rc7y/tm+2H3MZz4DYgfg29u3Xs4hIiJNh0crD/rQB49WHkZHsSpWUYQtW7aMH374gVmzZlXr7shp06Zhb2/P4sWLAbj//vuZMGFCneeq7t2NdnZ2zJkzhzlz5tR5htpo17YdN3ET7dq2MzqKiIg0Ajm5ORziEDm5OfjgY3Qcq9Egx4T92fLly/nggw+YNm0a48aNq/Z+eXl5liKpPi7tubm5kZ2dfd723NxcAEMnY72UVm6t6E53WrmdP/ZORESkpo4mH+UTPuFo8lGjo1iVBt0Ttnz5cpYvX85dd93F5MmTq7WP2Wzmtdde46uvvuKxxx6jtLSUhQsXUlJSwoMPPlhn2Tp06EBUVBRlZWWVxoUdOXIEgMDAwDo7V13LzM5kL3vJzM7UXywiInLZOgV3Yjaz6RTcyegoVqXB9oStXLmS5cuXc+edd3LXXXdVa5+KigoWLFjA2rVrefLJJxk1ahRjx45l7ty5rFmzhoULF2I2m+sk38CBAyksLGTz5s2Vtm/YsAFPT086d+5cJ+epD0nHk/iCL0g6nmR0FBERaQTs7OxwwQU7Ozujo1iVBtkT9tlnn/Hee+/Rt29f+vfvz/79+ys936VL1QuErlq1iu+//57nnnuu0kSrI0eOxN7envnz5xMQEHDJy5rbtm2jqKiIgoICABITE9m0aRMA/fr1w9HRkX79+tG7d28WLlxIQUEBvr6+/Pjjj2zfvp158+Y16PWzuoR24XEe10KrIiJSJ5JTk/mKrxiVOkpXWGqgQRZhW7duBWD79u1s3779vOd//vnnKve7+eabCQ8Pp2vX8xelHjp0KK1bt6Zjx46XPP/ChQtJS0uzPN64cSMbN24EzhR6Pj5nPmDz589n6dKlvPfee5Zli55++ulKyxY1RDY2Nthj36ALRRERsR5FxUWkk05RcZHRUayKyVxX1+ekTp2domLp0qV1vl7mtrXbuGfsPbz31Xv0G1P16gIiIiLVlRqdypKIJUzfOR2fXuoJq64GOyZM6k95RTnFFFNeUW50FBERkSZLRVgT1MG/A5OZrIVWRUSkTuw/tJ+XeIn9h/ZfurFYqAgTERGRy9LaozUDGUhrj9ZGR7EqKsKaoD0H9vAsz7LnwB6jo4iISCPg5eHF1VyNl4eX0VGsioqwJsjX25fruR5fb60bKSIily8vP48EEsjLr/sVahozFWFNkEcrD3rTWwutiohInThy7AgrWcmRY0eMjmJVVIQ1Qdm52RzkINm55699KSIiUlOhHUJ5iIcI7RBqdBSroiKsCUpMTuQzPiMxOdHoKCIi0gg4OjjigQeODo5GR7EqKsKaoE7Bnfgbf9NCqyIiUidS0lL4hm9ISUsxOopVURHWBNnZ2dGc5lpoVURE6kR+QT5HOUp+Qb7RUayKirAmKOl4El/yJUnHk4yOIiIijUBoh1Ae4AGNCashFWFNUHFJMac5TXFJsdFRREREmixbowNI7ZSXl1NaWlqrfQMCAng44GECAgIoKtKK9yLScNnZ2WFjY2N0DLmEA3EHeJVXGRg3UAt414CKMCuUl5dHcnIyZrO5VvuX25Zz9TtXk2ObQ36Crt+LSMNlMpnw8/OjRYsWRkeRi3Bv6U4veuHe0t3oKFZFRZiVKS8vJzk5GWdnZ7y8vDCZTDU+Rl5mHsWlxXi39qZFK/1gE5GGyWw2k56eTnJyMiEhIeoRa8DaeLXhGq6hjVcbo6NYFRVhVqa0tBSz2YyXlxdOTk61OkZF8wpccMG5uTOOjprTRUQaLi8vL44ePUppaamKsAasoLCAFFIoKCwwOopV0cB8K1WbHrCzbG1saUELbG1Ug4tIw3Y5P+vkyjl89DBLWcrho4eNjmJVVIQ1QRUVFRRTTEVFhdFRRESkEQgJDGEGMwgJDDE6ilVREdYEFZcUc4pTdTZFRfv27enYsSM9evSgU6dO3HHHHeTn137A/4oVKzh06NAFn9+2bRvh4eH07NmT7777jlGjRhEfH1+tfRuCZ555hkcffbROj9m+fXv27dtXq3137NjBxIkTAcjKymLBggWVnh8yZAjr16+/7IyN0dGjR/H09Kyz402dOpU333yzzo5nTf92l/MZFuM5OTrhjTdOjrUbJtNUqQhrghwdHGlN6zpd42vNmjXs2rWLmJgYcnJyWLFiRa2PdalCauXKldx555388ccfjBgxgm+++YagoKBq7Svn6927Nx9//DFQdRFWW2VlZXVyHDGW/h2lOlJPphJFFKknU42OYlVUhFm50oJSUqNTa/T/E7tPkHUwixO7T1yybWlBzeYiKy4uJj8/n1atWlm2vfLKK/Tp04devXoxatQokpLOzNS/bt06unXrRo8ePejatStfffUVy5YtY8eOHTz88MP06NGDb775ptLxX3rpJVatWsXrr79Ojx49yMrKsvwFfal9AQ4cOMCIESPo1q0b3bp145133gHg8OHDREZGWvL85z//sexjMpn45z//Sd++fQkMDGT58uUAfPTRR4wePdrSzmw2ExgYyJ49ewBYsGABXbp0ITw8nIkTJ5KdnX1entDQUHbu3Gl5vHz5cm6++WYA0tLSGD9+PH369KFbt2489dRTlnZbtmwhPDycPn36MHPmzAtOV9K/f39+/fVXAP7v//4PPz8/y3P+/v4kJSWxadMmevfuDcCMGTPIysqiR48elm1nzzdw4ECCgoKYMWNGlec62yv03HPPMXDgQBYvXnzB11BRUcHMmTPp2LEj3bt3JyIigqKiIssxHn30Ufr27UuXLl346aefLOf48MMPCQ8Pp1u3blx//fWkpJxZp27FihWMGDGCCRMmEB4eTu/evTly5AgAcXFxXH311XTv3p3w8HDmzZsHnLnJZe7cufTp04cePXpw++23k5WVdcHXdaFMf2YymcjLy7M89vT05OjRoxd8vVXZvXs3Q4cOpWPHjkydOpXi4jM91p988gl9+/alZ8+e532+L/S5/rM1a9bQo0cPS6/xE088QXBwMH379uVvf/ub5d9706ZN9OjRg4cffpj+/fvz5ZdfsmPHDvr370+3bt3o06cPv/zyS6X35qy8vLxKY7gu9N2B6n+GxTrk5Oawn/3k5OYYHcW6mKVBOnjwoHngwIHmgwcPVtpeWFhojomJMRcWFprNZrP5+M7j5md4pt7+f3zn8UtmDQgIMIeFhZm7d+9udnV1NV9zzTXm0tJSs9lsNn/88cfmadOmmcvKysxms9n8wQcfmMeMGWM2m83mbt26mX/55Rez2Ww2l5eXmzMzM81ms9k8ePBg87p16y54vilTppgXL15c6fx79+695L6lpaXmkJAQ86pVqyzb0tPTzWaz2dynTx/zu+++azabzeZDhw6Z3d3dzceOHTObzWYzYH7ttdfMZrPZHBMTY27RooW5tLTUXFBQYPbw8DCnpqaazWaz+aeffjL36tXLbDabzd988425Y8eOltc0bdo08wMPPGA2m83mp59+2jx79myz2Ww2P//88+YHH3zQkmfQoEHmtWvXms1ms3n48OHmzZs3W7KPGDHC/O9//9tcVFRkbtu2rXnjxo1ms9lsXrVqlRmwvAd/Nm/ePPOzzz5rNpvN5p49e5r79OljPnDggPngwYPm0NBQs9lsNm/cuNEcERFhNpvN5oSEBLOHh0elYwwePNg8btw4c1lZmbmgoMDcvn1789atW887V0JCghkwf/zxx5ZtF3oN0dHR5o4dO5rLy8vNZrPZnJWVZS4vL7ccY8WKFWaz2Wz+9ddfzW3atDHn5eWZ9+7da27Tpo05OTnZbDabzfPnzzePGjXKbDabzcuXLze7ubmZjx49ajabzebHHnvMPH36dLPZbDY//PDD5ueff96S6dSpU5b3/h//+Idl+3PPPWd++OGHL/i6qsp07vsFmHNzcy2PPTw8zAkJCRd8veeaMmWKOTw83Jybm2suKyszjx492vzPf/7TbDabzRkZGeaKigpLJh8fH3NJSclFP9dnvw+vvPKKedCgQZbXvnbtWnO3bt3MeXl55vLycvNNN91k+Qxs3LjRbDKZzFu2bDGbzWZzcXGxuV27duYNGzaYzWazecuWLWZvb+8qX39ubq75z79WLvTdqcln+NyfedIwnf1dVJ3fGfI/uj3Oynl29GT6zuk12ic/J5+U5BR8/Xxp7tr8ksevjjVr1tC1a1fKysq47777eOyxx3j11Vf5z3/+w44dO4iIiADOzHN29jbzoUOH8te//pVbbrmF4cOH06NHjxq9jpqKjY2lrKyM8ePHW7Z5enqSm5vLrl27uOeeewAICQlhwIAB/Pe//2XChAkAljFTnTp1wtbWlrS0NPz8/Bg3bhwfffQRjz76KMuXL+euu+4CICoqiokTJ9KyZUsA7r//fm6//fbzMk2ZMoWePXuycOFCkpKSOHToECNHjiQ/P5+ffvqJEydOWNrm5eVx8OBBgoKCcHZ2ZsiQIQCMHz+e6dOr/gxERkby5JNPMmPGDOzs7Bg/fjxRUVGYTCYiIyOr/d7dfvvt2NjY4OTkZOlN6d+//3ntHB0dLe/ZxV7DtddeS2lpKXfffTfXXHMN119/Pc2anemYt7e3Z/LkyQD069cPb29vdu/ezc6dO7nhhhvw9fUF4IEHHmD+/PmWHpQBAwYQEBAAnOkBXLx4MQCDBg3ib3/7G/n5+QwePNjyuv/zn/+Qk5PDmjVrACgpKbFc1j7XhTK1bdu2Wu9fhw4dLvh6z3XbbbdZJia9++67eeutt5gzZw4JCQlMnDiR5ORkbG1tycjIIDExkeLi4io/12c988wztG3blu+//x4HBwcANm7cyPjx42ne/Mz3f8qUKfzjH/+w7BMaGsqAAQOAM98be3t7RowYYXmfW7duzZ49e/DxufTM6FV9d06fPl3tz7BIY6YizMrZOdvVeImIkvwSnFs449nJE/vm9nWax9bWlnHjxvG3v/2NV199FbPZzLx587j77rvPa7tw4UL279/Pxo0bmTJlChMnTmTOnDl1mqc6zv4SP/dW+D8//vN8ajY2NpZxMnfddRf33nsv06dPZ/369bz22muWY17seGf5+vrSq1cv1q5dy+7du5k8eTK2trYUFhZiMpn4/fffsbOzq7TP7t27q/3a+vfvz759+1i7di1Dhw4lMjKSZ555BoA777yz2se50Os/V/PmzS2vs6Ki4oKvAWD//v1s3ryZjRs38ve//52ff/4ZW9uqfySZTKbz3tNz388LZRw3bhxXXXUVP/zwA2+++SavvfYa33zzDWazmbfeeotrr722mu/C+ZnOZWNjQ3l5ueXx2UuObm5uVb7e4ODgap/n9ttv55VXXuHGG28EwN3dnaKioktO4dC/f3++++47EhIS6NixI1D15/PP/jw7/YXamkwmbG1tq3y9f1bVv4tZlx4bndj4WBazmMHxg7VsUQ1oTJjUuZ9++omwsDAAxowZw1tvvcXp06eBM+Nw/vjjDwAOHjxIly5dmDlzJvfffz/btm0DwNXVtcrxU9VxsX3DwsKwt7dn9erVlm0ZGRm4urrSo0cPVq5cCUB8fDy//PILV1999SXP169fPyoqKpgzZw7Dhg3D3f3Mkh3Dhg3js88+Izc3F4AlS5ZcsOfp7rvv5v333+eDDz5g6tSpALi4uDBw4EBeeuklS7vjx4+TnJxMx44dKSws5OeffwbO9EJe6DXb29vTt29f5s+fbxnzFhMTw88//8w111xzXntXV1cKCgrqZDD2xV5Deno6+fn5DB8+nBdeeIH27dsTExMDnOmROnujwG+//UZaWhrdunVj6NChfPPNN6SlpQHwzjvvMHTo0EsWIXFxcbRu3Zo777yTBQsWWD5nY8aMYeHChRQUnJlcsqCggP3791d5jAtlOldQUBDbt28H4N///rflLuGLvd5zrV69mvz8fMrLy1m+fLnlc5OZmUn79u2BM+MRMzMzgQt/rs8aMWIEy5Yt44YbbmDXrl0AXHPNNaxevZqCggIqKir48MMPL/j+dezYkeLiYss4uK1bt3Ly5EnCw8Px9vamrKyM2NhYAD744IMLHufcY1b3MyzWwaWFC2GE4dLCxegoVkVFWBNUVFxEGmkUFdfd4t233HILPXr0oEuXLhw4cIDXX38dgMmTJzNp0iSGDBlC9+7d6dGjBxs3bgTg73//O126dKFnz558+OGHlh6a6dOn89xzz11wcP3FXGxfW1tbvvrqK5YsWWIZ3P3FF18A8PHHH/PRRx/RvXt3xo0bx7Jly2jXrl21znnXXXfx7rvvWi5FAowcOZLJkyfTv39/wsPDycnJ4fnnn69y/7Fjx7J9+3Z8fHzo3LmzZfvHH3/MgQMHCA8PJzw8nHHjxnHq1CkcHBz49NNPefDBB+nTpw+//fYb/v7+F8w3bNgwTp48ydVXX43JZCIiIoLg4GDLpdI/c3d3Z+LEiZbB7ZfrQq8hKSmJYcOG0a1bN8LDw+natSsjR44EwMPDg8OHD9O3b1/uuusuPvnkE5o3b06XLl148cUXGT58ON26dWPLli28++67l8ywevVqunXrRs+ePbn99tstg9bnzp1Ljx496Nu3L926daNfv36WIuVcF8p0rtdee40HH3yQq6++mujoaDw8PAAu+nrPNWjQIG688Ua6dOlCq1ateOihhwB4/fXXuemmmxgwYAC7d++2/Jtf7HP952N++umnjBs3jl9//ZUxY8YwYsQIunfvzjXXXENQUBBubm5V5rG3t+eLL77giSeeoFu3bvz1r39l9erVNG/eHFtbW9544w1GjhzJoEGDLDcRXEpNP8PS8LVt05bhDKdtm+pdopczTGb1CzdIsbGxTJs2jaVLl1p6leBMd39CQgKBgYG1XnKoILuApLgk2oW0w9nNua4ii1y2o0eP0rt370o9OUZriJnqQm5uLi4uLlRUVHDvvffStm1b5s+fb3Ss89TFzzypf0e2HuHVq19l9i+z6XBVB6PjWA31hDVBtra2uOBywfE3ItL43XnnnfTs2ZPOnTtTVFRkyHhMaTziEuJ4i7eIS4gzOopV0W/hJqiiooISSrRskTQ47du3b3A9Tg0xU1348ssvjY4gjUhQQBD3cA9BAVXfYSxVU09YE1RcUkwGGXW2bJGIiDRtzZ2b0452NHe++LRHUpmKsCbI0cERL7zqdNkiERFpuk6kn2AzmzmRfuLSjcVCRVgTZDKZsMPukrf2i4iIVMeprFP8zu+cyjpldBSroiKsCSotKyWHHErLarYupIiISFU6h3TmUR6lc0jnSzcWCxVhTVBFeQVFFFFRfvkD83v06EGPHj3o3Lkztra2lse33XZble137drF559/Xq1j/3lhaSNt2rSJ77//3ugYIiLSyKgIa4IcHBxoTWvLOnKXY9euXezatYtvvvmGli1bWh6vWrXqgu2rW4Q1FCrCREQuLi4hjnd4h7iEOIqLi4mOjiYnJweAEydOVJoIOTY2lqNHjwJnVlGJjo4mKysLOLO6RHR09P+OGxfHkSNHgDNrD0dHR1tWYDl9+jTR0dGWO/2PHDnC4cOHLftGR0db7mzOzMwkOjrashpIQkIChw4dqvs3ooZUhEm9+PDDDy2zd19//fWkpKRw8uRJnnrqKaKioujRowczZswAYNKkSfTu3Ztu3bpxww03cPLkyUsePzs7m3vvvZfw8HC6d+9uWZsyLy+Pu+++m65du9K1a1eeffZZyz5Dhgxh/fr1lse33HILK1asAGDq1Kk88MADREZGEhoays0330xJSQm7du3inXfe4YMPPqBHjx4899xzpKenM3z4cMvr+/NM+SIiTZGToxPtaEfFyQp2/7CbiIgIvv34W1KjU3n7n28zcMBAUqNTSY1OZfJtk3nsocdIjU4l9udYIiIi+M/y/5Aancry15bTp08fS9tpd05j1vRZpEancnTbUSIiIvjsnc9IjU7lk7c+ISIigmO/HSM1OpWZ985kxtQZln0jIiJY8foKUqNT+fd7/yYiIoJDWw6RGp3Kow8+ytQ7ppJ9zNjlsjRjfgNVkxnzU1NTycjIIDw8HICYmBhcXFxo164dRUVFxMTEEBISgouLCydOnCA+Nh4nZyeCOwRzPP04jo6OBAQEUFpayt69ey+6hMmF/HlW8X379hEZGcnOnTvx9fXl+eefZ+vWrXz99desWLGC9evXs2bNGsu+GRkZeHp6AvDSSy+RnJzMm2++yaZNm3j00UfZsWPHeee76667aNGiBa+//jrNmjUjPT0dLy8vHnvsMVJSUvjggw8oLCxkwIABPP7449x6660MGTKERx99lBtuuAE4U4TdcMMNTJ06lalTp3Lo0CF+/PFH7O3tGTRoEDNnzmTChAk888wz5OXl8corrwCwaNEiDhw4wJIlS4Azf42dXTNSROqWZsy3DtnHsnmt42tQCGWUcZKTuOOOI47kkUcuufhwZmHvDDKwwYZWtKKcck5wgla0wgkn8sknm2zacmb5o1OcwoQJd9ypoII00mhJS5xxpoACssjCG2+a0YzTnMaMGQ/OLBd2nOO44UZzmlNIIZlk0oY22GBDJpmUU46Psw8PHngQN/+a/c6rK5qstRF49913WbZsGcnJyQDcfvvtDBkyhDfeeIPk5GQiIiLYuHEjQ4YM4YMPPuDFF15k6w9baWbTjKlTp9KlSxeWLVtGRkYGERERrF+/nuuvv77WeTZu3MgNN9yAr68vAA888ADz58/nQvX+xx9/zIcffkhxcTGFhYV4e3tf8hzr169n586dNGt2pjPXy8sLgKioKEth1rx5c+68806ioqK49dZbL3nMm2++GScnJwD69OlDfHx8le369evHokWLmD17NoMHD2bEiBGXPLaISGPm5u/GXw/+lYKMAqOjVNuWDVuY9MQk/vLLXxjmP8yQDCrCGoH77ruPcePGWR5/9tlnuLicWcnez8+PnTt3EhISApxZquSagdfgiit2tnasWLHC8telp6cnO3fuJCjo8mY8NpvNlaa/uNhUGP/9739588032bp1K15eXqxdu5bnnnuuzs795/Pb2tpSXl5u2V5UVHkB8z//lW1jY2MZO3Cu/v37s2vXLqKiovjiiy+YN28ef/zxBzY2NrXOLSJi7dz83QzrUaqNTqc7MZSheHtd+g//+qIxYY2Aj4+P5VIkQOfOnWnXrh1wprDo1auXpShr06YN4V3DKaUUs9lMWFgYAQEBANjZ2dGrV68aX4o819ChQ/nmm29IS0sD4J133mHo0KGYTCZcXV3Jzv7fNfjMzExcXV1xd3enpKSEd999t1rnGDNmDC+//LJlQGZ6ejoAw4YNY+nSpZjNZvLz8/noo4+IjIwEICgoiO3btwNnBmX+97//rda5zs2ckJBAixYtGD9+PIsXL+bQoUPk5eVV61giItIweLp70o9+eLp7GpZBRVgTVFRcRDrpFBUXXbpxLXTp0oUXX3yR4cOH061bN7Zs2WIproYOHUp+fj7du3dnxowZjBw5kuDgYDp27MiIESPo0aNHtc6xaNEiCgoK6Nq1Kz169ODxxx8H4Mknn8RkMhEeHk7fvn0ZM2YMt9xyCwCPPfYYP/zwAxERETzxxBP07du3Wue66aab2LFjh2Vg/qZNm4iIiKBHjx5cffXVvPzyy5dduIqIyJWVm5fLYQ6Tm5drWAYNzG+gajIwv6aK8opIO5iGd0dvHFtooKuINFwamC/15buPv+O6Sdex4aMNjJhozNhe9YQ1Qc1MzbDHnmYm/fOLiEjT1DG4I4/wCB2DOxqWQb+Fm6CysjJyyb3gwHMREZHGzt7OHjfcsLezNyyDirAmqKy8jHzyKStXESYiIk1Tcmoy61hHcmqyYRlUhFmpyxnK5+jgiDfeODpofIWINGwatiz1pbCokFRSKSwqNCyD5gmzMnZ2dphMJssM8Rebg+tCSopLKKOMouIiKmwufxFvEZH6YDabSU9Px2QyYWdnZ3QcaWRCAkOYznRCAkMMy6AizMrY2Njg5+dHcnKyZQHUmioqKCI9Ix0vkxeOzuoNE5GGy2Qy4efnp8mQpVFSEWaFWrRoQUhICKWlpbXaf9/mfbw5402eevcpAgcH1nE6EZG6Y2dnpwJM6kVMXAwLWMCAuAH49PIxJIOKMCtlY2NT6x9Mvl6+RCRG4Ovlq3l3RESkSfJs5Ul/+uPZSjPmyxVUVFzEKU7V24z5IiIiDV1rz9YMZCCtPVsblkFFWBN06MghFrOYQ0cOGR1FRETEEPkF+SSSSH5BvmEZdDmygSouLgYgMTGxzo9tY2PD7c1vx8bGhtjY2Do/voiISEP3645f+bz55wzaMYhyr/I6P35AQMAlh/xo7cgG6vvvv2f+/PlGxxAREZFaOHft56qoCGugsrKy+O233/jPf/7DrFmzqrXP4sWLeeihhy7ZLjExkfnz5zNv3jwCAgIuN2qjUN33zghXOlt9na+ujns5x6nNvjXdpzrt9R08X0P+DoK+h3V5nPr+HjaU34XV6QnT5cgGqmXLlgwfPpyffvrpkpX0WS1atKh2WzjzAalJ+8aspu/dlXSls9XX+erquJdznNrsW9N9atJe38H/acjfQdD3sC6PU9/fQ2v6XaiB+Q1cZGRkvbSVyhrye3els9XX+erquJdznNrsW9N9GvJnqSFr6O+bvod1d5z6/h429M/Sn+lyZBMUGxvLtGnTqnW9WkTqnr6DIsZrCN9D9YQ1QR4eHkydOhUPDw+jo4g0SfoOihivIXwP1RMmIiIiYgD1hImIiIgYQEWYiIiIiAFUhImIiIgYQEWYiIiIiAFUhMl5SkpKePHFFxk3bhzXXXcdM2bMYO/evUbHEmlSnnnmGcaOHct1113H1KlT2bp1q9GRRJqsffv2MXjwYFauXFmnx9XdkXKewsJCVq1axciRI/Hy8uK7777jrbfeYvXq1ZdcgkFE6kZCQgJ+fn7Y2dkRExPD7Nmz+eyzz3BzczM6mkiTUlFRwf3334/JZKJ///5MmTKlzo6tnjA5j5OTE1OnTqVNmzY0a9aMkSNHUlFRQXJystHRRJqMwMBA7OzsALCxsaG0tJSMjAyDU4k0PWvXriU8PBx/f/86P7bWjmwECgoKWLlyJXFxccTFxZGdnc3UqVO5++67q2y7bNkyNm7cSG5uLv7+/kycOJGhQ4de8PiJiYkUFxfTtm3b+nwZIlarvr6Dzz33HD///DMlJSX069ePDh06XImXI2KV6uN7mJ2dzZo1a3jnnXd444036jyzirBGIDs7m3Xr1hEUFMTAgQNZv379BdvOmzePgwcPct9999GuXTuioqJ49tlnqaioYNiwYee1Lyoq4vnnn+fOO+/E2dm5Pl+GiNWqr+/gU089RVlZGdHR0SQmJmIymer7pYhYrfr4Hi5ZsoTx48fTokWLesmsIqwR8Pb25uuvv8ZkMpGVlXXBD96vv/7Kjh07eOqppywLnPbq1Yu0tDTefvttrr32WmxsbCzty8rKePrppwkICGDy5MlX5LWIWKP6+g4C2Nra0qdPH7744gv8/Pzo379/vb8eEWtU19/D2NhYDh06xOzZs+sts8aENQImk6lafyFv2bIFJycnhgwZUmn7qFGjyMjIICYmxrKtoqKC559/nmbNmvHYY4/pL3CRi6iP7+C5KioqSElJudyoIo1WXX8Pd+/ezdGjRxk7diyjR4/mp59+4uOPP+b555+vs8zqCWtCEhISCAgIwNa28j97UFCQ5fnw8HAAXnnlFU6dOsXLL798XnsRqZ3qfgdPnTrF3r176du3L3Z2dvz888/88ccf3HfffUbEFmlUqvs9vOGGGyoVav/617/w9vbmjjvuqLMs+u3ahGRnZ1c5uN7FxQWAnJwcANLS0li/fj329vaMGTPG0m7BggV07979yoQVaYSq+x0EWLNmDf/85z8xmUz4+fnxzDPPEBwcfMWyijRW1f0eOjs7VxoL7eDggLOzc51OE6MirImpTlett7c3P//88xVII9L0VOc76OHhwZtvvnkF0og0TbUZYvP444/XeQ6NCWtC3NzcyM7OPm97bm4uAK6urlc6kkiTou+giPEa0vdQRVgT0qFDBxITEykrK6u0/ciRI8CZySFFpP7oOyhivIb0PVQR1oQMHDiQwsJCNm/eXGn7hg0b8PT0pHPnzgYlE2ka9B0UMV5D+h5qTFgjsW3bNoqKiigoKADOzHK/adMmAPr164ejoyP9+vWjd+/eLFy4kIKCAnx9ffnxxx/Zvn078+bNO29+IhGpPn0HRYxnbd9DLeDdSIwfP560tLQqn1u1ahU+Pj7AmaUali5dWmmphkmTJl102SIRuTR9B0WMZ23fQxVhIiIiIgbQmDARERERA6gIExERETGAijARERERA6gIExERETGAijARERERA6gIExERETGAijARERERA6gIExERETGAijARESu0aNEiRo8ebVmeBeD9999n0KBB/PHHHwYm+5/nn3+eW2+9leLiYqOjiDRIWjtSRAyXmprKbbfddtE2wcHBvP/++1coUcOWlJTE2rVrmT59Os7OzvV6rq+++opXX32VMWPG8Oijj1607b333suhQ4dYunQpYWFhTJkyhaioKFavXs2kSZPqNaeINVIRJiINhq+vL8OGDavyOQ8PjyucpuFavnw59vb2jB07tt7PFRkZyb/+9S9++uknHnroIRwcHKpsFx8fz6FDhwgJCSEsLAwAPz8/BgwYwCeffMK4ceNwcnKq97wi1kRFmIg0GL6+vtx9991Gx2jQsrKy+PnnnxkyZEi994IBNG/enMGDB/Pdd9+xefNmhg8fXmW79evXAzBq1KhK24cPH87mzZv58ccfueGGG+o9r4g10ZgwEbFKgwYN4uGHHyYrK4uXXnqJMWPGEBkZyYwZMy44JqqgoID333+fO++8k8jISEaNGsWjjz7Knj17zmv78MMPM2jQIEpKSnjvvfeYMGEC11xzTaVLops3b2batGlERkYyduxYFixYQG5uLuPHj2f8+PGWds8//zyDBg3iwIEDVeZ6++23GTRoED///PMlX/ePP/5ISUkJQ4YMuWTbs+Lj47npppsYPXo0MTExlu3Hjx/nn//8J7fccgtDhw7lxhtv5IUXXiAtLa3S/tdffz0A3377bZXHLy0tJSoqCnt7+/OKtH79+uHk5MQ333xT7bwiTYWKMBGxWnl5eTzwwAPEx8czbNgwBg0aRGxsLI8++ihHjhyp1DYnJ4f777+fFStW4Orqyo033mhpP2vWLLZs2VLlOebNm8c333xD9+7dufXWW2nbti0AX3/9NU8++SQpKSmMGDGC6667jv379/N///d/lJWVVTrGmDFjgP/1Fv1ZWVkZ3333He7u7lx11VWXfM07d+4EoEuXLpd+g4Ddu3fz0EMPYWNjw5tvvknnzp0BiImJ4d5772XDhg2EhYVxyy230L17d3744Qfuu+8+jh8/bjlGjx498PPzIzo6mtTU1PPO8csvv5Cdnc2gQYNwcXGp9JydnR2hoaEcOHCAwsLCamUWaSp0OVJEGoyUlJQLDr7v0qULffv2rbTt8OHD3Hjjjfz1r3+lWbMzf1P26tWLBQsW8O9//7vSQPLXXnuNhIQE5s6dW+mS2enTp5k+fTovv/wyffr0OW/M06lTp1i+fDmurq6Wbbm5ubzxxhs4OzuzbNkyS2E2bdo05syZQ2xsLN7e3pb24eHhBAYG8uOPPzJz5sxKY6O2bt3K6dOnueOOO7C1vfSP5H379uHl5UWrVq0u2XbLli08++yztG3blldeeYXWrVsDZwq/Z555hoqKCpYuXUpwcLBlnz179jBr1izeeOMNXnrpJcv2UaNGsWTJEjZs2MBdd91V6Txff/018L8es3OFhYWxe/duDhw4QK9evS6ZW6SpUE+YiDQYKSkprFixosr/b9++/bz2Tk5OzJgxw1KAAVx33XXY2Nhw8OBBy7asrCw2btxIRETEeWOW3N3dmTBhAllZWZZepj+76667KhVgAP/9738pLCzkhhtusBRgALa2ttxzzz1VvrYxY8ZQUFDATz/9VGn7+vXrMZlM1RovVVpaSlZWVrUKsPXr1/PUU08REhLCm2++aSnA4Ezhl5aWxoQJEyoVYADdunXj6quvZtu2beTn51u2n31fv/32W8xms2V7RkYGO3bswNvb+4IF1tm86enpl8wt0pSoJ0xEGow+ffrwyiuvVLu9n5/feYPTbW1tcXd3Jy8vz7Lt4MGDlJeXU1JSUmVPW3JyMgCJiYnnXRLs1KnTee3j4+MB6Nq163nPderUCRsbm/O2Dx8+nHfeeYf169dbeozS09P5/fffLZf7LiU7OxvgvEt+5/r888/55Zdf6NevH8899xyOjo6Vnt+/fz8Ax44dq/L9OH36NBUVFSQlJdGxY0cAPD096du3L1u3biU6OpqIiAjgzDix8vJyRo0ahclkqjLP2SL2bH4ROUNFmIhYrebNm1e53cbGhoqKCsvjnJwcAPbu3cvevXsveLyioqLztrm7u5+37WwPUcuWLc97rlmzZri5uZ233cXFhWuuuYYNGzZw9OhR2rdvzzfffEN5eXm17xo8e6n0UpOfnr3RoG/fvucVYHDmcirADz/8cNHjnPt+XH/99WzdupVvv/22UhHWrFkzRo4cecHjnM17oektRJoqFWEi0uidLdZuu+02HnzwwRrtW1XvztnjZWVlnfdcRUUF2dnZeHl5nffcmDFj2LBhA+vXr+fBBx/k22+/xdXVlUGDBlUri4uLC7a2tpai8kIee+wxPvjgA9544w2aNWvGTTfdVOn5s72HL730UrVuBjirf//+uLu7s3nzZh555BEOHz5McnIyffr0oU2bNhfc72zeqopWkaZMY8JEpNHr2LEjJpPJchnucgUFBQFnBsmf68CBA5SXl1e5X9euXenQoQPfffcd27Zt4/jx4wwbNqxGPUSBgYGkpaWddwfmn7m4uLBo0SJCQ0NZtGgR//73vys9f/YOyZq+H7a2towYMYLi4mJ+/PFHy7QTFxqQf1ZSUhIAHTp0qNH5RBo7FWEi0uh5eHhwzTXXsG/fPj799NNKA8vPiomJqfJyZFUGDBiAk5MT69evrzSVQ1lZGe+9995F9x09ejTZ2dm8/PLLADWewLRHjx6UlJRYxqVdiIuLCwsXLqRjx4689tprfPHFF5Xyt2nThlWrVrFr167z9i0rK6ty7jT4X8H1n//8h02bNuHm5saAAQMumiUmJgYPDw/atWt3iVcn0rTocqSINBgXm6ICuKzZ9P/v//6PpKQk3n77bb777ju6dOlCixYtOHnyJLGxsSQnJ/Pll19WOYbqXC4uLsycOZOXX36Ze++9l2uvvZbmzZuzbds27O3t8fT0vOAg9REjRvDuu++SkZFB586dLb1q1TVw4EBWr17Nzp07LcsDXSznq6++yuzZs3n99dcxm83ccsst2Nvb89xzzzFnzhwefvhhIiIiCAwMBODEiRPs2bMHNzc3Pvroo/OO6e/vT3h4uGVs3Q033ICdnd0FM6SkpJCamsqNN95Yo9cp0hSoCBORBuPsFBUXcjlFmKurK2+99Rb//ve/+emnn4iKiqKiogJ3d3eCg4OZMmVKlQPqL2T06NG4uLjw4YcfsmHDBpo3b87VV1/NjBkzuPXWW/H19a1yvxYtWjBgwACioqJqtYxPjx498Pf35/vvv+eOO+64ZPuzPWKzZ8/mjTfewGw2c+utt9KpUyfef/99Pv30U7Zt28bevXuxs7PD09OTgQMHMnTo0Ase8/rrr7cUYedO+XGu77//HvjfhLUi8j8mc1X98iIiUivJycnccccdXHPNNTz77LNVtrnzzjs5ceIEX375Za3Wf1y7di2vvPIK77zzjmV8V0NUVlbGxIkT8fb25vXXXzc6jkiDozFhIiK1kJubS0lJSaVtxcXFvPnmm8CZy4ZV+fXXXzl69CgjRoyo9QLc119/PQEBASxfvrxW+18p33//PWlpaTzwwANGRxFpkHQ5UkSkFnbt2sU///lP/vKXv9C6dWuys7OJjo4mLS2NXr16ce2111Zq/5///IeTJ0+ybt06HBwcmDBhQq3PbWNjw9///ne2b99OQUFBrYu5+mYymfjb3/52ybFrIk2VLkeKiNRCUlIS7733Hvv27bPMF+br68u1117L7bffft60E+PHjyc9PZ127doxY8aMGs3PJSKNk4owEREREQNoTJiIiIiIAVSEiYiIiBhARZiIiIiIAVSEiYiIiBhARZiIiIiIAVSEiYiIiBhARZiIiIiIAVSEiYiIiBhARZiIiIiIAf4f4azNui3rSmMAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -1739,7 +1739,7 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "cosipy",
"language": "python",
"name": "python3"
},
@@ -1753,7 +1753,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.15"
+ "version": "3.10.13"
}
},
"nbformat": 4,
From 04389019713552278bf70c367341f3fe6b57be82 Mon Sep 17 00:00:00 2001
From: avalluvan <62253557+avalluvan@users.noreply.github.com>
Date: Fri, 25 Oct 2024 13:28:06 -0700
Subject: [PATCH 02/15] Created general code for multidimensional interpolation
---
cosipy/response/__init__.py | 1 +
docs/tutorials/response/LMDR.ipynb | 604 ++++++++++++++++++-----------
2 files changed, 375 insertions(+), 230 deletions(-)
diff --git a/cosipy/response/__init__.py b/cosipy/response/__init__.py
index 12e0002c..d4d22bfc 100644
--- a/cosipy/response/__init__.py
+++ b/cosipy/response/__init__.py
@@ -1,3 +1,4 @@
from .PointSourceResponse import PointSourceResponse
from .DetectorResponse import DetectorResponse
+from .ListModeResponse import ListModeResponse
from .FullDetectorResponse import FullDetectorResponse
diff --git a/docs/tutorials/response/LMDR.ipynb b/docs/tutorials/response/LMDR.ipynb
index 25e8f942..030d71c9 100644
--- a/docs/tutorials/response/LMDR.ipynb
+++ b/docs/tutorials/response/LMDR.ipynb
@@ -8,12 +8,12 @@
{
"data": {
"text/html": [
- "
10:03:50 WARNING The naima package is not available. Models that depend on it will not be functions.py:48\n",
+ "
13:26:06 WARNING The naima package is not available. Models that depend on it will not be functions.py:48\n",
"available \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m10:03:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=212276;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=820808;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m13:26:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=237033;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=394487;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -28,7 +28,7 @@
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=911903;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=617105;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=843802;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=501788;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -51,7 +51,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=943317;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=873963;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=518551;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=341060;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -69,11 +69,11 @@
{
"data": {
"text/html": [
- "
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=858132;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=561417;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m13:26:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=890103;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=114963;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -138,7 +138,7 @@
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=572743;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=475868;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=356653;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=112770;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -151,7 +151,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=658613;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=781386;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=636538;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=449404;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -160,12 +160,12 @@
{
"data": {
"text/html": [
- "
10:03:51 WARNING The cthreeML package is not installed. You will not be able to use plugins which __init__.py:94\n",
+ "
13:26:07 WARNING The cthreeML package is not installed. You will not be able to use plugins which __init__.py:94\n",
"require the C/C++ interface (currently HAWC) \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m10:03:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=547017;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=330393;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m13:26:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=302017;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=855335;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -180,7 +180,7 @@
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=488942;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=189638;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=30493;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=5041;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -195,7 +195,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=730881;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=319851;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=922242;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=715093;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -205,11 +205,11 @@
{
"data": {
"text/html": [
- "
13:26:06 WARNING The naima package is not available. Models that depend on it will not be functions.py:48\n",
+ "
17:10:46 WARNING The naima package is not available. Models that depend on it will not be functions.py:48\n",
"available \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m13:26:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=237033;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=394487;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m17:10:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=305245;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=114675;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -28,7 +28,7 @@
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=843802;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=501788;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=164180;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=675933;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -51,7 +51,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=518551;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=341060;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=927687;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=862714;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -69,11 +69,11 @@
{
"data": {
"text/html": [
- "
\n"
],
"text/plain": [
- "\u001b[38;5;46m13:26:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=890103;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=114963;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=487563;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=184020;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -138,7 +138,7 @@
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=356653;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=112770;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=234480;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=563033;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -151,7 +151,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=636538;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=449404;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=341701;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=214071;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -160,12 +160,12 @@
{
"data": {
"text/html": [
- "
13:26:07 WARNING The cthreeML package is not installed. You will not be able to use plugins which __init__.py:94\n",
+ "
WARNING The cthreeML package is not installed. You will not be able to use plugins which __init__.py:94\n",
"require the C/C++ interface (currently HAWC) \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m13:26:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=302017;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=855335;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=370388;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=550387;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -180,7 +180,7 @@
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=30493;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=5041;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=502523;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=442598;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -195,7 +195,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=922242;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=715093;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=139071;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=559848;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -209,7 +209,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=945094;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=359005;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=667892;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=444233;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -223,7 +223,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=95360;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=149502;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=667837;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=32020;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -238,7 +238,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=329392;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=192020;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=522249;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=811914;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -253,7 +253,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=377458;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=739035;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=702737;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=608934;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -595,37 +595,47 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Bilinear interpolated value: 0.6 cm2\n",
- "0.0\n",
- "0.0\n",
- "1.0\n",
- "0.0\n",
- "Multidimensional interpolated value: 0.6 cm2\n"
+ "Bilinear interpolated value: 0.3597186950576376 cm2\n"
]
},
{
- "data": {
- "text/latex": [
- "$0.6 \\; \\mathrm{cm^{2}}$"
- ],
- "text/plain": [
- ""
- ]
- },
- "execution_count": 9,
- "metadata": {},
- "output_type": "execute_result"
+ "ename": "TypeError",
+ "evalue": "only dimensionless scalar quantities can be converted to Python scalars",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mUnitConversionError\u001b[0m Traceback (most recent call last)",
+ "File \u001b[0;32m~/miniconda3/envs/cosipy/lib/python3.10/site-packages/astropy/units/quantity.py:987\u001b[0m, in \u001b[0;36mQuantity.to_value\u001b[0;34m(self, unit, equivalencies)\u001b[0m\n\u001b[1;32m 986\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 987\u001b[0m scale \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43munit\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_to\u001b[49m\u001b[43m(\u001b[49m\u001b[43munit\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 988\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m:\n\u001b[1;32m 989\u001b[0m \u001b[38;5;66;03m# Short-cut failed; try default (maybe equivalencies help).\u001b[39;00m\n",
+ "File \u001b[0;32m~/miniconda3/envs/cosipy/lib/python3.10/site-packages/astropy/units/core.py:1160\u001b[0m, in \u001b[0;36mUnitBase._to\u001b[0;34m(self, other)\u001b[0m\n\u001b[1;32m 1158\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m self_decomposed\u001b[38;5;241m.\u001b[39mscale \u001b[38;5;241m/\u001b[39m other_decomposed\u001b[38;5;241m.\u001b[39mscale\n\u001b[0;32m-> 1160\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m UnitConversionError(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;132;01m!r}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m is not a scaled version of \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mother\u001b[38;5;132;01m!r}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
+ "\u001b[0;31mUnitConversionError\u001b[0m: 'Unit(\"cm2\")' is not a scaled version of 'Unit(dimensionless)'",
+ "\nDuring handling of the above exception, another exception occurred:\n",
+ "\u001b[0;31mUnitConversionError\u001b[0m Traceback (most recent call last)",
+ "File \u001b[0;32m~/miniconda3/envs/cosipy/lib/python3.10/site-packages/astropy/units/quantity.py:1355\u001b[0m, in \u001b[0;36mQuantity.__float__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1354\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 1355\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mfloat\u001b[39m(\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_value\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdimensionless_unscaled\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 1356\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (UnitsError, \u001b[38;5;167;01mTypeError\u001b[39;00m):\n",
+ "File \u001b[0;32m~/miniconda3/envs/cosipy/lib/python3.10/site-packages/astropy/units/quantity.py:990\u001b[0m, in \u001b[0;36mQuantity.to_value\u001b[0;34m(self, unit, equivalencies)\u001b[0m\n\u001b[1;32m 988\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m:\n\u001b[1;32m 989\u001b[0m \u001b[38;5;66;03m# Short-cut failed; try default (maybe equivalencies help).\u001b[39;00m\n\u001b[0;32m--> 990\u001b[0m value \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_to_value\u001b[49m\u001b[43m(\u001b[49m\u001b[43munit\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mequivalencies\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 991\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n",
+ "File \u001b[0;32m~/miniconda3/envs/cosipy/lib/python3.10/site-packages/astropy/units/quantity.py:896\u001b[0m, in \u001b[0;36mQuantity._to_value\u001b[0;34m(self, unit, equivalencies)\u001b[0m\n\u001b[1;32m 894\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype\u001b[38;5;241m.\u001b[39mnames \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39munit, StructuredUnit):\n\u001b[1;32m 895\u001b[0m \u001b[38;5;66;03m# Standard path, let unit to do work.\u001b[39;00m\n\u001b[0;32m--> 896\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43munit\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 897\u001b[0m \u001b[43m \u001b[49m\u001b[43munit\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mview\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mndarray\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mequivalencies\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mequivalencies\u001b[49m\n\u001b[1;32m 898\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 900\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 901\u001b[0m \u001b[38;5;66;03m# The .to() method of a simple unit cannot convert a structured\u001b[39;00m\n\u001b[1;32m 902\u001b[0m \u001b[38;5;66;03m# dtype, so we work around it, by recursing.\u001b[39;00m\n\u001b[1;32m 903\u001b[0m \u001b[38;5;66;03m# TODO: deprecate this?\u001b[39;00m\n\u001b[1;32m 904\u001b[0m \u001b[38;5;66;03m# Convert simple to Structured on initialization?\u001b[39;00m\n",
+ "File \u001b[0;32m~/miniconda3/envs/cosipy/lib/python3.10/site-packages/astropy/units/core.py:1196\u001b[0m, in \u001b[0;36mUnitBase.to\u001b[0;34m(self, other, value, equivalencies)\u001b[0m\n\u001b[1;32m 1195\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1196\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_converter\u001b[49m\u001b[43m(\u001b[49m\u001b[43mUnit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mother\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mequivalencies\u001b[49m\u001b[43m)\u001b[49m(value)\n",
+ "File \u001b[0;32m~/miniconda3/envs/cosipy/lib/python3.10/site-packages/astropy/units/core.py:1125\u001b[0m, in \u001b[0;36mUnitBase._get_converter\u001b[0;34m(self, other, equivalencies)\u001b[0m\n\u001b[1;32m 1123\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mlambda\u001b[39;00m v: b(converter(v))\n\u001b[0;32m-> 1125\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exc\n",
+ "File \u001b[0;32m~/miniconda3/envs/cosipy/lib/python3.10/site-packages/astropy/units/core.py:1108\u001b[0m, in \u001b[0;36mUnitBase._get_converter\u001b[0;34m(self, other, equivalencies)\u001b[0m\n\u001b[1;32m 1107\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 1108\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_apply_equivalencies\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1109\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mother\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_normalize_equivalencies\u001b[49m\u001b[43m(\u001b[49m\u001b[43mequivalencies\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1110\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1111\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m UnitsError \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m 1112\u001b[0m \u001b[38;5;66;03m# Last hope: maybe other knows how to do it?\u001b[39;00m\n\u001b[1;32m 1113\u001b[0m \u001b[38;5;66;03m# We assume the equivalencies have the unit itself as first item.\u001b[39;00m\n\u001b[1;32m 1114\u001b[0m \u001b[38;5;66;03m# TODO: maybe better for other to have a `_back_converter` method?\u001b[39;00m\n",
+ "File \u001b[0;32m~/miniconda3/envs/cosipy/lib/python3.10/site-packages/astropy/units/core.py:1086\u001b[0m, in \u001b[0;36mUnitBase._apply_equivalencies\u001b[0;34m(self, unit, other, equivalencies)\u001b[0m\n\u001b[1;32m 1084\u001b[0m other_str \u001b[38;5;241m=\u001b[39m get_err_str(other)\n\u001b[0;32m-> 1086\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m UnitConversionError(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00munit_str\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m and \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mother_str\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m are not convertible\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
+ "\u001b[0;31mUnitConversionError\u001b[0m: 'cm2' (area) and '' (dimensionless) are not convertible",
+ "\nDuring handling of the above exception, another exception occurred:\n",
+ "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
+ "Cell \u001b[0;32mIn[4], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m Ei0 \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m511.9\u001b[39m\u001b[38;5;241m*\u001b[39mu\u001b[38;5;241m.\u001b[39mkeV\n\u001b[1;32m 2\u001b[0m Em0 \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m511\u001b[39m\u001b[38;5;241m*\u001b[39mu\u001b[38;5;241m.\u001b[39mkeV\n\u001b[0;32m----> 3\u001b[0m \u001b[43mdr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_interp_response\u001b[49m\u001b[43m(\u001b[49m\u001b[43m{\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mEi\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mEi0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mEm\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mEm0\u001b[49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\n",
+ "File \u001b[0;32m~/Documents/Grad School/Research/COSI/COSIpy/cosipy/response/ListModeResponse.py:133\u001b[0m, in \u001b[0;36mListModeResponse.get_interp_response\u001b[0;34m(self, target)\u001b[0m\n\u001b[1;32m 131\u001b[0m \u001b[38;5;66;03m# Generate permutations and fill fQ\u001b[39;00m\n\u001b[1;32m 132\u001b[0m permutations \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(itertools\u001b[38;5;241m.\u001b[39mproduct(\u001b[38;5;241m*\u001b[39mindices))\n\u001b[0;32m--> 133\u001b[0m fQ \u001b[38;5;241m=\u001b[39m \u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43marray\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcontents\u001b[49m\u001b[43m[\u001b[49m\u001b[43mperm\u001b[49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mperm\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mpermutations\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 135\u001b[0m \u001b[38;5;66;03m# Reshape fQ\u001b[39;00m\n\u001b[1;32m 136\u001b[0m fQ \u001b[38;5;241m=\u001b[39m fQ\u001b[38;5;241m.\u001b[39mreshape([\u001b[38;5;241m2\u001b[39m] \u001b[38;5;241m*\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mndim)\n",
+ "File \u001b[0;32m~/miniconda3/envs/cosipy/lib/python3.10/site-packages/astropy/units/quantity.py:1357\u001b[0m, in \u001b[0;36mQuantity.__float__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1355\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mfloat\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mto_value(dimensionless_unscaled))\n\u001b[1;32m 1356\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (UnitsError, \u001b[38;5;167;01mTypeError\u001b[39;00m):\n\u001b[0;32m-> 1357\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\n\u001b[1;32m 1358\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124monly dimensionless scalar quantities can be \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1359\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mconverted to Python scalars\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1360\u001b[0m )\n",
+ "\u001b[0;31mTypeError\u001b[0m: only dimensionless scalar quantities can be converted to Python scalars"
+ ]
}
],
"source": [
- "Ei0 = 511*u.keV\n",
+ "Ei0 = 511.9*u.keV\n",
"Em0 = 511*u.keV\n",
"dr.get_interp_response({'Ei': Ei0, 'Em': Em0})"
]
From 3d5aa29addcfeeb32035a502f6ef53c7272cb245 Mon Sep 17 00:00:00 2001
From: avalluvan <62253557+avalluvan@users.noreply.github.com>
Date: Sun, 3 Nov 2024 13:50:20 -0800
Subject: [PATCH 04/15] Add ListModeResponse.py
---
cosipy/response/ListModeResponse.py | 154 +++++
docs/tutorials/response/LMDR.ipynb | 837 +++++++++++++---------------
2 files changed, 547 insertions(+), 444 deletions(-)
create mode 100644 cosipy/response/ListModeResponse.py
diff --git a/cosipy/response/ListModeResponse.py b/cosipy/response/ListModeResponse.py
new file mode 100644
index 00000000..b52f7062
--- /dev/null
+++ b/cosipy/response/ListModeResponse.py
@@ -0,0 +1,154 @@
+from pathlib import Path
+import itertools
+
+import numpy as np
+import astropy.units as u
+from astropy.units import Quantity
+
+from histpy import Histogram, Axis, Axes, HealpixAxis
+import mhealpy as hp
+from mhealpy import HealpixBase, HealpixMap
+from scoords import SpacecraftFrame, Attitude
+
+class ListModeResponse(Histogram):
+ """
+ Handles nonlinear parametrizations of detector response
+ and supports extensions of list mode analysis
+ """
+
+ def __init__(self, *args, **kwargs):
+ # Overload parent init. Called in class methods.
+ super().__init__(*args, **kwargs)
+
+ def _get_nearest_neighbors(self, centers, target: dict):
+ """
+ Given n-dimensional axes, identify the indices of the nearest neighbors.
+ Ensures there are at least 2 dimensions.
+ """
+ if len(centers) < 2:
+ raise ValueError("At least 2 dimensions are required")
+
+ if len(centers) != len(target):
+ raise ValueError("Dimensions of centers and target must be equal")
+
+ indices = []
+ for dim_centers, key_target in zip(centers, target):
+ dim_target = target[key_target]
+ dim_index = np.sort(np.argpartition(np.abs(dim_centers - dim_target), 1)[:2]).tolist()
+ indices.append(dim_index)
+
+ # for i, dim_centers in enumerate(centers):
+ # print(f"Dimension {i} centers: {dim_centers}")
+
+ # for i, dim_indices in enumerate(indices):
+ # print(f"Dimension {i} indices: {dim_indices}")
+
+ return indices
+
+ def transform_eps_to_Em(self, eps, Ei0):
+ return (eps + 1) * Ei0
+
+ def transform_Em_to_eps(self, Em, Ei0):
+ return Em/Ei0 - 1
+
+ def _create_nd_array(self):
+ shape = tuple([2] * self.ndim)
+ array = np.zeros(2**self.ndim).reshape(shape)
+ return array
+
+ def get_interp_response(self, target: dict):
+ """
+ Currently only supports nonlinear spectral responses (
+ and for a particular parametrization)
+ TODO: In the future, this will also support nonlinear /
+ piecewise-linear directional responses.
+ """
+
+ centers = []
+ for axis in self.axes.labels:
+ if axis == 'eps':
+ Em_centers = self.transform_eps_to_Em(self.axes[axis].centers, target['Ei'])
+ centers.append(Em_centers)
+ else:
+ centers.append(self.axes[axis].centers)
+
+ # Ei_centers = self.axes['Ei'].centers
+ # eps_centers = self.axes['eps'].centers # TODO: Does this make sense? As eps is nonlinearly binned
+
+ indices = self._get_nearest_neighbors(centers, target)
+
+ xindex = indices[0]
+ yindex = indices[1]
+
+ x1, x2 = self.axes['Ei'].centers[xindex]
+ y1, y2 = Em_centers[yindex]
+ xdist = x2 - x1
+ ydist = y2 - y1
+
+ fQ00 = self.contents[xindex[0], yindex[0]]
+ fQ01 = self.contents[xindex[0], yindex[1]]
+ fQ10 = self.contents[xindex[1], yindex[0]]
+ fQ11 = self.contents[xindex[1], yindex[1]]
+
+ tx = (target['Ei'] - x1) / xdist if xdist != 0 else 0
+ ty = (target['Em'] - y1) / ydist if ydist != 0 else 0
+
+ interpolated_response_value = (fQ00 * (1 - tx) * (1 - ty) +
+ fQ10 * tx * (1 - ty) +
+ fQ01 * (1 - tx) * ty +
+ fQ11 * tx * ty)
+
+ print(f'Bilinear interpolated value: {interpolated_response_value}')
+
+ # neighbors = []
+ # dists = []
+ # for i in range(self.ndim):
+ # neighbors.append(centers[i][indices[i]])
+ # dists.append(np.diff(neighbors[-1]))
+
+ # Initialize neighbors and dists
+ neighbors = [centers[i][indices[i]] for i in range(self.ndim)]
+ dists = [np.diff(neighbors[i]) for i in range(self.ndim)]
+
+ # Assign to self.neighbors
+ self.neighbors = neighbors
+
+ # Convert indices to a numpy array
+ indices = np.array(indices)
+
+ # Initialize fQ with zeros
+ fQ = np.zeros(2 ** self.ndim) * self.contents.unit
+
+ # Generate permutations and fill fQ
+ permutations = list(itertools.product(*indices))
+ for j, perm in enumerate(permutations):
+ fQ[j] = self.contents[perm]
+ # fQ = np.array([self.contents[perm] for perm in permutations])
+
+ # Reshape fQ
+ fQ = fQ.reshape([2] * self.ndim)
+
+ t = np.where(dists == 0, 0, [(target[key] - neighbors[i][0]) / dists[i] for i, key in enumerate(target)])
+
+ # Compute the interpolated response value for multidimensional interpolation
+ # TODO: May / may not break for higher dimensions
+ interpolated_response_value = 0
+ fQ_flat = fQ.flatten('F')[::-1]
+
+ for idx in range(2**self.ndim):
+ weight = np.prod([1 - t[dim] if (idx >> dim) & 1 else t[dim] for dim in range(self.ndim)])
+ interpolated_response_value += fQ_flat[idx] * weight
+
+ print(f'Multidimensional interpolated value: {interpolated_response_value}')
+
+ # eps_centers = self.axes['eps'].centers
+ # print(x1, y1, eps_centers[yindex[0]])
+ # print(x1, y2, eps_centers[yindex[1]])
+ # print(x2, y1, eps_centers[yindex[0]])
+ # print(x2, y2, eps_centers[yindex[1]])
+ # print(fQ00, fQ01, fQ10, fQ11)
+ # print(fQ)
+ # print(xdist, ydist)
+ # print(dists)
+
+ return interpolated_response_value
\ No newline at end of file
diff --git a/docs/tutorials/response/LMDR.ipynb b/docs/tutorials/response/LMDR.ipynb
index 00aa7a0a..cc244298 100644
--- a/docs/tutorials/response/LMDR.ipynb
+++ b/docs/tutorials/response/LMDR.ipynb
@@ -2,265 +2,9 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
17:10:46 WARNING The naima package is not available. Models that depend on it will not be functions.py:48\n",
- "available \n",
- "
\n"
- ],
- "text/plain": [
- "\u001b[38;5;46m17:10:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=305245;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=114675;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n",
- "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "
WARNING The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it functions.py:69\n",
- "will not be available. \n",
- "
\n"
- ],
- "text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=164180;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=675933;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n",
- "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/numba/core/decorators.py:262: NumbaDeprecationWarning: \u001b[1mnumba.generated_jit is deprecated. Please see the documentation at: https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-generated-jit for more information and advice on a suitable replacement.\u001b[0m\n",
- " warnings.warn(msg, NumbaDeprecationWarning)\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "
WARNING The ebltable package is not available. Models that depend on it will not be absorption.py:33\n",
- "available \n",
- "
\n"
- ],
- "text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=927687;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=862714;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n",
- "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/numba/core/decorators.py:262: NumbaDeprecationWarning: \u001b[1mnumba.generated_jit is deprecated. Please see the documentation at: https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-generated-jit for more information and advice on a suitable replacement.\u001b[0m\n",
- " warnings.warn(msg, NumbaDeprecationWarning)\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "
WARNING The cthreeML package is not installed. You will not be able to use plugins which __init__.py:94\n",
- "require the C/C++ interface (currently HAWC) \n",
- "
\n"
- ],
- "text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=370388;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=550387;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n",
- "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "
WARNING Could not import plugin HAWCLike.py. Do you have the relative instrument __init__.py:144\n",
- "software installed and configured? \n",
- "
\n"
- ],
- "text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=502523;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=442598;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
- "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "
WARNING Could not import plugin FermiLATLike.py. Do you have the relative instrument __init__.py:144\n",
- "software installed and configured? \n",
- "
\n"
- ],
- "text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=139071;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=559848;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
- "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "
WARNING The cthreeML package is not installed. You will not be able to use plugins which __init__.py:94\n",
+ "require the C/C++ interface (currently HAWC) \n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=317547;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=465211;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
WARNING Could not import plugin HAWCLike.py. Do you have the relative instrument __init__.py:144\n",
+ "software installed and configured? \n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=539489;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=281405;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
WARNING Could not import plugin FermiLATLike.py. Do you have the relative instrument __init__.py:144\n",
+ "software installed and configured? \n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=836922;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=173475;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
15:50:50 WARNING The naima package is not available. Models that depend on it will not be functions.py:48\n",
+ "
08:03:32 WARNING The naima package is not available. Models that depend on it will not be functions.py:48\n",
"available \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m15:50:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=687411;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=95555;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m08:03:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=404984;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=903207;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -28,7 +28,7 @@
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=165470;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=411583;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=77238;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=503129;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -46,12 +46,12 @@
{
"data": {
"text/html": [
- "
WARNING The ebltable package is not available. Models that depend on it will not be absorption.py:33\n",
+ "
08:03:33 WARNING The ebltable package is not available. Models that depend on it will not be absorption.py:33\n",
"available \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=244214;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=289977;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m08:03:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=862806;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=971302;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -69,11 +69,11 @@
{
"data": {
"text/html": [
- "
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=931731;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=59382;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=305211;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=43894;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -99,7 +99,7 @@
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=262312;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=726603;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=409265;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=930322;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -112,7 +112,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=342799;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=480837;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=307427;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=618788;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -125,7 +125,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=1701;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=267384;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=864213;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=421570;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -138,7 +138,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=890665;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=628443;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=210882;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=965488;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -151,7 +151,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=920539;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=647324;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=429735;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=901689;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -165,7 +165,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=317547;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=465211;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=57710;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=562527;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -180,7 +180,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=539489;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=281405;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=836643;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=556220;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -195,7 +195,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=836922;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=173475;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=991549;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=752502;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -209,7 +209,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=99576;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=321870;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=897889;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=235590;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -223,7 +223,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=385686;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=75517;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=80941;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=923015;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -238,7 +238,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=302704;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=293514;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=319401;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=721044;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -253,7 +253,7 @@
"\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=208978;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=198053;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=409889;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=56883;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -262,7 +262,8 @@
}
],
"source": [
- "# %%capture\n",
+ "import itertools\n",
+ "\n",
"import numpy as np\n",
"import astropy.units as u\n",
"from astropy.units import Quantity\n",
@@ -294,7 +295,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
@@ -593,7 +594,7 @@
},
{
"cell_type": "code",
- "execution_count": 79,
+ "execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -602,7 +603,7 @@
},
{
"cell_type": "code",
- "execution_count": 98,
+ "execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -614,17 +615,9 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 31,
"metadata": {},
"outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Bilinear interpolated value: 0.6300401095675922 cm2\n",
- "Multidimensional interpolated value: 0.6300401095675922 cm2\n"
- ]
- },
{
"data": {
"text/latex": [
@@ -634,7 +627,7 @@
""
]
},
- "execution_count": 63,
+ "execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
@@ -642,17 +635,19 @@
"source": [
"Ei0 = 511.1*u.keV\n",
"Em0 = 511*u.keV\n",
- "dr.get_interp_response({'Ei': Ei0, 'Em': Em0})"
+ "target = {'Ei': Ei0, 'Em': Em0}\n",
+ "dr.mapping['Em'] = 'eps'\n",
+ "dr.get_interp_response(target)"
]
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAG6CAYAAAC88brwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgD0lEQVR4nO3de1zUVf4/8NcMMIOgCA5KKoYhBFiZWmrmBfBuCsqqqWUtmeh6y9VM07XaNY213BSz8JJmWqtSfhXWu5FilmvmDQVFyERFRRhF7jPAfH5/uHx+jjODfOYCw/h6Ph7z2Difc86cz1mLt+cqEwRBABERERHZDXl9N4CIiIiI9DFAIyIiIrIzDNCIiIiI7AwDNCIiIiI7wwCNiIiIyM4wQCMiIiKyMwzQiIiIiOwMAzQiIiIiO+Nc3w2ghysvL0d2djb8/Pzg6upa380hIqJHXG5uLgoKCqxSl6enJ3x8fKxSlyNhgNYAZGdnIyYmBi6nmkFe4lLfzSEiIjt2QPedTevPzc3Fa+NGoFxjnUk4V1dXbNq0iUHaAxigERERUa0VFBSgXCPH36YXwK91pUV1Zec4Y/FnnigoKKhVgKbVarFu3Trs378fRUVFaNeuHSZMmIAuXbrU6vuSk5Px/fff4/fff4ezszP8/PwwYcIEPPfccxa9hy0wQCMiIiLJ2rSuQIB/hUV16CDtOvDY2FgcOnQIo0aNgq+vL/bs2YM5c+YgLi4OHTp0qLHs+vXr8fXXXyMsLAyDBg1CZWUl/vjjD+Tn51vyCjbDAI2IiIgk0wk6VAk6i+uorfT0dCQnJ2Py5MkYO3YsAGDgwIGIjo5GfHw84uPjTZZNS0vD119/jalTp+Lll1+2qM11hbs4iYiISDIdBKt8aislJQVOTk6IjIwU05RKJYYMGYK0tDTk5uaaLPvdd9+hWbNmGDlyJARBQGlpqUXvXhc4gkZERET1Kjs7W+9nlUoFb29vvbTMzEz4+vrC3d1dLz0kJAQAkJWVZXId24kTJ/D000/j+++/x6ZNm3D37l00a9YMr732GkaMGGHFN7EeBmhEREQkmQABOlg2xSn8bwRt0aJFeunR0dEYP368XpparYZKpTKoozrN1FqyoqIi3L17F+fOncPJkycRHR0NHx8f7NmzB3FxcXB2dsawYcMseg9bYIBGREREklVBQJUgbZG/sToAYMGCBfDz8xPTjQViGo0GLi6GR00pFArxuTHV05l3797FBx98gL59+wIAwsLCEB0djY0bN9plgMY1aERERFSv/Pz8EBQUJH4enN4E7q03q6gw3DWq1WrF58ZUpzs7OyMsLExMl8vl6NOnD/Ly8mpcv1ZfGKARERGRZIIVNggIEjYJqFQqqNVqg/TqNGNBHQB4eHhAoVDAw8MDTk5Oes+8vLwA3JsGtTcM0IiIiEiyKghW+dRWQEAArl27hpKSEr309PR08bkxcrkcgYGBuHv3rsEIXPW6NU9PTwlvXjcYoBEREZHdCwsLQ1VVFZKSksQ0rVaL3bt3o3379uIOztzcXINdoeHh4aiqqsLevXvFNI1GgwMHDqBt27YmR9/qEzcJEBERkWTVU5yW1lFb7du3R3h4ONasWYOCggK0bt0ae/fuxc2bNzF37lwx3+LFi3H69GkcPnxYTBs2bBh27dqFZcuW4erVq/Dx8cG+ffuQm5uL2NhYi97BVhigERERkWRVAizfxSmx+Pz588Xgqri4GP7+/liyZAk6duxYYzmlUonly5cjPj4eu3fvRnl5OQICArBkyRJ07drV/BewIQZoRERE1CAolUpMmTIFU6ZMMZlnxYoVRtO9vLwwf/58WzXN6higERERkWQCYOExtbBwgtSxMUAjIiIiyaTuwjRVBxnHAI2IiIgk0wnS15AZq4OM4zEbRERERHaGI2hEREQkmQ6Wr0GztLwjY4BGREREkukgQxVkFtdBxnGKk4iIiMjOcASNiIiIJNMJli/y5yYB0xigERERkWQ6wApTnGQKpziJiIiI7AxH0IiIiEiyKitsErC0vCNjgEZERESSCYIMOsGyAEuwsLwj4xQnERERkZ3hCBoRERFJxilO22KARkRERJLdO6jWsok4HlRrGgM0IiIikkwHy9egMUAzjWvQiIiIiOyMQ42gabVarFu3Dvv370dRURHatWuHCRMmoEuXLg8tm5eXh5UrV+L48ePQ6XTo1KkTpk+fjlatWhnk3blzJ7Zs2YKbN2+iefPmGDlyJEaMGGG03uTkZHz//ff4/fff4ezsDD8/P0yYMAHPPfecxe9LRERUX3gXp205VIAWGxuLQ4cOYdSoUfD19cWePXswZ84cxMXFoUOHDibLlZaWYsaMGSgpKcG4cePg7OyMhIQETJ8+HevXr0fTpk3FvImJifjXv/6F0NBQjB49GqmpqYiLi0N5eTleffVVvXrXr1+Pr7/+GmFhYRg0aBAqKyvxxx9/ID8/32Z9QEREVBeqBDmqBMsm4iwt78gcJkBLT09HcnIyJk+ejLFjxwIABg4ciOjoaMTHxyM+Pt5k2R07duDatWtYvXo1QkJCAADdunVDdHQ0tm7diokTJwIANBoNvvzyS3Tv3h0ffvghACAiIgI6nQ4bN25EZGQkmjRpAgBIS0vD119/jalTp+Lll1+25asTERGRg3GY0DUlJQVOTk6IjIwU05RKJYYMGYK0tDTk5uaaLHvo0CEEBweLwRkA+Pn5oXPnzjh48KCYdvLkSdy9exfDhw/XKx8VFYWysjIcPXpUTPvuu+/QrFkzjBw5EoIgoLS01ApvSUREZB8EyKCD3KKPwClOkxwmQMvMzISvry/c3d310quDrqysLKPldDodLl26hODgYINnISEhyMnJEYOrzMxMADDIGxQUBLlcjosXL4ppJ06cQHBwML7//ntERkZi0KBBGD58OLZt2/bQd8nPz0dGRob4yc7OfmgZIiKiulR9DpqlHzLOYaY41Wo1VCqVQXp1mql1X4WFhdBqtQ8t+/jjj0OtVsPJyQleXl56+VxcXODh4QG1Wg0AKCoqwt27d3Hu3DmcPHkS0dHR8PHxwZ49exAXFwdnZ2cMGzbM5LskJSVhw4YNtXpvIiIicjwOE6BpNBq4uLgYpCsUCvG5qXIAalVWo9HA2dl4lykUCjFf9Yjb3bt38cEHH6Bv374AgLCwMERHR2Pjxo01BmiRkZHo0aOH+HN2djYWLVpkMj8REVFd01lhk4COmwRMcpgATalUoqKiwiBdq9WKz02VA1CrskqlEpWVlUbr0Wq1evkAwNnZGWFhYWIeuVyOPn36YP369cjNzYWPj4/Rury9veHt7W30GRERkT3QwfJjMnTWaYpDcpjQVaVSiVOM96tOMxXweHh4QKFQ1KqsSqVCVVUV7ty5o5evoqIChYWF4pRodZ0eHh5wcnLSy1s9PVpUVCTl9YiIiOgR4jABWkBAAK5du4aSkhK99PT0dPG5MXK5HP7+/rhw4YLBs/T0dLRq1Qpubm4AgMDAQAAwyHvhwgXodDrxuVwuR2BgIO7evWswMle9Fs7T01PiGxIREdkPHeSosvCjc5wwxOocpmfCwsJQVVWFpKQkMU2r1WL37t1o3769OJ2Ym5trsCsyNDQUFy5c0Au8rly5glOnTulNUXbu3BkeHh5ITEzUK5+YmAhXV1d0795dTAsPD0dVVRX27t0rpmk0Ghw4cABt27blFCYRETVo1WvQLPlwDZppDrMGrX379ggPD8eaNWtQUFCA1q1bY+/evbh58ybmzp0r5lu8eDFOnz6Nw4cPi2lRUVHYuXMn5s6dizFjxsDJyQkJCQnw8vLCmDFjxHxKpRJvvvkmli1bhvfffx9du3bFmTNnsH//fsTExMDDw0PMO2zYMOzatQvLli3D1atX4ePjg3379iE3NxexsbF10ylEREQ2ovvfOWiW1kHGOUyABgDz588XA6Hi4mL4+/tjyZIl6NixY43l3NzcEBcXh5UrV2Ljxo3iXZzTpk0zmIqMioqCs7Mztm7dip9//hktWrTAtGnTMGrUKL18SqUSy5cvR3x8PHbv3o3y8nIEBARgyZIl6Nq1q5XfnIiIiByJTBAEob4bQTXLyMhATEwMXE41g7zE8DgQIiKiagd039m0/urfSa98UIIWbS3bh3nrshz//oc71q5di6CgICu10DE41AgaERER1Y17C/0tr4OMY88QERER2RmOoBEREZFkAmQW78LkZemmMUAjIiIiye5NcVq2jJ2XpZvGKU4iIiIiO8MRNCIiIpJMJ8hQZeE5EDqBI2imMEAjIiIiye4dVMvL0m2FU5xEREREdoYjaERERCTZvbs4La3DOm1xRAzQiIiISLJ7U5yW1kGmMEAjIiIiye5tErBwDRpvmzSJa9CIiIiI7AxH0IiIiEiyewfVWjaCdu+gW050GsMAjYiIiCQTBJnF55hxhtM0TnESERER2RmOoBEREZFkVZChysJxnipOb5rEAI2IiIgkEyCHTrAsQOMMp2kM0IiIiKhB0Gq1WLduHfbv34+ioiK0a9cOEyZMQJcuXWost379emzYsMEgXaFQ4IcffrBRay3DAI2IiIgkuzfFaekuTmnlY2NjcejQIYwaNQq+vr7Ys2cP5syZg7i4OHTo0OGh5d9++200atRI/Fkut9+l+AzQiIiISLJ7uzgtnOKUsI0zPT0dycnJmDx5MsaOHQsAGDhwIKKjoxEfH4/4+PiH1hEaGgpPT09zm1un7Dd0JCIiIvqflJQUODk5ITIyUkxTKpUYMmQI0tLSkJubW6t6SkpKJAWG9YUjaERERCSZNac4s7Oz9dJVKhW8vb310jIzM+Hr6wt3d3e99JCQEABAVlYWfHx8avy+0aNHo6ysDI0aNULPnj0xdepUNGvWzKJ3sBUGaERERCSZIFhhF+f/RrIWLVqklx4dHY3x48frpanVaqhUKoM6qtPy8/NNfk+TJk3wpz/9CU899RRcXFyQmpqK7du34/z581i7dq1B0GcPGKARERGRZFWCDFUWBmhVwr1z0BYsWAA/Pz8x3VggptFo4OLiYpCuUCjE56aMGjVK7+ewsDCEhITgww8/xPbt2zFu3Diz2m9LXINGRERE9crPzw9BQUHi58HpTeDeerOKigqDdK1WKz6Xon///mjWrBlOnDhhXqNtjCNoREREJJkAGXQWrkETJJRXqVTIy8szSFer1QBgNKh7mBYtWqCwsFByubrAETQiIiKSrEqQW+VTWwEBAbh27RpKSkr00tPT08XnUgiCgJs3b9rtsRsM0IiIiMjuhYWFoaqqCklJSWKaVqvF7t270b59e3EHZ25ursGu0IKCAoP6duzYgYKCAnTr1s2m7TYXpzgbkOKhHSAoPeu7GURENifjHdp2T4AMOqHupjjbt2+P8PBwrFmzBgUFBWjdujX27t2LmzdvYu7cuWK+xYsX4/Tp0zh8+LCYNmrUKPTp0wf+/v5QKBQ4e/YskpOTERgYqHeumj1hgEZERESS3TsHzcJdnBLXsM2fPx8+Pj7Yt28fiouL4e/vjyVLlqBjx441luvfvz/OnTuHlJQUaLVa+Pj4YOzYsXj99dfh6upqwRvYDgM0IiIiahCUSiWmTJmCKVOmmMyzYsUKg7Q5c+bYslk2wQCNiIiIJLt3F6eFU5wWlndkDNCIiIhIMh3k0Fk4xWlpeUfGniEiIiKyMxxBIyIiIsl0wr3rniytg4xzqABNq9Vi3bp12L9/P4qKitCuXTtMmDABXbp0eWjZvLw8rFy5EsePH4dOp0OnTp0wffp0tGrVyiDvzp07sWXLFty8eRPNmzfHyJEjMWLEiBrrnzVrFn777TdERUVh5syZZr8jERGRPdBZYQ2apeUdmUNNccbGxiIhIQH9+/fHW2+9Bblcjjlz5iA1NbXGcqWlpZgxYwZOnz6NcePGYfz48cjMzMT06dNx9+5dvbyJiYn4+OOP8cQTT2DGjBl4+umnERcXh2+//dZk/SkpKUhLS7PKOxIREdkDnSC3yoeMc5gRtPT0dCQnJ2Py5MkYO3YsAGDgwIGIjo5GfHw84uPjTZbdsWMHrl27htWrVyMkJAQA0K1bN0RHR2Pr1q2YOHEiAECj0eDLL79E9+7d8eGHHwIAIiIioNPpsHHjRkRGRqJJkyZ6dWs0Gnz++ed45ZVXsG7dOlu8OhERETkYhwldU1JS4OTkpHcisFKpxJAhQ5CWlobc3FyTZQ8dOoTg4GAxOAMAPz8/dO7cGQcPHhTTTp48ibt372L48OF65aOiolBWVoajR48a1L1582YIgoAxY8ZY8HZERET2RQfZ/w6rNf9j6WXrjsxhArTMzEz4+vrC3d1dL7066MrKyjJaTqfT4dKlSwgODjZ4FhISgpycHJSWlorfAcAgb1BQEORyOS5evKiXnpubi2+//RZ/+ctfoFQqa/0u+fn5yMjIED8P3ilGRERU33TC/1+HZv6nvt/CfjnMFKdarYZKpTJIr07Lz883Wq6wsBBarfahZR9//HGo1Wo4OTnBy8tLL5+Liws8PDygVqv10j///HMEBgaib9++kt4lKSkJGzZskFSGiIiIHIfDBGgajQYuLi4G6QqFQnxuqhyAWpXVaDRwdjbeZQqFQu87Tp48iZSUFKxatUrCW9wTGRmJHj16iD9nZ2dj0aJFkushIiKyFQGWL/IXHGciz+ocJkBTKpWoqKgwSNdqteJzU+UA1KqsUqlEZWWl0Xq0Wq2Yr7KyEnFxcRgwYIDeurba8vb2hre3t+RyREREdUVnhTVkXINmmsOEriqVymCKEYCYZirg8fDwgEKhqFVZlUqFqqoq3LlzRy9fRUUFCgsLxSnRffv24erVq4iMjMSNGzfED3DvSI8bN26gvLzczDclIiIiR+cwI2gBAQE4deoUSkpK9DYKpKeni8+Nkcvl8Pf3x4ULFwyepaeno1WrVnBzcwMABAYGAgAuXLiA7t27i/kuXLgAnU4nPs/NzUVlZSWmTp1qUOe+ffuwb98+LF68GL169TLzbYmIiOqXTpBZ4SYBjqCZ4jABWlhYGLZs2YKkpCTxHDStVovdu3ejffv28PHxAXAveCovL4efn59YNjQ0FKtXr8aFCxfEHZpXrlzBqVOnMHr0aDFf586d4eHhgcTERL0ALTExEa6urmJa3759xWDtfn/729/wwgsvICIiwqypTyIiIntxbxemhZelM0AzyWECtPbt2yM8PBxr1qxBQUEBWrdujb179+LmzZuYO3eumG/x4sU4ffo0Dh8+LKZFRUVh586dmDt3LsaMGQMnJyckJCTAy8tL7/wypVKJN998E8uWLcP777+Prl274syZM9i/fz9iYmLg4eEB4N4ZavcHgPdr2bIlR86IiIioRg4ToAHA/Pnz4ePjg3379qG4uBj+/v5YsmQJOnbsWGM5Nzc3xMXFYeXKldi4caN4F+e0adPg6emplzcqKgrOzs7YunUrfv75Z7Ro0QLTpk3DqFGjbPdiREREdoZ3cdqWTBAEHhNn5zIyMhATEwNN6zAISs/6bg4Rkc3JdPXdgobr2MZZNq2/+neSzww/KHxdLapLe60cuXHZWLt2LYKCgqzUQsfgUCNoREREVDc4gmZbDnPMBhEREZGj4AgaERERSSbA8l2cAg+qNYkBGhEREUnGKU7b4hQnERERkZ3hCBoRERFJxrs4bYsBGhEREUkmWGGKU+AUp0mc4iQiIiKyMxxBIyIiIsl0guWL/HU8Kt8kBmhEREQkGac4bYtTnERERER2hiNoREREJJkOMsgsneLkLk6TGKARERGRZDrIIOMxGzbDAI2IiIgk4xo02+IaNCIiIiI7wxE0IiIikkwnyADexWkzDNCIiIhIMsEK56AJPAfNJE5xEhEREdkZjqARERGRZDrB8mM2uEnANAZoREREJJkAy9egCTxmwyROcRIRERHZGY6gERERkWQCZFYYAeMImikM0IiIiEgyaxyzAUHGqTwT2C9EREREdoYjaERERCSZIMAKI2hWaYpDYoBGREREkllritPJOs1xOAzQiIiISDpBZvE5Zpaeo+bIuAaNiIiIyM5wBI2IiIgk08EKI2g8ZsMkjqARERGRZIJgnY8UWq0W8fHxiIqKQr9+/TBp0iQcP35ccttnzZqF3r17Y9myZZLL1hUGaERERNQgxMbGIiEhAf3798dbb70FuVyOOXPmIDU1tdZ1pKSkIC0tzYattA4GaERERCSZABl0Fn6k3ESQnp6O5ORkTJw4EVOmTEFkZCSWL1+Oxx57DPHx8bWqQ6PR4PPPP8crr7xi7mvXGQZoREREJNm9KUqZhZ/af19KSgqcnJwQGRkppimVSgwZMgRpaWnIzc19aB2bN2+GIAgYM2aMOa9cp7hJgIiIiOpVdna23s8qlQre3t56aZmZmfD19YW7u7teekhICAAgKysLPj4+Jr8jNzcX3377Ld59910olUortdx2GKARERGRZDpBdu+wWkv8r/yiRYv0kqOjozF+/Hi9NLVaDZVKZVBFdVp+fn6NX/X5558jMDAQffv2taTFdcahAjStVot169Zh//79KCoqQrt27TBhwgR06dLloWXz8vKwcuVKHD9+HDqdDp06dcL06dPRqlUrg7w7d+7Eli1bcPPmTTRv3hwjR47EiBEj9PKkpKTgxx9/xIULF3D79m20aNEC3bt3x5///Gc0adLEau9MRERUH8zZhWmsDgBYsGAB/Pz8xHRjgZhGo4GLi4tBukKhEJ+bcvLkSaSkpGDVqlWWNbgOOVSAFhsbi0OHDmHUqFHw9fXFnj17MGfOHMTFxaFDhw4my5WWlmLGjBkoKSnBuHHj4OzsjISEBEyfPh3r169H06ZNxbyJiYn417/+hdDQUIwePRqpqamIi4tDeXk5Xn31VTHf0qVLoVKpMGDAAPj4+OD333/H9u3b8d///hfr1q1rEMOrREREdcHPzw9BQUE15lEqlaioqDBI12q14nNjKisrERcXhwEDBojToQ2BwwRo1bs7Jk+ejLFjxwIABg4ciOjoaMTHx9e4w2PHjh24du0aVq9eLf6f161bN0RHR2Pr1q2YOHEigHvR+Zdffonu3bvjww8/BABERERAp9Nh48aNiIyMFEfHFi5ciE6dOul9T1BQED766CMcOHAAQ4cOtXofEBER1R3LD6qFhF2cKpUKeXl5BulqtRoADNasVdu3bx+uXr2K2bNn48aNG3rPSktLcePGDXh5ecHV1VVCu23PYXZxWrK749ChQwgODtaLrP38/NC5c2ccPHhQTDt58iTu3r2L4cOH65WPiopCWVkZjh49KqY9GJwBQO/evQEAly9flvp6REREdsXyHZzSAryAgABcu3YNJSUleunp6enic2Nyc3NRWVmJqVOnYvTo0eIHuBe8jR492qzDbm3NYUbQzN3dodPpcOnSJbz00ksGz0JCQnD8+HGUlpbCzc0NmZmZAIDg4GC9fEFBQZDL5bh48SIGDBhgso3VUb6np6ekdyMiIrI31tgkIOWy9LCwMGzZsgVJSUniTJlWq8Xu3bvRvn178Xd8bm4uysvLxTVtffv2RWBgoEF9f/vb3/DCCy8gIiLCLqc+HSZAM3d3R2FhIbRa7UPLPv7441Cr1XBycoKXl5dePhcXF3h4eIgBmCn//ve/4eTkhNDQ0Brz5efn69X14PZjIiKiR0379u0RHh6ONWvWoKCgAK1bt8bevXtx8+ZNzJ07V8y3ePFinD59GocPHwZwb0bs/g0I92vZsiV69epVJ+2XymECNHN3d1Sn16asRqOBs7PxLlMoFDXuIDlw4AB27dqFsWPHok2bNjW8CZCUlIQNGzbUmIeIiKg+WXMXZ23Nnz8fPj4+2LdvH4qLi+Hv748lS5agY8eOljXEDjlMgGbu7o7q9NqUVSqVqKysNFqPVqs1+R1nzpzBkiVL0LVrV8TExDzkTYDIyEj06NFD/Dk7O9vgjBgiIqJ69b+bBCytQwqlUokpU6ZgypQpJvOsWLGiVnVVj7DZK4cJ0Mzd3eHh4QGFQmF0evLBsiqVClVVVbhz547eNGdFRQUKCwuNTpNmZWVh3rx58Pf3x8KFC02OwN3P29vbZHuJiIjI8TnMLk5zd3fI5XL4+/vjwoULBs/S09PRqlUruLm5AYC4yPDBvBcuXIBOpzNYhJiTk4PZs2fDy8sLH3/8sVgPERFRQyfACrs4JRyz8ahxmAAtLCwMVVVVSEpKEtNM7e54cNF9aGgoLly4oBd4XblyBadOnUJYWJiY1rlzZ3h4eCAxMVGvfGJiIlxdXdG9e3cxTa1W4+2334ZcLsfSpUu5c5OIiByKYKUPGecwU5zm7u4A7p1jtnPnTsydOxdjxoyBk5MTEhIS4OXlpXfjvVKpxJtvvolly5bh/fffR9euXXHmzBns378fMTEx8PDwEPO+8847uH79OsaOHYuzZ8/i7Nmz4jMvL69aXT9FREREjyaHCdAA83d3uLm5IS4uDitXrsTGjRvFuzinTZtmMPIVFRUFZ2dnbN26FT///DNatGiBadOmYdSoUXr5srKyAACbN282+L6OHTsyQCMiogZN6kGzpuog42SCYOkmWbK1jIwMxMTEQNM6DILSs76bQ0RkczJdfbeg4Tq2cZZN66/+nZQ/phsqW3g8vEANnG8VwnvLMaxdu/ahd3E+ahxqBI2IiIjqBkfQbMthNgkQEREROQqOoBEREZF0VrhJgNs4TWOARkRERJJVn4NmaR1kHAO0BmTNtM0I8NfWdzOIiGyukcz41XlUG7bdJEB1gwEaERERSScAqOO7OB8lDNCIiIhIMsEKa9B40Jdp3MVJREREZGc4gkZERETSWeMyTY6gmcQAjYiIiCTjQbW2xSlOIiIiIjvDETQiIiIyD6cobYYBGhEREUnGKU7bYoBGRERE0nGTgE1xDRoRERGRneEIGhEREZlB9r+PpXWQMQzQiIiISDpOcdoUAzQiIiKih9i7d6/FdQQGBqJdu3a1yssAjYiIiKR7xEbQYmNjIZOZNyUrCAJkMhmio6MZoBEREZENCbJ7H0vraEB69OiBnj17mlX2n//8p6T8DNCIiIiIaiEwMBCDBw82qywDNCIiIqoTQgOaorRUnz598MQTT9RZeQZoREREJN0jtgbtgw8+qNPyPKiWiIiIyM5wBI2IiIikE2CFTQJWaYlD4ggaERERSScAMgs/DTVAU6vVSElJwZEjR1BUVGQy3+nTp7FhwwazvoMjaERERCTdI7YGrdqWLVvw5ZdforKyEgCgUCjw2muvYdy4cQbnpJ06dQpff/01oqOjJX8PR9CIiIiIauHXX39FfHw8FAoFhg4diuHDh8PNzQ3r1q3Du+++C61Wa7XvsmgETafTQS7Xj/HOnTuHo0ePQqFQYPDgwWjRooVFDSQiIiJ7ZIWDahvYZenfffcdXF1dsXr1arRp0wYAMHHiRCxduhTJycl49913ERsbC6VSafF3mT2C9tlnn2HAgAF6c6+HDh3C9OnT8c0332D9+vWYMGECbt26ZXEjiYiIyM4IVvo0IBcuXEDv3r3F4AwA3Nzc8P777+OVV17BiRMn8O6770Kj0Vj8XWYHaKdOnUKnTp3QpEkTMW3dunVwd3fH3/72N/zlL39BUVERtmzZYnEjiYiIiOpbWVmZyZnBSZMm4bXXXsPJkycxd+5ci4M0s6c4b926hWeffVb8+fr167hy5Qqio6MxYMAAAEBqaip+/fVXixpIREREdugR3CTg7e2NvLw8k88nTJgAANi0aRPmzJmDoKAgs7/L7ACtvLwcjRo1En8+c+YMZDIZunXrJqa1bdsWJ0+eNLtxREREZKcewQDtiSeewIkTJ2rMc3+Qdu7cObO/y+wpTpVKhStXrog/Hzt2DI0aNdKLFktKSuDi4mJ244iIiIjsRffu3ZGfn4+jR4/WmG/ChAl4/fXXxaM4zGH2CFrHjh2RnJyMbdu2QalU4vDhw+jVqxecnJzEPNevX0fz5s3NbhwRERHZKcEKuzgt3gVat8LCwiAIAlxdXR+a980330SrVq1w8+ZNs77L7ADttddew08//YTPPvtMbOwbb7whPi8tLcWZM2cwePBgc7+CiIiI7JQM/7sNwMI6GhIPDw8MGzas1vktiYHMDtB8fX2xceNGpKSkAAB69OiBxx57THx+9epVREZGol+/fmY3TiqtVot169Zh//79KCoqQrt27TBhwgR06dLloWXz8vKwcuVKHD9+HDqdDp06dcL06dPRqlUrg7w7d+7Eli1bcPPmTTRv3hwjR47EiBEjLKqTHkFVAuTHNJDlVkHwcYKumxJwamj/uaon7DsicnAWHVTr7e1tNDABgKCgIIt2L5gjNjYWhw4dwqhRo+Dr64s9e/Zgzpw5iIuLQ4cOHUyWKy0txYwZM1BSUoJx48bB2dkZCQkJmD59OtavX4+mTZuKeRMTE/Gvf/0LoaGhGD16NFJTUxEXF4fy8nK8+uqrZtVJjx6n3aVQvHcH8htVYpqupRO0H3qh6iW3emyZ/WPfEdmJR3CTgDGZmZnIysqCWq02uuZMJpPhz3/+s+R6rXIX5927d5GVlYWSkhK4u7sjICCgzgOQ9PR0JCcnY/LkyRg7diwAYODAgYiOjkZ8fDzi4+NNlt2xYweuXbuG1atXIyQkBADQrVs3REdHY+vWrZg4cSIAQKPR4Msvv0T37t3x4YcfAgAiIiKg0+mwceNGREZGiufC1bZOevQ47S6FMibf4D9MsptVUMbkQ7PWm4GGCew7IrIXd+7cwcKFC3Hq1CkAgCAYjzbrJUC7ceMGVqxYgf/+9796DZPJZOjevTumT5+Oli1bWvIVtZaSkgInJydERkaKaUqlEkOGDMGaNWuQm5sLHx8fo2UPHTqE4OBgMZACAD8/P3Tu3BkHDx4Ug6mTJ0/i7t27GD58uF75qKgoHDhwAEePHhXPgKttnfSIqRKgeO8OIBiuvZAJ99bLKt6/g7KBjThl9yD2HZFdkQlWWIPWgEfQli1bhpMnT+KFF15A3759oVKp9DZKWsrsAC0nJwdTp07FnTt34Ovri2eeeQZeXl64c+cOzp07h59//hnp6en44osv6mTNVWZmJnx9feHu7q6XXh0gZWVlGQ3QdDodLl26hJdeesngWUhICI4fP47S0lK4ubkhMzMTABAcHKyXLygoCHK5HBcvXsSAAQMk1WlMfn4+1Gq1+HN2dvZD3p4aCvkxjd7U3INkAiC7XgX5MQ10Lz58l9CjhH1HRPbk119/RadOnbBkyRKb1G92gLZq1SoUFBTg7bffRkREBGSy//83VkEQkJSUhGXLlmHVqlVYuHChVRpbE7VaDZVKZZBenZafn2+0XGFhIbRa7UPLPv7441Cr1XBycoKXl5dePhcXF3h4eIhBlZQ6jUlKSsKGDRtMvCk1ZLJc0wGGOfnsmSAAt35/Ei3aXYTMCgNaj1LfETUIj+AxG/dzdna26Vp7swO0EydOoEePHnpTitVkMhmGDRuG//73v/jtt98samBtaTQao4fiKhQK8bmpcgBqVVaj0cDZ2XiXKRQKvXy1rdOYyMhI9OjRQ/w5OzsbixYtMpmfGg7Bp3bD37XNZ89uXHgKKV9OR2jMCrQKTre4vkep74gahHrYJGDuaQ2HDx9GYmIiLl26hMLCQnh6eqJ9+/Z444034O/vb1bTO3ToIM6s2YLZNwnodDq0bdu2xjz+/v7Q6XTmfoUkSqUSFRUVBularVZ8bqocgFqVVSqVJk8F1mq1evlqW6cx3t7e4i7YoKAg+Pn5mcxLDYuumxK6lk4m/9IoyABdq/8dG9HAXU3tfO9/z3S2Sn2PUt8RkXGxsbFISEhA//798dZbb0Eul2POnDlITU2tsdylS5fQpEkTjBw5EjNnzsSwYcOQmZmJSZMmISsry6y2TJw4ERkZGdi2bZtZ5R/G7BG0J598EpcvX64xzx9//FFnR22oVCqjF5hWTzt6e3sbLefh4QGFQqG35stUWZVKhaqqKty5c0dvmrOiogKFhYXi9KWUOukR4ySD9kMvKGPyIcj0F8hWBx7ahV4NcpG7oJMh85feqCi/t7byyv8Cs6upndFYde/PvYtrKQJfPAyZ3Iy/djtw3xE1WHW4yN+S0xqio6MN0oYOHYoRI0Zgx44dmD17tuT2tG3bFitXrsS0adOwbds2tGvXzmAdfLV3331Xcv1mB2gxMTGYOXMmdu7ciaFDhxo8T0pKwq+//oply5aZ+xWSBAQE4NSpU+JRH9XS09PF58bI5XL4+/vjwoULBs/S09PRqlUrcTF/YGAgAODChQvo3r27mO/ChQvQ6XTicyl10qOn6iU3aNZ6Q/HeHcjuW/QutHSCdmHDPcurUqvA2X2R0Ja6AxAgk+v+l65E6p5IADIo3ErwxPP/hYur6Sn+mjhq3xE1RHW9i9OS0xqM8fLygqurK4qLi6U0WXT9+nXMnz8fxcXFKC4uRk5OjtF8MpmsbgO0EydOoFOnTli6dCm2bNmCZ555Bs2aNcPt27dx9uxZXLt2DV26dMGJEyf0bn439zyQhwkLC8OWLVuQlJQkRtZarRa7d+9G+/btxf/TcnNzUV5erjdtGBoaitWrV+PChQviDs0rV67g1KlTGD16tJivc+fO8PDwQGJiol6AlpiYCFdXV7202tZJj6aql9xQNrCRQ52G7+KqwaBZi/DLN28i/3I7CLp7a8Hu/a8A77ZZeHHcOrODs2qO2HdEj7oHTytQqVQGM03mntZwv6KiIlRVVUGtVuO7775DSUkJnnvuObPaHBcXh+vXr2PYsGHo16+f/Ryz8dVXX4n/fPXqVVy9etUgz6+//opff/1VL81WAVr79u0RHh6ONWvWoKCgAK1bt8bevXtx8+ZNzJ07V8y3ePFinD59GocPHxbToqKisHPnTsydOxdjxoyBk5MTEhIS4OXlhTFjxoj5lEol3nzzTSxbtgzvv/8+unbtijNnzmD//v2IiYmBh4eH5DrpEeYkc7jjINy97qDP5GXY9t6nqNL+/7VgTgot+k75FHInK61JdcC+I2pwrLhJ4MGNcNHR0Rg/frxemrmnNdxv8uTJuHLlCgCgUaNGeP311zFkyBBzWo4zZ87gxRdfxKxZs8wq/zBmB2hxcXHWbIdVzJ8/Hz4+Pti3bx+Ki4vh7++PJUuWoGPHjjWWc3NzQ1xcHFauXImNGzeK92ZOmzYNnp6eenmjoqLg7OyMrVu34ueff0aLFi0wbdo0jBo1yuw6iRzJ7Stt9YIzAKjSKqG+8gSaP/F7PbWKiKzOigHaggUL9Ga2jAVi5p7WcL93330XpaWluH79Onbv3g2NRgOdTge5XPqeSRcXF7Rp00ZyudoyO0B7WNBTH5RKJaZMmYIpU6aYzLNixQqj6S1atKj1eW0RERGIiIh4aD4pdRI5ipz0e/fe+j59Ch0jtuHUf0Yi51xH5KR1YIBGREb5+fk9dFOhuac13O/pp58W/7lv37547bXXAABTp06V0lwAQJcuXXDu3DnJ5WrL7GM2AKCyshIJCQmYOHEiBg0ahPDwcPFZZmYmPv30U6NTn0TkuFo/lYrur65Dz+jVaOKdj17Rq9D91XVo/VTN2+CJqGGp3iRg6ae2VCqVVU9HaNKkCTp37owDBw5IKldtypQpUKvV+OKLL2o1eieV2SNoGo0Gb7/9Ns6dO4emTZvC3d0d5eXl4vOWLVti9+7daNKkCWJiYqzSWCKyf82f+F1vpEwmA9p2Pl6PLSIi27DCTQIGN+uaZu5pDTXRaDQoKSmRXA4APvzwQzRu3BgJCQn4z3/+A19fX6MnNMhkMixfvlxy/WaPoG3atAlnz57FxIkTsWPHDoNFdo0bN0bHjh1x/Dj/w0xERORwBCt9aiksLAxVVVVISkoS00yd1vDgrtA7d+4Y1Hfjxg2cOHHC7PNaT58+jaysLAiCgNLSUly8eBGnT582+jGH2SNoP/74Izp16oRXXnkFAPTu4qzWqlUrm16DQERERI8GS05riI6OxnPPPYeAgAA0adIE165dw65du1BZWYlJkyaZ1Z6UlBSL36kmZgdot27dQq9evWrM06hRI7OHDomIiMiOWeGgWqm7QM09raH6fvBjx46htLQUXl5e6NKlC8aNG4d27dqZ334bMjtAa9SoEQoKCmrMc/36dTRt2tTcryAiIiJ7VQ+XpZt7WsP48eMNzlWzVFVVFcrLy9GoUSOjx3RUP3d1dTXrAFuz16A99dRT+OWXX1BUVGT0eW5uLv773//i2WefNfcriIiIiOzShg0bMGzYMBQWFhp9XlRUhGHDhmHTpk1m1W92gDZmzBgUFRVh5syZOHv2LKqq7t2LV15ejhMnTmD27NmoqqritUZEREQOqK6P2bA3v/zyCzp37mzy8HlPT088//zzOHLkiFn1W3RQ7V//+lesWLEC06dPF9MHDRoE4N6F4bNmzTJ7dwQRERHZuQYcYFnqxo0b6NSpU4152rRpg7Nnz5pVv9kBGgAMHz4cHTt2RGJiIs6fP4/CwkK4u7sjJCQEUVFReOKJJyypnoiIiMguVVZWPvSKKJlMJt50IJVFARoAtG3bFjNmzLC0GiIiImpI6mGTgD1p3bo1Tp48WWOekydPomXLlmbVb9FVT0RERPRoetTXoPXu3RtZWVlYt26duA6/WlVVFb788ktkZWUhLCzMrPotHkEjIiIietSMHj0aycnJ2LRpE5KTk9GpUyc0b94ceXl5OHXqFK5fvw4/Pz+MGTPGrPoZoBERERFJ5ObmhpUrV+Jf//oXfvrpJ+Tk5IjP5HI5QkNDMWvWLKP3c9YGAzQiIiKS7hFfgwbcO0rjww8/xO3bt5GRkYHi4mI0btwYwcHB8PLysqhuBmhEREQkmTXWkDXkNWj3a9asGbp3727VOrlJgIiIiOghFi5caNEF6VLLM0AjIiIi8wgWfhqQ5ORk/PHHH3VWnlOcREREJN0juAYtMzMTe/furZPvYoBGREREVAtHjhzBzz//LLmcIEiPRBmgERERkWSP2iaBd9991+I6AgMDa52XARoRERFJ94hNcQ4ePLhOv4+bBIiIiIjsDEfQiIiISDpr3KXZgEbQ6hoDNCIiIjIPAyyb4RQnERERkZ3hCBoRERFJ94htEqhrDNCIiIhIskftmI26xgCtAZm4ciwEpWd9N4OIyOZkuvpuQcN1bGMdfRFH0GyKa9CIiIiI7AxH0IiIiEg6jqDZFAM0IiIikkwGK6xBs0pLHBOnOImIiIjsDEfQiIiISDpOcdoUAzQiIiKSjMds2JbDBGhFRUVYtWoVDh8+DI1Gg5CQEEyZMgVBQUG1Kn/58mWsXLkSZ8+ehbOzM7p3745p06bB09NTL59Op8OWLVuwY8cO3L59G76+vhg3bhz69eunl2ffvn1ISUlBZmYmioqK0LJlS/Tp0wdjxoyBUqm05qsTERGRg3GIAE2n02Hu3Ln4/fffMWbMGDRt2hQ7duzAjBkzsHbtWrRp06bG8rdu3cL06dPRuHFjxMTEoKysDFu2bMGlS5ewevVquLi4iHnXrl2Lb7/9FhEREQgODsaRI0ewcOFCyGQy9O3bFwBQXl6O2NhYPPXUUxg2bBi8vLyQlpaGr776CidPnsTy5cshk3FpJBERNWCc4rQphwjQDh06hHPnzmHhwoUICwsDAPTp0wevvPIKvvrqK7z//vs1lv/mm29QXl6OL7/8Ej4+PgCAkJAQzJo1C3v27EFkZCQAIC8vD1u3bkVUVBRmzpwJABg6dCimT5+OL774AmFhYXBycoKLiws+//xzPPPMM+J3RERE4LHHHsP69etx4sQJPP/88zboCSIiojrCAM2mHGIXZ0pKCpo1a4bevXuLaZ6enggPD8eRI0eg1WofWv7FF18UgzMAeP7559GmTRscPHhQTDty5AgqKysRFRUlpslkMgwfPhx5eXlIS0sDALi4uOgFZ9V69eoFAMjOzjbvRYmIiOiR4BAB2sWLFxEYGAi5XP91QkJCUF5ejqtXr5osm5eXhzt37hhdqxYSEoLMzEzx58zMTDRq1Ah+fn4G+aqf1+T27dsAgKZNm9aYLz8/HxkZGeKHAR0REdkbmZU+ZJxDTHHevn0bzz77rEG6SqUCAKjVarRr185oWbVarZf3wfKFhYXQarVQKBRQq9Xw8vIyWD9WXTY/P7/Gdm7evBnu7u7o1q1bjfmSkpKwYcOGGvMQERHVO05R2ozdBWg6nQ4VFRW1yqtQKCCTyaDRaKBQKIw+BwCNRmOyjupn928EMFZeoVBAo9E8NJ8pmzZtwm+//YZZs2ahSZMmNbwVEBkZiR49eog/Z2dnY9GiRTWWISIiqlNWOGaDAZ5pdhegnTlzBjNmzKhV3k2bNsHPzw9KpdLoOrPqtJqOtah+ZiwofLC8UqmsVb4HJScn48svv8SQIUMwfPjwGt7oHm9vb3h7ez80HxERETkmuwvQHn/8ccybN69WeaunFps1ayZOVd6vpunLB+swVd7Dw0McIVOpVDh16hQEQdCb5qwuayyoOn78OD766CN0794db7/9dq3ei4iIyO5xF6dN2V2AplKpMHjwYEllAgMDkZqaCp1Op7dR4Pz583B1da3xHLTmzZvD09MTGRkZBs/Onz+PgIAA8eeAgADs3LkT2dnZaNu2rZienp4uPr9feno6FixYgKCgIPzjH/+As7PddTcREZF5GKDZlEPs4gwNDcXt27dx+PBhMa2goAAHDx7Eiy++qLc+LScnBzk5OQblf/nlF+Tm5oppJ06cwNWrVxEeHi6m9ezZE87Ozti+fbuYJggCEhMT0bx5czz99NNi+uXLlzF37lw89thjWLJkCW8PICIiolpziCGdsLAwfP/994iNjcXly5fFmwR0Oh3Gjx+vl7f6gNmEhAQxbdy4cTh06BD++te/YuTIkSgrK8PmzZvh7++vN5rXokULjBo1Cps3b0ZlZSVCQkLw008/ITU1Fe+99x6cnJwAAKWlpZg9ezaKioowZswYHD16VK8NrVq10gvmiIiIGhrexWlbDhGgOTk54eOPP8YXX3yBbdu2QaPRIDg4GPPmzcPjjz/+0PI+Pj5YsWIFVq5cidWrV4t3cU6dOtVgd+ikSZPQpEkTJCUlYe/evfD19cWCBQvQv39/Mc/du3dx69YtAMDq1asNvm/QoEEM0IiIqGHjFKdNyQRBYPfYuYyMDMTExEDTOgyC0rO+m0NEZHMyXX23oOE6tnGWTeuv/p1UHBAOnZunRXXJSwvQOOsg1q5da/TA+EeZQ4ygERERUd2SwQpTnFZpiWNigEZERETScYrTphxiFycRERGRI+EIGhEREUnGXZy2xQCNiIiIpKuHKU6tVot169Zh//79KCoqQrt27TBhwgR06dKlxnIpKSn48ccfceHCBdy+fRstWrRA9+7d8ec///mh92PXF05xEhERkXSClT4SxMbGIiEhAf3798dbb70FuVyOOXPmIDU1tcZyS5cuRXZ2NgYMGIAZM2aga9eu2L59OyZPngyNRiOtEXWEI2hERERk99LT05GcnIzJkydj7NixAICBAwciOjoa8fHxiI+PN1l24cKF6NSpk15aUFAQPvroIxw4cABDhw61advNwRE0IiIikqz6mA2LPhK+LyUlBU5OToiMjBTTlEolhgwZgrS0NL3rGh/0YHAGAL179wZw72pGe8QAjYiIiKSr4ynOzMxM+Pr6wt3dXS89JCQEAJCVlSWp+Wq1GgDg6ekpqVxd4RQnERER1avs7Gy9n1UqFby9vfXS1Go1VCqVQdnqtPz8fEnf+e9//xtOTk4IDQ2V2Nq6wQCNiIiIpBMEyCy9LfJ/5RctWqSXHB0djfHjx+ulaTQauLi4GFRRfWe2lMX+Bw4cwK5duzB27Fi0adNGaqvrBAM0onoi1+nQ8dYleJcWIt/NA6db+EMn56qD2mDfEdkBKx6zsWDBAvj5+YnJxkbKlEolKioqDNK1Wq34vDbOnDmDJUuWoGvXroiJiTGj0XWDARpRPQjLTsXbv+6AT+ldMS3XrSn+1XU4Dvl1qMeW2T/2HZHj8fPze+hl6SqVCnl5eQbp1WvJHpwSNSYrKwvz5s2Dv78/Fi5cCGdn+w2D+FdOojoWlp2KJYe+RvP7AgwAaF56F0sOfY2w7JrP83mUse+I7IfFOzgl3kQQEBCAa9euoaSkRC89PT1dfF6TnJwczJ49G15eXvj444/h5uYm+Z3rEgM0ojok1+nw9q87IMDwXz457o32z/o1EXKdru4bZ+fYd0R2qA4PqQ0LC0NVVRWSkpLENK1Wi927d6N9+/bw8fEBAOTm5hpsOlCr1Xj77bchl8uxdOlSu925eT/7HdsjckAdb13Sm5p7kBzAY6UF6HjrEk4+VvPfBh817DuiR1v79u0RHh6ONWvWoKCgAK1bt8bevXtx8+ZNzJ07V8y3ePFinD59GocPHxbT3nnnHVy/fh1jx47F2bNncfbsWfGZl5fXQ6+Kqg8M0IjqkHdpoVXzPUrYd0T2RWaFTQJSL0ufP38+fHx8sG/fPhQXF8Pf3x9LlixBx44dayxXfUba5s2bDZ517NiRARrRoy7fzcOq+R4l7DsiO1MPl6UrlUpMmTIFU6ZMMZlnxYoVBmn3j6Y1FFyDRlSHTrfwR65bU5haJaUDcNPNE6db+NdlsxoE9h2RfanrTQKPGgZoRHVIJ5fjX12HQwYYBBo63LuX7tOuw3imlxHsOyJ6lPC/ZER17JBfB8wN+zPy3Jrqpd9y88TcsD/zLK8asO+I7Egd38X5qOEaNKJ6cMivAw63eZqn4ZuBfUdkH2SA5ZsErNEQB8UAjaie6ORyHgdhJvYdETk6BmhEREQknSCIl51bVAcZxQCNiIiIpLPGLkzGZyZx0QYRERGRneEIGhEREUlXDwfVPkoYoBEREZFkMgGGhxJKxQDNJE5xEhEREdkZjqARERGRdJzitCkGaERERCSZjAGaTTFAIyIiIul4DppNcQ0aERERkZ3hCBoRERFJxilO22KARkREROZhgGUzDhOgFRUVYdWqVTh8+DA0Gg1CQkIwZcoUBAUF1ar85cuXsXLlSpw9exbOzs7o3r07pk2bBk9PT718Op0OW7ZswY4dO3D79m34+vpi3Lhx6Nevn8m6Kysr8cYbbyA7OxuTJ0/G2LFjLXlVIiIicnAOEaDpdDrMnTsXv//+O8aMGYOmTZtix44dmDFjBtauXYs2bdrUWP7WrVuYPn06GjdujJiYGJSVlWHLli24dOkSVq9eDRcXFzHv2rVr8e233yIiIgLBwcE4cuQIFi5cCJlMhr59+xqtf9u2bbh165ZV35mIiKg+cYrTthxik8ChQ4dw7tw5zJs3D2+88Qb+9Kc/YcWKFZDL5fjqq68eWv6bb75BeXk5li9fjpEjR+K1117DP/7xD2RlZWHPnj1ivry8PGzduhVRUVF45513EBERgX/+85/o0KEDvvjiC1RVVRnUfefOHXz99dd45ZVXrPrORERE9ap6F6elHzLKIQK0lJQUNGvWDL179xbTPD09ER4ejiNHjkCr1T60/IsvvggfHx8x7fnnn0ebNm1w8OBBMe3IkSOorKxEVFSUmCaTyTB8+HDk5eUhLS3NoO7Vq1ejTZs26N+/vyWvSERERI8QhwjQLl68iMDAQMjl+q8TEhKC8vJyXL161WTZvLw83Llzx+hatZCQEGRmZoo/Z2ZmolGjRvDz8zPIV/38funp6di7dy+mT58OmUxW6/fJz89HRkaG+MnOzq51WSIiorogE6zzIeMcYg3a7du38eyzzxqkq1QqAIBarUa7du2MllWr1Xp5HyxfWFgIrVYLhUIBtVoNLy8vg2Crumx+fr6YJggC4uLi0KdPHzz99NO4ceNGrd8nKSkJGzZsqHV+IiKiOsc1aDZldwGaTqdDRUVFrfIqFArIZDJoNBooFAqjzwFAo9GYrKP62f0bAYyVVygU0Gg0D81Xbc+ePbh06RIWLlxYq3e5X2RkJHr06CH+nJ2djUWLFkmuh4iIiBomuwvQzpw5gxkzZtQq76ZNm+Dn5welUml0nVl1mlKpNFlH9TNjQeGD5ZVKZa3ylZSUYM2aNRg7dqzeurba8vb2hre3t+RyREREdcnSKUoOoJlmdwHa448/jnnz5tUqb/XUYrNmzcSpyvvVNH35YB2mynt4eIgjZCqVCqdOnYIgCHrTnNVlq4OqLVu2oKKiAn369BGnNvPy8gAAxcXFuHHjBry9vY2OxhERETUIOlgeoems0hKHZHcBmkqlwuDBgyWVCQwMRGpqKnQ6nd5GgfPnz8PV1bXGc9CaN28OT09PZGRkGDw7f/48AgICxJ8DAgKwc+dOZGdno23btmJ6enq6+BwAcnNzUVRUhNdff92gzk2bNmHTpk1Yt24dAgMDJb0nERGR3eAaNJuyuwDNHKGhoTh06BAOHz6MsLAwAEBBQQEOHjyIF198UW99Wk5ODgCgdevWeuX37t2L3NxccUryxIkTuHr1Kl5++WUxX8+ePbFy5Ups374dM2fOBHBvM0BiYiKaN2+Op59+GgAwYsQI9OrVS6+Nd+7cwdKlSzF48GD07NkTLVu2tH5HEBERkUNwiAAtLCwM33//PWJjY3H58mXxJgGdTofx48fr5a0OrBISEsS0cePG4dChQ/jrX/+KkSNHoqysDJs3b4a/v7/eaF6LFi0watQobN68GZWVlQgJCcFPP/2E1NRUvPfee3BycgIABAUFGRzbUT3V2bZtW4PgjYiIqKGxyjEZAgfRTHGIAM3JyQkff/wxvvjiC2zbtg0ajQbBwcGYN28eHn/88YeW9/HxwYoVK7By5UqsXr1avItz6tSpBrtDJ02ahCZNmiApKQl79+6Fr68vFixYwINoiYjoEWONmwAYnpkiEwTes2DvMjIyEBMTA03rMAhKz/puDhGRzcm4eNxsxzbOsmn91b+TZK49IZM3taguQXcXQvkRrF271uiB8Y8yhxhBIyIiorrFKU7bYoBGRERE0nEXp005xF2cRERERI6EI2hEREQkmUwQILN0GTuXwZvEAK0BabwzFfIS3j5AREQ12FhH3yPA8psAGJ+ZxClOIiIiIjvDETQiIiKSTCYIkFk6BMYpTpMYoBEREZF01oitGJ+ZxACNiIiIpBOscM4GR9BM4ho0IiIiIjvDETQiIiKSTgBkllbBATSTGKARERGReRhh2QynOImIiIjsDEfQiIiISDKZzvIpThnAoSITGKARERGRdNbYxclzNkxi3EpERERkZziCRkRERNJx8MumGKARERGRZNa46klqea1Wi3Xr1mH//v0oKipCu3btMGHCBHTp0qXGcleuXEFiYiLS09ORmZkJrVaLrVu3omXLlpY036Y4xUlEREQNQmxsLBISEtC/f3+89dZbkMvlmDNnDlJTU2ssl5aWhm3btqG0tBR+fn511FrLMEAjIiIiMwj3NgpY8pEwgpaeno7k5GRMnDgRU6ZMQWRkJJYvX47HHnsM8fHxNZbt0aMHdu/eja+//hr9+vWz8L3rBgM0IiIikk5npU8tpaSkwMnJCZGRkWKaUqnEkCFDkJaWhtzcXJNlPTw84ObmJuHl6h/XoBEREZFkMkGAzMKbBKrXoGVnZ+ulq1QqeHt766VlZmbC19cX7u7ueukhISEAgKysLPj4+FjUHnvCAI2IiIjq1aJFi/R+jo6Oxvjx4/XS1Go1VCqVQdnqtPz8fNs1sB4wQCMiIiLpBFjtLs4FCxboLd43FohpNBq4uLgYpCsUCvG5I2GARkRERGYQLA/QZPfK+/n5ISgoqMasSqUSFRUVBularVZ87ki4SYCIiIjsnkqlglqtNkivTntwzVpDxwCNiIiIpKvjXZwBAQG4du0aSkpK9NLT09PF546EARoRERFJVr2L09JPbYWFhaGqqgpJSUlimlarxe7du9G+fXtxB2dubq7BrtCGiGvQiIiIyO61b98e4eHhWLNmDQoKCtC6dWvs3bsXN2/exNy5c8V8ixcvxunTp3H48GExrbi4GNu2bQMAnDt3DgDwf//3f2jcuDEaN26MESNG1O3L1AIDNCIiIpJOsMImAYnl58+fDx8fH+zbtw/FxcXw9/fHkiVL0LFjxxrLFRUVYd26dXppW7duBQA89thjDNCIiIjIUVghQJN4WbpSqcSUKVMwZcoUk3lWrFhhkNayZUu9EbWGgGvQiIiIiOwMR9CIiIhIOmscVGudc24dEgM0IiIikk7iMRlGyazREMfEAI2IiIiks8Jl6da6KsoROUyAVlRUhFWrVuHw4cPQaDQICQnBlClTHnp1RLXLly9j5cqVOHv2LJydndG9e3dMmzYNnp6eevl0Oh22bNmCHTt24Pbt2/D19cW4cePQr18/gzp1Oh2SkpKQlJSEK1euwNXVFe3atcP06dMd7kA9IiIish6HCNB0Oh3mzp2L33//HWPGjEHTpk2xY8cOzJgxA2vXrkWbNm1qLH/r1i1Mnz4djRs3RkxMDMrKyrBlyxZcunQJq1ev1rucde3atfj2228RERGB4OBgHDlyBAsXLoRMJkPfvn316v3nP/+JAwcOYODAgfjTn/6EsrIyZGZm4s6dOzbpByIiorpT97s4HyUOEaAdOnQI586dw8KFCxEWFgYA6NOnD1555RV89dVXeP/992ss/80336C8vBxffvmleBJxSEgIZs2ahT179iAyMhIAkJeXh61btyIqKgozZ84EAAwdOhTTp0/HF198gbCwMDg5OQEAfvzxR+zduxeLFi1C7969bfTmRERE9UQn3PtYWgcZ5RDHbKSkpKBZs2Z6gZCnpyfCw8Nx5MgR8ab7msq/+OKLYnAGAM8//zzatGmDgwcPimlHjhxBZWUloqKixDSZTIbhw4cjLy8PaWlpYnpCQgJCQkLQu3dv6HQ6lJWVWeNViYiI6BHgEAHaxYsXERgYCLlc/3VCQkJQXl6Oq1evmiybl5eHO3fuGF2rFhISgszMTPHnzMxMNGrUCH5+fgb5qp8DQElJCc6fP4/g4GCsWbMGgwcPxsCBAzF69Gj8+OOPZr8nERGR3ai+ScDSDxnlEFOct2/fxrPPPmuQrlKpAABqtRrt2rUzWlatVuvlfbB8YWEhtFotFAoF1Go1vLy8IJPJDPIBQH5+PgAgJycHgiDgxx9/hJOTEyZPngx3d3d8//33+Mc//gF3d3d069bN5Pvk5+eL7QLgEJe+EhGRg+E5aDZldwGaTqdDRUVFrfIqFArIZDJoNBooFAqjzwFAo9GYrKP62f0bAYyVVygU0Gg0D80HQJzOvHv3LlatWoX27dsDAHr06IHRo0dj48aNNQZoSUlJ2LBhg8nnRERE5NjsLkA7c+YMZsyYUau8mzZtgp+fH5RKpdF1ZtVpSqXSZB3Vz4wFhQ+WVyqVtc4H3Lv7qzo4AwA3Nzf06NED+/fvR2VlJZydjXd/ZGQkevToIf6cnZ2NRYsWmXwHIiKiusddnLZkdwHa448/jnnz5tUqb/XUYrNmzfSmBKvVNH35YB2mynt4eIgjZCqVCqdOnYIgCHrTnNVlvb299f63WbNmBnV6enqisrIS5eXlaNy4sdE2eXt7i3UQERHZJe7itCm7C9BUKhUGDx4sqUxgYCBSU1Oh0+n0NgqcP38erq6uNZ6D1rx5c3h6eiIjI8Pg2fnz5/UOlA0ICMDOnTuRnZ2Ntm3biunp6enic+BegNWsWTPk5eUZ1KlWq6FQKODm5ibpHYmIiOjR4RC7OENDQ3H79m0cPnxYTCsoKMDBgwfx4osv6q1Py8nJQU5OjkH5X375Bbm5uWLaiRMncPXqVYSHh4tpPXv2hLOzM7Zv3y6mCYKAxMRENG/eHE8//bSY3qdPH9y6dQvHjx/Xa9ORI0fQuXNngx2nREREDYqgs86HjLK7ETRzhIWF4fvvv0dsbCwuX74s3iSg0+kwfvx4vbzVB8wmJCSIaePGjcOhQ4fw17/+FSNHjkRZWRk2b94Mf39/vdG8Fi1aYNSoUdi8eTMqKysREhKCn376CampqXjvvffEQ2qr6zx48CDee+89vPzyy2jcuDESExNRWVmJiRMn2rhHiIiIbIy7OG3KIQI0JycnfPzxx/jiiy+wbds2aDQaBAcHY968eXj88ccfWt7HxwcrVqzAypUrsXr1avEuzqlTpxrsDp00aRKaNGmCpKQk7N27F76+vliwYAH69++vl69Zs2b4/PPP8fnnn+O7775DZWUlnnrqKSxYsID3cBIRUcMnWGENGs9BM0kmCOwde5eRkYGYmBi4nGoGeYnhMR9ERETVDui+s2n91b+TXK8Hw0lr2XrqKkUpyltdwNq1a40eGP8oc4gRNCIiIqpj1rgJgGNEJjFAIyIiIukYoNkUtxISERER2RmOoBEREZF0HEGzKQZoREREJJ0gADoLzzFjgGYSpziJiIiI7AxH0IiIiEg6TnHaFAM0IiIiko4Bmk1xipOIiIjIznAEjYiIiKTjVU82xQCNiIiIpBMECAJ3cdoKAzQiIiKSTmeFETRLyzswrkEjIiIisjMcQSMiIiLpuIvTphigERERkXSCzgo3CVhY3oFxipOIiIjIznAEjYiIiKQTYIUpTqu0xCExQCMiIiLJBJ0OgoVTnJaWd2Sc4iQiIiKyMxxBIyIiIum4i9OmGKARERGRdLzqyaY4xUlERERkZziCRkRERNIJguXnmHEEzSQGaERERCSZoBMgWDjFaWl5R8YAjYiIiMygs8JNADxmwxSuQSMiIiKyMxxBIyIiIskEneVTlLyK0zQGaERERCSdYIUpTkZoJjFAawA0Gg0AQGhUydl6IiKqUUZGBvz8/ODq6mrT7xHcLP+dJLhVWqUtjogBWgOQmZkJAKgMLqznlhARkb2LiYnBJ598gm7dutmkfk9PT7i6uqI8yDq/k1xdXeHp6WmVuhwJA7QGwM/PDwAwd+5cBAQE1HNrGpbs7GwsWrQICxYsEPuRaod9Zxn2n/nYd+ar7rtGjRrZ7Dt8fHywadMmFBQUWKU+T09P+Pj4WKUuR8IArQFo0qQJACAgIABBQUH13JqGyc/Pj31nJvadZdh/5mPfmU+pVNq0fh8fHwZVNsZjNoiIiIjsDAM0IiIiIjvDAK0BUKlUiI6Ohkqlqu+mNDjsO/Ox7yzD/jMf+8587DvHIRME3lRKREREZE84gkZERERkZxigEREREdkZBmhEREREdoYBGhEREZGd4UG1dejUqVOYMWOG0Wfx8fF46qmnxJ/Pnj2LVatW4eLFi3B3d0d4eDhiYmLg5uZmUDYjIwNfffUVzp49C61Wi1atWiEiIgIjR4602bvUNVv03dWrV7Fu3TqcPXsWhYWF8PHxQb9+/TBmzBib32FX12rbf7/++it+/PFHnD9/HtnZ2WjRogUSEhKMltPpdNiyZQt27NiB27dvw9fXF+PGjUO/fv1s9h71wdp9l52djd27d+P48ePIyclBo0aN8OSTT2L8+PEIDg626bvUNVv8ubvf/v37xVPz9+3bZ9W22wNb9V9OTg7WrVuH3377DaWlpWjevDn69OmDmJgYm7wHmYcBWj0YMWIEQkJC9NJat24t/nNmZiZmzpwJPz8/TJs2Dbdu3cLWrVtx7do1fPLJJ3rlfv31V8ybNw+BgYH485//jEaNGiEnJwd5eXl18i51zVp9l5ubi0mTJqFx48aIioqCh4cH0tLSsH79emRkZCA2NrbO3qkuPaz/fvjhB/z444948sknH7pNf+3atfj2228RERGB4OBgHDlyBAsXLoRMJkPfvn1t0v76ZK2+27lzJ3bt2oXQ0FAMHz4cJSUlSEpKwuTJk/HJJ5/g+eeft9k71Bdr/rmrVlpailWrVtn0SiN7Yc3+y8zMxIwZM+Dt7Y3Ro0ejadOmyM3Nxa1bt2zSdrKAQHXm5MmTQq9evYSDBw/WmG/27NnC8OHDheLiYjHtP//5j9CrVy/h2LFjYlpxcbEwbNgwYf78+UJVVZWtmm0XrN13GzduFHr16iVcunRJr/yiRYuEXr16CYWFhVZtf32rbf/l5eUJFRUVgiAIwpw5c4RRo0YZzXfr1i0hPDxc+PTTT8U0nU4nTJ06VfjTn/4kVFZWWq3t9c3afXfhwgWhpKREL62goECIiIgQpkyZYpU22wtr99394uPjhVdffVVYuHChMGDAAGs01+5Yu/+qqqqE119/XZg0aZJQXl5u7eaSlXENWj0pLS1FZWWlQXpJSQl+++03DBgwAO7u7mL6wIED0ahRIxw8eFBM++GHH3D79m3ExMRALpejrKwMOp2uTtpfn6zRdyUlJQAALy8vvTpUKhXkcjmcnR13cNlU/wGAt7d3rd79yJEjqKysRFRUlJgmk8kwfPhw5OXlIS0tzWrttSfW6LugoCCD6famTZuiQ4cOyM7Otko77ZE1+q7a1atX8d1332Hq1KlwcnKyVhPtmjX67/jx4/jjjz8QHR0NpVKJ8vJyVFVVWbupZCWO+1vIjsXGxqKsrAxOTk7o0KEDJk+eLK49uXTpEqqqqgwuCHZxcUFgYCAyMzPFtN9++w3u7u7Iz8/H3/72N1y9ehWNGjXCgAEDMG3aNJtfllsfrNV3nTp1wr///W8sWbIE48ePh4eHB86dO4fExESMGDHCYadNauo/KTIzM9GoUSP4+fnppVdPw2RmZqJDhw5WabO9sFbfmXL79m00bdrUavXZE2v33WeffYZOnTqhe/fuen/xclTW6r/ffvsNwL3/JsbExCAjIwMuLi7o1asXZs2aBQ8PD2s3nSzAAK0OOTs7IzQ0FC+88AKaNm2Ky5cvY+vWrZg2bRq++OILPPnkk1Cr1QBgdB2BSqXCmTNnxJ+vXbuGqqoqzJ8/H0OGDMHEiRNx+vRpbNu2DcXFxfjggw/q7N1szdp9161bN7z55pv45ptv8PPPP4vpr732mkMulK1N/0mhVqvh5eUFmUyml17d9/n5+VZre32zdt8Zc+bMGaSlpeH111+3Qovthy367ujRozh+/Di++uorG7TYvli7/65duwYA+Pvf/46uXbvi1Vdfxe+//45vvvkGt27dwueff27w7zTVHwZodeiZZ57BM888I/7cs2dPhIWF4Y033sCaNWuwdOlSaDQaAPf+hvMghUIBrVYr/lxWVoby8nIMGzZM3OkTGhqKiooKJCUlYfz48WjTpo2N36puWLvvAKBly5Z49tlnERoaCg8PDxw9ehTffPMNmjVrhhEjRtj2hepYbfpPCo1GY7Kfq587Cmv33YPu3LmDhQsXomXLlhg7dqylzbUr1u67iooKfPbZZxg2bBjatm1r5dbaH2v3X1lZGQAgODgY7733HgAgLCwMSqUSa9aswYkTJxxyk0pDxTVo9czX1xc9e/bEqVOnUFVVJU5LVlRUGOTVarXiL0AAYt4Hd8xVH3PgqOuAqlnSd8nJyfjkk08wZ84cREREIDQ0FO+++y4GDRqE1atX4+7du3X2HvXlwf6TQqlUmuzn6ueOzJK+u19ZWRnmzp2LsrIyfPTRR0aP0XE0lvRdQkIC7t69i/Hjx9uodfbP0n9vAcPfGf379wcAnDt3zjqNJKtggGYHWrRogYqKCpSXl4tTRNXTdfdTq9Xw9vYWf67O26xZM7181Qvfi4qKbNVku2Fu323fvh2BgYFo0aKFXr4ePXqgvLxcb72aI7u//6RQqVS4ffs2BEHQS6/u+/v72lGZ23fVKioqsGDBAly6dAkfffQR/P39rdxC+2VO3xUXF2Pjxo0YOnQoSkpKcOPGDdy4cQNlZWUQBAE3btzAnTt3bNhq+2Hun73qfy8f/J3h6ekJ4NH4ndGQMECzA9evX4dCoUCjRo3wxBNPwMnJCRkZGXp5KioqkJmZiYCAADGtejH8g2eeVa//qf6XzpGZ23d37twxuuO1epfUo7Kz6f7+kyIgIADl5eUGuw7T09PF547O3L4D7h3yu3jxYpw8eRLvvfceOnbsaP0G2jFz+q6oqAhlZWXYvHkzRo8eLX5SUlJQXl6O0aNHG5wT6ajM/bNXvWbtwd8Z1X+xehR+ZzQkDNDqUEFBgUFaVlYWfv75Z3Tp0gVyuRyNGzfG888/j/3796O0tFTMt2/fPpSVlSE8PFxMq/7nXbt26dW5a9cuODk5oVOnTrZ5kXpg7b5r06YNMjMzcfXqVb06k5OTIZfL0a5dO5u9S32oTf9J0bNnTzg7O2P79u1imiAISExMRPPmzfH0009b2mS7Ye2+A4Dly5fjxx9/xMyZMxEaGmqFVtona/adl5cXFi9ebPDp1KkTFAoFFi9ejHHjxlmx9fXPFv/eKhQK7NmzR+8vqDt37gQArj+zM9wkUIc++OADKJVKPP300/Dy8sLly5fxn//8B66urpg0aZKYb8KECZg6dSqmT5+OyMhI8TT8Ll26oFu3bmK+J598Ei+99BJ2796NqqoqdOzYEadPn8bBgwcxbtw4h5pmsnbfjRkzBseOHcO0adPwpz/9CR4eHvjll19w7NgxDB061KH6Dqh9//3+++84cuQIgHvXwRQXF+Prr78GcG9UrEePHgDuTbGMGjUKmzdvRmVlJUJCQvDTTz8hNTUV7733nkOdTWXtvktISMCOHTvw1FNPwdXVFfv379f7vl69ejnMMS/W7DtXV1f06tXL4Dt++uknXLhwweizhs7af/ZUKhVee+01rFu3DrNnz0avXr2QlZWFnTt3ol+/fga3FVD9kgkPLiIhm/n+++9x4MAB5OTkoKSkBJ6ennjuuecQHR0NX19fvbypqanifZJubm4IDw/HpEmTDBYRV1ZWYtOmTdizZw/y8/Ph4+ODqKgovPzyy3X5ajZni75LT0/HV199hczMTBQWFqJly5YYNGgQxo4d63AH1da2//bs2WPymqtBgwZh/vz54s86nQ7//ve/kZSUBLVaDV9fX7z66qsYMGCAzd+nLlm77z766CPs3bvX5Pdt3boVLVu2tO5L1BNb/Ll70EcffYSUlBSHvIvTFv0nCAL+7//+D//3f/+HGzduoFmzZhg0aBCio6Md7r97DR0DNCIiIiI7wzVoRERERHaGARoRERGRnWGARkRERGRnGKARERER2RkGaERERER2hgEaERERkZ1hgEZERERkZxigEREREdkZBmhEREREdoYBGhHZzMsvv1zra8f27NmD3r17i5+///3ves/feust9O7d2watNM9f/vIXvfaeOnWqvptERA6EF28RUa3cuHEDo0ePrjHPY489hoSEBIu+p2fPnggICIC/v79F9dTGwoUL8cMPP+D9999Hv379TOYrKSnB8OHD4eLigu3bt0OpVGLo0KHo2rUrTp8+jdOnT9u8rUT0aGGARkSStG7dGv379zf6rHHjxno/L1u2THL9vXr1wuDBg81qm1RDhgzBDz/8gN27d9cYoP3www/QaDQYNGgQlEolAGDo0KEAgPXr1zNAIyKrY4BGRJK0bt0a48ePr3Vee9a5c2e0bNkSJ0+eRG5uLnx8fIzm2717N4B7AR0RUV3gGjQishkpa9DMlZycjL59++KNN95Afn6+mH769Gm8++67iIiIQN++fTF27FisXbsW5eXlYh6ZTIaXXnoJOp1ODMIe9Mcff+D8+fNo164dgoODbfouRETVGKARUYO1bds2LFy4EO3bt8dnn30Gb29vAMCOHTswY8YMnD17Fi+88AJGjBiBFi1aYNOmTZg1axYqKirEOgYNGgS5XI49e/ZAEASD7+DoGRHVB05xEpEkOTk5WL9+vdFnTz31FLp161Yn7Vi7di02bdqEXr164f333xfXhl2+fBlxcXFo164dli1bhqZNm4plvvnmG6xZswbbtm3DmDFjAAA+Pj7o0qULjh07hpMnT+K5554T81dWVuLAgQNQKBQYMGBAnbwXERHAAI2IJMrJycGGDRuMPhs5cqTNA7SqqiosXboUu3btQkREBGbNmgUnJyfxeWJiIqqqqjBjxgy94AwAXnnlFSQkJCA5OVkM0IB7o2PHjh3Drl279AK0o0eP4vbt2wgPD4eHh4dN34uI6H4M0IhIkq5du2Lp0qX19v3vvfcejhw5gtdeew0xMTEGz9PT0wEAv/76K06cOGHw3NnZGVeuXNFL69mzJzw9PfHTTz+huLhY3I26a9cuAJzeJKK6xwCNiBqUM2fOQKFQ4IUXXjD6vLCwEACwadOmWtfp7OyMAQMGICEhAT/88AOGDx8OtVqNY8eOwcfHB88//7xV2k5EVFsM0IioQVm2bBlmzZqFd955B5988gmeeeYZvefu7u4AgL1798LNza3W9Q4dOhQJCQnYtWsXhg8fjv3796OqqgqDBw+GXM79VERUt/hfHSJqUJ588kksX74cLi4ueOedd3D27Fm95+3btwcApKWlSaq3bdu2eOqpp5CRkYHff/8du3fvFo/hICKqawzQiKjBCQgIEIO02bNnIzU1VXw2fPhwODk5IS4uDrm5uQZli4qKcPHiRaP1Vq81+/TTT5GdnY3nnnsOjz32mG1egoioBpziJCJJajpmAwBeffVV8cgLW2rXrh2WL1+OmTNn4p133sHHH3+MZ599Fv7+/pg1axY+/fRTvPrqq3jhhRfQunVrlJaW4vr16zhz5gwGDRqE2bNnG9TZp08ffPbZZ+KoHDcHEFF9YYBGRJLUdMwGAIwaNapOAjRAP0ibM2cOlixZgo4dOyIiIgIBAQFISEjAmTNn8Msvv8Dd3R0+Pj4YNWoUBg0aZLQ+Nzc3hIeHY/fu3fDw8ECvXr3q5D2IiB4kE4wdnU1EVMf27NmD2NhYzJs3r84uS7eG9evXY8OGDYiLi0OnTp3quzlE5CC4Bo2I7EpsbCx69+6Nv//97/XdlBr95S9/Qe/evWscTSQiMhenOInILgQEBCA6Olr82d/fv/4aUwtDhw5F165dxZ+5mYCIrIlTnERERER2hlOcRERERHaGARoRERGRnWGARkRERGRnGKARERER2RkGaERERER2hgEaERERkZ1hgEZERERkZxigEREREdkZBmhEREREdub/AUGWBZpWCt8xAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAHACAYAAAAWSJRXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqMklEQVR4nO3deVzU1f4/8NewDaAiOCipKMaSYGZqqbkCmmapKKmJZUUmmgpxNdM0s3tJM7vdDDP3La1Urt6E3M0F06xMERcEMRMVFVlE9hmY+fz+4Dufn+PMILPBML6ej8c8bpzPOWfO51yLt2eVCIIggIiIiIishl19N4CIiIiINDFAIyIiIrIyDNCIiIiIrAwDNCIiIiIrwwCNiIiIyMowQCMiIiKyMgzQiIiIiKwMAzQiIiIiK8MAjYiIiMjKMEAjIiIisjIO9d0Ac1IoFFi7di3279+P4uJi+Pn5YcKECejWrdtDy+bm5mLp0qU4efIkVCoVunTpgpiYGLRq1Uor786dO7Flyxbcvn0bzZs3x6hRozBy5EitfH/++Sc2bdqEK1euQKlUwtvbGyNHjsQLL7xglvclIiIi2ySxpbs4//Wvf+HIkSMYPXo0vL29sWfPHqSnpyM+Ph6dOnXSW66srAwTJkxAaWkpxowZAwcHByQkJEAQBKxbtw5NmzYV8yYmJuI///kPgoOD0b17d5w9exb79u3DpEmT8Nprr4n5jh07hg8//BBPPvkkBgwYAIlEgsOHDyM1NRXR0dF45ZVXLNoXRERE1HDZTICWlpaGd955B5MnT8bYsWMBAHK5HJGRkXB3d8fy5cv1lv3hhx+wYsUKrFy5EkFBQQCArKwsREZGYuzYsZg4caJY36hRo9ChQwcsWrRILP/JJ5/g2LFj2LZtG5o0aQIAmD59Oq5evYotW7bAyckJAFBVVYXXX38dzs7OWL9+vUX6gYiIiBo+m1mDlpycDHt7e4SFhYlpUqkUQ4YMwYULF5CTk6O37JEjRxAYGCgGZwDg4+ODrl274vDhw2La6dOnce/ePYwYMUKjfHh4OMrLy3HixAkxraysDE2aNBGDMwBwcHBA06ZNIZVKTXlVIiIisnE2swYtMzMT3t7eaNSokUa6Oui6fPkyvLy8tMqpVCpcuXIFL730ktazoKAgnDx5EmVlZXB1dUVmZiYAIDAwUCNf+/btYWdnh0uXLmHQoEEAgM6dO+OHH37AmjVrMHjwYEgkEvz888/IyMjAP//5zxrfJS8vD/n5+eLPcrkc5eXlePrpp+Hs7PzwziAiIrKgnJwcFBYWmqUud3d3nb+fH3U2E6Dl5+dDJpNppavT8vLydJYrKiqCQqF4aNm2bdsiPz8f9vb28PDw0Mjn6OgINzc3jaDqzTffxK1bt7Bp0yZs3LgRAODs7Iy4uDj07du3xndJSkrChg0btNIdU5rBrtSxxrJERPRoO6D6r0Xrz8nJwevjRqJCbp5JOGdnZ2zatIlB2gNsJkCTy+VwdNQOXtRTjHK5XG85ALUqK5fL4eCgu8ucnJw0vsPR0RFt2rRBSEgI+vXrB6VSiZ9++gnz58/Hl19+iSeffFLvu4SFhaF3797iz1lZWZg/f77e/ERERHWlsLAQFXI7fBhTCJ/WVSbVlZXtgAVfu6OwsJAB2gNsJkCTSqWorKzUSlcoFOJzfeUA1KqsVCpFVZXuP4wKhULjO7766iukpaVhzZo1sLOr/ltG//798cYbb2DJkiVYuXKl3nfx9PSEp6en3udERET1rU3rSvj7av/uNIQKNrFP0SJsZpOATCbTmGJUU6fpC3jc3Nzg5ORUq7IymQxKpRJ3797VyFdZWYmioiJxSrSyshK7du1Cz549xeAMqN4k0KNHD2RkZOgMCImIiBoKlaCC0sSPSlDV92tYLZsJ0Pz9/XHjxg2UlpZqpKelpYnPdbGzs4Ovry/S09O1nqWlpaFVq1ZwdXUFAAQEBACAVt709HSoVCrx+b1796BUKqFUKrXqVCqVUKlUUKn4h5KIiBouFQSzfEg3mwnQQkJCoFQqkZSUJKYpFArs3r0bHTp0EOe2c3JykJWVpVE2ODgY6enpGoHXtWvXkJKSgpCQEDGta9eucHNzQ2Jiokb5xMREODs7o2fPngAADw8PNG7cGL/88ovGSFlZWRmOHz+Otm3b8qgNIiIi0stm1qB16NABoaGhWLVqFQoLC9G6dWvs3bsXt2/fxqxZs8R8CxYswJkzZ3D06FExLTw8HDt37sSsWbMQEREBe3t7JCQkwMPDAxEREWI+qVSKt99+G4sXL8a8efPQvXt3pKamYv/+/YiKioKbmxsAwN7eHhEREVizZg3eeecdvPDCC1CpVNi1axdyc3Mxd+7cuusYIiIiCxAgQAXTZoMEjqDpZTMBGgDMmTMHXl5e2LdvH0pKSuDr64tFixahc+fONZZzdXVFfHw8li5dio0bN4p3cUZHR8Pd3V0jb3h4OBwcHLB161YcP34cLVq0QHR0NEaPHq2R74033kDLli2xbds2bNiwAZWVlfDz80NcXJzGqBwREVFDpIQApYmXESkZoOllM1c92bKMjAxERUXxHDQiInooS5+Dpv6d9NXCm/B/XGFSXZf/dsI/ZrfC6tWr0b59ezO10DbY1AgaERER1Q3BDIv8OcWpHwM0IiIiMpgSgslTlJzi1M9mdnESERER2QqOoBEREZHBOMVpWQzQiIiIyGBKAabv4mR8phenOImIiIisDEfQiIiIyGACYOIxteAEZw0YoBEREZHBuIvTshigERERkcFUgulryFSMz/TiGjQiIiIiK8MRNCIiIjKYCqavQTO1vC1jgEZEREQGU0ECJSQm10G6cYqTiIiIyMpwBI2IiIgMphJMX+TPTQL6MUAjIiIig6kAM0xxkj6c4iQiIiKyMhxBIyIiIoMpzbBJwNTytowBGhERERlMECRQCaYFWIKJ5W0ZpziJiIiIrAxH0IiIiMhgnOK0LAZoREREZLDqg2pNm4gz9KBahUKBtWvXYv/+/SguLoafnx8mTJiAbt261ar8wYMHsW3bNvz1119wcHCAj48PJkyYgGeeecaY5lsUAzQiIiIymAqmr0EzNEBbuHAhjhw5gtGjR8Pb2xt79uzBzJkzER8fj06dOtVYdt26dfj2228REhKCwYMHo6qqCn///Tfy8vJMeQWLYYBGREREVi8tLQ0HDx7E5MmTMXbsWADACy+8gMjISCxfvhzLly/XW/bChQv49ttvMXXqVLzyyit11WSTcJMAERERGUx9F6cpH0NG0JKTk2Fvb4+wsDAxTSqVYsiQIbhw4QJycnL0lv3vf/+LZs2aYdSoURAEAWVlZSa9e13gCBoREREZTCnYQSmYNs6jLp+VlaWRLpPJ4OnpqZGWmZkJb29vNGrUSCM9KCgIAHD58mV4eXnp/J5Tp06hY8eO2LZtGzZt2oR79+6hWbNmeP311zFy5EiT3sFSGKARERFRvZo/f77Gz5GRkRg/frxGWn5+PmQymVZZdZq+tWTFxcW4d+8ezp8/j9OnTyMyMhJeXl7Ys2cP4uPj4eDggOHDh5vpTcyHARoREREZTIAEKhNXSgn/N8U5d+5c+Pj4iOm6AjG5XA5HR0etdCcnJ/G5LurpzHv37uHjjz/GgAEDAAAhISGIjIzExo0bGaARERGRbTDnOWg+Pj5o3759jXmlUikqKyu10hUKhfhcXzkAcHBwQEhIiJhuZ2eH/v37Y926dcjJydE7PVpfuEmAiIiIrJ5MJkN+fr5WujrtwTVram5ubnBycoKbmxvs7e01nnl4eAConga1NgzQiIiIyGCq/9skYMpHZcAmA39/f9y4cQOlpaUa6WlpaeJzXezs7BAQEIB79+5pjcCp1625u7sb8OZ1gwEaERERGUyF/zus1qRP7YWEhECpVCIpKUlMUygU2L17Nzp06CBOUebk5GjtCg0NDYVSqcTevXvFNLlcjgMHDqBdu3Z6R9/qE9egERERkdXr0KEDQkNDsWrVKhQWFqJ169bYu3cvbt++jVmzZon5FixYgDNnzuDo0aNi2vDhw7Fr1y4sXrwY169fh5eXF/bt24ecnBwsXLiwPl7noWwqQDPljq7c3FwsXboUJ0+ehEqlQpcuXRATE4NWrVpp5d25cye2bNmC27dvo3nz5hg1apTec1Qa0r1fREREtaWCHZQQTK7DEHPmzBGDq5KSEvj6+mLRokXo3LlzjeWkUim++uorLF++HLt370ZFRQX8/f2xaNEidO/e3YQ3sBybCtCMvaOrrKwMsbGxKC0txbhx4+Dg4ICEhATExMRg3bp1aNq0qZg3MTER//nPfxAcHIwxY8bg7NmziI+PR0VFBV577TWNehvavV9ERES1Vb0GzcQAzcCDbqVSKaZMmYIpU6bozbNkyRKd6R4eHpgzZ45B31efbCZAM+WOrh07duDGjRtYuXKleCJxjx49EBkZia1bt2LixIkAquer16xZg549e+KTTz4BAAwbNgwqlQobN25EWFgYmjRpAqBh3vtFRERUWyoznINm6GXpjxKb2SRgyh1dR44cQWBgoBicAdVnsnTt2hWHDx8W006fPo179+5hxIgRGuXDw8NRXl6OEydOiGkN8d4vIiIisg42E6DV5o4uXVQqFa5cuYLAwECtZ0FBQcjOzhaDq8zMTADQytu+fXvY2dnh0qVLYtqpU6cQGBiIbdu2ISwsDIMHD8aIESOwffv2h75LXl4eMjIyxM+Du1GIiIjqm0qQQGniRyVwBE0fm5niNPaOrqKiIigUioeWbdu2LfLz82Fvby8ebKfm6OgINzc38bA8U+/9SkpKwoYNG2r13kRERPVBCTsozVAH6WYzAZqxd3Sp02tTVi6Xw8FBd5c5OTmJ+Uy99yssLAy9e/cWf87KytK6SJaIiIhsl80EaKbe0VWbslKpFFVVVTrrUSgUGvkA4+/98vT0tMpD84iIiNQESAzehamrDtLNZsYWTb2jqzZlZTIZlEol7t69q5GvsrISRUVF4pRoQ733i4iIqLaqpzhN/5BuNtMzptzR5evri/T0dK1naWlpaNWqFVxdXQEAAQEBAKCVNz09HSqVSnzeUO/9IiIiIutgMwGaKXd0BQcHIz09XSPwunbtGlJSUjSmKLt27Qo3NzckJiZqlE9MTISzszN69uwppjXEe7+IiIhqi7s4Lctm1qCZckdXeHg4du7ciVmzZiEiIgL29vZISEiAh4cHIiIixHxSqRRvv/02Fi9ejHnz5qF79+5ITU3F/v37ERUVBTc3NzFvQ7z3i4iIqLbUF56bVgfpYzMBGmD8HV2urq6Ij4/H0qVLsXHjRvEuzujoaK2pyPDwcDg4OGDr1q04fvw4WrRogejoaIwePVojX0O894uIiIisg0QQTLxIiywuIyMDUVFRcExpBrtS7eNAiIiI1A6o/mvR+tW/k4Z9pILMx7S68rOAnz6xw+rVq9G+fXvzNNBG2NQIGhEREdWN6ilOU+sgfRigERERkcHUmwRMq4OTePrYzC5OIiIiIlvBETQiIiIyWPVBs6aNoCkhgBOdujFAIyIiIoMJZjjHjDOc+nGKk4iIiMjKcASNiIiIDKaExOS7NJWc3tSLARoREREZTIAdVIJpARpnOPXjFCcRERGRleEIGhERERmseorT1F2cvCxdHwZoREREZLDqXZwmTnFyG6denOIkIiIisjIcQSMiIiKDcYrTshigERERkcEEwQy7ODnFqRcDNCIiIjKYUpBAaWKAphR4Dpo+XINGREREZGU4gkZEREQGEyCBysQ1ZALXoOnFAI2IiIgMphTszDDFyYk8fdgzRERERFaGI2gNSEX/joCje303g4iIqHqKU+AUp6UwQCMiIiKDVZ+DZuIUJwM0vTjFSURERGRlOIJGREREBqu+i9PEKU4Ty9syBmhERERkMBXsoDJxIs7U8raMPUNERERkZTiCRkRERAZTCdXXPZlaB+nGAI2IiIgMpjLDGjRTy9syBmhERERkMJVgB5WJNwGYWt6WsWeIiIiIrAxH0IiIiMhgKkhMPmjW1MvWbRkDNCIiIjKYSjB9DZmhmwQUCgXWrl2L/fv3o7i4GH5+fpgwYQK6detWY7l169Zhw4YNWulOTk74+eefDWtEHWGARkRERA3CwoULceTIEYwePRre3t7Ys2cPZs6cifj4eHTq1Omh5d977z24uLiIP9vZWe9KL5sK0IyNrAEgNzcXS5cuxcmTJ6FSqdClSxfExMSgVatWWnl37tyJLVu24Pbt22jevDlGjRqFkSNH1lj/9OnT8eeffyI8PBzTpk0z+h2JiIisgQDTNwkIBiyFT0tLw8GDBzF58mSMHTsWAPDCCy8gMjISy5cvx/Llyx9aR3BwMNzd3Y1tbp2y3tDRCAsXLkRCQgIGDhyId999F3Z2dpg5cybOnj1bY7mysjLExsbizJkzGDduHMaPH4/MzEzExMTg3r17GnkTExPx+eef4/HHH0dsbCw6duyI+Ph4fP/993rrT05OxoULF8zyjkRERNZABYlZPrWVnJwMe3t7hIWFiWlSqRRDhgzBhQsXkJOTU6t6SktLIQjWfwCbzYygmRJZ79ixAzdu3MDKlSsRFBQEAOjRowciIyOxdetWTJw4EQAgl8uxZs0a9OzZE5988gkAYNiwYVCpVNi4cSPCwsLQpEkTjbrlcjm++eYbvPrqq1i7dq0lXp2IiKhBy8rK0vhZJpPB09NTIy0zMxPe3t5o1KiRRrr69/bly5fh5eVV4/eMGTMG5eXlcHFxQZ8+fTB16lQ0a9bMDG9gfjYzgmZKZH3kyBEEBgaK/ycDgI+PD7p27YrDhw+LaadPn8a9e/cwYsQIjfLh4eEoLy/HiRMntOrevHkzBEFARESECW9HRERkXVSCBEoTP+pNBvPnz0dUVJT4SUpK0vq+/Px8yGQyrXR1Wl5ent62NmnSBC+//DJmzJiBuLg4DBkyBIcOHUJ0dDRKS0vN1CPmZTMjaMZG1iqVCleuXMFLL72k9SwoKAgnT55EWVkZXF1dkZmZCQAIDAzUyNe+fXvY2dnh0qVLGDRokJiek5OD77//Hh988AGkUqnJ70hERGQtqm8SMPWg2uoAbe7cufDx8RHTdQVicrkcjo6OWulOTk7ic31Gjx6t8XNISAiCgoLwySef4Mcff8S4ceOMar8l2cwImrGRdVFRERQKRa3K5ufnw97eHh4eHhr5HB0d4ebmhvz8fI30b775BgEBARgwYIBB75KXl4eMjAzx8+DQLxERkS3x8fFB+/btxc+D05tA9axYZWWlVrpCoRCfG2LgwIFo1qwZTp06ZVyjLcxmRtCMjazV6bUpK5fL4eCgu8ucnJw0vuP06dNITk7GihUrDHiLaklJSTrPayEiIrIWdX0Xp0wmQ25urla6enBEV1D3MC1atEBRUZHB5eqCzQRoxkbW6vTalJVKpaiqqtJZj0KhEPNVVVUhPj4egwYN0ljXVlthYWHo3bu3+HNWVhbmz59vcD1ERESWIhi4C1NfHbXl7++PlJQUlJaWaixnSktLE58b9N2CgNu3byMgIMCgcnXFZqY4ZTKZ1hQj8PDI2s3NDU5OTrUqK5PJoFQqcffuXY18lZWVKCoqEqdE9+3bh+vXryMsLAy3bt0SP0D1kR63bt1CRUWF3nfx9PTUGOq9f16eiIjIGqhH0Ez91FZISAiUSqXGBgKFQoHdu3ejQ4cO4jrznJwcraVBhYWFWvXt2LEDhYWF6NGjh3EdYGE2M4JmbGRtZ2cHX19fpKenaz1LS0tDq1at4OrqCgBilJ2eno6ePXuK+dLT06FSqcTnOTk5qKqqwtSpU7Xq3LdvH/bt24cFCxagb9++Rr4tERHRo6VDhw4IDQ3FqlWrUFhYiNatW2Pv3r24ffs2Zs2aJeZbsGABzpw5g6NHj4ppo0ePRv/+/eHr6wsnJyecO3cOBw8eREBAgMbpD9bEZgK0kJAQbNmyBUlJSeI5aPoi64qKCo1RqeDgYKxcuRLp6eniDs1r164hJSUFY8aMEfN17doVbm5uSExM1AjQEhMT4ezsLKYNGDBA55Dphx9+iOeeew7Dhg0zauqTiIjIWggwfRenIVOcADBnzhx4eXlh3759KCkpga+vLxYtWoTOnTvXWG7gwIE4f/48kpOToVAo4OXlhbFjx+KNN96As7OzCW9gOTYToJkSWYeHh2Pnzp2YNWsWIiIiYG9vj4SEBHh4eGicXyaVSvH2229j8eLFmDdvHrp3747U1FTs378fUVFRcHNzA1C9G0XftGTLli05ckZERA1eXW8SAKp/D0+ZMgVTpkzRm2fJkiVaaTNnzjS4bfXNZgI0wPjI2tXVFfHx8Vi6dCk2btwo3sUZHR2tdWdXeHg4HBwcsHXrVhw/fhwtWrRAdHS01hkrRERERMaSCA3hQqpHXEZGBqKioqD06Ac4utd3c4iIyIod3zbDovWrfye5x/jBsbWLSXVVZpej8Ou/sHr1arRv395MLbQNNjWCRkRERHVDMMMUp2BieVtmM8dsEBEREdkKjqARERGRwVSC4Yv8ddVBujFAIyIiIoNxitOyOMVJREREZGU4gkZEREQGU0ECialTnCbe5WnLGKARERGRwVSQQGJigMUATT8GaERERGQwrkGzLK5BIyIiIrIyHEEjIiIig6kECVDHd3E+ShigERERkcEEM5yDxssm9eMUJxEREZGV4QgaERERGUwlmH7MBjcJ6McAjYiIiAwmwPQ1aAKP2dCLU5xEREREVoYjaERERGQwARIzjIBxBE0fBmhERERkMHMcswFBwqk8PdgvRERERFaGI2hERERkMEGAGUbQzNIUm8QAjYiIiAxmrilOe/M0x+YwQCMiIiLDCRKTzzEz9Rw1W8Y1aERERERWhiNoREREZDAVzDCCxmM29GKARkRERAYTBDNcds5NAnpxipOIiIjIynAEjYiIiAwmQAKViVOUdpzi1IsBGhERERmseorTxMvSOcWpF6c4iYiIiKwMR9CIiIjIYCpBUn1YrSl4DppeDNCIiIjIYObYxckpTv04xUlERERkZTiCRkREREYw/aBacBenXgzQiIiIyGCCGe7iND3As102FaApFAqsXbsW+/fvR3FxMfz8/DBhwgR069btoWVzc3OxdOlSnDx5EiqVCl26dEFMTAxatWqllXfnzp3YsmULbt++jebNm2PUqFEYOXKkRp7k5GQcOnQI6enpKCgoQIsWLdCzZ0+8+eabaNKkidnemYiIqD6YY5MAL0vXz6bWoC1cuBAJCQkYOHAg3n33XdjZ2WHmzJk4e/ZsjeXKysoQGxuLM2fOYNy4cRg/fjwyMzMRExODe/fuaeRNTEzE559/jscffxyxsbHo2LEj4uPj8f3332vk++KLL5CVlYVBgwYhNjYW3bt3x48//ojJkydDLpeb/d2JiIjIdtjMCFpaWhoOHjyIyZMnY+zYsQCAF154AZGRkVi+fDmWL1+ut+yOHTtw48YNrFy5EkFBQQCAHj16IDIyElu3bsXEiRMBAHK5HGvWrEHPnj3xySefAACGDRsGlUqFjRs3IiwsTBwdi4uLQ5cuXTS+p3379vj0009x4MABDB061Ox9QEREVFe4i9OybGYELTk5Gfb29ggLCxPTpFIphgwZggsXLiAnJ0dv2SNHjiAwMFAMzgDAx8cHXbt2xeHDh8W006dP4969exgxYoRG+fDwcJSXl+PEiRNi2oPBGQD069cPAHD16lVDX4+IiMi6CP9/HZqxH16Wrp/NBGiZmZnw9vZGo0aNNNLVQdfly5d1llOpVLhy5QoCAwO1ngUFBSE7OxtlZWXidwDQytu+fXvY2dnh0qVLNbYxPz8fAODu7l5jvry8PGRkZIifrKysGvMTERGRbbGZKc78/HzIZDKtdHVaXl6eznJFRUVQKBQPLdu2bVvk5+fD3t4eHh4eGvkcHR3h5uYmBmD6/PDDD7C3t0dwcHCN+ZKSkrBhw4Ya8xAREdUnwQzHbAg8ZkMvmwnQ5HI5HB0dtdKdnJzE5/rKAahVWblcDgcH3V3m5ORU4+L/AwcOYNeuXRg7dizatGlTw5sAYWFh6N27t/hzVlYW5s+fX2MZIiKiuiTA9BlKznDqZzMBmlQqRWVlpVa6QqEQn+srB6BWZaVSKaqqqnTWo1Ao9H5HamoqFi1ahO7duyMqKuohbwJ4enrC09PzofmIiIgeJaYcp3W/6dOn488//0R4eDimTZtmodaaxmbWoMlkMp1TjOo0fQGPm5sbnJycalVWJpNBqVTi7t27GvkqKytRVFSkc5r08uXLmD17Nnx9fREXF6d3BI6IiKghMXWDgDEH3Rp7nNb9kpOTceHCBUNft87ZTIDm7++PGzduoLS0VCM9LS1NfK6LnZ0dfH19kZ6ervUsLS0NrVq1gqurKwAgICAAALTypqenQ6VSic/VsrOzMWPGDHh4eODzzz8X6yEiImrwBDN9akl9nNbEiRMxZcoUhIWF4auvvsJjjz1W41Fa95PL5fjmm2/w6quv1v6L64nNBGghISFQKpVISkoS0xQKBXbv3o0OHTrAy8sLAJCTk6O1KzI4OBjp6ekagde1a9eQkpKCkJAQMa1r165wc3NDYmKiRvnExEQ4OzujZ8+eYlp+fj7ee+892NnZ4Ysvvnjozk0iIqKGpK5H0Ew5Tktt8+bNEAQBERERRr1zXbKZ+bYOHTogNDQUq1atQmFhIVq3bo29e/fi9u3bmDVrlphvwYIFOHPmDI4ePSqmhYeHY+fOnZg1axYiIiJgb2+PhIQEeHh4aPyfKJVK8fbbb2Px4sWYN28eunfvjtTUVOzfvx9RUVFwc3MT877//vu4efMmxo4di3PnzuHcuXPiMw8PD4Pny4mIiGzVgwMnMplMa2lSbY7TUg/G6JKTk4Pvv/8eH3zwgd4149bEZgI0AJgzZw68vLywb98+lJSUwNfXF4sWLULnzp1rLOfq6or4+HgsXboUGzduFO/ijI6O1hr5Cg8Ph4ODA7Zu3Yrjx4+jRYsWiI6OxujRozXyqc9d27x5s9b3de7cmQEaERE1bGa4SUA9xfngSQWRkZEYP368Rpqxx2mpffPNNwgICMCAAQNMaHDdsakATSqVYsqUKZgyZYrePEuWLNGZ3qJFC8TFxdXqe4YNG4Zhw4bVmOf+EToiIiJbY85z0ObOnQsfHx8xXVcgZuxxWkD1TUDJyclYsWKFSe2tSzYVoNm6tbP+hyd8dR/zQUREVG1GfTfAYD4+Pmjfvn2NeYw9Tquqqgrx8fEYNGiQxpWO1o4BGhERERlOAGDiCJohuzhlMhlyc3O10h92nNa+fftw/fp1zJgxA7du3dJ4VlZWhlu3bsHDwwPOzs61b0wdYIBGREREBhPMsAbNkPL+/v5ISUlBaWmpxkaBhx2nlZOTg6qqKkydOlXr2b59+7Bv3z4sWLAAffv2NazxFsYAjYiIiKxeSEgItmzZgqSkJIwdOxaA/uO0KioqxDVtAwYM0DqnFAA+/PBDPPfccxg2bJhVTn0yQCMiIiLD1fFlnMYep+Xj46OxAeF+LVu2tLqRMzUGaERERGQwY65q0lWHIYw9TqshYoBGREREDYIpx2k9yNqPw2KARkRERMYxdYqT9GKARkRERAarjynORwkDNCIiIjJcHW8SeNTY1XcDiIiIiEgTR9CIiIjICJL/+5haB+nCAI2IiIgMxylOi2KARkRERPQQe/fuNbmOgIAA+Pn51SovAzQiIiIy3CM2grZw4UJIJMZNyQqCAIlEgsjISAZoREREZEGCpPpjah0NSO/evdGnTx+jyn722WcG5WeARkRERFQLAQEBePHFF40qywCNiIiI6oTQgKYoTdW/f388/vjjdVaeARoREREZ7hFbg/bxxx/XaXkeVEtERERkZTiCRkRERIYTYIZNAmZpiU3iCBoREREZTgAkJn4aaoCWn5+P5ORkHDt2DMXFxXrznTlzBhs2bDDqOziCRkRERIZ7xNagqW3ZsgVr1qxBVVUVAMDJyQmvv/46xo0bp3VOWkpKCr799ltERkYa/D0cQSMiIiKqhT/++APLly+Hk5MThg4dihEjRsDV1RVr167FBx98AIVCYbbvMmkETaVSwc5OM8Y7f/48Tpw4AScnJ7z44oto0aKFSQ0kIiIia2SGg2ob2GXp//3vf+Hs7IyVK1eiTZs2AICJEyfiiy++wMGDB/HBBx9g4cKFkEqlJn+X0SNoX3/9NQYNGqQx93rkyBHExMTgu+++w7p16zBhwgTcuXPH5EYSERGRlRHM9GlA0tPT0a9fPzE4AwBXV1fMmzcPr776Kk6dOoUPPvgAcrnc5O8yOkBLSUlBly5d0KRJEzFt7dq1aNSoET788EO88847KC4uxpYtW0xuJBEREVF9Ky8v1zszOGnSJLz++us4ffo0Zs2aZXKQZvQU5507d/D000+LP9+8eRPXrl1DZGQkBg0aBAA4e/Ys/vjjD5MaSERERFboEdwk4OnpidzcXL3PJ0yYAADYtGkTZs6cifbt2xv9XUYHaBUVFXBxcRF/Tk1NhUQiQY8ePcS0du3a4fTp00Y3joiIiKzUIxigPf744zh16lSNee4P0s6fP2/0dxk9xSmTyXDt2jXx599//x0uLi4a0WJpaSkcHR2NbhwRERGRtejZsyfy8vJw4sSJGvNNmDABb7zxhngUhzGMHkHr3LkzDh48iO3bt0MqleLo0aPo27cv7O3txTw3b95E8+bNjW4cERERWSnBDLs4Td4FWrdCQkIgCAKcnZ0fmvftt99Gq1atcPv2baO+y+gA7fXXX8cvv/yCr7/+WmzsW2+9JT4vKytDamoqXnzxRWO/goiIiKyUBP93G4CJdTQkbm5uGD58eK3zmxIDGR2geXt7Y+PGjUhOTgYA9O7dG4899pj4/Pr16wgLC8Pzzz9vdOMMpVAosHbtWuzfvx/FxcXw8/PDhAkT0K1bt4eWzc3NxdKlS3Hy5EmoVCp06dIFMTExaNWqlVbenTt3YsuWLbh9+zaaN2+OUaNGYeTIkSbVSUQGUArA7+VAjhLwsgd6uAD2De0/9fWEfUfUIJh0UK2np6fOwAQA2rdvb9LuBWMsXLgQR44cwejRo+Ht7Y09e/Zg5syZiI+PR6dOnfSWKysrQ2xsLEpLSzFu3Dg4ODggISEBMTExWLduHZo2bSrmTUxMxH/+8x8EBwdjzJgxOHv2LOLj41FRUYHXXnvNqDqJyAC7SiD5KBeSW/9/bYfQ0gHCJ82BIY3rsWENAPuOzOkR3CSgS2ZmJi5fvoz8/Hyda84kEgnefPNNg+s1y12c9+7dw+XLl1FaWopGjRrB39+/zgOQtLQ0HDx4EJMnT8bYsWMBAC+88AIiIyOxfPlyLF++XG/ZHTt24MaNG1i5ciWCgoIAAD169EBkZCS2bt2KiRMnAgDkcjnWrFmDnj174pNPPgEADBs2DCqVChs3bkRYWJh4Llxt6yQiA+wqgSTqlvZ/1G9XQRJ1C8Lqlgw09GHfEZnV3bt3ERcXh5SUFACAIOiONuslQLt16xaWLFmC3377TaNhEokEPXv2RExMDFq2bGnKV9RacnIy7O3tERYWJqZJpVIMGTIEq1atQk5ODry8vHSWPXLkCAIDA8VACgB8fHzQtWtXHD58WAymTp8+jXv37mHEiBEa5cPDw3HgwAGcOHFCPAOutnUSUS0pBUg+ygUE7XUrEqF6rbFkXi6EwY04Zfcg9h1ZgEQwwxq0BjyCtnjxYpw+fRrPPfccBgwYAJlMprFR0lRGB2jZ2dmYOnUq7t69C29vbzz11FPw8PDA3bt3cf78eRw/fhxpaWlYtmxZnay5yszMhLe3Nxo1aqSRrg6QLl++rDNAU6lUuHLlCl566SWtZ0FBQTh58iTKysrg6uqKzMxMAEBgYKBGvvbt28POzg6XLl3CoEGDDKpTl7y8POTn54s/Z2VlPeTtiR4Bv5drTM09SCIAuFkF1W/lkPTW/e/WI6uWfSf8Xg70Yt8R1cYff/yBLl26YNGiRRap3+gAbcWKFSgsLMR7772HYcOGQSL5/3/rEgQBSUlJWLx4MVasWIG4uDizNLYm+fn5kMlkWunqtLy8PJ3lioqKoFAoHlq2bdu2yM/Ph729PTw8PDTyOTo6ws3NTQyqDKlTl6SkJGzYsEHPmxI9onKUtcp2N8ULzXoXPzzjo6SWfVfrfETAI3nMxv0cHBwsutbe6ADt1KlT6N27t8aUoppEIsHw4cPx22+/4c8//zSpgbUll8t1Horr5OQkPtdXDkCtysrlcjg46O4yJycnjXy1rVOXsLAw9O7dW/w5KysL8+fP15uf6JHgVbupg+zCJ9EMv1m4MQ1MLfuu1vmIgEd+k0CnTp3EmTVLMDpAU6lUaNeuXY15fH19xcVzliaVSlFZWamVrlAoxOf6ygGoVVmpVKr3VGCFQqGRr7Z16uLp6QlPT0+9z4keST1cILR0qF7UruM/6gKAUldPpJYMg/JA9WYdJ5dyBPU6DoldA/4tYA4P6zsJgJYO1UduEFGtTJw4EVOnTsX27dv1nmhhCqMDtCeeeAJXr16tMc/ff/9dZ0dtyGQynReYqqcd9QU8bm5ucHJy0ljzpa+sTCaDUqnE3bt3NaY5KysrUVRUJE5fGlInEdWSvQTCJ82rdxxKNBcXq//xt66TUFnlgtN7hgCQQOpaioBnT8LRWf+I9SOhpr77vxkmIa45NwiQ4R7hv/u0a9cOS5cuRXR0NLZv3w4/Pz+tdfBqH3zwgcH1Gx2gRUVFYdq0adi5cyeGDh2q9TwpKQl//PEHFi9ebOxXGMTf3x8pKSniUR9qaWlp4nNd7Ozs4Ovri/T0dK1naWlpaNWqlbiYPyAgAACQnp6Onj17ivnS09OhUqnE54bUSUQGGNIYwuqW1TsS71v0Xurqid+6TsLVNr0BFQAIaNHuCkJe/5bBmZqevkNLh+rgjEdskIEe9V2cN2/exJw5c1BSUoKSkhJkZ2frzCeRSOo2QDt16hS6dOmCL774Alu2bMFTTz2FZs2aoaCgAOfOncONGzfQrVs3nDp1SuPmd2PPA3mYkJAQbNmyBUlJSeI5aAqFArt370aHDh3EHZw5OTmoqKiAj4+PWDY4OBgrV65Eenq6uEPz2rVrSElJwZgxY8R8Xbt2hZubGxITEzUCtMTERDg7O2uk1bZOIjLQkMYQBjeq3nGYo4TK0xHbf1qMyqr//5ceBycFXpr6NezsVfXYUCv0QN/xJgEi48XHx+PmzZsYPnw4nn/+ees5ZmP9+vXiP1+/fh3Xr1/XyvPHH3/gjz/+0EizVIDWoUMHhIaGYtWqVSgsLETr1q2xd+9e3L59G7NmzRLzLViwAGfOnMHRo0fFtPDwcOzcuROzZs1CREQE7O3tkZCQAA8PD0RERIj5pFIp3n77bSxevBjz5s1D9+7dkZqaiv379yMqKgpubm4G10lERrCXiMdB3LniqxGcAUCVQorcaz7wevzv+middbuv74hM8ohvEkhNTUWvXr0wffp0i9RvdIAWHx9vznaYxZw5c+Dl5YV9+/ahpKQEvr6+WLRoETp37lxjOVdXV8THx2Pp0qXYuHGjeG9mdHQ03N3dNfKGh4fDwcEBW7duxfHjx9GiRQtER0dj9OjRRtdJRMa7fuFJAIBPx1R0C0vEH0kjcO18J1w735EBGpElPeIBmqOjI9q0aWOx+iWCvrsJyGpkZGQgKioKqz7LwxO++g+bJHoU5fz9OEoKmsG36ylIJIAgAFdOP4PGzQoYoNEjye6xSxatX/076U6/EFSaOODgWFiIFkePYPXq1XV+f7ep4uLicPv2bSxbtswi9duZUriqqgoJCQmYOHEiBg8ejNDQUPFZZmYmvvzyS51Tn0RE5uL1+N/we6Y6OAMAiQTwe+YUgzMiC1NvEjD101BNmTIF+fn5WLZsWY1nmxrL6ClOuVyO9957D+fPn0fTpk3RqFEjVFRUiM9btmyJ3bt3o0mTJoiKijJLY4mIiMhamOEmAa3bYRuOTz75BI0bN0ZCQgJ++ukneHt76zyhQSKR4KuvvjK4fqMDtE2bNuHcuXOYNGkSxo4di/Xr12Pjxo3i88aNG6Nz5844efIkAzQiIiJb84ivQTtz5oz4z2VlZbh0SffU8v1XYRrC6ADt0KFD6NKlC1599VW9DWjVqpVFr0EgIiKiR4dCocDatWuxf/9+FBcXw8/PDxMmTEC3bt1qLHf06FEkJibiypUrKCoqgru7Ozp06IC33noLvr6+RrUlOTnZqHK1ZfQatDt37jx0QZ+LiwtKS0uN/QoiIiKyVuZYf2bgCNrChQuRkJCAgQMH4t1334WdnR1mzpyJs2fP1ljuypUraNKkCUaNGoVp06Zh+PDhyMzMxKRJk3D58mXj+8CCjB5Bc3FxQWFhYY15bt68iaZNmxr7FURERGSt6niKMy0tDQcPHsTkyZPFA+lfeOEFREZGYvny5Vi+fLnespGRkVppQ4cOxciRI7Fjxw7MmDHD0JZDqVSioqICLi4usLPTHu9SP3d2djbqAFujR9CefPJJ/PrrryguLtb5PCcnB7/99huefvppY7+CiIiICED1lKK9vT3CwsLENKlUiiFDhuDChQvIyckxqD4PDw84OzujpKTEqPZs2LABw4cPR1FRkc7nxcXFGD58ODZt2mRU/UYHaBERESguLsa0adNw7tw5KJVKAEBFRQVOnTqFGTNmQKlU8lojIiIiG2TOYzaysrKQkZEhfvLy8rS+LzMzE97e3loXkgcFBQFAraYqi4uLUVhYiL/++guLFi1CaWkpnnnmGaPe/9dff0XXrl31Hj7v7u6OZ599FseOHTOqfqOnODt37ox//OMfWLJkCWJiYsT0wYMHA6i+MHz69OkN7uA5IiIiqiUz7cKcP3++xs+RkZEYP368Rlp+fj5kMplWWXWarqDuQZMnT8a1a9cAVC/VeuONNzBkyBCj2nzr1i106dKlxjxt2rTBuXPnjKrf6AANAEaMGIHOnTsjMTERFy9eRFFRERo1aoSgoCCEh4fj8ccfN6V6IiIiegTMnTsXPj4+4s+6AjG5XA5HR0etdCcnJ/H5w3zwwQcoKyvDzZs3sXv3bsjlcqhUKp1ryB6mqqrqoeUkEgkUCoXBdQMmBmgA0K5dO8TGxppaDRERETUkZtwk4OPj89AZN6lUisrKSq10dQAklUof+nUdO3YU/3nAgAF4/fXXAQBTp06tbYtFrVu3xunTp2vMc/r0abRs2dLgugETr3oiIiKiR1NdX/Ukk8mQn5+vla5O8/T0NKj9TZo0QdeuXXHgwAGDyqn169cPly9fxtq1a8V1+GpKpRJr1qzB5cuXERISYlT9Jo+gEREREVmav78/UlJSUFpaqrFRIC0tTXxuKLlcbvR5rWPGjMHBgwexadMmHDx4EF26dEHz5s2Rm5uLlJQU3Lx5Ez4+PoiIiDCqfo6gERERkdULCQmBUqlEUlKSmKZQKLB792506NABXl5eAKqP+crKytIoe/fuXa36bt26hVOnThm9mdHV1RVLly5F3759cfPmTezcuRPr16/Hzp07cevWLQQHB2PJkiU67+esDY6gERERkeHq+KDaDh06IDQ0FKtWrUJhYSFat26NvXv34vbt25g1a5aYb8GCBThz5gyOHj0qpkVGRuKZZ56Bv78/mjRpghs3bmDXrl2oqqrCpEmTjG6+u7s7PvnkExQUFCAjIwMlJSVo3LgxAgMD4eHhYXS9AAM0IiIiMoKha8j01WGIOXPmwMvLC/v27UNJSQl8fX2xaNEidO7cucZyw4cPx2+//Ybff/8dZWVl8PDwQLdu3TBu3Dj4+fkZ/wL/p1mzZujZs6fJ9dyPARoRERE1CFKpFFOmTMGUKVP05lmyZIlW2vjx47XOVTNUXFwcgoODERwcXCfluQaNiIiIjCOY+GlADh48iL///rvOynMEjYiIiAxXx2vQrEFmZib27t1bJ9/FAI2IiIioFo4dO4bjx48bXE4QDI9EGaARERGRwepjk0B9+uCDD0yuIyAgoNZ5GaARERGR4R6xKc4XX3yxTr+PmwSIiIiIrAxH0IiIiMhwZpjibEgjaHWNARoREREZhwGWxXCKk4iIiMjKcASNiIiIDPeIbRKoawzQiIiIyGCP2jEbdY0BWgPy9qKXAUf3+m4GERFZsePb6uiLOIJmUVyDRkRERGRlOIJGREREhuMImkUxQCMiIiKDSWCGNWhmaYltspkArbi4GCtWrMDRo0chl8sRFBSEKVOmoH379rUqf/XqVSxduhTnzp2Dg4MDevbsiejoaLi7u2vkU6lU2LJlC3bs2IGCggJ4e3tj3LhxeP755zXy7Nu3D8nJycjMzERxcTFatmyJ/v37IyIiAlKp1JyvTkRERDbGJgI0lUqFWbNm4a+//kJERASaNm2KHTt2IDY2FqtXr0abNm1qLH/nzh3ExMSgcePGiIqKQnl5ObZs2YIrV65g5cqVcHR0FPOuXr0a33//PYYNG4bAwEAcO3YMcXFxkEgkGDBgAACgoqICCxcuxJNPPonhw4fDw8MDFy5cwPr163H69Gl89dVXkEj49wYiImrAOMVpUTYRoB05cgTnz59HXFwcQkJCAAD9+/fHq6++ivXr12PevHk1lv/uu+9QUVGBNWvWwMvLCwAQFBSE6dOnY8+ePQgLCwMA5ObmYuvWrQgPD8e0adMAAEOHDkVMTAyWLVuGkJAQ2Nvbw9HREd988w2eeuop8TuGDRuGxx57DOvWrcOpU6fw7LPPWqAniIiI6gaP2bAsm9jFmZycjGbNmqFfv35imru7O0JDQ3Hs2DEoFIqHlu/Vq5cYnAHAs88+izZt2uDw4cNi2rFjx1BVVYXw8HAxTSKRYMSIEcjNzcWFCxcAAI6OjhrBmVrfvn0BAFlZWca9KBERET0SbCJAu3TpEgICAmBnp/k6QUFBqKiowPXr1/WWzc3Nxd27d3WuVQsKCkJmZqb4c2ZmJlxcXODj46OVT/28JgUFBQCApk2b1pgvLy8PGRkZ4ocBHRERWR3BTB/SySamOAsKCvD0009rpctkMgBAfn4+/Pz8dJbNz8/XyPtg+aKiIigUCjg5OSE/Px8eHh5a68fUZfPy8mps5+bNm9GoUSP06NGjxnxJSUnYsGFDjXmIiIjqFdegWZTVBWgqlQqVlZW1yuvk5ASJRAK5XA4nJyedzwFALpfrrUP97P6NALrKOzk5QS6XPzSfPps2bcKff/6J6dOno0mTJjW8FRAWFobevXuLP2dlZWH+/Pk1liEiIiLbYXUBWmpqKmJjY2uVd9OmTfDx8YFUKtW5zkydVtOxFupnuoLCB8tLpdJa5XvQwYMHsWbNGgwZMgQjRoyo4Y2qeXp6wtPT86H5iIiI6osEpp9jxvMM9LO6AK1t27aYPXt2rfKqpxabNWsmTlXer6bpywfr0Ffezc1NHCGTyWRISUmBIAga05zqsrqCqpMnT+LTTz9Fz5498d5779XqvYiIiBoETlFajNUFaDKZDC+++KJBZQICAnD27FmoVCqNjQIXL16Es7NzjeegNW/eHO7u7sjIyNB6dvHiRfj7+4s/+/v7Y+fOncjKykK7du3E9LS0NPH5/dLS0jB37ly0b98e//rXv+DgYHXdTUREZBwzHLPBAE8/m9jFGRwcjIKCAhw9elRMKywsxOHDh9GrVy+N9WnZ2dnIzs7WKv/rr78iJydHTDt16hSuX7+O0NBQMa1Pnz5wcHDAjz/+KKYJgoDExEQ0b94cHTt2FNOvXr2KWbNm4bHHHsOiRYt4ewARERHVmk0M6YSEhGDbtm1YuHAhrl69Kt4koFKpMH78eI286gNmExISxLRx48bhyJEj+Mc//oFRo0ahvLwcmzdvhq+vr8ZoXosWLTB69Ghs3rwZVVVVCAoKwi+//IKzZ8/io48+gr29PQCgrKwMM2bMQHFxMSIiInDixAmNNrRq1UojmCMiImpwuIvTomwiQLO3t8fnn3+OZcuWYfv27ZDL5QgMDMTs2bPRtm3bh5b38vLCkiVLsHTpUqxcuVK8i3Pq1Klau0MnTZqEJk2aICkpCXv37oW3tzfmzp2LgQMHinnu3buHO3fuAABWrlyp9X2DBw9mgEZERA0bAzSLkgiCwO6xchkZGYiKioLSox/g6F7fzSEiIit2fNsMi9av/p1U/EQoVK7uJtVlV1aIJpcOY/Xq1ToPjH+U2cQIGhEREdUt3sVpWQzQiIiIyHCc4rQom9jFSURERGRLOIJGREREBpPADFOcZmmJbWKARkRERIbjFKdFcYqTiIiIyMpwBI2IiIgMxl2clsUAjYiIiAzHKU6LYoBGREREhmOAZlFcg0ZERERkZTiCRkRERAbjMRuWxQCNiIiIDMcpToviFCcRERGRleEIGhERERlOECARTBwCM7C8QqHA2rVrsX//fhQXF8PPzw8TJkxAt27daiyXnJyMQ4cOIT09HQUFBWjRogV69uyJN998E02aNDHlDSyGARoRNTh2ggpP5/0NWUUR8p3dkOr5OFQSTgjUBvuOzKYepjgXLlyII0eOYPTo0fD29saePXswc+ZMxMfHo1OnTnrLffHFF5DJZBg0aBC8vLzw119/4ccff8Rvv/2GtWvXQiqVmvgi5scAjYgalODsc4hNTYRX+T0xLcelKeKfHo7k1k/VY8usH/uOGrK0tDQcPHgQkydPxtixYwEAL7zwAiIjI7F8+XIsX75cb9m4uDh06dJFI619+/b49NNPceDAAQwdOtSibTcG/9pERA1GcPY5LPhtI5rfF2AAQPPye1jw20YEZ5+rp5ZZP/YdmZv6JgFTP7WVnJwMe3t7hIWFiWlSqRRDhgzBhQsXkJOTo7fsg8EZAPTr1w8AcPXq1do3og4xQCOiBsFOUCE2NRECtP/DZYfqmZLY1CTYCaq6b5yVY9+RxQgmfv5PVlYWMjIyxE9eXp7WV2VmZsLb2xuNGjXSSA8KCgIAXL582aCm5+fnAwDc3d0NKldXOMVJRA3C03l/a0zNPcgOgFd5IZ7O+xspzf3qrmENAPuOrN38+fM1fo6MjMT48eM10vLz8yGTybTKqtN0BXU1+eGHH2Bvb4/g4GADW1s3GKARUYMgqygya75HCfuOLEFihk0C6inOuXPnwsfHR0zXFYjJ5XI4OjpqpTs5OYnPa+vAgQPYtWsXxo4dizZt2hjY6rrBAI2IGoR8Zzez5nuUsO/IIsy4i9PHxwft27evMatUKkVlZaVWukKhEJ/XRmpqKhYtWoTu3bsjKirKsPbWIa5BI6IGIdXzceS4NIW+VVIqADku7kj1fLwum9UgsO/IEup6k4BMJhPXjd1Pnebp6fnQOi5fvozZs2fD19cXcXFxcHCw3nEqBmhE1CCoJHaIf3o4JIBWoKFC9Z1+8U+H8UwvHdh3ZAv8/f1x48YNlJaWaqSnpaWJz2uSnZ2NGTNmwMPDA59//jlcXV0t1lZz4L+NRNRgJLd+Ch8+9wZyXZpqpOe6uOPD597gWV41YN+R2Zm6g9PAKdKQkBAolUokJSWJaQqFArt370aHDh3g5eUFAMjJyUFWVpZG2fz8fLz33nuws7PDF198YbU7N+9nvWN7REQ6JLd+Cr+0epKn4RuBfUfmJAFM3yRgQN4OHTogNDQUq1atQmFhIVq3bo29e/fi9u3bmDVrlphvwYIFOHPmDI4ePSqmvf/++7h58ybGjh2Lc+fO4dy5/3/un4eHx0OviqoPDNCIqMFRSex4HISR2HfUkM2ZMwdeXl7Yt28fSkpK4Ovri0WLFqFz5841llOfkbZ582atZ507d2aARkRERDZCEAy+7FxnHQaQSqWYMmUKpkyZojfPkiVLtNLuH01rKBigERERkeEM3IWprw7SjQsPiIiIiKwMR9CIiIjIcGY8qJa0MUAjIiIig0kEaB+sZygGaHpxipOIiIjIytjMCFpxcTFWrFiBo0ePQi6XIygoCFOmTHno3V5qV69exdKlS3Hu3Dk4ODigZ8+eiI6O1jrMTqVSYcuWLdixYwcKCgrg7e2NcePG4fnnn9dbd1VVFd566y1kZWVh8uTJGDt2rCmvSkREVP84xWlRNhGgqVQqzJo1C3/99RciIiLQtGlT7NixA7GxsVi9evVDb6q/c+cOYmJi0LhxY0RFRaG8vBxbtmzBlStXsHLlSjg6Oop5V69eje+//x7Dhg1DYGAgjh07hri4OEgkEgwYMEBn/du3b8edO3fM+s5ERET1ScIAzaJsYorzyJEjOH/+PGbPno233noLL7/8MpYsWQI7OzusX7/+oeW/++47VFRU4KuvvsKoUaPw+uuv41//+hcuX76MPXv2iPlyc3OxdetWhIeH4/3338ewYcPw2WefoVOnTli2bBmUSqVW3Xfv3sW3336LV1991azvTEREVK/U56CZ+iGdbCJAS05ORrNmzdCvXz8xzd3dHaGhoTh27BgUCsVDy/fq1Uu8xwsAnn32WbRp0waHDx8W044dO4aqqiqEh4eLaRKJBCNGjEBubi4uXLigVffKlSvRpk0bDBw40JRXJCIiokeITQRoly5dQkBAAOzsNF8nKCgIFRUVuH79ut6yubm5uHv3rs61akFBQcjMzBR/zszMhIuLC3x8fLTyqZ/fLy0tDXv37kVMTAwkktrfOJaXl4eMjAzx8+Clr0RERPVNIpjnQ7rZxBq0goICPP3001rpMpkMQPUt9n5+uu+ey8/P18j7YPmioiIoFAo4OTkhPz8fHh4eWsGWumxeXp6YJggC4uPj0b9/f3Ts2BG3bt2q9fskJSVhw4YNtc5PRERULxhgWYzVBWgqlQqVlZW1yuvk5ASJRAK5XA4nJyedzwFALpfrrUP97P6NALrKOzk5QS6XPzSf2p49e3DlyhXExcXV6l3uFxYWht69e4s/Z2VlYf78+QbXQ0RERA2T1QVoqampiI2NrVXeTZs2wcfHB1KpVOc6M3WaVCrVW4f6ma6g8MHyUqm0VvlKS0uxatUqjB07VmNdW215enrC09PT4HJERER1hbs4LcvqArS2bdti9uzZtcqrnlps1qyZOFV5v5qmLx+sQ195Nzc3cYRMJpMhJSUFgiBoTHOqy6qDqi1btqCyshL9+/cXpzZzc3MBACUlJbh16xY8PT11jsYRERE1CObYhcldnHpZXYAmk8nw4osvGlQmICAAZ8+ehUql0tgocPHiRTg7O9d4Dlrz5s3h7u6OjIwMrWcXL16Ev7+/+LO/vz927tyJrKwstGvXTkxPS0sTnwNATk4OiouL8cYbb2jVuWnTJmzatAlr165FQECAQe9JREREjwarC9CMERwcjCNHjuDo0aMICQkBABQWFuLw4cPo1auXxvq07OxsAEDr1q01yu/duxc5OTnilOSpU6dw/fp1vPLKK2K+Pn36YOnSpfjxxx8xbdo0ANWbARITE9G8eXN07NgRADBy5Ej07dtXo413797FF198gRdffBF9+vRBy5Ytzd8RREREdYRTnJZlEwFaSEgItm3bhoULF+Lq1aviTQIqlQrjx4/XyKsOrBISEsS0cePG4ciRI/jHP/6BUaNGoby8HJs3b4avr6/GaF6LFi0wevRobN68GVVVVQgKCsIvv/yCs2fP4qOPPoK9vT0AoH379lrHdqinOtu1a6cVvBERETU4DNAsyiYCNHt7e3z++edYtmwZtm/fDrlcjsDAQMyePRtt27Z9aHkvLy8sWbIES5cuxcqVK8W7OKdOnaq1O3TSpElo0qQJkpKSsHfvXnh7e2Pu3Lk8iJaIiIjMRiIIXKFn7TIyMhAVFQWlRz/A0b2+m0NERFbs+LYZFq1f/TsJjftCYu9uUl2CshAo+QWrV6/WeWD8o8wmRtCIiIiojqlg+lUAKrO0xCYxQCMiIiLDcQ2aRdnEXZxEREREtoQjaERERGQws1x2LnAQTR8GaERERGQEM9wkwPBML05xEhEREVkZjqARERGRwTjFaVkM0IiIiMhw3MVpUZziJCIiIrIyHEEjIiIig0kEARJTNwnwMiO9GKA1IM6HzsOu1LG+m0FERFQ9PWnqTQCMz/TiFCcRERGRleEIGhERERlMIgiQmDoExilOvRigERERkeHMEVsxPtOLARoREREZTjDDORscQdOLa9CIiIiIrAxH0IiIiMhwAiAxtQoOoOnFAI2IiIiMwwjLYjjFSURERGRlOIJGREREBpOoTJ/ilAAcKtKDARoREREZzhy7OHnOhl6MW4mIiIisDEfQiIiIyHAc/LIoBmhERERkMHNc9WRoeYVCgbVr12L//v0oLi6Gn58fJkyYgG7dutVY7tq1a0hMTERaWhoyMzOhUCiwdetWtGzZ0pTmWxSnOImIiKhBWLhwIRISEjBw4EC8++67sLOzw8yZM3H27Nkay124cAHbt29HWVkZfHx86qi1pmGARkREREYQqjcKmPIxYAQtLS0NBw8exMSJEzFlyhSEhYXhq6++wmOPPYbly5fXWLZ3797YvXs3vv32Wzz//PMmvnfdYIBGREREhlOZ6VNLycnJsLe3R1hYmJgmlUoxZMgQXLhwATk5OXrLurm5wdXV1YCXq39cg0ZEREQGkwgCJCbeJKBeg5aVlaWRLpPJ4OnpqZGWmZkJb29vNGrUSCM9KCgIAHD58mV4eXmZ1B5rwgCNiIiI6tX8+fM1fo6MjMT48eM10vLz8yGTybTKqtPy8vIs18B6wACNiIiIDCfAbHdxzp07V2Pxvq5ATC6Xw9HRUSvdyclJfG5LGKARERGREQTTAzRJdXkfHx+0b9++xqxSqRSVlZVa6QqFQnxuS7hJgIiIiKyeTCZDfn6+Vro67cE1aw2dzYygFRcXY8WKFTh69CjkcjmCgoIwZcqUh0bkalevXsXSpUtx7tw5ODg4oGfPnoiOjoa7u7tGPpVKhS1btmDHjh0oKCiAt7c3xo0bp3PbrkqlQlJSEpKSknDt2jU4OzvDz88PMTEx8Pf3N8drExER1Q8Dd2Gayt/fHykpKSgtLdXYKJCWliY+tyU2MYKmUqkwa9Ys/Pzzz3j55Zfxzjvv4O7du4iNjcX169cfWv7OnTuIiYlBdnY2oqKiEBERgRMnTmD69Olaw6mrV6/GihUr0K1bN8TGxsLLywtxcXE4ePCgVr2fffYZ4uPj8cQTT+Af//gH3nzzTXh5eeHu3btme3ciIqL6oN7FaeqntkJCQqBUKpGUlCSmKRQK7N69Gx06dBB3cObk5GjtCm2IbGIE7ciRIzh//jzi4uIQEhICAOjfvz9effVVrF+/HvPmzaux/HfffYeKigqsWbNG/D84KCgI06dPx549e8QzV3Jzc7F161aEh4dj2rRpAIChQ4ciJiYGy5YtQ0hICOzt7QEAhw4dwt69ezF//nz069fPQm9ORET0aOjQoQNCQ0OxatUqFBYWonXr1ti7dy9u376NWbNmifkWLFiAM2fO4OjRo2JaSUkJtm/fDgA4f/48AOB///sfGjdujMaNG2PkyJF1+zK1YBMBWnJyMpo1a6YRCLm7uyM0NBQHDhyAQqEQd3noK9+rVy+N81OeffZZtGnTBocPHxYDtGPHjqGqqgrh4eFiPolEghEjRiAuLg4XLlxAp06dAAAJCQkICgpCv379oFKpIJfL4eLiYu5XJyIiqh+CGTYJGFh+zpw58PLywr59+1BSUgJfX18sWrQInTt3rrFccXEx1q5dq5G2detWAMBjjz3GAM1SLl26hICAANjZac7YBgUF4aeffsL169fh5+ens2xubi7u3r2rc61aUFAQfvvtN/HnzMxMuLi4aN3jpT4kLzMzE506dUJpaSkuXryIESNGYNWqVdi+fTvKy8vRsmVLTJo0Cf379zf1lYmIiOqZGQI0Ay9Ll0qlmDJlCqZMmaI3z5IlS7TSWrZsqTGi1hDYRIBWUFCAp59+WitdfY5Kfn6+3gBNvftD3+F3RUVF4ghcfn4+PDw8IJFIdH6P+pC87OxsCIKAQ4cOwd7eHpMnT0ajRo2wbds2/Otf/0KjRo3Qo0cPve+Tl5ensVPFFubSiYiIqPasLkBTqVQ6zznRxcnJCRKJBHK5XOcUZm0Or1M/e9jhd05OTrU+JK+8vBwAcO/ePaxYsQIdOnQAUH1Z65gxY7Bx48YaA7SkpCRs2LBB73MiIqJ6Z46Das1zzq1NsroALTU1FbGxsbXKu2nTJvj4+EAqlYoH1d2vNofXqZ/V5vC72h6Sp/7fli1bisEZALi6uqJ3797Yv38/qqqq4OCgu/vDwsLQu3dv8eesrCytazCIiIjqlTmO2ZA8PMujyuoCtLZt22L27Nm1yqueWmzWrFmNh9fpmr58sA595d3c3MQRMplMhpSUFAiCoDHN+eAheer/bdasmVad7u7uqKqqQkVFBRo3bqyzTZ6enjZ34B4REdkYM1yWbq6romyR1QVoMpkML774okFlAgICcPbsWahUKo2NAhcvXoSzszPatGmjt2zz5s3h7u6OjIwMrWcXL17UOPjO398fO3fuRFZWFtq1ayemP3hInqenJ5o1a4bc3FytOvPz8+Hk5ARXV1eD3pGIiIgeHTZxUG1wcDAKCgo0dmgUFhbi8OHD6NWrl8b6tOzsbGRnZ2uV//XXX5GTkyOmnTp1CtevX0doaKiY1qdPHzg4OODHH38U0wRBQGJiIpo3b46OHTuK6f3798edO3dw8uRJjTYdO3YMXbt21dpxSkRE1LAI//+oDWM/XISml9WNoBkjJCQE27Ztw8KFC3H16lU0bdoUO3bsgEqlwvjx4zXyqg+YTUhIENPGjRuHI0eO4B//+AdGjRqF8vJybN68Gb6+vhqjeS1atMDo0aOxefNmVFVVISgoCL/88gvOnj2Ljz76SDykVl3n4cOH8dFHH+GVV15B48aNkZiYiKqqKkycONHCPUJERGRhKqH6Y2odpJNNBGj29vb4/PPPsWzZMmzfvh1yuRyBgYGYPXs22rZt+9DyXl5eWLJkCZYuXYqVK1eKd3FOnTpVa3fopEmT0KRJEyQlJWHv3r3w9vbG3LlzMXDgQI18zZo1wzfffINvvvkG//3vf1FVVYUnn3wSc+fOtbn7woiIiMi8JILAFXrWLiMjA1FRUXBMaQa7Uu1jPoiIiNQOqP5r0frVv5Oc856CfZXuzW61pXQoQYXnOaxevVrngfGPMpsYQSMiIqI6xnPQLIor1YmIiIisDEfQiIiIyAh1fxfno4QBGhERERmOuzgtilOcRERERFaGI2hERERkOEFV/TG1DtKJARoREREZjrs4LYoBGhERERlOMMMaNB7FqhfXoBERERFZGY6gERERkeEEMxyzwRE0vRigERERkeEYoFkUpziJiIiIrAxH0IiIiMhwHEGzKAZoREREZDhBAFSmnoPGAE0fTnESERERWRmOoBEREZHhOMVpUQzQiIiIyHAM0CyKU5xEREREVoYjaERERGQ4XvVkUQzQiIiIyHCCAEHgLk5LYYBGREREhlOZYQTN1PI2jGvQiIiIiKwMR9CIiIjIcNzFaVEM0IiIiMhwgsoMNwmYWN6GcYqTiIiIyMpwBI2IiIgMJ8AMU5xmaYlNYoBGREREBhNUKggmTnGaWt6WcYqTiIiIyMpwBI2IiIgMx12cFsUAjYiIiAzHq54silOcRERERFaGI2hERERkOEEw/RwzjqDpxQCNiIiIDCaoBAgmTnGaWt6W2UyAVlxcjBUrVuDo0aOQy+UICgrClClT0L59+1qVv3r1KpYuXYpz587BwcEBPXv2RHR0NNzd3TXyqVQqbNmyBTt27EBBQQG8vb0xbtw4PP/881p1Hjp0CAkJCbh27Rrs7Ozw+OOP49VXX0XPnj3N8cpERET1SGWGmwAMK69QKLB27Vrs378fxcXF8PPzw4QJE9CtW7eHls3NzcXSpUtx8uRJqFQqdOnSBTExMWjVqpWxjbcom1iDplKpMGvWLPz88894+eWX8c477+Du3buIjY3F9evXH1r+zp07iImJQXZ2NqKiohAREYETJ05g+vTpqKys1Mi7evVqrFixAt26dUNsbCy8vLwQFxeHgwcPauTbvn07/vnPf6Jp06aYNGkS3njjDZSWlmLWrFlITk426/sTERE9ChYuXIiEhAQMHDgQ7777Luzs7DBz5kycPXu2xnJlZWWIjY3FmTNnMG7cOIwfPx6ZmZmIiYnBvXv36qj1hrGJEbQjR47g/PnziIuLQ0hICACgf//+ePXVV7F+/XrMmzevxvLfffcdKioqsGbNGnh5eQEAgoKCMH36dOzZswdhYWEAqqPvrVu3Ijw8HNOmTQMADB06FDExMVi2bBlCQkJgb28PoDpACwwMxGeffQaJRAIAGDJkCF5++WXs3bsXwcHBlugKIiKiOiGoTJ+iNGQALi0tDQcPHsTkyZMxduxYAMALL7yAyMhILF++HMuXL9dbdseOHbhx4wZWrlyJoKAgAECPHj0QGRmJrVu3YuLEiSa9hyXYxAhacnIymjVrhn79+olp7u7uCA0NxbFjx6BQKB5avlevXmJwBgDPPvss2rRpg8OHD4tpx44dQ1VVFcLDw8U0iUSCESNGIDc3FxcuXBDTy8rK4OHhIQZnANCoUSO4uLhAKpWa9L5ERET1TlCZ51NLycnJsLe3FwdNAEAqlWLIkCG4cOECcnJy9JY9cuQIAgMDxeAMAHx8fNC1a1eN3/PWxCZG0C5duoSAgADY2WnGm0FBQfjpp59w/fp1+Pn56Sybm5uLu3fv6lyrFhQUhN9++038OTMzEy4uLvDx8dHKp37eqVMnAEDnzp2RnJyM7du3o1evXlAoFNi+fTtKS0sxatSoGt8nLy8P+fn54s+XL18GAAguVQbO1hMR0aMmIyMDPj4+cHZ2tuj3CK6m/04SXKsAAFlZWRrpMpkMnp6eGmmZmZnw9vZGo0aNNNLVv4MvX76sMdCiplKpcOXKFbz00ktaz4KCgnDy5EmUlZXB1dXVpHcxN5sI0AoKCvD0009rpctkMgBAfn6+3gBNHQip8z5YvqioCAqFAk5OTsjPz9caFbu/bF5enpgWGxuLe/fuIT4+HvHx8QCApk2bYvHixejYsWON75OUlIQNGzZopVcFFtVYjoiIKCoqCv/+97/Ro0cPi9Tv7u4OZ2dnVLQ3z+8kBwcHzJ8/XyMtMjIS48eP10jLz8/X+7sa0PwdfD/17/GHlW3btq1R7bcUqwvQVCqV1sJ8fZycnCCRSCCXy+Hk5KTzOQDI5XK9daifOTo61ljeyckJcrn8ofnUpFIp2rRpg+bNm6NXr14oKytDQkIC5s6di6VLl8Lb21tvm8LCwtC7d2/x54sXL+LLL7/ErFmz4O/vr7ccacvKysL8+fMxd+5crZFPqhn7zjTsP+Ox74yn7jsXFxeLfYeXlxc2bdqEwsJCs9SnUqm0ZsB0BVOG/A5+sBzw8N/z1sbqArTU1FTExsbWKu+mTZvg4+MDqVSqc52ZOq2mNV/qZ7qCwgfLS6XSWuUDgI8//hj29vb47LPPxLQ+ffrg1VdfxerVq/Gvf/1Lb5s8PT21hnYBwN/fv9bHhpAmHx8f9p2R2HemYf8Zj31nPEuvdfby8tI5nWhJhvwOfrAcULvf89bE6gK0tm3bYvbs2bXKq46wmzVrprFmS62m6csH69BX3s3NTYywZTIZUlJSIAiCxjSnuqw6qLp58yZ+//13vP/++xr1ubm54amnnsL58+dr9X5ERERUTSaTITc3Vyv9wd/BD1L/Hq8pTtBXtj5ZXYAmk8nw4osvGlQmICAAZ8+e1RomvXjxIpydndGmTRu9ZZs3bw53d3dkZGRoPbt48aLGlKK/vz927tyJrKwstGvXTkxPS0sTnwPVa+KA6mHbB1VVVUGpVBr0fkRERI86f39/pKSkoLS0VGOjwIO/gx9kZ2cHX19fpKenaz1LS0tDq1atrG6DAGAjx2wEBwejoKAAR48eFdMKCwtx+PBh9OrVS2N9WnZ2NrKzs7XK//rrrxpbdE+dOoXr168jNDRUTOvTpw8cHBzw448/immCICAxMRHNmzcXF/97e3vDzs4Ohw4dgnDfPWN37tzB2bNnERAQYND7yWQyREZG1jgSSLqx74zHvjMN+8947Dvj2XLfhYSEQKlUIikpSUxTKBTYvXs3OnToIE655uTkaO0KDQ4ORnp6ukaQdu3aNaSkpIjnp1obiSA0/JtKlUoloqOjceXKFYwdOxZNmzbFjh07kJOTg1WrVmnszHjllVcAAAkJCWJaTk4OJkyYgMaNG2PUqFEoLy/H5s2b0bx5c6xatUojwFu+fDk2b96MYcOGISgoCL/88gtOnDiBjz76CAMHDhTzff7559i5cye6dOmCfv36oby8HD/++CMKCgqwePFidO7c2fIdQ0REZEM+/vhjHD16FK+88gpat26NvXv34uLFixq/V999912cOXNGY9CmrKwMb7/9NsrKyhAREQF7e3skJCRApVJh3bp1Wtc6WgObCNCA6rs4ly1bhmPHjkEulyMwMBBTpkxBYGCgRj5dARoA/P3331p3cU6dOhXNmjXTyKdSqfDDDz8gKSkJ+fn58Pb2xmuvvYZBgwZp5KuqqkJiYiJ2796NGzduAAACAwPx5ptvomvXruZ+fSIiIpsnl8vFuzhLSkrg6+uLCRMmoHv37mIeXQEaUD2L9eBdnNHR0TWeqlCfbCZAIyIiIrIVNrEGjYiIiMiWMEAjIiIisjJWd8yGLUtJSdF7CO/y5cvx5JNPij+fO3cOK1aswKVLl9CoUSOEhoYiKipK51bgjIwMrF+/HufOnYNCoUCrVq0wbNiwh9752ZBYou+uX7+OtWvX4ty5cygqKoKXlxeef/55REREWPwOu7pW2/77448/cOjQIVy8eBFZWVlo0aKF1npNNZVKhS1btmDHjh0oKCiAt7c3xo0bh+eff95i71EfzN13WVlZ2L17N06ePIns7Gy4uLjgiSeewPjx47XWzDZ0lvhzd7/9+/eLp+bv27fPrG23Bpbqv+zsbKxduxZ//vknysrK0Lx5c/Tv3x9RUVEWeQ8yDgO0ejBy5Ejxcle11q1bi/+cmZmJadOmwcfHB9HR0bhz5w62bt2KGzdu4N///rdGuT/++AOzZ89GQEAA3nzzTbi4uCA7O1vnYX62wFx9l5OTg0mTJqFx48YIDw+Hm5sbLly4gHXr1iEjIwMLFy6ss3eqSw/rv59//hmHDh3CE0888dBt+qtXr8b333+PYcOGITAwEMeOHUNcXBwkEgkGDBhgkfbXJ3P13c6dO7Fr1y4EBwdjxIgRKC0tRVJSEiZPnox///vfePbZZy32DvXFnH/u1MrKyrBixQqLXmlkLczZf5mZmYiNjYWnpyfGjBmDpk2bIicnB3fu3LFI28kEAtWZ06dPC3379hUOHz5cY74ZM2YII0aMEEpKSsS0n376Sejbt6/w+++/i2klJSXC8OHDhTlz5ghKpdJSzbYK5u67jRs3Cn379hWuXLmiUX7+/PlC3759haKiIrO2v77Vtv9yc3OFyspKQRAEYebMmcLo0aN15rtz544QGhoqfPnll2KaSqUSpk6dKrz88stCVVWV2dpe38zdd+np6UJpaalGWmFhoTBs2DBhypQpZmmztTB3391v+fLlwmuvvSbExcUJgwYNMkdzrY65+0+pVApvvPGGMGnSJKGiosLczSUz4xq0elJWVoaqqiqt9NLSUvz5558YNGiQxknJL7zwAlxcXHD48GEx7eeff0ZBQQGioqJgZ2eH8vJynbcX2Bpz9F1paSkAwMPDQ6MOmUwGOzs7ODjY7uCyvv4Dqq87qc27Hzt2DFVVVQgPDxfTJBIJRowYgdzcXFy4cMFs7bUm5ui79u3ba023N23aFJ06ddI6XNOWmKPv1K5fv47//ve/mDp1Kuzt7c3VRKtmjv47efIk/v77b0RGRkIqlaKiooI321gx2/0tZMUWLlyI8vJy2Nvbo1OnTpg8ebK49uTKlStQKpVaFwQ7OjoiICAAmZmZYtqff/6JRo0aIS8vDx9++CGuX78OFxcXDBo0CNHR0VZ5+aupzNV3Xbp0wQ8//IBFixZh/PjxcHNzw/nz55GYmIiRI0fa7LRJTf1niMzMTLi4uMDHx0cjXT0Nk5mZiU6dOpmlzdbCXH2nT0FBAZo2bWq2+qyJufvu66+/RpcuXdCzZ0+Nv3jZKnP1359//gmg+r+JUVFRyMjIgKOjI/r27Yvp06fDzc3N3E0nEzBAq0MODg4IDg7Gc889h6ZNm+Lq1avYunUroqOjsWzZMjzxxBM1XvAuk8mQmpoq/nzjxg0olUrMmTMHQ4YMwcSJE3HmzBls374dJSUl+Pjjj+vs3SzN3H3Xo0cPvP322/juu+9w/PhxMf3111+3yYWytek/Q+Tn58PDwwMSiUQjXd33eXl5Zmt7fTN33+mSmpqKCxcu4I033jBDi62HJfruxIkTOHnyJNavX2+BFlsXc/ef+tD0f/7zn+jevTtee+01/PXXX/juu+9w584dfPPNN1r/TlP9YYBWh5566ik89dRT4s99+vRBSEgI3nrrLaxatQpffPEF5HI5gOq/4TzIyckJCoVC/Lm8vBwVFRUYPny4uNMnODgYlZWVSEpKwvjx42u8KL4hMXffAUDLli3x9NNPIzg4GG5ubjhx4gS+++47NGvWDCNHjrTsC9Wx2vSfIeRyud5+Vj+3FebuuwfdvXsXcXFxaNmyJcaOHWtqc62KufuusrISX3/9NYYPH4527dqZubXWx9z9V15eDqD6VpuPPvoIQPX9llKpFKtWrcKpU6dscpNKQ8U1aPXM29sbffr0QUpKCpRKpTgtWVlZqZVXoVBo3Auqzvvgjjn1MQe2ug5IzZS+O3jwIP79739j5syZGDZsGIKDg/HBBx9g8ODBWLlyJe7du1dn71FfHuw/Q0ilUr39rH5uy0zpu/uVl5dj1qxZKC8vx6effqrzGB1bY0rfJSQk4N69exg/fryFWmf9TP33FtD+naG+R/r8+fPmaSSZBQM0K9CiRQtUVlaioqJCnCJST9fdLz8/H56enuLP6rwP3heqXvheXFxsqSZbDWP77scff0RAQABatGihka93796oqKjQWK9my+7vP0PIZDIUFBRAeOCmOHXf39/XtsrYvlOrrKzE3LlzceXKFXz66afw9fU1cwutlzF9V1JSgo0bN2Lo0KEoLS3FrVu3cOvWLZSXl0MQBNy6dQt37961YKuth7F/9tT/Xj74O0N9Ufij8DujIWGAZgVu3rwJJycnuLi44PHHH4e9vT0yMjI08lRWViIzMxP+/v5imnox/INnnqnX/6j/pbNlxvbd3bt3de54Ve+SelR2Nt3ff4bw9/dHRUWF1q7DtLQ08bmtM7bvgOpDfhcsWIDTp0/jo48+QufOnc3fQCtmTN8VFxejvLwcmzdvxpgxY8RPcnIyKioqMGbMGK1zIm2VsX/21GvWHvydof6L1aPwO6MhYYBWhwoLC7XSLl++jOPHj6Nbt26ws7ND48aN8eyzz2L//v0oKysT8+3btw/l5eUIDQ0V09T/vGvXLo06d+3aBXt7e3Tp0sUyL1IPzN13bdq0QWZmJq5fv65R58GDB2FnZwc/Pz+LvUt9qE3/GaJPnz5wcHDAjz/+KKYJgoDExEQ0b94cHTt2NLXJVsPcfQcAX331FQ4dOoRp06YhODjYDK20TubsOw8PDyxYsEDr06VLFzg5OWHBggUYN26cGVtf/yzx762TkxP27Nmj8RfUnTt3AgDXn1kZbhKoQx9//DGkUik6duwIDw8PXL16FT/99BOcnZ0xadIkMd+ECRMwdepUxMTEICwsTDwNv1u3bujRo4eY74knnsBLL72E3bt3Q6lUonPnzjhz5gwOHz6McePG2dQ0k7n7LiIiAr///juio6Px8ssvw83NDb/++it+//13DB061Kb6Dqh9//311184duwYgOrrYEpKSvDtt98CqB4V6927N4DqKZbRo0dj8+bNqKqqQlBQEH755RecPXsWH330kU2dTWXuvktISMCOHTvw5JNPwtnZGfv379f4vr59+9rMMS/m7DtnZ2f07dtX6zt++eUXpKen63zW0Jn7z55MJsPrr7+OtWvXYsaMGejbty8uX76MnTt34vnnn9e6rYDql0R4cBEJWcy2bdtw4MABZGdno7S0FO7u7njmmWcQGRkJb29vjbxnz54V75N0dXVFaGgoJk2apLWIuKqqCps2bcKePXuQl5cHLy8vhIeH45VXXqnLV7M4S/RdWloa1q9fj8zMTBQVFaFly5YYPHgwxo4da3MH1da2//bs2aP3mqvBgwdjzpw54s8qlQo//PADkpKSkJ+fD29vb7z22msYNGiQxd+nLpm77z799FPs3btX7/dt3boVLVu2NO9L1BNL/Ll70Keffork5GSbvIvTEv0nCAL+97//4X//+x9u3bqFZs2aYfDgwYiMjLS5/+41dAzQiIiIiKwM16ARERERWRkGaERERERWhgEaERERkZVhgEZERERkZRigEREREVkZBmhEREREVoYBGhEREZGVYYBGREREZGUYoBERERFZGQZoRGQxr7zySq2vHduzZw/69esnfv75z39qPH/33XfRr18/C7TSOO+8845Ge1NSUuq7SURkQ3jxFhHVyq1btzBmzJga8zz22GNISEgw6Xv69OkDf39/+Pr6mlRPbcTFxeHnn3/GvHnz8Pzzz+vNV1paihEjRsDR0RE//vgjpFIphg4diu7du+PMmTM4c+aMxdtKRI8WBmhEZJDWrVtj4MCBOp81btxY4+fFixcbXH/fvn3x4osvGtU2Qw0ZMgQ///wzdu/eXWOA9vPPP0Mul2Pw4MGQSqUAgKFDhwIA1q1bxwCNiMyOARoRGaR169YYP358rfNas65du6Jly5Y4ffo0cnJy4OXlpTPf7t27AVQHdEREdYFr0IjIYgxZg2asgwcPYsCAAXjrrbeQl5cnpp85cwYffPABhg0bhgEDBmDs2LFYvXo1KioqxDwSiQQvvfQSVCqVGIQ96O+//8bFixfh5+eHwMBAi74LEZEaAzQiarC2b9+OuLg4dOjQAV9//TU8PT0BADt27EBsbCzOnTuH5557DiNHjkSLFi2wadMmTJ8+HZWVlWIdgwcPhp2dHfbs2QNBELS+g6NnRFQfOMVJRAbJzs7GunXrdD578skn0aNHjzppx+rVq7Fp0yb07dsX8+bNE9eGXb16FfHx8fDz88PixYvRtGlTscx3332HVatWYfv27YiIiAAAeHl5oVu3bvj9999x+vRpPPPMM2L+qqoqHDhwAE5OThg0aFCdvBcREcAAjYgMlJ2djQ0bNuh8NmrUKIsHaEqlEl988QV27dqFYcOGYfr06bC3txefJyYmQqlUIjY2ViM4A4BXX30VCQkJOHjwoBigAdWjY7///jt27dqlEaCdOHECBQUFCA0NhZubm0Xfi4jofgzQiMgg3bt3xxdffFFv3//RRx/h2LFjeP311xEVFaX1PC0tDQDwxx9/4NSpU1rPHRwccO3aNY20Pn36wN3dHb/88gtKSkrE3ai7du0CwOlNIqp7DNCIqEFJTU2Fk5MTnnvuOZ3Pi4qKAACbNm2qdZ0ODg4YNGgQEhIS8PPPP2PEiBHIz8/H77//Di8vLzz77LNmaTsRUW0xQCOiBmXx4sWYPn063n//ffz73//GU089pfG8UaNGAIC9e/fC1dW11vUOHToUCQkJ2LVrF0aMGIH9+/dDqVTixRdfhJ0d91MRUd3if3WIqEF54okn8NVXX8HR0RHvv/8+zp07p/G8Q4cOAIALFy4YVG+7du3w5JNPIiMjA3/99Rd2794tHsNBRFTXGKARUYPj7+8vBmkzZszA2bNnxWcjRoyAvb094uPjkZOTo1W2uLgYly5d0lmveq3Zl19+iaysLDzzzDN47LHHLPMSREQ14BQnERmkpmM2AOC1114Tj7ywJD8/P3z11VeYNm0a3n//fXz++ed4+umn4evri+nTp+PLL7/Ea6+9hueeew6tW7dGWVkZbt68idTUVAwePBgzZszQqrN///74+uuvxVE5bg4govrCAI2IDFLTMRsAMHr06DoJ0ADNIG3mzJlYtGgROnfujGHDhsHf3x8JCQlITU3Fr7/+ikaNGsHLywujR4/G4MGDddbn6uqK0NBQ7N69G25ubujbt2+dvAcR0YMkgq6js4mI6tiePXuwcOFCzJ49u84uSzeHdevWYcOGDYiPj0eXLl3quzlEZCO4Bo2IrMrChQvRr18//POf/6zvptTonXfeQb9+/WocTSQiMhanOInIKvj7+yMyMlL82dfXt/4aUwtDhw5F9+7dxZ+5mYCIzIlTnERERERWhlOcRERERFaGARoRERGRlWGARkRERGRlGKARERERWRkGaERERERWhgEaERERkZVhgEZERERkZRigEREREVkZBmhEREREVub/AaCy5zNqApjSAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -665,15 +660,38 @@
"fig, ax = plt.subplots()\n",
"dr.draw(ax=ax)\n",
"ax.scatter(Ei0, dr.transform_Em_to_eps(Em0, Ei0), marker='*')\n",
- "for e1 in dr.neighbors[0]:\n",
- " for e2 in dr.neighbors[1]:\n",
- " ax.scatter(e1, dr.transform_Em_to_eps(e2, Ei0), c='r')\n",
+ "for e1 in dr.neighbors['Ei']:\n",
+ " for e2 in dr.neighbors['eps']:\n",
+ " ax.scatter(e1, e2, c='r')\n",
"plt.show()"
]
},
{
"cell_type": "code",
- "execution_count": 118,
+ "execution_count": 35,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/latex": [
+ "$[506,~508,~510,~512,~514,~516] \\; \\mathrm{keV}$"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 35,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dr.axes['Ei'].edges"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {},
"outputs": [
{
@@ -681,60 +699,65 @@
"output_type": "stream",
"text": [
"[0.005 0.005 0.98 0.005 0.005]\n",
- "[0.02530253 0.47234723 0.47974797 0.02260226 0. ]\n",
- "[0.0019 0.1481 0.6929 0.1554 0.0017]\n",
- "[0. 0.0223 0.4764 0.4778 0.0235]\n"
+ "[0.0204 0.4754 0.4811 0.0231 0. ]\n",
+ "[0.001 0.1558 0.6842 0.1572 0.0018]\n",
+ "[0. 0.0236 0.4736 0.4791 0.0237]\n"
]
}
],
"source": [
- "mu = 511\n",
- "sigma_inj = 1\n",
- "bins = np.arange(506, 517, 2)\n",
+ "# mu = 511\n",
+ "# sigma_inj = 1\n",
+ "# binedges = np.linspace(506, 516, 6) * u.keV\n",
+ "# bincenters = (binedges[1:]+binedges[:-1])/2\n",
"\n",
- "# Create model 0\n",
- "model0 = np.array([0.005,0.005, 0.98, 0.005, 0.005])\n",
- "print(model0)\n",
+ "# # Create model 0\n",
+ "# model0 = np.array([0.005,0.005, 0.98, 0.005, 0.005])\n",
+ "# print(model0)\n",
"\n",
- "# Create model 1\n",
- "counts, bins = np.histogram(np.random.normal(loc=mu-1, scale=sigma_inj, size=10000), bins=bins)\n",
- "bincenters = (bins[1:]+bins[:-1])/2 * u.keV\n",
- "model1 = counts / np.sum(counts)\n",
- "print(model1)\n",
+ "# # Create model 1\n",
+ "# counts, _ = np.histogram(np.random.normal(loc=mu-1, scale=sigma_inj, size=10000), bins=binedges.value)\n",
+ "# model1 = counts / np.sum(counts)\n",
+ "# print(model1)\n",
"\n",
- "# Create model 2\n",
- "counts, bins = np.histogram(np.random.normal(loc=mu, scale=sigma_inj, size=10000), bins=bins)\n",
- "model2 = counts / np.sum(counts)\n",
- "print(model2)\n",
+ "# # Create model 2\n",
+ "# counts, _ = np.histogram(np.random.normal(loc=mu, scale=sigma_inj, size=10000), bins=binedges.value)\n",
+ "# model2 = counts / np.sum(counts)\n",
+ "# print(model2)\n",
"\n",
- "# Create model 3\n",
- "counts, bins = np.histogram(np.random.normal(loc=mu+1, scale=sigma_inj, size=10000), bins=bins)\n",
- "model3 = counts / np.sum(counts)\n",
- "print(model3)"
+ "# # Create model 3\n",
+ "# counts, _ = np.histogram(np.random.normal(loc=mu+1, scale=sigma_inj, size=10000), bins=binedges.value)\n",
+ "# model3 = counts / np.sum(counts)\n",
+ "# print(model3)"
]
},
{
"cell_type": "code",
- "execution_count": 200,
+ "execution_count": 121,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
- "$[510.2826,~510.37249,~514.74124,~509.09524,~509.89007,~512.51471,~508.54299,~512.85188,~512.16756,~512.62646] \\; \\mathrm{keV}$"
+ "$[509.747,~509.83029,~505.14983,~514.31033,~511.01409,~510.34,~508.91595,~508.39782,~512.90728,~513.92033] \\; \\mathrm{keV}$"
],
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 200,
+ "execution_count": 121,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
+ "# Common model parameters\n",
+ "sigma_inj = 2\n",
+ "binedges = np.linspace(506, 516, 6) * u.keV\n",
+ "bincenters = (binedges[1:]+binedges[:-1])/2\n",
+ "\n",
"# Simulate events\n",
"Ntot = 10\n",
"a = np.random.normal(loc=511, scale=np.sqrt(sigma_rsp**2 + sigma_inj**2), size=Ntot) * u.keV\n",
@@ -743,66 +766,112 @@
},
{
"cell_type": "code",
- "execution_count": 205,
+ "execution_count": 122,
"metadata": {},
"outputs": [
{
"data": {
+ "text/latex": [
+ "$2.4258732 \\; \\mathrm{keV}$"
+ ],
"text/plain": [
- "-10"
+ ""
]
},
- "execution_count": 205,
+ "execution_count": 122,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# As we have injected gaussian data, we can calculate the exact std and mean\n",
+ "np.sqrt(np.std(a)**2 - 1*u.keV**2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 123,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/latex": [
+ "$510.45329 \\; \\mathrm{keV}$"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 123,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "np.mean(a)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "-35.212950330000226"
+ ]
+ },
+ "execution_count": 129,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "bins = np.arange(506, 517, 2)\n",
- "bincenters = (bins[1:]+bins[:-1])/2\n",
- "\n",
"# Phase space sampling edges\n",
"nbins_mu, nbins_sigma = 30, 30\n",
"pred_mu, pred_sigma = np.meshgrid(np.linspace(508, 514, nbins_mu), np.linspace(0.5, 2.5, nbins_sigma))\n",
"\n",
- "# Initial values\n",
+ "# List to save all log likelihood values\n",
"loglikes = []\n",
- "runningsum = 0\n",
- "loglike = -Ntot\n",
"\n",
"for i in range(nbins_mu):\n",
" for j in range(nbins_sigma):\n",
+ " # Initialize loglike with first term\n",
+ " loglike = -Ntot\n",
+ "\n",
" # Calculate model counts for sampled mu, sigma\n",
- " model_counts = gaussian(x=bincenters, center=pred_mu[i, j], sigma=pred_sigma[i, j])\n",
- " models = model_counts / np.sum(model_counts)\n",
+ " model_counts = gaussian(x=bincenters.value, center=pred_mu[i, j], sigma=pred_sigma[i, j])\n",
+ " model = model_counts / np.sum(model_counts)\n",
"\n",
+ " # Sum over all events\n",
" for Em in a:\n",
- " for model, Ei in zip(models, bincenters*u.keV):\n",
- " rsp_val = dr.get_interp_response({'Ei': Ei, 'Em': Em})\n",
+ " # Temporary variable to sum over Rij*Mj for all j. \n",
+ " runningsum = 0\n",
+ " for model_element, Ei in zip(model, bincenters):\n",
+ " rsp_val = dr.get_interp_response({'Ei': Ei, 'Em': Em}) # Interpolated response value will be different for different Ei's. TODO: How do you transform this to a linear algebra problem?\n",
" if rsp_val < 1e-3 * u.cm**2:\n",
" rsp_val = 1e-3 * u.cm**2\n",
- " runningsum += rsp_val * model / u.cm**2\n",
+ " runningsum += rsp_val.value * model_element\n",
"\n",
" loglike += np.log(runningsum)\n",
- " runningsum = 0\n",
" loglikes.append(loglike)\n",
- " loglike = -Ntot\n",
"\n",
"loglike"
]
},
{
"cell_type": "code",
- "execution_count": 206,
+ "execution_count": 130,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "(511.51724137931035, 1.5344827586206897)"
+ "(510.48275862068965, 2.5)"
]
},
- "execution_count": 206,
+ "execution_count": 130,
"metadata": {},
"output_type": "execute_result"
}
@@ -813,12 +882,12 @@
},
{
"cell_type": "code",
- "execution_count": 210,
+ "execution_count": 131,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAHRCAYAAABzQ13AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wU1frGvzO7m94LIQGSkACB0HvvvYOAioqigtfeFQsKiHrFhr0riFjoRXrvvYUWQghJSCC99y0zvz82u5thSwLolXt/+3w+S5gz75l35sycM++c8jyCLMsyTjjhhBNOOOGEE07UCeI/fQJOOOGEE0444YQT/01wBk9OOOGEE0444YQTNwBn8OSEE0444YQTTjhxA3AGT0444YQTTjjhhBM3AGfw5IQTTjjhhBNOOHEDcAZPTjjhhBNOOOGEEzcAZ/DkhBNOOOGEE044cQNwBk9OOOGEE0444YQTNwBn8OSEE0444YQTTjhxA3AGT078z6Ffv34IgnBDeQRBoF+/fn/PCf0HsXDhQgRBYOHChf/0qTjxXw7ns+SEE/bhDJ6c+Nuxa9euWoOTlJQUBEEgMjLyP3ZeTlhekDV/rq6uREREcO+99xIXF2cz3+zZsxEEgdmzZ9+Sf5NPURRJSkqya9e/f3+z7T/xMr+ZgPxWceHCBZ566ilatWqFr68vLi4uhIWFMXLkSH788Ueqqqr+o+fjhBNOWKD+p0/ACSduB8THx+Ph4fFPn8Y/hrZt2zJu3DgAiouL2b9/P7/99hsrVqxg+/bt9OzZ82/zrVar0ev1/Pjjj7z77rtW+xMTE9m1a5fZ7v8D3nrrLebMmYMkSXTv3p0HHngALy8vsrKy2LVrF9OmTePrr7/m2LFj//SpOuHE/0s4gycnnACaN2/+T5/CP4p27dpZ9SI9+uijfPvtt8ycOZOdO3f+bb5DQkIIDQ1lwYIFvPXWW6jVymbphx9+AGD06NGsWrXqbzuP2wXvvvsus2bNolGjRixbtoyuXbta2axbt46PPvroHzg7J5xwApzDdk7c5jAND+3atYvly5fTpUsXPDw8CAgI4O677+bq1at281ZVVTFz5kwaN26Mq6sr0dHRzJkzB61Wa2Vra1jxZnybhnf0ej3vvvsuTZs2xdXVlUaNGjFjxgybvsE4RDN16lQaNWqEi4sLISEh3HPPPSQkJNi0v3TpEpMmTcLf3x9PT0969OjB+vXrHZTkjePhhx8G4OjRo3/pcW1h+vTpZGZmsm7dOkW6Tqdj4cKF9OjRg9jYWLv5ExMTuf/++2nQoIF5eOv+++8nMTHRyvZG7qtpOHn37t0AiuHN65+X9PR0nnzySaKionB1dSUwMJAxY8bcUPmlpKQwe/ZsNBoNGzZssBk4AYwaNYpNmzYp0hYuXMiECROIiorC3d0dHx8fevbsyeLFi20ew/SsarVa3nrrLWJiYnB1dWXq1Km1nufx48eZMGEC9erVMw/zPv7442RkZNT5Wp1w4r8Zzp4nJ/4r8NVXX7F27VrGjBlD3759OXz4MEuWLCEuLo5Tp07h6upqlefOO+/k6NGjTJw4EY1Gw5o1a5g9ezbHjh1j7dq1dZ7DcjO+77nnHvbu3cvw4cPx8fFhw4YNvP/++2RnZ7NgwQKF7aZNm7jjjjvQ6XSMHj2aJk2akJ6ezsqVK1m/fj07d+6kQ4cOZvvExES6d+9OXl4ew4cPp127dly6dIlx48YxfPjwGyzZ2qHRaP7yY16PyZMn8/zzz/PDDz+Yhw8B1q5dS3Z2NvPmzePSpUs28x49epRBgwZRUlLCmDFjiI2N5cKFCyxevJg1a9awbds2OnfubJWvLvfVz8+PWbNmsXDhQlJTU5k1a5Y5f835eSdOnGDIkCHk5+czdOhQ7rjjDnJzc1m9ejW9evVi1apVjBgxotZyWLBgATqdjrvvvptWrVo5tL3+uXvsscdo2bIlffr0ITQ0lLy8PDZs2MCUKVNISEhg7ty5No8zYcIEjh49yvDhwxk3bhz16tVz6HfdunVMmDABWZaZOHEiERERHD9+nK+//po1a9awb98+GjduXOu1OuHEfzVkJ5z4m7Fz504ZkPv27WvXJjk5WQbkiIgIRfqsWbNkQPb29pZPnz6t2Dd58mQZkJcsWaJI79u3rwzITZs2lfPz883pFRUVcrdu3WRAXrRokSKPrfO7Fd8dOnSQ8/LyzOmlpaVydHS0LIqinJGRYU7Pz8+X/fz85MDAQPncuXOKY505c0b29PSU27dvr0gfPHiwDMiffPKJIn316tUyIAPyggUL5LpgwYIFMiA/8MADVvumTZsmA/KoUaOs9pnKZtasWXXyYw+A3KBBA1mWZfnhhx+WVSqVnJaWZt4/dOhQ2cfHRy4rK5Nff/11q2uTJElu3ry5DMiLFy9WHPuPP/6QATkmJkY2GAxW534z99UWdDqdHB0dLbu6usq7du1S7Lt69aocFhYm169fX66srKy1PAYMGCAD8vfff1+r7fW4dOmSVVpVVZU8YMAAWa1Wy+np6Yp9pmtq3bq1nJOTY5XX9GzULO+SkhI5ICBAFkVR3rNnj8L+vffekwF58ODBN3zuTjjx3wbnsJ0T/xV4+umnad26tSJt+vTpABw5csRmnjfeeAN/f3/ztpubG//+978B+Omnn/5W3/PmzSMgIMC87enpyb333oskSYpJvosWLaKwsJA5c+ZYDUu1atWK6dOnc/LkSc6fPw8Yh4a2bt1K48aNefLJJxX2Y8eOpW/fvnW+rpo4deoUs2fPZvbs2Tz//PN07tyZH374gbCwsP/Y3Jrp06djMBjM9yY1NZWtW7dy77332p3Mf+DAAS5cuED37t259957FfvuuusuevXqRUJCAvv27bPKezP31RbWr19PUlISTz31lFX5h4WF8fLLL5OZmcn27dtrPZZp2Kthw4Z19m9CdHS0VZqLiwtPPPEEer3erv+5c+cSFBRUJx9r1qwhPz+fu+66i969eyv2vfDCC0RGRrJ161auXLlyw+fvhBP/TXAO2znxX4FOnTpZpTVq1AiAgoICm3lsBRK9evVCpVJx8uTJv9V3XfMcPHgQgLi4OJvL/i9evAgYVwPGxsaaz9t0HdejX79+5vk5N4K4uDgrWoLw8HD27t1LeHj4DR/vZtC1a1dat27NTz/9xMyZM/nhhx+QJMkc0NjCiRMnABgwYIDN/QMGDGDfvn2cPHmSPn36KPbdzH21BdM9TE1NtXkPTfOu4uPj6zR0d7O4cuUK8+bNY/v27Vy5coWKigrFfnvzA7t06VJnH47KW61W06dPH1JSUjh58uR/7Llxwol/As7gyYm/HaJo7OCUJMmujWmfyfZ6+Pn5WaWZVmUZDAabeUJCQmzmCQoKIjs72+E536rvuubJy8sD4Pvvv3d4DqWlpQAUFRUBtq8NoH79+g6PYw8PPPAACxcuRJZlsrOz+fHHH5k5cyajR4/m4MGD/zEah+nTp/P000+zceNGFixYQMeOHWnfvr1de1N5hIaG2txvSi8sLLTadzP31RZM93DZsmUO7Uz30BFCQ0OJj493uBDCFi5fvkyXLl0oKCigd+/eDBkyBF9fX1QqFSkpKfz88892eaFu5Jm5lfJ2won/JTiH7Zz42+Hr6wtYXjK2kJubC9h+od0ssrKyrNL0ej25ubn4+Pj8ZX5uBaayiYuLQ5Zlu78HHnhAYW/r2gAyMzNv6XwEQSAkJITXXnuNF154gdOnTzNz5sxbOuaNYMqUKbi7u/Poo49y9epVHnnkEYf2pvKwd92mYTCT3d8B07HXrFnj8B7WnGxuD7169QKo0xBfTXz88cfk5eXx448/smvXLj777DPmzp3L7NmzGTp0qMO8N0L+eTuUtxNO3A5wBk9O/O0wLYG+ePGi3QDKNPTRtm3bv8yvreGrffv2YTAYHPZm/CfRrVs3APbu3Vsne9N5m67jeuzatesvO7c333yT4OBgvvjiC5KTk/+y4zqCn58fEydOJD09HU9PTyZPnuzQ3lQe9q7bxE9Vc7XizcA0RGqrzG/0HjrCgw8+iEajYcWKFeZ5bvZQsyfJtBJxwoQJVnY3M4xrD47KW6/Xm8vgVsvbCSdudziDJyf+dri5uXH33Xej1+t56aWXkGVZsT89PZ0PPvgAoE4cM3XF3LlzFXNXKisrefXVVwHjS+p2wIMPPoifnx9z5syxOUlZkiTFi6phw4YMHjyY5ORkvvjiC4XtmjVr/tIXpbe3NzNmzECn092yDMuN4O2332bVqlVs3rwZb29vh7Y9e/YkJiaGffv2sXz5csW+5cuXs3fvXpo1a2bu0blZBAYGAticCD127Fiio6P58ssv2bBhg838Bw8epLy8vFY/kZGRzJ49G61Wy8iRI+0yiG/atElBS2GiTbg+qNm8ebOZZPSvwLhx4wgICOD333/n0KFDin2ffPIJycnJDBo0yDnfyYn/eTjnPDnxH8FHH33E0aNHWbBgAQcPHmTw4MH4+PiQmprKmjVrKCkpYcaMGTe9WswWWrRoQcuWLRU8T0lJSYwcOZIpU6b8ZX5uBYGBgSxfvpzx48fTrVs3Bg4cSMuWLREEgbS0NA4ePEheXh6VlZXmPF9++SXdu3fn2WefZcuWLbRt25ZLly6xatUqRo8ezZ9//vmXnd/jjz/Ohx9+yOLFi3nllVdo0aKFYv/q1atJSUmxmXfIkCHcc889N+wzPDy8zi9fQRD4+eefGTx4MHfddRdjx46lefPmJCQksHr1ary9vVm0aJHduXR1xcCBA1m2bBl33HEHI0aMwN3dnYiICKZMmYJGo2HlypUMHTqUkSNH0qNHD9q1a4eHhwdpaWkcPXqUy5cvk5GRUae5Y6+99hp6vZ45c+bQuXNnevToQadOnczyLHv27CExMVEx4f3xxx9nwYIFTJo0iYkTJxIWFsbZs2fZtGkTd955J0uWLLml6zfBy8uLn376iUmTJtG3b18mTZpEeHg4x48fZ8uWLdSvX59vv/32L/HlhBO3M5zBkxP/EQQGBnL48GE+++wzVq1axcKFC6moqCAwMJC+ffvy2GOP/eUrkZYuXcrcuXP59ddfuXbtGg0aNGD27Nm88sor/3GRV0cYOHAgp0+f5sMPP2Tz5s3s3bvXzJI9YMAAq6GYpk2bcujQIV555RW2bdvGrl27aNOmDatXryYnJ+cvDZ7c3d157bXXePrpp5k5cyYrVqxQ7Le1Ss8EPz+/mwqebhRdu3bl6NGjvP3222zbto0///yToKAgJk+ezBtvvEFMTMwt+5g2bRqpqan88ccfvP/+++j1evr27WsOwtu0aUNcXBwff/wx69atY8GCBYiiSGhoKO3bt2fOnDl1pgMA45DppEmT+Oqrr9i5cycLFiygsrKSwMBA2rVrx4wZM7jvvvvM9m3atGHnzp3MnDmT9evXo9fradu2LStXrsTPz+8vC57A2NO2f/9+3n33XTZv3kxRURH169fn0Ucf5Y033iAsLOwv8+WEE7crBPn6MRQnnHDCCSeccMIJJ+zCOefJCSeccMIJJ5xw4gbgDJ6ccMIJJ5xwwgknbgDO4MkJJ5xwwgknnHDiBuAMnpxwwgknnHDCCSduAM7gyQknnHDCCSeccOIG4AyenHDCCSeccMIJJ24ATp6nW0RlZSWpqalERETg5ub2T5+OE0444YQTTpCVlfWXCDT7+fnZFSL//wxn8HSLSE1NZfr06Xz//fd/CRmfE0444YQTTtwKsrKymHLfBCqrbn1wyc3NjV9++cUZQF0HZ/DkhBNOOOGEE/9DKCwspLJK5PWnColooL/p46ReVfPO534UFhY6g6fr4AyenHDCCSeccOJ/EI0a6GgSpbvp/BJOARJ7cAZPTjjhhBNOOPE/CEmWMMjSLeX/T+D48eNs3bqV06dPk5OTQ0BAAB06dODhhx+2qQmp0+n4448/2Lx5M5mZmXh6ehITE8OLL75IvXr1HPrq06ePzfRHHnlEoRdZG5zBkxNOOOGEE078D0JCvqXeo/9Uz9M333xDcXEx/fr1o1GjRly7do2VK1dy8OBBfvzxRwIDA822er2eGTNmcPbsWUaNGkV0dDQlJSXEx8dTVlZWJ3+dOnVi2LBhirSmTZve0Dk7gycnnHDCCSeccOIfwxNPPEGbNm0QRcsE9y5duvD000+zcuVKpk+fbk5funQpp06d4osvviA2Nvam/DVq1IghQ4bc0jk7gycnnHDCCSec+B+EjIzEzQ+9yf+hnqd27drZTPPx8SE1NdWcJkkSy5cvp3fv3sTGxqLX69Hr9TdFE1RVVQWAq6vrTZ2zM3hywgknnHDCif9BGJAxyDcfABmqg6eaAQxAYGCgzblIfyXKy8upqKjA19fXnJaSkkJubi7R0dF88MEHbNq0CZ1OR1RUFE8//TQdOnSo07E3bdrE6tWrkWWZiIgI7r//fgYPHnxD5+cMnpxwwgknnHDCCbt4++23FdtTp07loYce+lt9Llu2DJ1Ox4ABA8xp6enp5n3e3t68+OKLAPzyyy+89NJLfPfdd0RHRzs8bqtWrejfvz+hoaHk5eWxcuVK5s6dS1lZGePGjavz+TmDJyeccMIJJ5z4H4R8ixPGTcN2M2fOJCIiwpxecwL39ZAkCZ2ubvQILi4uCIJglX7q1CkWLlxI//796dixozm9oqICMPZK/fDDD2buqQ4dOjB58mR+++033njjDYc+v/rqK8X2iBEjmDZtGt999x3Dhw+v8zCeM3hywgknnHDCif9BGJDNQ283mx8gIiKizgoacXFxPPPMM3Wy/eWXXxRBGRiHCGfOnElUVBQzZsxQ7DMFNq1atVKQdoaEhNC6dWvOnj1bJ781odFouOOOO/joo49ISEigTZs2dcp32wVP8fHxbNq0iZMnT5KZmYmPjw8tW7Zk2rRpNGrUyGHejRs38u9//9vmvlWrVllFy/v27WPBggWkpqbi5+fHiBEjuP/++1Grb7ticcIJJ5xwwonbHuHh4bz66qt1sr3+nZyVlcULL7yAp6cn8+bNw8PDw6Z9QECA1bH8/f1JTEy8qXM2cUMVFxfXOc9tFyX89ttvnDlzhv79+xMdHU1eXh6rVq1i2rRpfP3110RFRdV6jIcffpjQ0FBFmpeXl2L70KFDvP7667Rr145nnnmGy5cvs2jRIgoKCnjhhRf+0mtyhJz0PNZ8sZEdv+2jrLichs3CGP3YUAbd1xu1xvr2GAwGdi89yNovN5FyLg1XD1f6TurO+KdHEBplmz4/LeEqqz7dwL5Vh9FW6mjSvjFjnxhGrzu62uwy1Vbp2LJwF+u+3ULG5Sy8/DwZPKUvY58chn+In00fF48nsfKT9RzddApJkmjVsznjnxlJh4GtbdqXFZez4bttbPhhO/mZBfiH+DH84YGM+tcgPH09beaJO3KZVYv3c/Z4KqIo0LFHE8ZN6UlMq4Y27QsKy1i14SSbdp6jpLSS0Hq+jBnWluEDW+PqYl22siyz83QSv+86xYX0bDRqFQPbNuGefu1pXN+6sgKkFxbxy5FTrD+XQIVOR5OgQO7t3JaRLWNQida6UnpJYvXF8yw+d4qkwnw8NS6MbdqCB1q3J8zLx6aPhMJsFl48yrZrF9FLBloHhPFA004MCGtq8/5VGrSsTT/OyrQjZFUW4qvxYHSDjkwI74qfi+2yvVCczJqrO4krTEAGWvs2ZWyDfrT0bWLTvkxfxu6cnezL3Uuxrhh/F3/6BPeld1Bf3FS2V75cKD7F3tyNXClPRESkhU8HegePoIF7pE37Yl0eR/I2cLpoF1WGcgJc6tM5YARt/fujEmzdP4n44v0cy19HdmUyatGVFj696BwwmgDXMJs+8qqucSTvT84X70cvaQlxa0yXwJG08OmBINi6fzpOFOzmUN4W8rQZuKk86eDfh+6Bw/HR+Nv0caU8hR1ZmzlbHIckG4jybMqAkKHE+tiuGxWGSrZl7WN71n7ytYX4arwZUK8nQ+r3xlPtYTPPqYIklqXt5VTBZQQEOgU05c7wPsT6htu0z68q4/fkY6xOPUWhtoIwD1/ubNyRCRHtcVNpbJStzLa0SyyMP86ZvEw0oooh4U15KLYTTf1sTxy+VlzMwpMnWZeQQLlWS1RAAPe1a8eY5s1R26gbBkliQ1wCvx08xeWcfDxcNAxvE8N9PdoT5m+7biRfy+P3rSfYfTIJrd5Ai4h63DWoPX3aRdtu27R6Nmw6zZ/rT5GZVYSPtztDB7di3JgO+PnZLtuEuCusWrCXk/svIkkyrTtHMW5qb9p0czy35nbAXzVsdyMIDAxk+PDhN5yvqKiIF154AZ1Ox/z5821OSI+OjkatVpOTk2O1Lzc3Fz8/vxv2C3Dt2jWAG8ovyPItTMX/G3DmzBmaN2+ORmOpwGlpaTz44IP07dvX4Ximqefpu+++o3nz5g79mHqYvvvuO3NP0/fff8/ixYtZtGiRVVeiPSQkJNy0MPClk8m8OHA2FSWVSAbjclJBFJAlmY6D2/DW2ldwcbWUg8Fg4N3Jn7Bn+SFEUUCSjLdOVItoXDS8t+l1WvVqofBxbEscb459D8kgYdAbfYgqEckgMeyh/jz//WOKRqairJJXh73NuQMJCAiYHg9RJeId4MXHu98ivHkDhY+ti3bzwYNfIqoEiw+1iKSXuH/2nUx5c5LCviC7iOf7vMHVS5nIkuXxE0SB0KgQ5u95i4D6yhfR79/t5OfPt6FSiRiqy0qlEpEkmWfnjGPo+E4K+7RrBTz5ym8UlVSYy0kQQJYhNiaUj+fciYe7i9lelmXm/r6NlQfOKspWJQqIgsD8R8bQq2VjhY+T6dd4cPFKtHq9eUWLKAhIsszgmGg+mThK8ZLQGgw8smk1u64km+0AVIKAh0bDb2PupHVwfYWPLekJPHVgJTKYmYJVgoBBlpnatDMz2w9W3L9SfSWPHfmBi8XXFM2eiECgqxffdf0XDTyUgeCGa3v5OmkpKkQM1cuaRUQkJB5uPJ5xDQco7PO1+cy78A752nxF4yogEOoWxsvNX8VLrfxY2ZDxGzuy1yAgItfwIQP3hj9FO/8eCvusyhQWJL9OlaHcbA8CIBPp2Zp7I95EI1runyQbWHv1Y84V7Vb4EBBRCWrujphDhKcyWEkujeP31LcwyAaFvYxEa99+jGv4rCKA0klV/JT8Dsll5411o/raBUTcVR78K3ouIW7K3vEj+QdYkPwNAoJ5ybipbIfXH8PYBsq6UaIr5Y2zH3GtIsuqbINdA5jb+kUCXPwUeX5P3cXXl9ajEsQaz4jx/y82n8CYBt0U9ldK87lv7wLyKsvML1bTExTrF8rCXg/gpbHM+5BlmVmHt7Howgnzs2f0ISAIAt/0H8+gRsog+3RmJvctW0aljbrRv3Fjvh4zBo1KZSlbg4Hnfl3HzvjLVnXDVaPmx4cn0CZc+UG8L+4yL32xFlmWMZjawuq6O6F/W2bcN0BRN8rLq3hhxhISLmZUXxfmPH6+Hnz28b00aKBsdzb+cZjP3liOSrS0O6b288EXh3Pno8q6cbvA9F567900ohpX3fRxLie78sprjf524fuKigqeffZZUlNT+fTTTx36eu211zh48CALFy40v6dTUlJ48MEHGT16NM8//zwAlZWVZGVl4evraw6KCgsLrQKk8vJyHn74YUpLS1m5cqUi9nCEW5dc/ovRunVrq5Nv1KgRkZGRVsslHaG8vByDwWBzX0pKCikpKYwePVoxRDd+/HhkWWbXrl03de43AoPBwKzx7ysCJ8AcTJzYfobf312pyLPm803sWXEIwPxyB5D0EtpKLW+Ofx9tpdacXlZUxpwJH6DXGcxBDWD2t+mnnWxeuEvhY+HMP4g/lAgy1IyrJYNESX4pb038UJF+9VIGHz70pbEBq+mj+v+LZi/l5I4zCh+f/OtbriVlKQIn07VnpmTz0bRvFOlnjiXz8+fbqsvN4sNgkJBlmU9mrSYt2fIlIssyb7y3muIagZMx3fj3QmIm3/2yR+Fj/dF4Vh4wjpfXzGOQZPSSxIs/rKO4vNKcrtXreWzJWqpqvBwAc6O/LSGJnw+fUPj45uQRdl9JVtgBGGSZMp2O6RtXo5cs15dbWcozB1dhuE5iweRvYeJRNqVfUPj4JH49icUZVt+LEjL52jJmxv2hSE8uu8rXSUuNx63BB2N60f+YvIqE4hRFnh+Tv6NAW2D1VSojk1mZwW9XflGkny8+wY7sNdU2Sh8yEr9d+YJCba4lXZb4I/Xd6wInY26A1LKz7M5eovBxomAT54p2W/mQkTDIOpZdeRutVOP+GSpYeuXfGGS9lT3AmaJdnCjYovCxLWspKWXx5mutmafSUM6ilPcVchZ5VbksTP7WimvH9P+NmWs5V3Ra4eO7pN/JqMi2Wba5VQV8kfizIv1sUQpfX1oPcN0zYvz/RxdWklyaqcjz/NHl5FeVKXok5OpffFEm759VXvefyfEsunCi+rjK59YgSTyxazX5leXmdJ3BwCNr1lBhp27sSk7mh+PHFT5+3neCXfGXFXYmH5U6PU/+shat3tKeF5ZW8MpX6zAYJHPgBJa6u2JnHJsPK+vGtz/s5mJiJrJsaQtMeYqKy5nzzhpF23blUhafv7ECZGW7Y2o/F3y4kXPHk3Hi1jF37lzi4+Pp168fqampbNmyxfzbu3evwvaRRx7BxcWFZ599lsWLF7N48WKee+45vL29mTJlitkuPj6eKVOmsHKl5T26cuVKHnroIX744Qf+/PNPFi5cyNSpU7l27RpPPfVUnQMnuA2DJ1uQZZmCggIF34MjPPPMMwwbNowhQ4bwyiuvkJaWpth/8eJFAKvoNigoiODg4JseN70RHNlwkuwruYrAqSZkSWbtV5vR64yK2LIss+LT9Vi9FWvYl+SVsnvpQXPa1kV7qCrXWgUpJgiiwMpP1pm3K8oq2fDDNrvnJBkkUs+nc2ZvvDlt3TdbjV06dqBSi6z6bIN5Oys1hwNrj9r3oZc4svEEGZezzGmrfz2ISmX/URVEgQ1Lj5i3z164yuXUXEWjqvAhyazfeobyckug+cuOE4h2LkOWoUqvZ+3h8+a0zfGXKCivUDT0ijzAosMnzfv1ksTCMyfsdoJLskxmWSnbUpLMaUsvx6GX7He6iwgsuGi57iJtORuvnbLbTW+QJc4VpZNQfM2ctv7aXkQHzYCIyLprlkDzWsU1Ekou2CXek5A4ln+UIl2hOW1vzgYEBz5kZA7lbTdvJ5WeokCXdV3gpLQ/mr8RnWS8f7IscyRvNZb+E2v7KqmM80WW6zhTtJsqqdzBsITAoVzLy1QnVXEob4tdewmJPG0GSaWWCat7c3fYObYRIiI7sjebt/O1hRzOP+mwbM8UXeBahaVuLE/bj8rG8KLZhyCwKv2AeftMwVXOFWbY5f6RZJk1V+Io1loCzZ/OH0O0U8dlQGeQWJpo+UDampRETlmZw7rx84kTGKo/FAySxOL9Jx3WjbzScnacv2RO+3PfObR6vf26IQj8vsXy8VJaVsXGzacVH0Y1YTDIJF7KIv5Chjlt3a8HEew1Chh7vtcu2m93/+0AGZBu4fefGpa6dMl4bzds2MDbb7+t+H3++ecK28jISD777DMaN27ML7/8wuLFi2nRogVffvklwcHBDv20bt0aPz8/1q1bx/z581m6dCmNGjXi448/vmHG8dtuzpMtbN26lZycnFp5JVxdXRk+fDjt27fH09OThIQEli5dyuOPP65Y1piXlwfYXm4ZGBho3m8Lubm5iv030htWE+cPXkSlUWHQ2e4dAyjOKyEzOZuGzcIoyi0mO9V6nLcmVBoV5w8mMPj+vgDEH75oHAY02GnEJJnkM1fQVulwcdVw5Xw6lWWOu3hFlcj5gxdp08dIi392/wW7gRCAQS9xdp/lCzDh6KXaa6QMF45cMs/hOncyVfHldz0kg8Tp4ynm7XMJGYqhN1uo0uq5fCWHVs0boDdIJKQ7LlsBgdPJGdDfuB13NQO1KCp6iq5HZkkpOaVlhHh7ca20mPzKCoc+1KLIyaxrDIsyaiydzLvqcL6ChMypPEsglFiSgU62/zwZrwNOF6QS42OcA3Su6JJDBmIJiXPFlpfW5bIku7Y186SWpdDGrx0AqeUX7QZCYOy5SS5LMG+nlycgokLC/rVUSWXkazMIcYugSiqjQJth1xZAREV6+QXa+Q8x+6g5vGfrrPK0V9FKFbiqPMipyqBKcnz/RESulCfQ1Nu4WudS6cVayzap1PKhllSaWqc5JoklyYS5G+vGmcJkh8KvBlkirtDSO3IqP10x5GgLWslAQnEWnYMikGWZ03mZdgMhMAanJ3KuWnxk1F43csrLySwtpYGPDzklZeSUONYkU4siJ1MzGNbG+MF7Nsnx/ZZkmfiULCRJRhQFkpNz0DloawEEQeB8/FViW1TXjWOXHbdtBomzRy47POY/jb9qtd3fjaVLl96QfUxMDB9//LFDm/bt27Nnj3KEoXPnznTu3PmGz88WbvvgKTU1lfnz59OyZUsrIb/rMWDAAAWhVu/evenSpQtPPfUUv/zyi5lQS6s1frG6uLhYHcPFxYXy8nKrdBPWrl3LwoULb+JKlFCpRGXfsT07tXFegOig58WW/Y3kEau/rupkL6PoBVKpa89zM+dU87iig68/E9TX2ddlJp/pOgTBNJumFnvxxs4JMM95svflroCMohdBJQi1npeqxnFFBz0QNVxc56MO90+ocf/q2Fkt3mAehQ9BrFMQYfLhqFdLaS8q/m8MIurmo65le6PXrTinm7qOOtQNK/s6tDs1jlv7U2jLR+0w+VDV0V6tUta/2oJAQRDMneJ1q6+yom2rS1sl1qH9+ychyWDn27nO+Z2wjdv6zufl5TFjxgw8PT2ZO3cuqhoTDOuKNm3aEBsby/EaY+ymoMkURNWEVqt1SJI1ZswYvv/+e/Nv5syZN3xOAB2HtFXMEbKFehHBhEQauyG9/b2IahNhcwWJCQadgQ6DLRwVHQa1cfjlJKpEWvduYV7V17h1OD5B3g7PSZIkhY/OQ9s77tpWi3QZ3t68bfTn+D6q1CKt+1gEH7v0buZw2E4UBTr1amY5p3aR1LYOwtvLjejqslWJIp2aNXLY6EuyTNcYy8qlno0jHH5ZC0DT4EACPNwBaODlQ7iPr52BJSP0skSvRpaFCr1CGtcaOPUMsUxij/VtgIfK+oPgenQJskzu7RTQEtHBWYmIdPK33IvmPs2rX6b2oRE0RHlaViLFeLerJTAQaOZteaaivNo57KkC8FYHEOhinEDsqvIg1K2pw/OSMNDYs53Ch6OeLQGRBu4xaERjWxDs2gAvtZ/Dc5KRaOpluY6Wvm0cnpOISEsfi32MTxRqG6sIlXkEWvpanvXugS0cD9sh0DXQsnimR3B0raGTl9qVWD9j2QqCQK+wCIcBjgz0Cos0b/eKqL1uRPr5EVK9AjrI25PIIH/HdUOS6N7EUv+6toxw2BumEgU6x4ab28umTULw9HRMfijL0LG95To6923uMOgSVSJd+rWwu9+J/23ctsFTaWkpL7/8MqWlpXz44Ye3pKNTr149BX+DabjO1vBcXl6eQ/bUoKAgYmJizL+6rsq7Hq16NadJ+8YOe27ufHGMWWVaEATuenms3aBAVIuERYfQdaRF26fvpO4EhPrb/YKSDBJ3vjTWvK3WqJn43Gh7U0cQ1SJt+8US3TbSnDZ82gBc3FzsBlCSJDP+mRHmbd8gH4Y82N+uvSiKDL6/L/71LPPbxt7bw+51C4KAxkXNiImWrtjG4UF0bBtht+ETgDvHdMSlBhXE1EGd7DbGoiAQ6O3BsI6WOXK9oiOIDPCz+1KRgWndO5kbb0EQ+Fe7LnZfXCpBoHlgMN3DLKu1xkW2xs/F3W5QZ5BlpjW3rKRyU7lwZ0R3uy8hURDoHdychh6W53t4aC9UgspuHkGAkWF9zNsBLoF08u9iNxgSEOgb3B+PGkvq+wSPsNtDICDgKrrRJaC/Oa2hezMauDd1GHD1CBqv6OXpHjTBgQ8RX009mvlYyqq5dzd8NEF2e61kJHoG32HeVgkq+gSPsXs+IiIRHjE09LAEpj2D+uIqutoNoGRkBoZYetO91J4MCulp115EoGdQZ8Vquzsa9ay+RmsIgFpUMbah5bobewfSJ6Sp3edWAO6L7qKgK3ikZRe7c6REQcDf1Z1xUZYAu0d4OE0DAx3WjX917qyoG9P6drZfN0SBqOAAejSxtLVDuzbH39vdbh03SDJThllW4Lq4qJk4vpPd6ZmiKNClU2PCw2vUjbu7odaobH+wVieNmdLTzlnfHriV+U6mnxO2cVsGT1VVVeaJ3u+99x6RkZG3dLxr164plic2bWqcU5KQkKCwy83NJScnx7z/74QgCLy1ZgYhkUZyLlMwYQqmxj4xjDGPD1XkGXBPb+59fYLCTqgecwqo7887G15X9M65uLnw3uaZeAd4me1q5p0+7z66jeqo8HHny2MYdF8fpY/qcwtv3oDX/3heYR9Q35931r2K63UBlKgSEVUiryx6iibtlEv8H58/lfYDWpntav5t0zeWJz57WGHfuFl9Zsy7E5VKVDSWgijg4qpm9udTCKyn5IGZ9eIooiKMAbcp+FBV5x3UtwX3TVQu3+4ZG8kL4/so7MBYZD4ernz1xB241eCGUokiP9wznnreXma7mnkf6dGZsW2UX6X3xLbh4TbG8ja9WEwvygbePvw4fLyiofbSuLKg7914qV0VL0fTcN6cDkPpVk8ZvD/SZBD9Q1pW21WXbXXu5t5hzGqjXBof4hbIa7HTUAtqRQ+UiIBaUDGj+UM09FDyhz0QOZUor+hqO1Hxt5VvGyY0VPqI8GzGpIb/QkBQBEQCAi6iK9OjXsWjBrWBIAjcFf4q/tU9S6YyEjE+2x39h9I1cJTCRwvfXvQJvldhZ7ornmo/Jke8peCGUoka7o2Yg6faV2FrOr/+9e6juU93hY9eQaPo7D9QYWc6tyDXMO6LeFFh76X25smmL+JyXQAlYhwyvD9yOpGeSt66KZETaOcXq/Bhui8x3tFMj56ssI/0DGFWq3sRBdHq/mlENe+2mUqIm3L5/bxO42nuW19xbNOzMrRBLE8076ew7xkWyZyugxC4fjgPvDWu/DLkTjw0lh5PURD4Ydw4Qr29zXbUyPtwx45MatVK4WNcx1ge6mMMdkx1yOQqxMeLr6eOU9R9d1cNnz8/AW93V0VApBKNJf385H50bamsG1Pu7UH/vsY6qVJV3+/qY0Y1Dua1V0Yr7IND/Zj17YNoXFQK36IooFKJvDL/HiKaKalFbjdICBhu4SfV0sv8/xm3Hc+TwWBg5syZHDp0iHfffZfu3bvbtMvNzaWsrIwGDRqY6QZscTgcPHiQGTNmMGHCBAVl/H333YeLiwvff/+9OeD44Ycf+OWXX/j555/rHLDdCs8TQFVFFbuWHGDXkv2UFpYT0aIBI6YPIra7/WMlnrjMum+3cvl0Kh7ebvSe0J2B9/bC3cvdpn1ZURlbF+1h/+ojVFVoadqhMaMeHULjVrYJ9GRZ5vSe82z8YTvpiRn4Bnkz8J7e9JrQTcE7VRMFWYVs+GE7x7fEYdAbaN27BSP/NZjQxraJOw0GA8c2nWLTgp3kpOcR3CCAIVP702VEe7vDs5lXC9iw7Ahnj6cgigIdejRl2IROBNgZatTpDOw5eJEtu89TWFROg1B/Rg1uQ/vWjewOf17KyGX53jOcv5KJq4uGfq2jGN01Fh8P28SP5Vod685eYNP5i5RqtTSrF8RdHVrTOsx+o3oyK4Pfz8dxMT8Pb1cXRkc3Z3ST5rjbWSZbWFXBipTTbL96Ea1koG1AGPc06UC0j+3eWFmWOZqXxJr0Y1ytyCfQxYvhDdrTr14satF22eZVFbE5c7+RJFOG1n5NGRbak2BX28SPBtlAXOEpDuTtp0hXSKBLIL2CehPr08ru/KDcqkwO5m0lpewiKkFFC5/2dAnoj6faNgGiTtJyvmg/Z4r2UGEoJci1AR39h9LIo7nd+5dZcZmTBRvJqryMRnSnuU8PWvn2w1VlmwCxylDO6cKdXCg+iFaqItQ9ig7+w6jv3timvSzLpJTHcyRvG7lVGXiovWjn15tWvt0UvFM1UaIr5kDeHs4WncIgG4j2akaf4AEEu9quG5IsEVd4nh3ZB8itKsDfxZf+9brTwb+VYm5YTWRVFrD26iFOFlxGADoFNGV0g24EudorWwPbrl1gbdpp8qvKaOTpz4SI9nQLbmy/bhTmsTjhJHG5Gbiq1Axq1IRJTVrj62q7blTodPx54QLrL16ktKqKpkFBTG7dmrbXERjXxJm0TJYdOUNiVi5eri4MbdOMEW2b4+Fiu24Ul1Wybv959py6hFZnIDYyhAn929I4zPbogSzLnDx1hQ2b4rh6rRA/Pw8GD2xJ757N0NiZTpCfXcympYc5uS/RSJLZNYrhd3cjpIHtunE7wPReevOdNCJugecpNdmVt17/+3me/htx2wVPn332GcuXL6dHjx6Kyd8mmJYTvvvuu2zatIklS5aY2cQnT55Ms2bNiImJwdPTk4sXL7JhwwYCAwP57rvvFJTuBw4c4NVXX6V9+/YMHDiQy5cvs2rVKkaOHMlLL71U5/O91eDJCSeccMIJJ/5KmN5LM9++9eDp7ZnO4MkWbrvVdia+hwMHDnDgwAGr/Y64GAYMGMChQ4c4evQolZWVBAYGMnr0aKZOnWqlhdOjRw/efvttFi5cyKeffoqvry/33XcfU6dO/Uuvpy7QVmqJ23WOsiKjPEuT9ra/emsi5VwaqefScPN0pU2/lrh72v76M6GsuJzTu8+jrdAS1TaCRjENHNrLsszFY0lkXM7CO8CLNn1j0dj5+jOhKLeYM3vjkQwSzbs0oV64Y84NSTLSGORnFOBf34/WvVuY53jZQ861QhJOX0EQBVp2bIxfoJdDe73ewMnTaZSUVBBa34/mzeo7nHQPkJpVwMX0HFzUKjo2a4iXu+OJphU6HYeT0yjX6YgOCiQmpPb5eedzs7lcLc/SvUE4brXoKRZrKzmSk4pOMhDrX58IL9tyMSbIsszZoivV8iyetPdvbLfXyYQCbREXSy4jI9PMO8qKyfp6SLJEUukFinVF+LsEEOnZtNZVaQXaLK5VXEIUVER4tMRD7XiBgl7SklZ+miqpFD9NA0LcmtR6//KqUsmtSkEjuNLQsy0uou0eWRO0UgVpZXHo5CqCXRsT6Gq7R9YEWZbJqLxEgTYTV9GTxp6tUYmO60aZvoSk0gtIskS4ZxQBLrXUDVniYkkSBdpCfDU+NPepvWxzKos4X5yKgEAr30gCXB2XrU4ycCw3lQJtOWEefrT1b1Br2aYUF3AuLwuNqKJr/UZ2e51MqNTpOZyWRqlWS3RAAM3rOb5ugIRrOSRn5+Ph6kKXJo1wsyFTVROl5VWcjE9DqzPQLKIejUId9wjJssyF89fIyijEx9edNu0jUKsd143CnGLOHUlCliRiOkYRHHb79jrVhAQYbmHozTnnyT5uu+Dps88+q5Pda6+9xmuvvaZImz59OtOnT6+zr969e9O7d+8bOr+/ErIss2L+On59ewWlhRaek+h2kTz//aM062itnZR6Po2Ppn9D/MGL5jR3LzfufGks97x+h1XwYdAbWPjmElZ9up6qCsvqwjZ9Y3nxx8dt6uGd3X+BTx79jtRzFnJR3yBvps6dzKh/Dbayryyv4qtnF7Bl4S4M1SzAgiDQfWwnnvv2X/gFW5ObHlhzlC+fXaDgrgpuFMhj8x+k9x1dreyL8sv4/I0VHNhy1jx5XKUWGTiuI4+9OQ43D+shk3Wb4vj+5z0UFln4eSIaBfLCU0No28paZPpqbhFzftnKsYuW63bVqLi7f3ueGNNTsVQajCvwvtt3lO/2H6WsxsrNNg3q887owTSrZx1EncvNZsbOzZzNtRAd+ri48mTHbkxv28nq5aWVDHxweju/JR1HK1lWh/UKieLdTiMJ9bAu26N5l/ggfhVp5ZYFEQEuXjzRbDgjwjpa2VcYKvnh8h/syzlq5iUSEOge2IFHou+xqad2PP8gq67+SpGuwJwW6FKPSY0eoKVvOyv7El0+a69+SWLpMXOaSlDTwX8IQ+o/aDXkJcsyJwvWciBnEZVSqTk92LUxQ0KfJdTdWn4pvyqNrRkfc63inDlNI7jRIXAi3YPus9Kqk2QDB3IWcyx/BXrZ8nXewL0Vw8Kex9/F+gMjvfwC665+SXaVhd/NXeVNv3r30ClghI37p2V1+i8cyt+JoQYHV0ufDtwdPh0fjZ+VjxMFp1mY8js5VTXvnz9TIibRLbCTlX2xrpyPLyxnd/YZ86R5lSAyKKQDz8SMx0NtHfyvSj3FR+e2kVdlaXcaewUyq91IugZbf7xdLS3m5X0b2XfNct2uKhX3t+jAjE590FwXmMuyzPdHjvHVwSOU1qgbrULq8e/hQ2hhI4hKuJbD7KVbOZtmqRueri5MG9iZhwd0tipbvd7A10v2sXzLSbQ1OJw6tQzntUeGEhpsPWQZdyKFTz/YSFqqpWz9/D14+LEBDBvVzsq+orSSr175g+3LDikktHqNas/TH03B29+2VqQT//u47Ybt/ttwK8N2v7y1jEWzrcnBRJWIxlXD5wffoXFry6THjMtZPNbpZStJFxPueGYkj82fqkj78OGv2LJwpxXvkagS8Qn05uvj8whqYJkfEH84kef7volBb7DJTP7Yx1O549mR5m2DwcCrQ98mbtc5K1JKUSXSoEl9vjjyHh7elq//A2uOMuuO940bNbNUt41vLntREUBVlFXx7ITPSU/OsbpuURSI7diY9355RMEnterPE3zy9Tar8xcEAZVK4NN5k2nVwvJyzC0qY/K7iyksrbBiJheAEV1bMHeqkmds3tY9/HRQKTMBxgmzHi4aVky7h8hAyxdqYn4uY1f8SqVBb3Nl39Mdu/F8l17mbVmWeergCrZcTbBaSaYSBOq5ebN68DQCXC3BzYn8JJ4+/iOSLNtcffZq7ATGNLSsTNRJemad/Zik0hQrQk4RkXDPMN5u9RKuNSgQjuXv5+eUr6yObZoU/ViTl2lRYwl+haGU7y49T6Eux4qCQECgiVcHJkfMVPSsHM5dwt6cn2z4MGrV3RP5CfXcLB8Xxbosfr38OFVSmU2ag7Z+oxkQ+pQibWvGp8QVbrCyFRBxVXlxf+Mv8dHUM6dnVCSx4PLL1ZIu1mU7KGQqPWqs0JNkiW+T3ieh5LSVvYhIgGswL8a8i3uN+VgnC87wQcIXdlcOPt1kOt2DLPevyqDj8WOfkVyWpZCGMfoQaOEbwacdHlP0Oi5NPs6sU+u4HgJGDqkFve6nc5Cl3cmtKGPkmp/JqSizWnUnACMbN+eLfqMVwc1He/bz9aEjXA9REHBTq1l1/z1EB1p6T5Oz85n8yW9UaG3XjYf6d+K5UZYPXVmWmf3lBrYevGDVtqlEAX9fD35+dwoBNUTGz8Zd4cUnFyNJss3Vu0+/NJzR4y0fFwa9gZfHfkT80SSbbVt4s/p8svlV3Dwc90z/EzC9l2a8nU54Y2tKnrriSrIL82Y2dA7b2cBtudru/wMKsov49e3lNvdJBgldlY4Fbyh1yBbPXU5lqe3ACWDlZ+sVsiZJcSlsXmAdOJl8FOeVsPSDtYr072f8gmSQ7Eq6/PT6b5QVW0hED68/wckdZ22yeUsGifSLGWz8wSK9IUkSXz67wLhxfZbq7a+eXaDQJdyy4ihpSVk2r1uSZM4evcyhHRbplPIKLd/8tMvm+cuyjCTJfP3DTkX6oq3HbAZOptNafzie86mWsk0vLGKBjcAJjD1SFTodX+45rEj/8Mg+quwETgBfnDhMdpmll+V4Xhqbr16w+SI1yDJZlSX8nKh8QX2SsM5u4ATw+cX1VBl05u1DeSdILE22yWQuIZFSls6+XIsPg6xnRfovVrZg0XtbnrZI8XI6mreRQl22zaBGRiax9DjJZRaNtwp9MftzFtnxIWGQ9ezJVgZWR3J/r5ZbsV034gr/JL/K0qOYW5VqM3Ay+agylHE4V6mfty1zYbWIsO2y3Zn9KxUGy/1LKDnNhZI4m/YSEnlV2RzItQT4sizzc8ofVrY18XPqEkUP1qaMoySVZlgFTkYfMueKUtiTY5FOqdDreP/sVpvHlqvP4f0zSm27H88dsxk4mfKsS77AyRwL43dGSQnfHj5q04cky1Tp9Xy676Ai/avNB6nU2a8bC3YdI7OwxLx9PimTLQesAycw0hTkF5Xz+wZl/fzm823GumHHx/dfbKeiRu/8/vUnOXf4kt22LeXCNbb9cdBq3+0EWRaQbuEny87VdvbgDJ7+Iez8fZ9D+RDJIHHoz+MU5xkbDG2llh2/73NIrCmKIlsX7TZvb1m4yyGPlGSQ2PTTDnNjkpWaw5k98Q6JNasqtexbaQkKNi/Y6ZCJV0ZmQ43g6ey+C8ahOnuXLkNueh5n9lj08zYvOeKQ2E8UBbYsszTWew8kUlmlt2svSTJn469xNcM45CTLMqsPnLWrhQdGaoJ1hywB2trTFxySahokmQ3nEijXGgOVoqpKtqYk2eXLMWFNouW6V6acdkiAKMkyS5NPmrcvl2aRWJLhkHW5VF/J/hyLXM72rP0OiRwFBLZnWfS74ovPUKovsWsvI5NdlUFauUUS5ESBfU04ow+RUwWWZ+RC8W6HBJYyEillxyjT5wPGgO580VZkh6SXKuKLLIHKuaKtCNif5yJj4FzRVqTqQKVEl0dyWZxD8k7jeewzbx/O2+2Qq0pG5kCeJYi/VJpMVlWOw7Iq0hVztshy/9ZfO+JwRouIwIZrluB3Z2YCZXr7E4glZM4WXiO5xCLU/EfCaYfPrVoQWV5D227t+Qt2bcEY+G+6mEhJlfE8yqu0bD2d6LD+CQisO26pGxv2nFNQilhdhySzdqflnNKv5JFw/prdj0KAigotB/dapkNs+XW/Q5JMAdj4y167+53434YzePqHkHetwCFrNlQLImcXAVBaWIZeaz8gAONYfN61fPN2fmaBw8YCjGP6prlQeRkFDm0BVCoVedcsdjnpeQ6DLWTIy6hxTnXwASh85GUXOVSHkCSZnIxCi31+aZ3kGPLyjfM99AaJ0grHXduSLJFTZOlVyCktq3VyrV6SKKowCqzmV9gXETZBJQhklVt8ZFeUONQtA8iroWafW1XswNIIAUFhl68tdPiylpHJ0xaat4trCP46Qs25UKV6x3lkJIp0lpd1mT6/TlIlZXqjD62hHIOsq8UaSvWWeS7GwMvx/dDLVWir9exquwYwDsWV6CzPeoEuz6G2HUBxjXIq1BXV6gOgoMb9yK0qcngVEjLZlRb77MoSh4zyNe3A2AblVznW9NPLkuK5zSktq1WiRZJlCiqMxy0os93jWxOiKJBdZJmflVtYVmue4tJKs/hwXl6pQ1uTj7zcGtdxrcDhB64sQ16Ndud2xK1wPJl+TtiGM3j6hxAY6u9Q7BaM83NMTNtefp61yprIkkxAjZUm/iF+CLWsXnPzdMXV3TifJaC+X63nbTAYFD6CGgTUqgEVWPOc6uADICDUYhcQ7GOX9RyMjV5QfcvE6YAAT4eNntmuerKnWiXi6eZY1kQUBIJ8LSv7grw8apWAUYsivu7G1UgB7vaZwk0wyDL1PCw+gt28atWeqznfKdDF8eoqMAZDgTVWYQW4+NXa81Rz1Z2PxnqCui3UnAjtWYusiYCIj8Yy785T7V9r0GGyA3BReaASHK92M9pb5th4qgJw+FABasHFvFKvtmsA41Cct8biw08TUGsQ6FPjuL4a25xM18PPxXIPAl19au15Cna12Ae7eTsUm65pB9VtkKvj1YoqQVA8t0GeHrV+KIiCgL+78bh+HrXXDUmSCfaxzF8K9PV02PME4O3patajDAhwvCrX5CMwqMZ1hPo5/ggT6tZm/pMwkmSKN/1zkmTahzN4+ofQ7+4eteomdR3ZAZ9AYyPm4uZCv7t71joMN2iKRUpjyAP9zKvf7PkY9uAAcw9K/ch6tOrV3GEw5OKqofcdXczbQ6f2d9jzJAgCwx4aaN5u1as5wY0CHb63AsP8adPXIvcw9M4uDquwJMkMqSHP0qd7U1xd7S8kFQWB2OahNKxebiwIAmN7tHTYGBskmdHdLIzhY1q3qFVba3hsMzO5n6+rGwMjomsVQR3b1OJjfGQbhz1PKkHgzsbtzNtRXiE08arvMBjyVLvSM9jio3+9HrX2PA2o18O83dy7DZ4q+y8iAYFg1/qEe1iYszv4D3Z4TjIS7fwsnG4xPn1rsITb8iES4dnBHAypBDUtfAbWOgwX6zvIvB3rO6jWYb6WvoPMEjA+mkAiPVvjSIRYJaiI9bHIdXQJ6OswCBQQ6BZokaVp4tWYeq6OaS581N608rGsNBwZZl/yB4w9TyPCLPV1QP0Yh/qHIgKxfqFEeVvO465mrR0+twZZZkITC2P4mNgWDj8sVILAkKZN8K7WEPV0c2Fwm6YO65+MzKiOluse0SfWYc+TKAqM7tfavN0oIpBmzUMd9ha7uWno3tuiGzjknp61foQNm9LL4f5/GhK3NufJGTzZhzN4+ocQUN+fu18Zb3OfKBr12qbOvVuRft8bE3HzdLMb3Ix9chgNmljYe5u0b8yg+/rYbDBElYi3vxd3vjxWkT593n1GxXI7DdnUuZPxrLGCpdvojrTpG2szEBRVImFN6jNiuiV4UqlUPDb/QeOGnXr52PwHFSzjQyZ2pmFUPZvXbVxtF0n3QS3NaR4erjzyQB8rWzBKPgiiwGMP91ekPzC4E76e7jYbcAEY2imG2AgLa3gjf18e6NrByhYsK4oe76OkXHixS09cVCq7X9mPte9CiKclMOkcFM7gsBibwywqQSDIzYsHmlpejIIg8EzMKASwG6w80XSEQresR1AHoj0jbPoQEQn3aECfYMt1qEU1dzS8z+axTZjQcIrimesSOAJfTbDNXhgBgWiv9kR5tTOneah96V4ttWJtLyIKKnoHP6RI7xI0GRfR3W5w09pvBAE1+JuC3SJp7TsMWw+hgIir6EGXIGX9GxgyFVFQ2fXRt95k3GvwVrXwaUszr1Y274WISIBLMD2DLAGdKIjcH3mXw0BzSuSdqEXLh8Gw0M409qxvs2xFBGJ9wulTzxJEuKs1vNBqkJUtGO+FIAjMaKXk0pvWqjOBbh42AygBGB7ZjI71wsxpYT7eTO9iTalgvEYBV7WaZ3oplSMeH9oNV7Xabt14oG9HQv0tPXMtm4QyoGszm1p1KlHA38eDySOUtBz/emqQsW2z4+Phxwfg7m4JLHuOak+LTlG22x2VSHizUIbc3cNqnxP/P+AMnv5BPDDnLqbPuw8PH2W3eHhsQz7cOVshwAvQoEko8/fOpUk7Zbqrhyv3vTGRxz950MrHiz89zqQXRqNxUw5rtOjWlE8PvE1wQ6WMQWz3GOZtfZMGTZTyIt7+njz5+cNMfF6pKaZSqXh73asMmtJX2SsmQOfh7Zm/5y08fZQ8Qb3v6Mqby14kKExJ9BgY5s/MJc/Td5KyYfXwcuP93x6jc7/minedKAr0H9uBt3+apqApAJg4rhPPPzEYH28liV+DUH8+fHsSbVo2VKQH+3mx4KW7aBMVpkjXqFXcO7ADb01V6gwCzBjSh6f6drOSVWlRP5jfHryLqCDl9cUEBrN03N3EBCh7Fzw1LrzctTcvdlF+xQqCwPxu47knuqMVj07noHCW9H+AQDclz0ynwCZ81OFBQt39FOl+Gg9eazmB8Y2UAZ1G1PBGy2foHtRR8dIWEOgc0JbZLZ9T0BQAdAnszf2Rj+OtVg7h+WsCmR71vBXPk7vKi4ei3qOxV1tFuoiK9v6DuTv8VSsCyG6Bk+lX71+4isrrC3BpyF3h71PfXak/6esSyl2RnxDi1kyRrhZc6RI4mQH1lTQFAINDn6ZL4J2oBeX11XeP4Z7I+fhqlBxoDTyaMiVyLgGuymfETfRkaP1p9AyaqLw+QWR69It0DbDuSWvm3Zpnms3GQ628vo7+bXm+2WMEuihJGP00vjzZZBq9gpT3z03lwicdH6NncCxK/TyBASHt+KD9I2hEZS/sPVGdmdNuFH4uynanoacf3/W4ly7BkYr0YHdPVo66j84hyjqjEUUeaNGBz/qOtgpIXurbi+d798TjuroRExzEb5Mn0TRI2e5EhQTy85N30ixMWTc8XDQ8OawHz41U8vEJgsDsJ0Zw59AOaK6r+21iGvDd7MkE+St7SNu0j+Dd+ZMJDfNTpPv4uvPsyyMYV6P3GoxC6e8se5Z+4zsrAihBEOg6tA0frH0RN8/bj6agJpzadn8fnDxPt4i/Qp6lqqKKk9vPUl5cToNmYTTrGFXrZOSkuJRqhnE32g9sZVfXzoSyojJO7jiLtlJHVJsIIltak0TWhCzLxB+6SMblbLwDvGg3oJVdXTsTCrIKOV29Wq951yZ2de1MMBgMnNkTT961AgJC/WjTN9aurp0JWen5XIi7gigItOzc2DgfygF0OgMn4lIpLqkgNMSPli3Cai3byxl5RoZxjZrOzRribUfXzoQyrZZDyWmUa3VEBwUQG1rPob0sy5zNzeJyQQGeLi70bBBuV9fOhEJtBYeyU9BJBlr6hxLlbVu7ywRJljhTeIXMygL8NJ50DIiulWE8r6qQhJIkZGRivKMIcnXMYm6QDSSWxFOiL8JPE0C0V0ytLNh5VRlcq0hEFFREeraqIcxrG3pJS2rZSbRSGX4uYdR3i6n1/uVWJhsZxkVXGnm0w8WOrp0JVYYyrpTHoZeqCHJtTLBbpEN7WZa5WnGRAm0mbipPGnu2QW1H186EUl0xl0rjkTAQ7hFNkB1dOxMkWeJCcSL5ukJ8Nd7E+sTY1bUzIauygHNFqQhAa7/GBLk6LlutZOBITjKF2grCPHxpH2Bf89GES4V5nMvLwkWlpkdoeK0M4+VaHQevXKFMqyMqwJ9W9R1fN8D59CySswvwcNHQtWk4HrW0O8WllZw4n4ZWr6dZRD0iGziuG7Isc+5MejXDuAftOkba1bUzIS+zkHOHLyFLMs07RRHSyLGPfxqm99Ljb+XQILL2xRT2cDVFw1dvBjt5nmzgpoKnyspKzp49y5kzZ8jJyaGoqAhXV1f8/PyIioqiXbt2NGzYsPYD/Q/AqW3nhBNOOOHE7QRn8PT344bkWc6ePcuaNWvYvXs3Wq3W7qRAQRCIiIhgzJgxDBs2DE9PJ4W9PWirdOxZdpBdSw5QWlhKePOGjHxkEDGdm9jNc/l0Kuu+3UrymVTcvdzodUc3BtzTyy7TbXlJBdt+2cOBtUepKq+iaYcoRv5rMBEtbAe4sixz7kACG3/YztVLGfgEejNgci963dEVtR2dqaLcYjb+uIPjW+OQ9BIte8Yw6l+D7erbSZLE8S1xbF64k9z0fAIbBDDkgX50HtbOrr5dztUCNi7ex9nDSYiiQIe+LRgyuTt+QbZXmen1BvbtT2T7tnMUFZUT1sCfEcPb0rp1Q7tf2CmZ+azYfZr41GxcNSr6totmRLcWdvXtKnV61p+5wKbziZRptTSrF8RdHVvTwkHv05mcTH47f5rE/Dy8XVwZ1SSGkdExdvXtirWVrEqNY2dGIlrJQBv/MCZHd7SrbyfLMqcKL7Pu6hEyK/Pxc/FiaP0O9AiKtdv7VKQrZkf2Hs4XX0CWZVr4xDCgXh/87ejbSbKBC8UnOV6wm2JdAf4uwXQO6E8Tr9Z2y7ZQm0lcwQauVcQjoqaxdyda+w3BXWX7/hkkLUmle7hUvINKqQQ/l0a09B1FiHusTXuA/KrLXChaQ17lJTSiO5FefYj2GYzGjr6dTqrgYvFWLpfsQy9XEuTahJZ+owlwta8vea08nriCTeRr03FTedPCtx8xPj3trvgr05dwLH8nCSWnMMgGIj2b0TVwMAEutp8RSZY4WxTPnpwD5Gnz8XPxpXdQd9r5tbbbs5dTWcS6a4eIK7gMQMeApowM62pX304vSezISGBt2hnyKsto5OnHxMj2dA6KsHv/kosK+DX+FKdzMnFRqRgYHs2EZq3wcbFfNzacT2DThURKKqtoEhzI3e1b0zLUfu9TfFo2yw+cJikjzziRvF0zhnWIwc3Fdt0oK69i485zHDiahFanJya6PmOHtiW8gf26cfZ4CptWHiMjPR9ff08GjGxH9/4t7K5mLsguYtOPOzix/TSSQaJ17xaMfGSw1ZSH2xEyAtItzM6RncN2dlGnnqfk5GS++uorjh49iiiKtGvXjlatWhETE4O/vz8+Pj5UVVVRUlLClStXOH/+PCdOnCArKwsfHx8eeOABxo0bh7oW8dP/RtxKz1Pu1TxeGjiH9IsZCKKALMmo1CIGvcQdz4zk0Y8fsGrIfpmzjEVzlprtTPnqhQfxwfZZhEUr5yqlnk/jpYFzKMguQsDITSKqRSS9xL8+vJ+Jz49W2EuSxPxHvmHTTzvNPkRRRJIkottGMG/rm/gGKYfKzuyN5/WR71JZXmXmlRJVIoIo8Mqip+h3V0+FvbZSy6zxH3Bs8ylElYhkkMx/OwxqzVtrZuB6XbCy988TzHt8AbIkm1fACKKAq5uG2Yseo21P5VyXoqIKXp7xB4mJWYiigCTJqFQiBoPE0CGtePHFEVY8W79vP8lHf+xCFAUMkqXZ8PN25+vnJ9K0oXI+RnpBEQ/8vJyrhcUIgrFsVdV5H+vTlaf7d1fcP1mW+ffB3XwXdwyVIGCQZURBQJJlIn39+H3MXYR6KV925woyeHDvrxRpjZw4MsbJ4pIsM6fDCO6OUk6K1UsG5p77nZ3ZcagEEYMsISIgIRPrE86H7afhpVYGEqcLz/HxxS/R15AdERBQCSqeafooHfyVc5WqDBX8lPxvksviERCRkRARkZCI9enMfRHPob5OKPds4TY2XptffQ2mFWgCrqIHk8LnEubRQmFfrs9nTdoLFGhTME50kxFQIWOgle9Yeoc8Y1U3TuUt4lje92Y7Uz4PdTAjG36Cr4tS8LdAe4U1V56n3JBn5aNb0CN0CJyssJdlia0ZX3GqcD0iKiQM5usPco3kroh3zfQJJqSUJfDj5XfQSpU1ytb43N0V/gQd/JULG3SSjk8Tv+Fk4WlzmZr+tvCO4cWYp3BTXVc3cs7y1plfMMiSmYZAQMBFVPNO2wfpFHBd3dBWMG3/r5wuuGZ+/kzPyqhGrZjXcRzq6z5gfjl/kjf3b0Osfm7NdcPVncUjJ9EyUBkQXSsq5v5fl3OloMjio7puTO/eiRf797KqG5+v28+PW4+a7Uz5GgT68MNTkwgLULY7l1JyeHbWUoqKLTxUYnV7+Oz0gdwxor3C3mCQ+GjmcnasizO3Baa2oWlsA9797kG8fZV148T2M7w5dh7aSq2ibRNFgdd+f86mDuftANN76ZG38giLdMwP6AjXUtR892ags+fJBuoUkj700EOkpaXx1FNPsXLlSj7++GMeeughevbsSWxsLA0bNiQ6Opp27doxZswYXnnlFZYuXcqnn35Kly5d+PLLL/ntt9/+7mv5r4Isy7w57n2uVcupmCqmiUF85afrWfetUkZh15L9LJqzVGFnypd7NZ/XRryrkDXRVul4ZejbFOWWgIxZykCqzvvti4s4vOGEwsfSD9ay6aedCh9SNdFc8rk03rl7vsK+ILuI10e+S1WNwAmMtAkGnYF/3/cZSXEpijxfP/8zx7fGme1q/j214yxfPrNAYZ9y4RrvPbYAg0FSLB2WJZmqSh2zpnxNfpaSYPDdd9eSlJRdff7VZVvtY/OWs/zxxyGF/cFzqXz4xy5kMC+Blqt/RWWVPPHJCiprkJRKkswjv64is8hEJmhMN+X9es9h1p1RMi0viT/Dd3FGYVwTY7OJ7iCtuIiHN65S9OaW6bU8tPdXinWV5nMx5ZWBWSc2cDQnlZpYmLyVXdlx1XbVZVud80JxGv8+r9RSzKnKswqcjNcuo5f1fJL4NZmVWYo8K9K/I6UsodrO5MP4N774GBszlXU9oyKBDdc+Rka6jqFbRitVsOzKG1QaLKzlsiyz8eqbFGrTzHbGf43P9tmiNZwpXKnwkVyym2N53yvsTPkq9PlsSn8RSbbcP4OsZ13ay1QYChS2pryHcr8jucTCFg5wLH8NpwrXV1+vQXH9eVVXWJP2jsK+TF9iFTiZ8shILLnyBenlSYo8v19ZwanCM9U+lGWbUHKRhSm/KuyvlGUz+8widLJBwd8kI6OV9LwW95OCJBNgxrE1nCs0yqmYnj/Ts7I+7SxfX9ijsD9w7Qpv7N9mrBuysm4Uayu5f8NyynUWkllZlnlk6RquFhYrfVTXje8PHmPl6fM1XbDuaDw/bj2qsDPlyywo4clvVivqfmWVjudnL6OktFJxHEkylvT877dz7LSybvzx3S52rq+uG6Z2p/qYSQkZvP+qsm7kXs3jzTHvKQInMLZVer2Bd+6eT2p8Ok78/0SdgqcXXniBxYsXM2HCBPz8/Op88Hbt2vHGG2+waNEiWrVqVXuG/0c4dyCBxOOXzYGMFQRY+sEac+AC8Me81XYpBCSDxNXEDI5uPGVO27v8ELlX8+3yMIkqkWUfWrTt9Do9yz/+0+45S3qJkzvOknzG0iht/GE7leVVdvlQBEFg1WcWDbHivBKjJIwde0mS2bJwF4U5lmBo7Y+7jF+6NrLIkoyuSsemXw+Y01JScjl6LNkhR8uy5UfR1VBiX7T5mF3eLUmSySsqZ9sxi3TD/qRULucW2JWtEIDv9h01B0OyLPP1SftSGgZZ5nxuNoczLI3x2tQzFGjtM5OLgsCPFy1BYKVBy/K0fXZ5fyRk9uac5VqFhWl7e9Zuh3ptsiyzNcsiIVKozSOucL9dmRIZmUO5W6g0WJjPj+atsru8X0aiSirnTKFFOiW78gJZlecc8jCdzF9ilk4BOF3wmwMfBkr0GVwptTwjyaX7KNFn2b0OAZGT+RadOUk2cCTPthal6TrSK86RWZFoTjuWv9MqcFL6ENibs968XaYvZ0f2brv2EjL7cw8rGMZXpu+zaWs8Jxm9ZODPq5ZnJKU0j52ZF+0+tzLwc9JhqgyWQPP700fs8jwZZJm8ynLWJlk+FA6mpHExO9dx3TigrBs/bT1qv25IMkmZeRxJvGJO2773AgVF5XbruCgK/L7aItmkrdKx6pf9NrXwwNh+Ht17kbTkHHPa+u+2odPqbbdVsvGfNV9ssnPWtwckWcRwCz9Jdi7It4c6lcyoUaNuacitUaNGdOhgmxPn/yuObT5ltbxeARkyk7PJSjFW5pKCUpJOpTiUW1FpVBzbfMq8fXxrnEPCS8kgEbfrHHqdsaFMOZtGUY5jiQ9RJXJsi0XE9eimkw7PyaA3cHi9pXfrzN74WmVmDHoDp3dbvkwPbz3rkI1dkmSObLPoWB0/nlzrqqHi4gpzz5RBkjh64YrDYEsUBA6eswSN+5JSrYY2akIGErPzyC8zDilcKy0htbjQIaGhWhDZcyXF4iMryeGMA4Mssy/L0nORUJxOucG+bpkJR/MsQeCpwtMOiRwlJE4UWO53UulZh6SaADpZS2qZxUdy6TGHgRDIJJceM2+llR9zSEYJUKbPoUh7FQCtVE5O5XmHunMCKtLLLRpvaWXHaiHVlMisPIdOqpbXqUo3a+nZ9yGSUmZ51i+UnHRYVhISF0pOmrcTS5PQyY7rhoTE+eIE8/ah3HiHRKoSModyLXVpf9blWmexlOiqzD1Tsiyz92qqQ207EYE96ckWH8m1143k/AKySoxyK7nFZVzOyndcN0SR/fGW+nckLsUhK7kkyRyLSzUHaEkXMigtqbRrD8YPvZMHL1l8bDzpkADYoJc4tO6Y3f23AySqiTJv+ueEPdQ5rNy+fTs63c3P2ndCCYNeqk0dotrOoPhbV/sbyWMe1qqrD52lgdfras9zM+dUUwDZoXae6Txq2BsMkk3yPCsf1ceVawxp2oNxOK+GD6luzYq+2q42jToABKWdXq5dSKPmS60uPoTr7Axy7fejZg9PXWRTjHY18tTJR40hUdk0X6luPuQ6HP96H3XNYxmWrN1eQFCW1Q2WbV3uhXWeOtQNxf2WqEvZ6qUaPmp51o09XDWe2zrWDdO516ZRBxjrhkFZx2sL4mVJtgyn16ENud6HXlf7XKG6tmdO/O+hzsHTW2+9xR133MGnn37KpUuXas/ghEO06NYUQy2Bh3eAFyGRxtVqPoHe1At3LN1g0Blo3tVCHti8S1OHvUKCIBDRspGZvym8RQNc7azYM0EySLToZpmA2rJHjMPeLVEt0rKHZaJhs07RdQoaYzpHm/8f29k2y6/Zh0qkVReLfYsWYbXKKri4qImMNJanWiXSrGEwjqWyZFo1tkzGb9uwfq0viRBvL4K9jCtNQz29CXBzzMWllyTa1bMwxLcLaOBQxFVEoLW/hbAx2jsUdS1cQDLQ0jfCvB3j3dSh/pqISDNvy8rPRh72V4GaICDSwN0izxLm0dxhT5KAqJgwHuLWopaeKnARPfHVNKj+vxfemjAcPVgyBuq5WVbp1XOv3YevpiEawXjP/F0amHXu7EHCQKi75VmP9IxxeN0iIhEelrrU2DPCIbu4CdFelpWArXwjHeofqgSR1n4W+3YBDWsNOjSiihhf4wRwQRBoE1zfYS+PgEC7GgzjbcNqrxuBHu6EeBtJLIN9PQn0dszFpTdItI601I3YpqE4ut+CINA0KsQ8FB/ZJKRWLidZkolpbeG/a9WzuUM5LJVapFXP5nb33w6QbkHXzqht5xy2s4c6l8zAgQOpqqpi5cqVTJs2jUceeYQ1a9ZQWlq7WrUT1ug6ogNBDQPtBgWCKDDmsaFoqrXRRFFk/NMj7PaoiKKAl78n/e6yyAUMvr8vru4udoewZFnmjmdGmrfdvdwZ/vAAu+ckqkQaNQ9T6M6NenSIw24bSS8x/ukR5u36kfXoOrIjop1GSVSJdBraTrFqcMzD/Rz2PsmSzMgHLAzErVo1JDIyCJXK9nWLosDwYW3wrMEOPHlQe+zFWwLgolYzuqdFAmZIi6b4ubvZfakIwJSu7cyNt0al4v5W7e2+HEVBoJ6HJ4MiLUHgxMbtUYn2wycJWSHP4qvxZHD99naDIZUg0ty7ITE+FoqKQSH9ah22GxJi0Z2r79aIxp4t7PoQEWnt2xUfjWXVWceAsQ6H1ECgrd9w81Yjz054q+vbDTwERFr6jTYTUwqCQCu/O7E5Ka46h0b0JNpnsDmlmc8gNKIHjl7Abf0nmuuORnSlrd9wh+fkpwkl0tOywqtrgG0ZFBMkJHoGW+pGgIs/nfzt3z8RkVif5oS5W4KIOxr1ctj7ZJAlxjW0tAmt/cOI9a1vN+ASBYFxjdrgW4N9/KFWHe3OuxMwDqndGWOZ0zoopglBnh6O60bn9uahPZUocm/f9vbbNkHA38udQW0tgfuIga3QOAhsZFnmztGWlahePu4MGtve7rxGUSXSuFl9WrS1BE+jHxvqsMfKoJcY99QIu/tvBzjnPP19qHPJvPnmm6xatYrnnnuOZs2akZCQwPz587njjjt4++23OXnyZO0HccIMlVrFnFUv4ebpqqT+r67cbfu15J6ZExR5xj89gu5jOyvswNi7o3HVMGfVy4ol/l5+nryx7AVUGpXiC8rUgAya0odhDyk13h56ZzIxnaONGnA1pVBUIl5+nsxa/qIiGGvYNJTnvnsUQRCUPqqv6d6ZE+gwqI3Cx/Pf/Yv6kfWsJr8LokBIRDAv/vS4Ir1tz2bc9+IIxXEBI9WAAE/Ou5tGTS3BliAIzJ41Hm9vd6vGUhCgadMQpk/vq0gf3SOW0T2NQWHNRl8lCqhUIu/9ayS+nhY2ZVeNmi/vHoOrWqWYTGvK269ZYx7orpzn93iHrvRuZFwuX/OsVIKAu1rDd8PGoanBsB7s5sXHXcYjCqLiZWfycW9UJ0Y0VHIePdl0DI29QhCu8yEi4KfxZFYrpWZcpGc490fcXW1Tw0f1/+9uNIGm3tGKPHeHP4WPxt8qEBQQCHINZXzDaYr0aK+udA6cUG1T41lHhYDAiAbP4+tiWeouCiqGN5iLi+hxXbBi9FffvRWdA6cqfLTwG0djr/42fagEDYPD3lFwPbmIHgwLm4NKUCvmPpnyNvEeQEs/JY1Hr3pTCHNvYbasmcdV9GB8ozcQatynANcQ7mz0OAKCzbLtFzyWFj7KZ+ShxvcR4lbPZtkGuPjzaJRSgqm1X2OmRxsDT1UNH6bn5dmY8UR5WYItQRCY33UC/i7uiufc9LzE+IQwo40lyAQYE92Ce5q3rT5ujbohCKgEkc8HjibI3cLl56JS8dWkMbip1dfVDePf3tGRTOuu1L67f2BHerVoXH2OlnSVKOCqUfPJtDEKGRY/Hw/mvDgalUpU6FGa6vvowW0Y0ldJfzHtheFENQ81Hv86mScfX3de/2iyom2LbNmIp7+cDgI227apc++mdW+lj9sNUjXP083/nDxP9nDT8izJycmsX7+erVu3UlhYiCAIhIaGMmLECIYNG0ZwsG1yxP813CrDePaVHFZ9tpEdv+2lvLSShk1DGf3oEIZM7WeTkNJgMLDjt32s+XITqefTcXN3oe+dPRj/zAiFKHBNpJ5PY9WnG9i78jC6Kh1RbSMZ9+Qw+t7Zw2avlLZSy8Yfd7Du2y1kJmfj5efJoCl9GfvkMCs9OhPiDyey4pN1HN98Cskg07JnDOOfGUnnoe1s2pcVlfHnN1vZ+MM28jML8Q/xY/jDAxn16GC8r9OkMuH4rnjW/LCTc0eSEASBDv1aMH56f1p0irJpn59fyqrVJ9iy5QwlJZXUD/Fl1Oh2jBzRFlcbkg+yLLPteCJLdpwi4Uo2LhoV/do1YfKg9jRpYHvI9Ep+Ib8cPsmGsxep0BnlWe7p0pbRrVugttGDpzMYWHnxPL+cPcnlwgI8NBrGNm3B1NYdaORjW04jvjCTnxOPsP1aAjpZorV/KFOadGFwmG2pkgqDlj+vHubPq4fIqizEV+PB8LBOjG/YE38X22WbUJLIxoytnC2+AMi08I5hWP1BtPS1PSxRpi/hYN5mjubtoMxQjI86gK6Bg+gaOBg3lfXwlizLJJUe4Xj+GjIqLiCgItq7C50Cxlnp1JlQqsvhTOFKEoq2opXK8HVpQCu/MTT3HW6TkFKWJZJKtnG+cCUFVZdRia409upPK/+JVhxPJhRUXeF0wQqSSndjkLQEuEbR2n8cTb0HKAIhE/SSljOFWzhVsIFCbQauKk9a+g6gQ8AYvDW2n5G08iT25aznQskJJFki3KMpvYJHWgVOJpTrK9iRvYcd2Xso1BXio/amX73eDArph5faNuHwifxElqXtIa7gMoIg0NG/KZPC+yiG7Goit7KUXy8fZVVqHEXaCkI9fLmrcUfujOyAu9p23dicksiCc8c5m5uFRlQxJKIJD7bqSItA22SfaYVF/HL0JOvOJVCu1dE40J97O7ZlXJtYmxPK9QaJ9cfiWbInjstZ+bi7ahjeIYZ7+rajYZCfTR9JqTks+/M4e49cQqcz0CwqhImjOtC3W1ObdaOyQsumlcfYsPQI2RmFePm4M3hsB8ZM7o5/kO26ce5AAis/WcfxbaeRJZk2fWIZ//QIq4/C2wmm99J9s0sJibz5ad9ZKSKLZ3s5eZ5s4Ja17fR6Pfv372fDhg0cOXIESTKSKnbu3JmRI0fSt2/f2g/yXwynPIsTTjjhhBO3E0zvpXtmlVHvFoKn7BSR3+Z4Ot9vNnDLlN9qtZq+ffvSt29f8vLy2Lx5Mxs2bODw4cMcPXqUnTt31n4QJ8hJz6OsqJzgRoF4+jiePAlQUVpB9pVc3DzdqBceVOvSfFmWyUzJRluhJSSynl0pl5ooLSwj92o+Xv6ednucasJgMJBxORvJIBEaVc88X8sRCnOKKMwuxq+eD37BjoVMAXRaPZmpOYiCQP3G9axYwm0hL7eEkuJKAoO88PZxPOkXoFKrIyO3GI1aRYNg3zqV7bWiEiq0OkJ9vfF0dSwSC1Cq1ZJRWoyniwthXo7FjU0+0soK0EoGGnn646qqveoW68rJqyrGV+NBgGvtPgyygZyqHGRZJtg1GLVYu49SfSHl+mK81H54qOvgQ9JSrMtEEFT4akJt9u5cjzJdNjqpFA91PVxUtnsHakIvVVCmz0AluOGpDq3T/SvVZ2CQqvDShKIWHYvdAlQZSinV5+IqeuFlp8epJiRZokCbhSQb8HcJsWJgt4USXQlFumJ8NN74aGovW71k4FpFHoIgEOYe6HAiuQk5laUUasup5+atmOdkD5V6HeklxWhEFeE+tdcNgIyiEsq0Wur7eONVh7pRVqklK78Ed1cNoYF1qxsZmUXodHrqh/ja7FW+HiWF5eRnFeHt50FASO3tjqltkyWJ0KgQuzJVtxuME79vLb8TtvGXPgElJSUUFBSYJ5HfYqfW/wsc3XSShW8u4eIxI1+P2kXNgMm9ePCdyTYDlqLcYha+8Qdbft6FttJIHdG4dThTZt1pVypgx297Wfz2ctIuXAPAzdOVYQ8NYOpbd+Hpaz0MkJmSzU+v/8aeZQfNlAGtejVn6lt307ZfSyt7SZJY88Umln20lpw0IwGjd4AXY58Yxj2v32EziLp8OpWfXv/NyHAuAwJ0Gd6eB9+eTJN21kMNOq2eJR+tY+232ynONz5fgWH+THxqGGMfG2RTD+/0qSss/H4XZ+KMTNUqlUDvfi146F/9CQ3zs7Ivq9Dy7eoDrN59hooqY9mGh/jz8JiujOhhW09te3wSX+w8yIVMIx+Xi1rFuHaxPDOwBwGe1kFwdnkZHx7ey6qL59FVr0hqHRzC85170j/CevhRlmVWpMbxzYV9XCkzsmF7ql2YHNWRJ1v0wUNt/TJKL8/h+6QN7Ms5Y2adbu/XhIejh9PSN9LKXpIlNmduZnPWZop0RnJSb7U3Q0KGMDx0OCobK/iuViSyPXMxl8tOAcY5Oc28uzAw5D7quVkPkemlKo7m/cKZgjVoJSO/j7emPh0D7qal32ibL+FrZYeJy/ue3KqzAIioifQeTLvAx/DUWA8VaQ3FxOV/y+XiPzHIRr4rX5doWgc8TLjXQCt7gOSSbcTl/0SRNgUAleBGU59RtA+cjosNzb0SXTb7c34ksXiXmb6gvlss3YOnEu5pPQwnyzKH8zaxJ2cVRbpcANxUnnQLHE6/ehPRiLbu31WWpa8grvC0eWVcK5+WTGo0gUjPCCt7vWTgt9SdrEjbS5HOWLaBLj7cGd6HSeF9bOrhHc9NY/65nRzJNXIniYLAkLDmvNBqgE3NxDKdlk+OHeC386cpq2YTj/Tx44kO3ZgY09Lm/dt58TKf7zzI+Uwjn5qLSsXoNs15bkBPgrys25384nK+Wr2fdYfi0VVTAMSE1+Nfo7rRt120lT3Api1nWPz7Qa5eNdYNd3cXRo1oy4P398Ld3bpsr6XksnDeOvZvNE4vAGjdrQn3vzRCsWLXBEmSWPnJepZ//Cd514w+fIO8GffUCO5+Zdx/TRDlxF+PWx62Ky8vZ/v27WzYsIH4+HhkWcbNzY2+ffsycuRI2rZtW/tB/otxK8N223/dy3v3f4YgCApKAVEtEhDix+eH/60IoIrzS3i6++tkXM5SrD4TBAFZlnnqi2mMeXyowscf81bz46u/mrXXzD5UIpEtGzF/71w8vC1fnBnJWTzV9TVKCksV7OeiKCADs1e8RI/qSetgfDl89sQPrPtmi9X1CaJAx0FteHvdqwpC0IRjSbzQ9010Wr3iOkSViNpFzYc7ZtOiBuWCQW9g9t2fcWzrGZsB+dD7e/Ps5w8qGvDDBxJ585VlAAraApVKwMPTjS++f5CwBpYVYRVVOqb/ewmJaTk2aQ4eu6MnD41WBqdLj51m1trtVmWrEgTC/HxY8shk/D0tZZtTXsbYFYvJKitV8DOJGOPHDwcMZ0KMMjidf24nX1/YV628ZoEoCLTxD2NRnym4qSzB6ZWyLJ44/hkVei2GGivcRAQEQWBe2+l0rKF1Jssy3yd/z8G8g1bXLCDQwa8Djzd5XPECTi07x6KUN5FkpdyKgIhGdOGhqHnUd4s0pxtkHWuuvExGxWmby+Tb+k+kd4hykUBqyXb2ZM7EOLO3pg8Vbip/hjf6SRFAaQ0lbEl/mBJd+nUUBMaS6xD0HM397lb4OFfwO8dyPzfb1LwOH5cIRjT8VtHTVazLYknKk1QYihU+jPp2MiPC3qCpj1Krbt3VHziYt4HrISDQ2LMVDzSeqeiFSi27wjvx76GTdIpVkCIioiAyo/mLNPOuUTdkiTdP/8yB3HM21xoOqd+RV2PvVtSNvZlJPHLgD2RZVki6qAQRT7ULy/o/RGNvi+hthU7H3WuXcCY3S7HqzlRqT3fszvOdlfqVK06e4/W1W8z6dBYfAiE+3iybPpnAGh8XBSXl3P/v38nKL1HwPpnq1hv3D2ZcL6VKxc+L97NwkTXDuigKNI0O4ZOP7sHNzVK2V5OzeXbMfMpLKpXtjmhcHTNnwSN06m+ZAC7LMh9N+5rNC6xHTwRRoOuIDsxe9RIqlWMKhH8CpvfSnbMqCY64+Vd8TqrA0jluzmE7G7jpPrlTp07xzjvvMH78eD766CPOnz9PTEwML7zwAqtWreK11177nw+cbgUVpRV88ui3Rs25617Wkl4iP6uQhTN/V6T/9s5Kq8AJLD18Xz23QCFrkpWaw0+v/VZto/QvGSRSzl5hxcfrFOnfvriIkoJSK9kYSTIySX748FfotBay1HP7L9gMnMB4Xce2xLH9172K9PmPfGMVOJnOSV+l4+PpXyuCpN0rjnB0y2m7PZmbF+3l9D4L67Jeb+CDd9cZXw7Xla3BIFNWVsnXnyl1A//YeoLEK7YDJ4BvVu4nPbvQvF1QXsHb642N6vWnZZBlrhUW8/VupX7ex0f2WwVOYAwNZOD1PVsp0VoYwi8V5/D1BePL4fqzkmSZuPyr/JZ0XJH+6cVVlF8XOBl9yEiyzLz4PxRL288UnbEZOBl9yhwvPM6JAgtrtizLrLn6OZJssKIfkJHQSVrWXf1KkR5fuJFrFXF2+YXiCpaTXWlhJNdLlRzIMunEXe/DQKWhgBO5XyjSzxcsokSXZoO7yejzZO6nVOhzzallumyO536psKl5HcXaVM4WKHXk9md/T4WhyMqHXH0Ht2V+hF6y3L+08kSbgZMxj8zlsjOcLNilSF+QssgqcAIjrYFBNvBj8kJFPdibfYb9dgIngC2ZxzmWX7NsJV45vhaphoiwCQZZokxfxdw4peTIonMnOZ2TZUVXYNr67PhBkgot7OvFlZW8tWG78bzl633IZBWX8PlO5TP33Z+HrAInsNSt937bQXGZhSE8LT3fZuAExrbq4qUsVq1R1o1vZ62yCpxM9rIs89ELvypIL0/uOGszcAJj23Zo3XH2LDtkc//tglvheDL9nLCNGyqZnJwcFi1axOTJk3n22WfZsmULLi4uTJgwgQULFvDtt98yZswYPDxqn7Pz/x27lhygsty+lIakl9j+2z7KS4zyHnqdno0/bnfIdyQZJLb+vNu8vfHH7Xa18MDYaPz5zWZzY1yQXcSBNUft+pBlKMkv5eBaiyTB+u+3OSSSE0SBP7/ebN6+dDKZpFMpdn1IkkzK2TTzMCbA+h93OrwOlVpk44Jd5u3DBy5RVFjuQMdK5vCBRPJyLWK0y3bE2eWyMV3Hmj1nzdt/xsU7JAI0yDIrTpxDqzeyFJfrtKy8eM6hzEWVXs/aRItG2NLkk3Y1xUz47bLlXmRW5HOiINEub5OMTE5VEcdrvEx35eyqlSRzZ47lBZJafp58bYZ9LTwk0isSyKmyaPSdKVyLQ0JDVJwrtATxV0p3opfLscfbJGMgtXQ72moxYUk2cKl4lUMuKRm4XGzxcalkvV1b03VcLFqNXB1oVhqKSSzZ69CHVirjUg0x4aN5WxyWrYDA4TxLoJJefpXksmSH9y+zMpPEUgtJ8ZqrBxwTqQqiQttub1YSOZWldoMtgyyzP+syGeWWj7Bfzp1ySKypEgT+iLdI+Kw7k4DWAfO2QZZZHXeeymoG7yqdnrUHzjlkGtcbDGw8bKkbGzadtsvZBMYgf/VaC31OTkYhR3edt9+2STKFOSUc3Rlv8fHdVodtmygKrPvW9oejE//7qPOA7UsvvcSxY8eQJMm4FLZjR0aOHEnv3r3RaGqfoOeEEukXM1CrVQ7lTfRaPblX8wlv3oDivBLKiyscHlNUiVxNzDBvX03MqFV3pCCrCG2lFld3VzIuZzlkJAcjP1X6RYuPK+fTFVIq10OWZNJrnFP6xWsOj1/z3GM6G0nx0hIzatHPk7iSYDluelo+oig4ZBmXZci4VkhgkDc6vYGcAsdkr7Isk5ZVYN5OyStEJYgK6YvrUa7VkV9WQX1fb7LKyqgyOJ66qRZFUoosPpJL8hwGWzKQXlZo3r5akWvX1gQBgfTyHLoEGikIrlVcq5UkM6PCcv/yqq7W6gMgv+oawa5GMk6jBp2j6zBQUGURfS3WXUFAjYx9eQwZA2X6TFxU3uikUrRSiV1bMF53iS7N4kObRm1U91VSETqpHBeVF8W6rFoZyUVUFOos5ZNTle6wbGVk8rSWss2szHJ4fBOyKrPMQ3epZdlWPUg1IckSqeXZ5u2U0jxEBId5ZCC1tIBQD19kWSa9xLHepUGWSS6qWTcKUImiw4+LSr2e3NIyGvr7kl9cTmUtepcqUSQ12+IjPT2/VhWB7JxiDAYJlUokIyXX0SMIGIOhazWEgVPjHbdtkiSTdqFu9eGfgiQLGG5hYo4kO3me7KHOwdORI0cICQlh+PDhjBgxgpCQkNozOWEXnr4etVZ+AI/q1WHuXm7XT82whmyxB/D08UAQRZDsN/oqjQpN9eoUT9/aewwlSVLYefl7IYiCw+Cm5pyquvgA8Kix4tDTx4PiPPvBjSAIePlZJqB6errWabGCiWFcrRLRqFXmSaq2IAoCnjUmoHq7utQqcyGAeeWdl0vtq4wkWVbYebu4ohIEhwGURw1OHk917avEZGQ81TXuh9oTatES9lBb7oWbyjbP0PVwVVnyaEQP9A4EiwVEXGvMLdKIXlw/XGcLGtF4LmrBDWMnuuM8JnswSrrUBgERlehabV/7dctIuIg1y8oLAcHhc+Jag7jTQ137ajcA9xo8Wl5qd/K1jgNHrxrPhbfGzWHgZLEzXrcgCHioNZTr7euaqgTBbA/g5epSt/pXXTc83GqvG7Is41WDANjT07XWDyQXF7W5d8rTp/a6IUkyHt41ysrfy2o+4/WwteDmdoJJ4Pfm8zthD3Uetvvwww9ZsmQJDz744N8aOMXHxzN//nzuv/9+hgwZwsSJE5k1axZpaWm15j1+/Djvvfce99xzD4MHD+auu+5i3rx55OZaf5E//fTT9OnTx+r34osv/h2XZYU+k7o7HIITRIEW3ZuZJ4y7e7nTZXh7hxpvBr2BvndZJm72ubOHQ+FKlVqk76Tu5pVq4c0bEN6igUNRXUEQ6DneIgnS/+6eDgMnUSUy8F6LdErbfi0VgY4tePh40H6gZXLogDu71dpF339SN/N2j97NHA7zATRo6E9klJHIVRAEBndppmAqvh4GSWZwF8uEyWGtmjkcZhAFgR5NIvB2Mzb4wR6edKrfwKFGmEGWGRlt8TG8QazDwEkliIxu1Nq83cy7IcGufnbtATSCih5BlpWDXQNsr9A0QUCge2B383YTr/aoBccvO0+VL41qaNU18xnoUONNRqKpj4XpPtyrf61yLgGuMXhpjHpqKtGVhp69FUzh1j4MhHtZmLMjvQc47EkSUBHu1ddMxumrCSXINQrH+nnQxLvGs+7Xy2HgJCDSzt/Cg9fMqyleasdBnavoSmvfGlIo9TvUqoc3KMSyCnBAaDPUtVAYNPTwo4WfhbF/dJPmDoePDbLMqCY16kbLZg6fW1EQ6BLZEH8PYxDo6+lG5+aNHNZxgyQzuKNloUO/vs0dBk4qlcDA/i3ME+UbtwijfnigXXswtofdhljqU/+7ezoMM0VRULRtTvz/Qp2Dp86dO9tcjpqSksLu3bvZvHmzjVw3jt9++43du3fTsWNHnn76aUaPHk1cXBzTpk3j8uXLDvN+8803nDx5kt69e/PMM88wcOBAdu7cybRp08jLy7OyDw4OZubMmYrf5MmT/5LrqA0Nm4Yy4J5etl/y1T1M98+6U5F878yJVrIpJogqkS7D2xPTybLctv2AVrTsaVu4VxAFRJXIXS+Ps6QJAlPfutvul5YgCIz812DFCsB+d/ckLDrE5twAUSXi6ePOmCeGmdNc3Fy4742Jth2YrvP1OxQyMyOnDcDT18PmdYgqkZDwIEXwFBDoxdg7OjkMAh+c3k/xPN8/ojMqlWgzuFGJAq2iQukSa1km3iK0Hv1jomzam1Ie66sMTJ7r3ANZlm2+6kRBYFR0DE38LQ18/9BmNPcNsfniEhFwEVU82LRrjWOIPBw13Mq2JiaF98VbY+kd6RXUC3+Nv825OSIi3mpv+gRZVpC5qjzoFTzByrYm+oVMVtAbtA24A7XoZjOAElDh7xJOtJflJeStCSPaexT2AxWZtoGPKFJa+ptkS2zdD5EQ984EuVmCjnpubQlx72AnqBMQEGjtf78lRRDoHvQgjvTzWvoOw0dj+bBs6dudIJcwm2UrIOIiutEt0HK/1KKa8Q3G2jm+EaPDRuKqstSNMQ264avxsOlDhUg9Vz+GhFo03gJcPbi/SRcr25p4pmVfxXP9SLvOaESVzblVKkGgVVAI/RpZ6EWa1QtiSIsmDuvGE327KdIfGdXNbtGKgkD/dtE0bWjh0+rcsTExzerbDLhEUUClUnHXpC410kQeeGmkla35vAQY82Af/AItweugKX0ICQ+2qcMpqkS8A7wY+a/BVvtuJ/y3aNvVteMjIyPDZqeH6ff+++/Xyd+6deu47777GDRoEJMnT2bFihU3fM43XTLx8fE89NBDTJ06lVmzZvHvf//bvO/UqVMMHjyYfftsr4ZwhDvvvJNly5bxzDPPMGrUKB544AE+//xzDAYDv/76q8O8TzzxBL///juPPfYYo0aN4pFHHuG9994jPz+flStXWtl7eXkxZMgQxa9jx442jvz34IUfHmPgPcaXhqgSUVerfrt7uvHqr8/QaYhytWJst2bMXvkyHtVDXyqNyhxQdBvVkZlLnlPYC4LA23++au7FEVUiqmofPgHevLvhdaLaKHljek/oxvPfP4qLuwsIoDb5EGDEI4N4fP5Uhb2bhysf7pxD49bG46jUFh/BjQL5cOccK76qO54dydS37kalViGIAmqN8a9KLTLlzUlMenGMwj4gxJcPNr5CvUaB1T4sWn2RsQ34YOMruNUQ+QX41xODGDWuI4JgbEzVauM1uLioefal4fQdqORtim4QxGfP34Gvl7HbXl1DM6tDTEM+eW6cVUP94aQRDGphDFZFQTBLTni6uvDZ3aPpGNFAYd+zYQRfDhmNh8bYc6MRLcHaqOgYPhwwTGGvFkUW9r6X9oFGsVKVIJh7DQLdPFnY+z4ivZVf00NDO/FU03FoBLVRtFUwvvQEBCY27MND1wVXHmoPXmn+CqFuRmkfEdEc+AS7BvNK81fw1ij5jvoE30mvoIkI1UcWUVE9yMXgkAfoHKD04aOpz/jwj/FUB1b7UJl7ieq5NWVc+EeoruM76hoyg2hv48vO6EddXQZu9AyZRUNP5dL4QLcW9A39CBfRuzqP2hwYhXp0p0/oe4pgWRAEBoS+R5hHVysfLqI3A8M+JNBNuTQ7yrs7Q0JfRi24Vl+HxUes71D6139aYa8RXXg4+i3C3KPMZStWX7ePJoCHo+bg56KUsRpYrz+TGk5AJRh1/0x/RURGh41kVKhSiNbPxYtPOz5OqLt/dflYdBDDPevxacfHrIZzX2o9kPujuyBgDMLVgjEschFVvNluGGPDlbIj0X4BLB41iQB3Y0+RWhTNAX2n+g1YNHICqut41t4fP5yhscZ5WTXrhoeLhvkTR9I1spHCvkOzhsx7dBSe1UN4apVorm8DOjRh7sPKZ0qlEpn37p20aV1dN0TBLIfk6+POB/++k4hwJXlpv3EdeeKdSWhc1Qimtk00UniMfqA3D7+uDFzdvdz5cOdsIloY5+6p1KKZcqV+ZDAf7ZqDf73aCTb/SZiG7W7l959AXTs+/Pz8rDo8Zs6cyeDBxiC2c+fO9lyYsWbNGt5//30aN27MM888Q6tWrfj0009rjS+ux03xPCUnJ/Poo48iiiKjRo3iypUrHD58mF27dgHGYZRJkybRrl07Zs6ceaOHt4lp04xioz/88MMN5x01ahTt2rXj7bffNqc9/fTTFBUV8eOPP6LVam96heBfIc9y9VIGe5cfoqy4gobNQukzqTvunvbH6LWVWvauOEzKuTTcPF3pNb4LEbGN7NoDXDqVzKE/j6Ot1BLdNpIe4zo7ZAAvKy5n95IDZFzOwjvAiz6TulM/0raGFRjv+dl9Fzix7TSSQSK2RwydhrZ1yIFSmFPErj8OkHctn4BQf/rd3dNhYyRJEse3neX84UuIokC7frG06tHMIctxdmYRu3fEU1xcQf1QX/oNjMXTy37Z6vQGdp9M4uKVbFw0anq3jSImwv51AyTl5LHtfBLlWi3R9QIZEtsUNwfkeeU6LRuSLnK5sABPFxeGRzUlys8xg/vp/GvszkxEJxlo6R/KgNBmaET7ZVuiK2dn9imyKgvw1XjRP6Qdwa72y1aWZeJL4kkoSUCWZZp5NyPWJ9YmwaLFRz5ni/ZRpi/ERxNIK9/eDlnGJdlAaukhsiqN2nYRXl0IcWvh8P6VaNNJLd2BTirDW9OQCO+BaET7ddUga0kr3UmR9jIqwY2Gnn3wc7VNsGhCQVUSV8r2YJCq8HeNJtyzr1UwVxNaQzkXS3ZTpLuGq+hFU+8++LrY1pWE6sUG5RdJLDmJhERDj6bEeHdAtEE+ar5uXQmH8o9QoC3EV+ND14Au+Lk4qBuyxLH8RM4UJiMA7f2b0M4/2mHZZpQXsSH9PIXaChp4+DKiYUt8XBzUDYOBbalJnM3JwkWlon94FG3q1bdrD3A5N5+t8Zco02qJCgpgaGxT3B0sMKrU6tl+/CLJmfl4uLrQv30TGoc6rhsJFzM5dCQJnc5A0+h69OzRFLXaftmWFpWz58+TZKXn4+3nSd8x7QkO87drL8syp/ec59SOs8iSTMtezek4uI1NYt7bBab30vCZEBBx8wFQfqrMxrf523meTp06RZs2yjI9deoUTz/9NFOmTGH69OkO8z/33HNcuHCB1atX4+pqXz2jqqqKiRMnEhsby7x588zpc+fOZd++fSxfvhxvb2tyXFu4qeDpjTfe4MiRI/z44480bNiQBQsW8PPPP5uDJ4BZs2aRlJTE4sWLb/TwVpBlmYkTJxIZGclHH310Q3nLy8sZPXo0w4YN46WXXjKnP/3005w9exZBENDpdAQEBDBq1CimTp2KWl131lintp0TTjjhhBO3E/7bgid7sNXxcT1yc3OZOHEiQ4cO5dVXX3V4vIMHDzJjxgzmzZtH9+6WuZxnz57l8ccfZ+bMmQwZMqRO53ZT3PKnTp2ib9++NGzY0K5NSEgIR44cuZnDW2Hr1q3k5OTw0EMP3XDeZcuWodPpGDBggCI9LCyM9u3bExUVRWVlJbt27WLRokWkpaUxZ84cu8fLzc1VdCOmpqbe8Dldj0unktm99CBlReU0iglj4H298QmwH/2WFZez49e91T1PbvS6oyvNuzSx+5Vp6hU6uPYoVRVaots1pv/kng57twqyi9i+eA/XkrLwCfCi3909iWxpv3fLYDBwbHMcJ7Zaep563dHFYe9WVmoO2xbvIe9aAYGh/gy8r7fD3i2dVseB1Uc5u/8CoijSYVBrOg1r57B360pyDjs3n6GkqIKQMD8GjWiLf6D9SbkVlTq2Hk7gYmo2GrWK3u2jaN+8ocMv+DPpmWw9l0i5Vkd0vUBGtW1unihuC0WVlay6eJ7Lhfl4alwY2SSGVsH2F2HIssyhnBRzz1Mr/zCGN4xVMItfj7yqIrZlHSOrsgA/jRcDQjrQ0MN+2RpkA2eKTnGxJB4ZmaZezWnr1x6VYL+JKNBmcK5oJ2X6Arw1QbTyHYiPA503g1RFaukucirPIQoqwjy6EebR2aG+XVHVRdJLt6CTSvDShNPIeySuKj+79nqpjPTSDZRoE1EJbtT3HIi/axuHdSOvMo5r5bvRS5X4uTalkddQxcq861FpKCSxeDPF2qu4qryJ8h5AgIPeLVmWSCo9SVLpKWTZQAOPGFr49HCob5dXlcfBvIMU6Arw1fjSLaAb9dzs3z+9ZGBfzlnOFCaDINDBvwndglo41Le7XJLHn1fOUlBVTgNPP8ZFtCbYzUHd0OlYfymBM9lZaFQqBkZG0a1BI4d149zVLDafTaS8Skvj4ABGt2uOj7v9dqekrJJNBy+Qci0PD1cXBnRuSoso+71bsixz+mQqh/clotMZaBJTn76DWiqYxa9HfmYh23/bT9aVHLwDvOl/V3fCY8Ls2hsMBo5sOMmpHWeRJIlWvVrQc1zn/wppFiPR5c0HTwZk/qk1d+Xl5VRUVODr63hodMeOHUiSZB66c4TExEQAmjdvrkiPiYlBFEUuXrxY5+DppnqeBg0axIQJE3jssccAbPY8zZ8/n02bNt3yRPLU1FQeffRRIiMj+eKLL26ICv/UqVM899xz9OnTx2FAZMIHH3zAn3/+yddff03LltYabgA//fQTCxcutEq/mci8oqySdyd/wqF1x1GpRQRBMPKSqFU89cU0Rkyz1uPatWQ/Hz70FVWVWtRqFbJsXGXXtn9LZq94yWolW0F2EbPGziP+cKJxjpFgZOB293LntV+fodso6zleKz9Zz3cv/4IkGTlSZFnGoJfod3dPXlrwBC7XCW9eS8rktRHvcjUxwzzfyaAz4FfPl7fWzFBIrYCxwfthxmKWffQngiiYqQ4kSWLCMyN55MP7rbrEE45e4o0x71GQVaTwERYdwjvrX6NhM2Xjp9Pp+fitNezYeAZRJSAKAgZJRhQEHnpqEBPv62F13Qfikpn55XrKKrSoVSIyYDBItGgcwkcvjCPwumXJJZVVPPv7Og4mXUElGueNGCQJF7WaueMHM6ptcysfyy6c5fXdW9EZDMZ5IjLoZYn+4VF8MXQUnhrlcFFWRTH/OvA78UVZ5vlOelnCW+PG510n0r2eUg9PlmV+u7KNRckbAeMkckmWkZAYVr8LzzS7E/V1w33XKq7y5aUPydPmmuc7GWQDfhp/nmzyAg09lPPiJNnA1sxvOVGwzjzvybiqTKZ70F30CZ5i9ULNqjjFzmuvUiUVVc8tkpEx4OsSyaCwj/DSKIe9DFIlR7Nf51rZjur5UQIyBgRUtA16mSjfSVZlm1G2jZPZr2GQq6rzGH0EuHWgc8inuKiUjXCVoZD9mc+TVxlXw4celeBO15C5NPDsb+XjfOFKDmV/joQBERVytY/GXv3oW38malEZNBdoM/k99S1yq9LN850kDHiofLgz/DXCPZVz72RZZsXVFWzI2GCcqVYtvSQhMbDeQO4Jv8dqKDWx5CqvnvqRXG0xaqH6uZUlQt0CeK/dNCI8lUGXTjIw8/h6VqacRiUY58NJsgwCPN+qH/9qrpxPBrD3SgpPblpHsbbKPH9JL0m0DK7HT6PGU89TGXSVVWl57vf17EtMQSUafRgkCY1axeyxAxnXwbp93bj/PO/+tBWd3lg3ZNlYn7q2iuDdp0YpqAoA8vNKeePFP0i8kGEUCBeMnG+enq68/vYEOnWzDmiXfrSOhbOXIUkyKpWIJMlIBolB9/bi2a8eRuOiDIjSEq7y+sh/k3E5S9HuBIT6M3ftDJp1dDwk/E/B1PM0+HUV/rfQ81SQKrP1HQMzZ84kIsLSDgQGBhIUVLsg9q3g559/5scff2T+/PkO5yJPnz6d3NxcVqxYUetQ6vz581m7di07d1ozx48ZM4aOHTsya9asOp3fTQ3aBgcH17ry7eLFi4SF2Y/m64K8vDxmzJiBp6cnc+fOvaHAKTU1lZkzZxIVFcWMGTPqlOeuu+4C4NixY3ZtxowZw/fff2/+3cqcrnlTPufIBiMLrkEvodcZkCUZvVbP/Ee+4cDaowr7uN3nePeeT6mq1BpfujqDmYrgzJ54Zt/xvoJfRZIkXh/xLgnHk6p9GIyknDJUllYw+44PSKjB5A1Gvb2vn1+IQV99LjqDmShu99IDfPrYdwr7itIKXhwwm4zLRoI/g86AoZr4szi3hBlD3iL7So4iz+//XsXSD9caXwoGCYPOYKRtkGHFJ+v59W3lyoec9DxeHvwWRbnFVj4yU3J4ccBsyorLFXm+nLeBnZuMjOCSQUavl5AlGYNB4vtPtrB13SmFfUJKNi/OX0N5pVH0VG+QMFRTSVxMzeaZ91diqEH6J8syz/6+jiOXjRQaBklCLxkZdKr0emYs28ihpCsKHztTL/PSjk1oDcbvOb0kmUk2d6cl88xWJeu1TjIwde8vXCw2lp9ettiX6qp45MDvJBZnK/KszzjIwuQNRjkWZPSywUzUuDnzCN8lrVHYl+lLmX/xXQq0RnkNg2zAIFffP10RH1/8N8W6IkWePdmLOFFgZOs2vtYN1d5kDuT+wdH81Qr7Ym06W68+ZyaylNGbaQKKtWlsTn8Kg6TkgTqePYtrZbuq7Q3VhJkyMnpO5b7L1dJtCvv8ypMcy3qxWhBYVvgoqIzjSOZTirohyzL7Mp4hv/LsdT7AIFdwMPNl8irPKHxcLtnJgez5SNXnItXwkVK6h71Z8xT2OqmKRckzyasyErhKGMxiwhWGEn5NmUWBNlORZ1PmJtZnrEc2lWyN+7c9ezurryrLNq+qmOdOfGPmetLLkll+J6uqkGdPfEWJTlk33jm1hVUpp6uvVUZfLdUiyTIfntnJ0ssnFfYXcnN4eN0qs3SQvvpZN+2bsma5FSHm83+s58AlY6+8QZLNdUOrN/D6ii3sS0xR2B8+m8rsbzeh1RmQ5er6V33Mo+ev8PoXShkpg17ilacXk5RoLD+DQTK3U+XlVbz58hIuX1KSjm7+eTc/zlyCobot0JvaHWD77/v5+sVfFPZlRWW82H82WanG+lez3SnMLuLlQW+Rey2f/w94++23mT59uvm3du1au7aSJFFVVVWnn72+m1OnTrFw4UL69+/vMHBKS0sjISGBgQMH1mkOWlVVld1pOS4uLlRV1UJ6VwM3FTz16NGDo0eP2g0yduzYwfnz5+nd++Y5MEpLS3n55ZcpLS3lww8/vKEoNysrixdeeAFPT0/mzZtX58ng9eoZv9BKSuyTzgUFBRETE2P+1YzGbwSp59PYv/oIkh0WXkEUWPzWckXar2+vMFIb2HjeJINE3K7zxB+ySG8c3xJH4onLVjp1YCJ+k1kyb3WNNJlFs5fYPWdZktn6825FMLRt8V5y0vNsclZJkkRVuZY1X1gkKCrLq1jy/mor25pY+sEaKmroWK39chOVZVVmFXSFD4NEXkYB2375P/bOOz5qK3v7X0kz494bBmxM7713CDUQAgRIJ70nG1I2vWwKKZuekN57QkkChBZ6772YbmwMGPc6Hk+R9P4xntGImZEN2d9u9l2efBys6yNd6Ur36ujec55nrbesML+cJfN3GRL1ff/pal3bf7dwG6hqQJoGWVE5erKQTXuyvWX7Tuez6fjJoHw2giDw8eoturJ3tm0M2uEUVWV59nEOFfu07ZnDZFUV67ToPFBRkVWVr45q0huyIvNddvCZXhWYf2YDZQ6NcHRD0RqqXJUBmbAVFGxyNesKV3rLauQqtp7jHJ2LDUU/I6saqWJm2UwU1RWQu0lFpsp1huwqrY5KRw6nrEsJvlwgcLD0E939PVr6eS3fkf/9cDOY76a4RtM6K7Bto8S+34DrSeBQ6VfaMVSVncVfEIw+QUXheOUyKhwa4/T+8rWUOwuCXLeKrDrZWvy7t8ypOFmQt8DP1hd/nP0Dm6wpDcw/vYlqV01A4ktFVShzWFmSp43ThTVV/Jy105C/aEbmWt0z9+mu7ShqYMYqWVU5UlLMihPaR1jmmQLWHckOKnckCAIfrdRrwn0xd1NQDjRFUdm8L4eDJzRnaPOGI2RnFQYcE1TVPVbN/mGTzzEUvpvun3Ht3UdRWfzlaorzyrxlf3y9mtL88sBjm6xgq6phwUd/bXkWGeFPatu578nTTz+tmzS4/PLLg9a5Z88eRowYUa+fkydP+u1/PhMfy5a5NUrrs2QHEBISgssVmM3e4XAYBpufiwtynqZOnUpCQgKPPvoor732GocPu0VZf/vtN6ZPn86LL75IgwYNuPLKK+s4UmDY7XYef/xxcnNzefXVV8nIyKj3vuXl5Tz88MM4nc7zdrrOnHF/IcbGxp7nGZ8/1v+61ZDwUlVUju7MovCUO76qutLGrhX7DIk1JZPE2jk+Ola/bPGm1gaC7FLYMHcrcq1sSE7mKc4cr0MiQoCN87TBeN2cTYYkfYqssOrnDd7tPasP1CkzU2O1s2uF9tW/etZGY0JR3LNiHmxed6ROWZqzZ8o4ccw9a6OqKqu2HTUkvZREgZXbjnq3lx846pee7QtFVdl64hTlNrcTWGCtYk/BWcPoAUkQWHxcc36XnjlYB6mmwuJTmd7tI1WnKHHUJaWhsLn4gHd7R+kWQyJHFZVtpdozlVW1Q+cYBUKNXMmpau28sqtW1CFtIpBdqTlPedZVGA9NKhWOY1S73I6KrNRQYFtfB+mlibNWbbbqtHc5MFgNMmeq1yKr7pnICucpyhw5GFH8C4hkV2ki2JnlG4z7Bgr7yzX7I5VHqJarg9oDOFQH+8s1jcWV+bvrkFpRWZm/27u96sxRQwJLgLO2SjJLtRmxxceP1EHWqn9ulx84Zkg4q6gqu07mUWJ1X2t5pY09R84YaktKosCq7Vr/27D6EKJk0DdkhbUrMr0O9vE9Jyk8ZTxLpCgKWxZpIthrZ28y/ABzj23nT8fz74SKm6vpQn/U2n7YpEkT3aSB0Xs1PT2dJ554ol4/CQl6qpXznfhYtmwZ6enp9Q6ZSUhIQJZlSktLdeVOp5OKigq/8zHCBUW8xcbGMmPGDKZPn87ChdpSwzvvvANAu3btePbZZ4mMrFsC4VzIssxzzz3HgQMHePnll+nQoUNAu6KiIqxWK40aNfJOw9lsNh599FGKiop49913SUsLHOBstVoxm81YfKQwVFXl22+/BerHFfFnYauyueUFjOWysFW5X752AxFhLwSoqdJmbGzWGlQDfSlwDwAuhwspTPLWZQRRFHR21gpbnVIMvrNINfWo41w7W6Wxs6WqUO2zbFdT7fDGihjWUa0t0bkMnDNwD/i22iU9cOvW1SeSwOZwEhMWaihv4YEoCFQ7NTur02H4QgGokTV7m4EEigcCAjU+djWycdsC2GXtXjiV+t0/h4+dq859VJyKVbNXqxEQ62AZB5fivueepbq66vDY++5b1z6KYkeSLDiVuttJQMClanYOxVanhI9ve9qV+i0Z+NpVu+rep9rnfltdjjq17dzHdT/rqqpiD/Kl7oGsqlh9nttqhyPoLKCuDruT+Aj3v3VBEARd/7PZHAFnnXzhdMq1sU0CNdb6jG0itiqftq1j3AHqNWb+ryEhIYFLLzUm6w0E34mPt99+u86Jj8zMTE6fPs2tt95a7zpatnTH3x46dEiXbXfo0CEURfH+vT644HSBhg0b8uGHH3L06FEyMzOpqKggPDycdu3a0bZt27oPEAQffPABGzZsoF+/flRWVrJ0qX5a1BMJ/+mnn7JkyRJmzpxJaqo72PTFF1/k4MGDjBkzhpycHF0mXFhYmHcZ8ciRIzz//PMMHz6cRo0aYbfbWbduHfv27WPcuHH/lpTMJu3SDEWBASyhZpJqiSGjE6KIjI2gqswa1F5xKaS31TIg09s0qqUjDz7IJDaKx1JLTOdhCjcSw5RdCultNfLHph3TOb77RNB9REn0kswBun2N4HsdGR3S2LfuUNDZJ8kk0tSH7DOtaWKduoGiKNAwzc0fYzZJNEiM5mxR8FkbQRDIaKTxzTRLitfFQAVCZIiF+Aj3l1ODiEjCTCZsBi8ip6LoGMabRyeyvuBY8KVBICNSO6fGYUkB7XyhopIeoWUvNQxLo9BeEFTAVkSkYZh2LxJCjPnEvHYWbZ8YSxNK7EcI9hwKSMSGaIHvUeamhqLA7vMyE14rz2IWo7CIcTiU0qD2KiqRFo0FO9rStE7HJkSKx1SbdRdlTkXEVBvvFBgKMrEW7TlMDm3C6eoj3jincyEgkOjTnh6i0rrga9c0sgGlJZVBnSFJEGnmc79bRCfW6TgJ4CVfFQSBJjGx5JSXBd1LEgRaxOn7hpEoMLjJMpOi3G2bEBNOeKiZ6prgTpQsKzRtpPWN9IxENq07EryfC9AgNdYdSA40bN6gTg1ORVZIb6PF6WZ0SOekgTiwKIlkdEgPery/AtzLdn8m2+7fQ5JZ34kPX3iW7IYPHx7w7zU1NeTn5xMTE+NdTerWrRvR0dHMmzdP5zzNmzeP0NBQXVlduKBlu7VrtfiSli1bMn78eKZOncqkSZN0jtOMGTPO+9jHjh0DYOPGjUyfPt3vpz77Llq0yG8/33NJSUmhc+fOrF27lg8++IAvv/wSh8PBww8//G/Tths4uY9bxDfIsylKIiNuGOKlE5BMEpfdOcJwqc9kkRh+gyalcemtlwS1BXdc1eX3jPZmRsUkRjNwcp+AUise+7iUGF2G3mV3jjBWHpcVnTxL045NaNOrRdDrECWRFl2b0qKr9qIbd/dow2U72aVw2Z1aemnPvi2IT4wMmkItSiL9hrbRURZMGd7FMOVaVVXGD9Z0ry7r3AazwZKoKAhM6dkRS61NqMnMlDYdgmqECUCE2cy4lprjflXTbnXOPF3XXJslTQ6No1d824BSHe46BBqExtMltoW3bHDSsKCOE7iXlgYnaVmfjcLakmBJCyJr4l66Sg/vSHyI5iS3iZmEkQOvItMqZoJ3u2HEJZjFKIJ1DgGJxpGX1goIgyCIZERfidFwJiCSFqUxSGdEjTNcUgORFtFTvDQKIVIUzaOGGyz1CYSI0TTxkZnpFjcqqOMEboeuZ7zGGJ4alkrLyJZB75+ISKOwRjSL0BzNCY37GTpDsqpweWPthdA/pRkNw6MDSq2A2xEamtqSlDCNKuWGTl2DHh/cs7JXt9dYycd2bkOY2RS0dSVB4Iru7QmpTfW3mE2MH9zRUNvOYjExsq+WvTr68q6GfUNAYPxkrW8kpMbS97JuXmfKz14USGwUT7fhWh8fd9fIOse2cXePCvr3vwJUVfhzy3bqv8d58kx8DBkyhJycHJYuXer9WbdunZ+9LMusWrWK9u3b06hR4A/ygwcPMnXqVJ26SEhICLfeeisbN27k2WefZcGCBbz00kssXbqUqVOnEh0dnOT3XFyQ8/Tiiy+yZ88eQ5sZM2ZckF7Me++9x9q1a4P+ePDkk0+ydu1a76wTwKxZs4LuN2vWLK9dw4YNef7555k1axbLly9n6dKlfPbZZ4wfP97wBfqvRGh4CI98dS+iKPo5EqIk0iAjiZtevEpXfvUTE2nSrrG/vehO033g4zt1/FCJjRK4552ba22Ec/YRaNOrBVc8oJd7uPP1G4hLifXTcxIlEUkSefSbv+niqNr0asmVtXIq5zadIMCAK3ox+Eq9N//Q53cTGhESsI6QcAt///IeXfnASb0ZNKWv373xbE56YCzt+2lOh2SSeOzFK5BMol9chCgJxMaFc+eDeimUKSO60LFFql+MkWf7geuG0CBR61jRYaG8OGGEW+LinH0kQaBZUjx3DtZriD3Yqz/p0bF+DpQouFPSX79ktFe6BSAjMoGH2rsd4HNf9CICvZMyuLKpPhPlvpaTiDKH+/H7iIiYRInH2lynS3VvHdWOgYkeJ9v/2e8TP4COMdrLUxAELmv0MCbB7OdACYiEiOGMTv2brrx59GgahfcLcHz3duf4W4gP0Rw6SQyhR/L0WhqEc+uQCDOl0CFBL4XSPPZmoi2t8R/S3NsdE58iRNJmR0JNiXRLelxn47tPnKU1rWKn6kp7Jt1FuCkx4HULiAxJfcYrJAyQGtacAUlTvFbnXnurqJ50jB2iK70p4yZCpVA/B0pExCyaua3pbbp+0C+xnU7491xMbNyfLrFaOr0oCLzea7xOYsUDSRCItYTzTFe9Q3Bth070bpQWtG881m8QTWJiveURIRamTxoJQuC+kZ4Qy73D9GPCLRP6kN4gLuA4JQjw1K0jdVQFqQ3juONv7iBhv3FBFOjQOY1xk3royu967XqiE6MCj20miUe/vEvnXHUY0IYJf6tdfgrw6A69uj/9J/zfh3j8L6C+Ex8e7Nixg5KSkqCzTkaYOHEijzzyCFlZWbz99tvs37+f++67j+uvv/68jnNBPE833ngjhYWFvP/++zRr1szv7++//z6zZ89m4MCBdc4W/bfjzzKM71t3kO9fnM3O5e4A6bDIUEbdPJSpz04hOsGfKNNaUc2P039h4WfLsZa74zY6DmzLtU9N8tPC82DT79v58aVfOLTV/YBGJ0Qx7q6RXP3ERELD/bMLivNK+f6F2Sz7dg12mwME6D2mG9c/M5k2vfzXhFVVZek3q5n1+jxOHnQH8SY2TuCKaWO5YtqYgEHrp47m8f0Ls1k9cyOyS0YyiQya3Jep/5hCWmv/LwlZlpn73mJ+eWcBhbnuIPrGrRty1SPjGXXz0IBO79GDZ/j+s9VsWXcUVVWxhJgYPqYz198xmIQk/y+MGoeTb3/fxpzluymvjWVo2zSFmy/vzeAeLfzsATYdP8nHq7awLfsU4F6qm9KzI3cN6R2QKLOsxsZ72zfz88G93vimfo3Sub9HX/o0CjxVvfhUJp8eXk9muTuINyEkguua9eT2Vv2wSP4r7wU1pXyX/Qcr8nfgVF2ICPRN7MDUjFE0j/RvW1VVWVe0imX5iyi0uxMGEiyJDE8Zw+CkYQElWgprclhf+AOHKzeioiBiol3MYAYkXUtcAKkSRXVxoPRHDpbNxia771+spRkd46bSLDrw13txzW4OlnxKgW0zoCIJoTSJGk/b+Dt0jpAHLqWao2WfkVMxC2ctLUJcSBdaxt1OSnjgzN886zoOln5Bsd3d/8xiNM2jJ9E27lZMYpifvc1Vys7irzhasRiXWgMINA7vRbeEm0kO8+cuUlWVfeWr2VD4C4V2d2ZRlCmeXgnj6JM4PiAJaUFNAfPOzGNLyRZkVUZEpEd8D8Y3HE/DMH/6F0VV+O3UBmadXEt+jXvpsnFYIlc3GcLYhr0D9o0DpWd5P3MtK84cQcWtaze+SUf+1m4QqeH+fcPucvHJzm18s28XJTZ3LFCHpGTu6d6bS1u0Cti2W7Ny+WjVFrbU0nlEWMxM7tmRu4b2JiYAUWaltYYv529h3qp9WGvjm7q1bcyt4/vQo13g5bH1qw/x0zfrOXooD4CY2HAun9yDq67vjyXEv22LTpfw/cu/sfyHDTjtTgRBoPfYrlz/5ERads3ws1dVlcVfrGT2G/M4dcRdR3KTJCY9MJbx940+L/qcfyc876V+T4YRk37h51h+Umbjy7aLChoBcEHOU0FBAffccw+qqvLhhx+SkqKxI3/44YfMnDmTAQMG8MILL/xlH65/Ff5V8ixVZVZsVTXEJEX7kVAGgsvpojS/nNCIEKLi6heYX1FciaPGQVxKrGEWngeOGgdlhRVExIQTEV033YOqqpQVlCPLCvENYuvFu2Gz1lBZUkVUfKQh47kHiqJQml+OKArEJsfUa6bQWlWDtcpObFx4/dpWVigptxJiNhET5f8CDYRyWw02h5P4iHDvUp0RHLJMsa2acLOZmJC6rxugxG7FqcgkhkYaMkd7YJcdlDutRJrCCDfVXYeqqlS43JxO0ab6ta1DsVEjVxEmRWEW63H/VJkauQQBiVAprl51OOVKnGo1IVIckhBcc06rw4ldLkESQv2IMYPBLpehqA5CpDhEoe5nRFYc1MhlmMVwLFLd/U9VVarlchRVJtIUZ8iqrp2TnSpXFRGmCEKl+rStQmktDUW8JapebVvltFPptBMXEmbIWO+BS1EoqrZikSTiw+pHAVNhq6H6PPqG0yVTUlFNWIiZ6HqMCQDlZdU4HS7i4iODhh34wj22VdaObXX3cc/YpigqcSkxf2ldO9DeS32fiCD6TzhPFSdlNr1iveg8BcAFBYwnJyfzxhtvcN999/Hwww/zwQcfEBMT43Wc+vXrx/PPP///veP0r0RkbAQRMeH1XjY0mU0kNoo/r2XG6IQoVFWt9z6WUAtJjRPqbS8IbofG83t9EBYRSmh4SL3tRVEkvkHsedURERlKeET96zBJIklxwWOmAiEmLJTo0PrXYZEkGkScXx1xFvfLqr77hEgWkkTzed2/aNP53T+LGIZZCK3//RMkwqTE86rDLEVhUuvfVqJgJlRKPq+2DZFiz6tvSKKFcCHpvNo2XDq/tg2RQrCIlvO4bpF4S9R51RFpDiHCVP86TKJISsT5ZVFHh4USdR59w2ySSD7P/hcd43aAzm9sq//4eSFj218Bsiogqxfu6AXimLsINy442y4jI4N//vOfPPTQQzzyyCN06tSJ2bNn07dvX1588cXzEtf9X0bu4dPMefN3Vv28gRprDQ2apXD53aMYd/dIQsL8l32cDieLPlvBvA8Wc+rwGSyhFgZO7sOUhy+nmU/GmS8Obz/O7Dfns2neNpwOFxnt05jwtzGMunlIQAfXVmVj3vtL+P3jpRScLCIiJpxh1w1k8sPjSG0aWINt54p9zHnrd3Yu34uqqLXxVJcxaHKfgINNWWE5v76zkMVfrKCsoIKYpGguveUSrnhgLHEpsX72qqqy/tct/PruQjI3HUEQBbpe0pHJD11G9xGBlyvzT5fy69frWTF/F9bKGhIbxDD2qt5cfn1fwiP821ZWFBatPsDsxbs4frIQkyQxsEdzrr28B+1aBM6EOnq2iK/X7WDJviPYnS6aJMZxbd/OTOnVKeBXdo3LxQ8H9vDtvt2cLC8jzGTmspatuaNrD12mna5ti3P56ugmVp89iktRaBvbgBua9+Ly9E4BeaCqXNXMO72WxXkbKXaUE2kKZ3hKT65oNJSk0LiAdWSW72ZVwUKOVbn5mZpFtmZI8hg6xvQIaG91FbOzZA6ZZX9Qo1QQLsXRIXYsXeInEhZgtkdVVXKrlnC0/GdK7JkIiDQI70fr2KkkhQWO2al25pBT/hV5VQuQ1WpCTQ1Ji7qGtOhrkQIsqSmqk7zKOeRWfk+18ziiYCEpfCTp0bcSFRI4A7jcnklW+dfkV69AUR1EmpuTEX0tjaOuQAywpOZUbBwpm8Ph8l+xus5iFsNpGjWKdrHXEuWTYeiLHOtethb/SlbVTlQUUsNa0jN+Am2jBwXsG5XOSlYULGVt4RoqXBVEmiIZkDiIESkjiTHHBqxjXeF+Zp1cy76ybARBoGtsc65qMojeCf4SQQBnrOV8cXgrv57YR4WzhgZhUVzTois3tuxBlMV/tkdRVX7NzOSb3bvILCzALElc0rQZt3fvTtfUwEoSx88W882aHSzZc4Qah5O0xFiu6d+ZK/t2whLg/eBwupi3dC+/Lt7FqbxSQkJMXNKvNVdf3pNm6YHT1g/tyeWXr9ayZfUhXE6Fpq0bMP76fgyf0DXg7JC1opq5Mxaz4JOlFJ0qISImnBE3DGbyQ+NIaRI4W3X70j3MeXM+u1cfQFVU2vdrzRUPjKX/hF7/VY7URfxrcUHLdr7YtGkTTz31FIqi0Lt3b1566aX/Kcfpzyzb7V9/kMdHTcfldGlZHYI7OLhN7xb8c9mzuqUsp8PJ05e9wq4V+6glCAfw6uK9MO8xeo7WZ8as+2Uz069+G6FW9wnwciD1n9iLZ2Y9pHOgqsqsPDT4WbIP5OrSeiWTSEh4CG+sfI6W3fRxbr+9t4gPH/gKURK9WXGe3yfeP4a7375JN8gU5BYxrf/TlOSV6rLoREkkLiWGdze8pBvIVFXl00e+Y85bv7u5sWrPy1PHnW/cwOSHxunOKetQHo/c8Ck1NqeuDkEUSG+WxOvf3UlUjPYClhWFZ99ZwKrNRxEEjWNTEgVUFZ6fNpZh/fT3d+PRHO75Zi6KqnoJNj1X2bNZGp/cPEH3krA5nUydP4cdZ91krJ7WlQQBkyjx7eWT6N1Q/wKem7OHJ3bMQxRE71egh6fn8rSOvNpjgs6BKnNU8fDudzhbU6TLwhIRiTCF8nrnaTTxSV0HWHp2LgvzZiIiejPvPDxLI1MmMrahnuy2zHGaWTnTqJErdFxMAiJR5iSubPIeESbNEVRVlZ2FL5NV+Svu4GxPHRIqMt2TnqJZ9BX6Omp2s/PsLSiq4xzyS4EoSzt6pH7jpREAt+O0N/8eSmrW1t4F1VsHCHRMfp/E8KG6OvKtq9hZ8EDtvfDU4d43KWww3VPe0S3hOWQry07f40e7ICAhCRZGNP6AxFC9Vt3OkoX8cfYDHW+V5/ducWMZ2eAeXd8oc5Ty8qHplDpKdFQKIiKRpkieaPs0SSF6rbpPjy3m+5yVOv4mz728s/kYrsvQX/fhsgKuXvE9VpddR4MhIpARFcfM4TcQH6ItySmqykNLFjP/8CGfu+d+blXgjVGjmdBG75xuPZbL3Z//hqwofn2ja9NGfHLHFYT6COvaHS4enj6HPZnu2EHf/ieKIq8/dQU9zvk4XL1wD689NsutW1nbxz10BIMv7cijr1+lc6Aqiit5cNAznDp8RkdxIJpEwiJDeXvNCzTtqK9j1uvz+Oyx7wOObVc+Mp7b/3l+Qcb/LnjeSz0fjyIq/cLfx5UnXWx7tfLisl0A1Gs+b8mSJUF/ysvL6dmzJ1FRUfTv35/ly5fr/n4RgeFyunhhyps47E59Oqzqftkc3nac75+frdtnzpsL2LVyv3tg8XF5ZZdbh+3Fq97WEVJWFFfyyvXvoSiKrg6Pv7xh7lYWfLxMV8fnj/9ATuYpPz4U2aVQY7Xz4pVv6WRNcjJz+fBBt4yFr5Pi+f239xax1Ye1F+Ct2z7yc5w8+5QVlPP6zR/oyrcv3cOct9wyFr6Dnmf/T/7+LSf2aZxeqqry0oM/UlPt8KtDVVRyTxTx+RuLdOW/r9zPqs1Ha/f3uW5FRVVVXnh/MSXlGrGizeHkwR8X4PJ5OQB4bs32E6f4Yo1evmjG9s3szM/jnNuHrKo4FZm7F8/HIWuOwtnqCp7a+btX6NV73bV7z8/dx/yTe3V1fHz8F87WFPulrysoWF01vHroax15aI71GAvzZnpttOtw/740/zeOVWbqjvXHmVf9HCfPPpXOIlaefUdXftq6otZxctei2buvdUfhy1Q5c7VzVV3sLZiGrNoDsIarVDoOcrz0XV3pqYrvKKlZ57XxrUNFZn/hg7gUTZbGKVewq/CRWk0+3zrc+xba1pJT8bOujt3FH1NqPwrntK2KjKzaWZP3BIqqHavEfpo/zn7obRvN3v37ztKFHKncpDvWNzlfU+Yo9eOgUlCoclXxxYnPdOU7S47xfc7KWhtVZw/wyfFFHK44pdWtqty/ca6f4+TZP6eqlJd26nUDf8k8wPzDh2ptNMiqWw/v0aV/UGDV2tbudPHQtwtq9en8+8bu7DN8tmKrro7vf9vC3szTbmmVc/qfS1Z45o352H3INEsKK3nziTlevUpvHbX1rVm8j2W/6cedj//+DaeO5PlxQykuBVtlDS9e9ZaubxzbfYLPHvvebRNgbJv1+jx2Ltf3v78aZFX80z8XERj1aplXXnmFV1991e/HU75582YqKip46623vGWefy8iMDbO20ZpfnlQ0jZFVljw6XIctVkniqIw9/3FQe1VRcVWaWPVj5pcwB9fr8bldBkS/c6doTkR1opqln67OiinkiIr5GXl66RTfv9oqSH3lCiJzJ2x2Lt9+lgeO5btDVqH7FLYs/oAuYc1jbC57y82DAKVTCK/+2hM7dmSxZmc4qAEeoqssHL+birLNQbhWYt2+lEteKACLllm4SpNFmPJ3iNU1TiCqsAoqsqPm3Z7iTQdssz3B/YE5aZRVJWSGhtLsjQJitnZOw2JHEUEvjuuvYTKHJWsK9wdlLdJQSHbmsehSs3RXFe4NCivkLsOkXVFWtsW1hznbM3BoOzfKjJZVZupdGqCxUfLf6YuDqasCo2Lpah6DXa5gODadgqnK+cg17J+q6pKbsW3BH/QVRS1hrNV87wlp6vmo9TBTJ5d8b33ZepUbByr+N3guhWqXfmcqdakbHaVLjLkkhIQ2VGiCawW24vYV77H8P4dqzrKaZvmDP16aoNh8oAkiMw9pUkX7Sg6xbGKoqDEq7KqsuBkJiV27UPh6127DBmxFFVl5n6tbyzbd5Ty6hrDZ33mxj04az8UXLLCr4t3B7VXVZVKq51VmzQJmD9+2W5IUisIAnO/02ShKoorWfXjesOxLffQGfatO+gtm//hH3WOO/M+uDhB8L+Kes3nPf7443UbXcR54eiOLCSz5FXpDoTqimrycwpJa92I8qJKSvKCMygDSGaJIzuyGHN7bR07jxuLJKhw6kgejhoHllALuYdO4zRg+QX3FPfRHVneOKND244FFB72QJEVDm/TREOP7co2PL4HR3ee8FIWHN56rE7W80wfQeRjmWd0y3uB4HLK5GYV0K5rE1wumexaDcHgEDicpen+ZZ4pwCSKhkzKJVYbRZXVpMREkldVSUUdit0mUWR/QT6Xt3THqRwoyzMkAlRQOVSuaZBlW/MMCS/dVwFHK0/SNjoDgJzq43WSZGZbj3m3C2qOBLXVoFJozyLK7F5eKrUfIrgj5Ha4Smo0vb1KRyYCJkOWcVm1Ue3KJcrSCpdSgV3OMzwjAZFKh1ZHueNg7fJZsP6nYnOdxqVaMQuRVDpzkVVjKQ4BiZKaQzSO6A/AGdsRQ4kZFYW8Gs1ZPlntL5IaCNnWbBrVsr5nVpw0DOqVVYUDFdpx95Xk1SnP4lIVjpYX0ju5Caqqcqio0JCTXFFV9uf79I1TBZgk0VDyqLy6hoLyKhrFx1BUUkV5HVIoJknk0PF8Rg9x00EcP3jGUL9SVVWyj+QjywqSJJKTeapORQdRFDi6I4tOg9xLr/UZdw5uORr0738FqAgof4LoUv03MYz/N6JeztOF6NRchDFMFlOd4rUA5trUerOlHrdKBbMPt4nJYkIQBTBwIgQBL22BqR51qIqqs6tP6r/J55zqdR1o133u78FgCdNS2M1mqT5N6z0XURQRBcGYsVhwH9e7r8Fsm+68atvWXI/UZlVVsfjEn5lFqU6FMJOg2ZvEurNbVcAs+jwjAYKiz4VZ1Npfqkca/7l2omDCWIZMQPShIBAEc53SKe7jmnX/GkNfR/32AbF2iBSpj72qO2592srXxiTWs2/42Jnrcf9CfOwtolSvtjWLvs+ViNPgI0EUBP1zK4n16n+evmEx1++59bUzmaU69SslSfSSbtZrbFPPHXfq0TfqMTb9J+GWZ/kT2XYXnaeguLig+R9C77HdDL9qEKBxq1Rv4HRkbASte7YwlDCQXTK9x2qM073HdDesQ5REug3v5HWemnZMJz41cDaWB6qi0muMlh3V57LubgctCCSTSP/xGgtvp8HtMIcaDzgmi4nOQ7TA236X9zCcPhdEgX7jtKywHgNb1SkKHJsQQbPW7sBpURTo3SXDWAleUenrIxkzqHVTw1knURBo1zCZuAh3UHpqZBTNY+MNhyJZVRmaoQXjD2nQ0vA1JwkiQxpopKWtopoQaTLmrBEQ6BGnBfd2jO0RVGoF3Mt2vhl3aRHdDCRK3DALYTQM0+5fw/BBde7TMEKTFUoMGwQGsiYgEGpqRLjJHdwrieHEhHTHaDhTcZEQNti7nRQ20GDWCUAkPrQnUi13VYylCeGmwJmmWh0KjSL6ebdbRvUiqP4SICLRMrK3Zh/ZEnMdPFYiEm2jtLYdmNTecNlORKB/okbeOTi1eVBbD+IsYXSIc2eXCoLAkIymQWWFwD3zNLSp9twOatu0jiU1aNEggcRabbu4mHCaNzGmfZBlhb7dtTp6DmptOLMsSSI9B7X2HrNF1wxiEv1Jh32hotJzdBfvdt9xPQ3HNvGcse0i/rdQL+cp32dK9kJRWFj4p4/x/xNa92xB+/5t/KQCvFDh6scn6gaUa56YGHTAkEwiGR3SdNpM/Sf0pEHT5KCOh6IoXPnoBO0YksRVj44PaAtuZ6v32G5uweFajL7lEsKjw/xkUMA9SAqCoEkc4HYCL79rZNCBUhAFxt4xXCczM+FvlyKIYsCYJFEUCIsMZbSPjl+jjET6Dmtn6GhOuXWwjij0+vE9dcGtvpBEgZTEKIb01hyV3s3TaJ2aFNThUlSV24dq8iyCIHBfj96G4qpdU1LplqJRIoxp3IGk0MigLy5VVbm5lSZzYRFNXNE4uJ6hiMDgpK46uoJ+CcMwi+aAsTkCApIgMSBxhLcswhRP25gRBrE8Al3iJ2L2oRJoFXud92/+1iIWMYYmUZpMUHRIO+JCexs4XCpNY+7QEU02ibmDYEuDAhLhpmYkhGkOWnL4YMJNTQzqUGgec5t2DEGkQ9wNQWzddaSG9SLOR2amY+xwQqXIIM6p4H5ZJ0zwloRKYQxLGR60bQUEBiYOJMqsMYBPbNwPSRAD7iMiECKZuayR5qA1joxldFqbgBQXHtzWprduJun2Hj2CzspKgkCDyEjGttJYxrs1bUSHtJSgfUNV4fZhWpq/IAjcMKl30A8eSRRo1SyZLu20TNSBozqQ2CAmaLyloihMukVjlTdbzEz5u/HYNmBib1KbaQ7ymNuHERoREtCBEgQBSRJ1up1/Rbi17S7859+lbfffiHo5T9deey1vvfUWZ86cOa+Du1wuli9fzg033MDChQsv6AT/f4UgCDz3699pWqvK7RkEPM7U9c9MZuSNQ3T79J/QizvfuMGtGeWxr/03tVkKLy96SpeaazKb+OfSZ0isVSP3OBNi7XT2gx/fSbdhHXV1TLx/DJMeGAvgdbo8/7bp3ZLHv9NrikUnRPHPP54hIibCTbPgGRBFAXOImWfn/J0m7fSyI7e+eh2DJvcJWEe/8T3d1+iDtNaNeO7XRzCHWtwDmaceAcJjwnn1j2eITdJzCz38ymTadW2iayOPbtXl1/Vl4o39dfZd26Xx5F0jEUVBa6faa0mIi+S9Z6Zg8UmtFgSBj2+aQJOEOJ2tJLpfYw+NHsDIDnopm4mt2/FQL/fMhMch8vzbKj6RT8fotRXDTGa+GjCV+BD3F7pHzFVEQBJE/tljAl3i9dQGV6UNZ3SDvrXHrr3u2m7eKbYl97e6Wmcfa4nnruaPEyKG4nZuau8fAmbRwu3NHyXhnNT4oSl/o0lEr1o7Sfdv6+hL6JN4o76OkNb0SXmldgnM83y667GIMQxu+KFX5NeDTslvE2XxzJDp68iIuYNGUVN09onhQ2gZ/3TtcT0vfnddoaZGdG7wOYLPEqcomOjV4FPCTKk6W/e/Au0TniYpXP+MtIq5gvZx1we87viQNgxMfVFnHypFck36y4R6Gci1tpUEiYmNnyQ5tKlun4mNJtEzvnftmYi6fzvFdObq9Gt19o3CE3ml082EiCavA+V5gsKkEN7ochuJIXq5lVd7jaVXkrtPep+R2n+vbd6VO9rqded6NGzEG6NGIwmC9zn3/JsYHs53V0wmxKTvGzNuHk+z5HidrceZ+tvofozpquefGta/DXdeN1Bn5+mHaQ3jee3JK3R9wxJi5pUvbiE+qZYU1GcfURR48KXJdOieoatjyt/Hcfk9bimgc8edDgPa8MhX9+rs41JieXXJ014Bd8+YI4gCljAzz//2KI1bBuZ/+6tAQfzTPxcRGPXieZo1axbfffcdlZWVdOzYkSFDhtCuXTtatmzpx+lUUFBAZmYm27dvZ82aNVRWVtKzZ0+mTZtG48aBSeT+m/Fn5Vlkl8yWRTtZO3sT1vJqGrdqyKW3DdPN7pyLvKx8Fn22nOwDuYRGhjJgYm/6T+iJyRx4jd5hd7JuzmY2/b4Nh81Js85NGHP7cJLTAhPPAZzYl8Oiz1eQl5VPdEIUQ6/uT/eRnYPKElRX2ljx/Vp2rtiH7JJp368No24e4ufUeKCqKgc3H2Hp16spOlNCQmocI24cQvt+rYPOSpUXVfDHV6vI3HQYQRTpeklHhk8dRHgQCRVFUdi16TirF+6hotRKg8bxjJrUg2Ztgg94+UUV/L5yH0eyCwkxS/Tr3pxL+rQiJEjMhFOWWXUwi2X7j1Jtd9I8JZ5JPTrSJDE2aB3HS0uYmbmP42UlRJotjGnRimEZzTEFadsa2cmiUwdYc/YoTlmmfVwqkzO66ZTvz8XRylyW5W8hv6aEGHMkQ5O70yW2VdC2tcnVbC1ey7GqTFRUmke2oVf8YCJMgdmkVVXltG0vh8qXY3WVEmVOpF3MaFJCg9+/GlcxJyrnUVKzH0Ew0SC8L+mRowNqyLnrkCmyrSW/ajFOpYpwczqNoiYTaQmsMwhgc+ZypmoOVscRRDGMpPDhJIUP18U7+UJWHeRbl5NfvRJZqSHK0oq0qEmEm4P3vzJ7Fkcr5lPpOEWIFEVG1AhSw3sjCoFnsRyKjQPlqzlRtRNFlWkY3prOsaOIMMUGuW6VE9YsNhSvo9RRSrQ5hn4J/WkZGfz+lTutLD6znX3lJwCBbnHNGZXaPegyrqKqbMrPZl7OAUrt1TSKiGFKs860j2sQ0B7gbFUlM/fv50BBPhbJxNCmTRnbqhWhpsDL8C5ZYU1mFkv3HsVqd9AsOY5JvTvSJCl4aEDumVJ+X7GXnFPFhIVaGNq3Ff17NMcURNbFXuNk3R/72Lr6EE6Hi+ZtGzJ6Sk8SU4LL8hzbfYIlX6zkbHYB0YlRDLt2IF2HdQw6tlkrqln+3Vp2r9qPqii079+WUTcNCag9+leB573U/tFEItIuPC7LmuvkwGtFF3meAqDeJJmVlZXMmjWLhQsXUlxcjFCrBB8ZGUlkZCQOh4PKykocDndqvSAI9OzZk6uuuoru3bvXcfT/XvyrtO0u4iIu4iIu4iL+FfC8l9o+kkh4Wt16kMFQnevg4OsXnadAqDf1aFRUFLfeeis33XQTW7ZsYceOHezfv5/CwkIKCwuxWCwkJibSrFkzunTpwoABA2jQIPhXzEVoqCqzsnXRTqwVNhq3SqXzkPaGwpOqqnJgwyFO7M8lLDKUnqO7EJPor4Tui9L8MrYt2Y2jxknzLhm06dWijgBNmV0r9pN3/CxR8ZH0GtMt6AyPB2ezC9i9cj+KrNC2byvvkmQwOOxOti/ZTfGZEuJT4+h5adc6s/eyD+SSufEwgijQZWgHXYxCINisdratyqSitJrU9AS6DGjlXb4LBFVVOXj0LEdPFGAxS/Tq2pSEuIig9gBlVhvrDmVT7XDQPCWB7k0bGbatoqpsOZ1LVlkpkWYLQ5o0JSbUWAA131bBhoIsHLJMh7hUOsQFlsTwQFZldpUeoqB25ql7fHtCJeNBtNCex4mqTFSgaUQbkkODz74AuBQ7udbN2OQSIk3JNI7oHVDSxBcV9kOU2fchCCYSw/r4LJsFq6OCMtsaXEoFoaYmxIT2MxTVVVWVKvtOqp2HEYVQYsMGY5YCy9544JCLKbGtRVHtRJhbEx3SxfD+qapMgW0bVc5TmMUoUiP6+y07notyZz4nrbvdM09hbUgKbWZo71Jc7K/YR6mjlBhzDB1jOmIWje9ftjWfvWXZiAh0jWtOo3Dj6652OVh1+jildhuNI2IYkNo06OynB/vOnmX/2QIsJokBGU1IiTS+7orqGtYdOEG13UFGSjw9WjSuo21V9uzLJSe3mPAwC717NiO6jnGnJL+cHasP4rQ7ad4xjVZdmhiPbS6Zncv3cvZEAdGJ0fQa07VOUfIzx8+yxyPPMqANTdr+d6yieGKX/sz+FxEY583bLkkS/fr1o1+/fnUbX4QhFEXhm2dnMvut33X8SikZSTzy5b10HtLeb5/D247x6g0zOHVYiz8zmSXG3TOKO16b6rd057A7+eD+L1ny1UodH1PTjuk88f39fnIEAFsX7+LtOz6m6HSJtywkPITrnprE1Y9P8BuYqsqsvHHLh2yYt1WXV99hYFue+P7+gMuDS79ZzccPf0NlicZMHBkXwZ2v38DoW/yDngtPFfPq9e+xd60P27Xgzoh55Kt7iIrTD+KqqjLnk5X8+N5Saqod3vL4lGjuf/lKeg/zb9sTJ4t44e2FHMvWkhtEUeDSoe158I7hfkt3Llnh7UXr+HHDbpw+nDZNEmN5+erRdG7i7xhsPXOKR5Yv4WRFubfMIknc1qU7D/Xuj3TOy8vmcvLcroX8nrtPx83TPjaV13tOpFmUf9tuLNrNR8dmUeas9JaFSSFc12Qslzcc4nf/rK4Kfj75Pocrd+nKW0Z25Or0vxFl9l9mOVg2l61FH+NUrN6yUCmGvkkP0Dx6uJ99tTOX3YWPUWb3ZWQWSI0YRcfE53VSKwCqqnCqfAanKz6uJbP0tFVDWiT8k9gwfTwSgNW+n2PFD1Lj1HipBEwkRV5Dk/in/ZbuFNXBseKXOVs1U5d5F25uSdvE14kM0UutAORXb2ZbwQvYZC2JRhJCaBN7M23jbvNrW7ts5Y+8tzlSuR7fztEwrB1jGz5GjMX/A3Nz8UZ+zv2RKpfWN8KkMCY3vorBSUP87IvsFbyw/yd2lh7XlfdLbMNT7a4ixnJu26p8cWgbb+9dS7VLG3eSQiOY3ms0I9NacS6OF5fw4IJFZBZo5KeiIDChXVueHzGMMLP+o0dWFN7/fQPfr96F06W1bePEGF68fhRdm/s75vszT/HKGws5fabMW2YyiUya0IPbbx6M6ZyPHrvNwQdPzGTF7M0oPlwYzTo05rEPbya9lX//2zh/G+/e/ZmOMy80MpQbnp3C5IfH+d2/ipJKXr/pAzYv2KEr7zy0PY9/dz+JDeP96vgrQVFFlD/BEv5n9v3/HX9a2+5/HX9m2e6Tv3/rlR3xhSgKiCaJt9e+QJteWtBxTmYu9/Z6Aqfd6ceUKwgCI28awt+/uMdbpqoqL0x5kw1zt/oxk4uSSFhUKB/teE0n9rt71X4eG/kiaq0sybm44bkrmfqsFqzrcrp4YMAzHN2Z5XdOokkksWE8H+96XefcrPhhHa9OfS9ouzzy1b26YPmqMit3dXuEolPFftQLoiTSvHMG726cjtmiDeAzP1jO16/7JykIgvt/L317J10HaPfrbEE5Nz/0LdU2h19GoyAI9OvRjFee0DuOz81exi9b9/tl0ImCgFkS+en+a2mVqjk3+wrymfzLT7gUxS97SQBu7NSVfwzSHEdVVbltww9sKjjhR2ooCQLR5jDmDrtTF/u0veQALxz4JCiXz63NJjKhkVaHU7Ez4+gTFNSc9iPLFBGJt6QwrdU/CZG0r/+DZfPYUPBGwOMDDEt9kaZRQ7zbdrmE9acn4ZBLAtADiMSFdKFP6le6gO6c0tc5XfFRgKMLCEi0T/mJ6FAtHMDmPM7+vMtR1Br8s+4EEsLH0yLpbV1pZsGDFFYvwp9JS0ISQunW8DfCzRne0iLbLlafubOW+NK/fdvG3UqHeK3/KarMzzl/J892yI8sU0AkwhTPDU0/JNykxedsK9nKJ1kfBrhuN25ocjODkjTKhWpXDbdseZe8mlI/skwRkWaRKXzS8z5CJK1vfJq5hVd2rfQ7tufJ/mrolQxuqFEa5FVWcvk331FR4y/pIgoCAzOa8PkkfWbwK7NXMnPtHr86REHAJIl8+/DVtGmsJSIcyyrgnge+w+WSA/Q/GDemCw/9bZS3TFVV/jH1I7avPBBwbIuIDuOD5U+Q1EhzbrYv3cOTl74EqAF5qG579XpdtrHD7uT+vk9yYt9Jv7FNMokkpyfx0c7XiIgOP/dQ/3F43kstH07508t2R9/Mv7hsFwAX3cr/EIpOF/PLOwsC/k1RVBRZ4etn9Npa3704B6fD33EC92Dyx1eryDmoSTcc3naM9b9uCSjposgKNVU1zPznPF3554//gKoGdpwAfnz5VypKtBmNDb9t5fC2YwHPSXEpFJ4qZuEnmn6e7JL59NHvAh7bg88e+94tK1OLRZ8tp+BkUUDOKkVWOLozi3W/bPGWVZXb+OHdPwIe26ML+OWr+rb/ae42bAEcJ/c+Khu2HWe/z2xfTmEpcwI4TuBelnMpCh8t26wrf3PLeuQAjhPuU+Kbvbs4XVnhLdtceIINBVkB2aBlVaXCaeObY1odqqryRdZvAa/bgx+yF1IjazM5u0rXc7YmNyDLuIJCkSOP7aWrvWUuxc62oo8N69hS+AGqz4s8p+JH7HJxEF4lhVL7Tgps67wlDrmQ0xWfBDm6iorCyTK983a6/IPaGapAdAUqxdVzqXYc8pZU2jMprF5IYApSGUWt4WSZ/hz2lrxf65QG7huHSr/GLmszGsertnDGlhmQZVxFweoqYXep9vGkqAqzcn/2s/XFL6dm4VK0vrHgzHZO24oDsoy75VzyWJmvOTFVTjtv710b8Nieq3p55ypd//9i246AjpP7nFXWnMhm6ylt3DldVM6sAI6Tx15WFD5aqNf0+/q79QEdJ3D32fkLd3Mmr8xbtn/zMbYt3x90bLNW2Pjl4xU+x1D59JFvvccLhG+fm4m1QpOlWTNrI8d3Zwcc22SXwtkTBSz5wt8J/StBQaglyrywH+UiSWZQXHSe/kNY9fNGw78rssKO5XspK3Qv79htdtb/stlQCkUyiaz8QXsJLf9urY7L6FzILoXl363xCv3mZeVzeNuxoPp54J5pWv+rpqe27Ls1xvFZisqSr1Z5t/euzaxTZqasoJw9qzUpjT++Xm14TqIosOzb1d7tjX/sxekILu2hqirH9p/iVFaBd3vxqgNBeZ7ATXOwdI22ZLhg1yFDUk1ZUVmx/xjVdveSYVmNjbU52UE1xcA9w/X7Ee0FP+/kPkMCRFlV+S1He0llW09zypZvyCBdozjYWqzpkG0vXWOovwawvWS19/fT1Vtx+AjsBkKV6yyFNZpG2KnKuRjJs4DE6UrNiSi21kVrolBh34LD5V46U1QHJdYFGBNrShRZ53q3CqzzDIk7VWQKrL+jqu7nqNp1luKa3YbXoaKQW6V9KGSWLzckIFVR2F+u6QYerzpGqbMkqD2AVbaSWaHdv0VnthkSqQoILM7TlpyWnzpKjWzQN4Aj5YUcLS/ylv26/4DhcyuJAnMPaPd70Y5DxjFHisraA1lUVLvlbqxWOxs3HzMkvRRFgeUrtTFh5S9bDWMXFVlh2c+ag3by4ClO7DtpSJ7rqHGycd427/ayb9cYcsWpuD9Y/8pQVAx5nOr++U9fwV8XF52n/xDKCsoNOz8AKpQXuWd5rOXVxozkAIJAWYEWS1NeVIFqwPQL7rgBR228VanPvsEgSZKujtKzZV7nKxg8DiBAeWGFgaXPPgUVPr8bn5eiqJT4fJWWl1QZihV7j1vsdgJcLgVbHZp+iqJQWq59lZZW2ep0OhRVpdzmnuUprampUxRDFASKbFodJXaroW4ZQJlD0wQrdxo7NeB+mfrGQlU5y+qU66hylXl/t8llQe18YfOZgXEoxs4yyNhl7WXtVEoMnQ5fOwBZsaJifP8AnHKxz+8ldd4PFQey4r4fvjNKwSAg6eysrlJDbTsAm0t7titdlQaWGip87EodxvdcRaXYrtkX11R7+cKMUFzjvm5VVevUZJQVleJqfd8wcjrcx8XrPFVUBhcR9kAUBV3/Ky+uQjbQzgOorqzx2pTVY9wRJVE37pTmlxk6dKj1GzMv4v9PXHSe/kNISkuos/OLkkh8g1gAIuMi65Q1URWVJJ/g7KTGCYbyAgARMeGE1OrCJTU2zs4B97JbUppml5KRbOioCAK6gPEkA24pX+jqaJJo+CUrSiINmmrxE0mpcUHV03V11LatySQSHWmcbSMKAsk+GY0NYiPrHPAtkuSVZ0kICzeUuAC3E9gwUotfSg2PMZx5AkgK1WLJEkOMpXXA/TJN8rGLsyQZOioCArHmJO92pCk5qK0vInzsQiXjjEgBiTCTlj1okVLrkE5x72WR3HWYxChEwTgjCyDEJ7MvpI4sPwBJCEeqDWQPk5IwkloBtwSMr4RLtDm5TlmaKJ+2jbfUL/jY1y4lNM7QiRcRaBCm3e/UiGhDUWDNrpZ8UhBIjDCO6ZFEgdQo7bltEBtl7HTg1suLj3IfNzY2DJOB/BK4+0ZKktb/khrGGUo2AcQkRHo/UOsztimyQrLPuNOgrrFNFEhpUr/x7D8FFdEbNH4hP+pFFyEoLrbMfwiXXDPAcOZJlET6T+jlDbS2hJgZcf2g4HIuuJ2nkTdqwaSjbh5ap7bdmNuGeR2TpMYJbrI4g/MKjQhhwBWa3MPoWy4xdFRUYOwdmrxHu76taNg8Jbg8iyCQkpFEhwEaA/Gltw03nB1RZIVLbx3m3e4zsgNhESFB7UVRoFOfFqSkxXvrHDeyk7FuoKIy5pIO3u3LurUNagvuF8rYbm0Irc1+jA4J4dLmrQwdKFEUGN9aO+6kJl0MZ55EBK5qqukMNg5PoWVkE8OXaZQpnB7xWqZhr4RhhrMjKiq9E7TsuYbh3QkzTP0XiLM0JSFES3RIj5qMkeOhIpMWdYV3OzFiLIKhEK9EXNglXgoCQTCRFDkZDB0VhcSISd6tlMiJ1LXM1yByijeIPdSUSIPwfsY6gEIIjSO1tuoYO7oOJ1CgU6wmS9MkPIMGoamG9y/OHEebKO0ZubxRb+O+gcrljTSZoGGNWhBtDv6hICLQLbERGVGag3Z1p46Gci6yojKlk9Y3xvRsE1BKyQNJFBjZrRXhIe6PtrBQC5cMbosUQOLJFyMu0Z7bEVf1qXtsu0GTZ2nYvAEdBrQxHNsiYsLpe7mm41jn2KaojLl9RNC//xWg1MYt/ZmfiwiMi87TfwjRCVHc8vJ1Af8mSiKhESHcPF0vpXHdM5OJiosMOgBc88REktO1L9km7dIYf19g7SXRJBKfGseUR/R6T3e8PhWzxRS0jrvevFHHidJjVGf6jAssDixKIs07NWHUzUO9ZYIg8LcPbkcQBT8HyiN/8Lf3b9PFUY28cTAtuzYLeE6CKNDz0q70GtPVWxYaZuGuf0wMfN2igMls4vanL9eVXz2+B8kJUUHjmCaM6kyLDK1tG8RGcefw3gFtJVEgKjSEu0f00ZU/3Kc/EWZLUAfq4d79SQjTvvI7xjVkQnqngMOXJAg0jojj+ua9dOV3NJ8UVOvM/fcpmEWNcqFDTG+aR3YIaC8g0iS8NV1iNVoAUTDRP/khr8W5ewiI9Et+UHdv06OvItLcLMgsjECD8JHEh2ovLZMYTUbcEwHPHyREIYQmsY/qShtG34tZjCeYA5UafQehZo2WI9zclMbRtwStwyLFkxZzu660U/z9iEJIUAeqc8IDOr6n9PAutIjqTzBNv8SQJnSK03QfBUHguvSpCLX/6e3d/13X5AZEn9nIkaldaR+dHnApTkSgZ3xLBiRpTkeIZOK5noFf+KIgYBJFnumup5q4qXs3GkVHB31uJ3fsQIcUbcYtMTqCu8cEprKRRIGIUAv3jNVLwNw8dQAR4SFBP2Buuq4/CQla27bolM7o6/sH9MlFSSSpYRwTbh+qK7/rrZuQzFLQse3ed2/BEqplpvUZ150eIzsHHdta92zO8OsH+v3tIv43cNF5+g9iysPjePDTu4hP1S+3dBjQhvc2vkRaaz0XSnJaIjM2vUy34Z10g0ZMYhR3v30TN72od7YA7nnnZm556VoiYzWuF0EQ6D2mGzM2vURcsl7GoEWXpry97kVa99JLYCSnJ/L4d/frZpEARFHk2dkPM+mBywgJ12Z7JJPEsOsH8saq5wkN188C9RjZmVcWP0V6Oz3RXHrbRry08El6j+mmKw8JC+H1Fc8yfOogTGbJp9zCFfeP4blfH/ELWh95ZW8ee28qKY31SyEtO6Xx+uz7aNFBr7cXGx3OR69eS7+ezXVfzZHhIdx2bX8evMOfu+ieEX14YvwQ4iP1S0a9W6Tx49+uoWGcnrg0IzaOX6dcQ6+G+utOCg/npSHDuau73hESBIGXul/O3W0GEWHSBnVREBjesC0/Db6ZGIu+7jbRTXml0zSaR+rraBCayBNtb2VIcg9duSRI3NL0cfomjMIkmH3KTfSMv4Tbmj2FSdTPAmVEDWJkw1eJMevriA9pzpjGb5Ma3lVXbhIj6JP6DakRo3QOlCSE0yzmFrok/9PPkU6NvpEWCa9hOWfJLyqkGx0bzCHcotcNtJhSaJ/6KzGhA/HtHCYxjvS4J0mLfYxz0SzuMZrGPYJJ9O0DAvFhg+iaOpuQc5YoY0JacEmjL4kP1etBhknJ9Ex+nhYxV+rKBUFgXKMn6ZkwGbOgfXAIiLSJHszVTd7Aco40TdvodjzU6hEahun7fkpoCn9r8QBdYvVtaxFNvN3tNsY07IHJh+rBIpq4Iq0fr3a+yW/pd2LTDnwwcCJpEfq+3yGuAT+PuI4uiXoC1tiwMGZfdzUjWrbQzUBFWizc368vL4307xu3juzJk1deQkKUfsmve4vGfPvQ1TQ+R74otUEsH7w9la6d9MS6sbHhTLtnBFOv9XfG7vvnNUx95DLCo3zaVhToO7oTby38O9Hxeu631j2a89bq52nZTU9Q2qBpMk///CAjbhisK5ckiefnPsqE+y7F4hMyYbKYGHnjEF5b/g+ds/VXhKIKyH/i5yJJZnBcEM/TkiVL6rQRRZHw8HDS09NJTzdmmv5vxr9CnkWWZQ5uPkp1hY1GLRvQqEXd8Rhnsws4efA0oREhtOvbKqiunQcOu5ODm47gqHGQ0SG9XjEAJw+dJi8rn6j4SNr0amGYVQdufbtDW48hu2RadW9WJ+u5qqoc35NN8ZlSElLjaN4lwzC2CaCiuJIjO7IQRYHWvVrUybGiKApH9uRSUWalQVoC6S2M428ACosrycopwmKRaNeqYVBdOw+csszenDyqHU6aJsfTOD64rpYHOeVlnCgrJdJioUtKap3MzjWyk90lp3DKMq1jUkg20LXz1mHNo9BeQrQ5kpaR6XW2rU22klvtJphsHNaMcJNxHaqqUmw/gs1VQoQ5mfiQ5ob2AHa5mAr7IQRBIjakEybR+P6pqkylfTeyWkmoqQlh5qaG9gB212lszmOIQiiRIV2D6tp5oKgOKuy7UZQawi0tCa1HPFSlI4cq5yksUhTxIe11HFWB4FBs5NkOoagyyaEtguraeaCqKqdspyh1lBBjjiE93Jg1G6DCWc2hilMIQNuYtKC6dh4oqsre4jzK7DYaRcbQMqbu+J38qioOFRZikSS6pqYSajaOw3TJCvuy87DWOMhIifNzmgIh72wZJ3OLCQsLoV3bhn7kmOfCbnNwaMcJnA4XTds1IqFB3XXkZOZyNruQmMQoWvVoXufYZq2o5vBWd0Zgq+7N/tK6dqC9lxo+kEZIY+N4TiPYT9Vw5p3cizxPAXBBztPgwYPr7Mi+SE9PZ9q0af9fatxd1La7iIu4iIu4iL8SLjpP//c4b3kWgMcff5y1a9eyceNGevbsSceOHYmLi6O0tJR9+/axbds2+vfvT+fOnTly5AgrV67kscceY8aMGbRtaxxo+78Ga7mVpd+sYdXPG6gqrSK9XWMuu3Mk3Ud0CuigqqrK3rWZLPhkKVm7cwiLCmXQ5L6MvvUSouMDfw2VFpSz6LPlbJi7FbvVTquezRl39yja9fGXYQD3bM3WRbtY+NkyTh/JIzohimHXD2L49QMJiwz8NXs2u4AFHy9l25LdyLJCp4FtGXfPqKD6di6ni7VzNrPky5UUnSomoVE8o2++hEFT+uiYwn2RfSCX3z/6g71rMxFFkR6junDZXSN0DOm+qLHaWTl7CytmbaK8uIqGzZK59IaB9B7VKeiXZuahM8xbsItDR89iMZsY2K8lY0d3IiE+sIZXRXUNv209wB+7DmO1O2mZmsiV/TrRM4iGl6qqbMg9yY/793CkpJgoSwjjWrVmctsORIcEDnLPt1Uy68QOVuYdwaG46BzfmGub9QiqbyerCluL97I0fyP5NcXEmqMYmtyLQUk9CAmib1dsz2NryRKOV+5BRaVZZEd6JVxKUkhgfTtZdZBTuYwTlQuxuYoIN6XQPHo8aZFDgurbVTkOcrriRyrsOxEwkRA+hNSoq4PO9MhKFaXWOZRa5yIrZYSYm5MQeT1Rof4SMx5Y7VsprvqWGsd+RCGcmPCxxEVcg0kKnMnmlIspqJpJSfViFMVGhKU9KVFTiQrtEdBeVRUKbBvIqZiN1ZmNWYyhceRYGkeN85OY8aDCWcC+0oWcqNri1rYL70DnuHFB9e1cioudZTtYX7SWEkcJseZY+icOoEdcL8xikL5hLeDX3M3sKDmOgECvhJZckdaHxkH07WwuJ/NOZPLr8f0U11STHhXL1S07M7xxCz+JIA/2nTnLDzv2sPfMWSySxLBWzbmqa0eSowL3jcrqGuavP8Cy7Yepsjlo3jCBSUM607NNWtC+sXtHNgt+20l2VgFhESEMGdaOUWM7ExUdeNwpOVvKwk+Xs3H+Nhw1Tlr3bM74e0bTumeLgPayLLNlwU4Wfr6cvGNniUmOYcT1g7jkuoF+4QUe5GXl8/tHf7Bj2V4URaHz4PaMu2fUf4W+3UVtu/87XNDM07p163j++ed57bXX6Natm9/fd+3axaOPPso//vEPBgwYwO7du3nwwQfp378/06dP/5ec+F8Ff2bm6czxszw89DmKT5e4M2ZUdyC34lIYPnUQj3x1r+4lr6oqHz7wFXNnLEYyid5sE0EUiI6P5PWVz/k5K4e3H+exkS9QXWHzEk169r3uqUl+cVIup4vpV7/Nht+2IkoiiqwgCO6suYbNUnhz9fMkNtIPyFsW7eT5Sa8juxRvdopkEpFlhQc+usMvTqq60sYTo6eTuekIoiigKKr339a9WvDPpc/4Lcct/mIFb9/xCaIkeK9blEREUeDZOX+n7zj9y674bBmPXPY6Z7IKEAQBVVW919Pn0s489dVdmM9Zjvv6hw18/f0GJElArtXKEkWB0FAzb7x0Je3a6J2VrPxibvlgNqVWm5e1WBIFZEXlqn6deHLSJbqXhKKqPLFyKbMy9yMJgpd4UACSIyL46YqraBqrj3/bXpTD7Rt+xK64vNQIkiAiqwoPtx/G7a31Gm9OxclLmZ+yq+wgIiIKCgICKipp4Q2Y3mEasRa9k32gfBOzTr6Jm7axtm0RUYFJje+nc5w+FsQul7Py9H2UOo7Unr2KO3xSITm0G0Mavo1J1H/tnqr4luMl0xGQfDLQRETBTIfkj4k7R6vO4crlWP6VOOXTtSUq7mBwmdjw8aQnvKtbKlNVlbPl0ymq/MRrR23rSmIMTZNmEWbRa9VZHQc4mH8tslKFRn7p3jc1+i7SYh895/652FXwBGesf/hch/vvYaZU+jX8ivBzHMGcqu3MO/UPFFX2ZjV69h2ach9d4vWJC3bZzjtH3+Ro1RHvffP82yS8CQ+3epRwk95JW3RmBy/tn4MgCN7sTE+c0/RO1zIkpYPOvtBm5eo/fuR4RYn37nmexyENm/HJ0ImESPq+8fGGrby1eoP3+QZ37F2o2cQXV0+ke5reyc45W8qdr8+iuMLq1zcmDOzAk1NH6ILDVVXl3dcXs3DuTiRJ9NK4CALExkXwxvtTSc/QLytmbjrM46OnY6926Mcdl8JNL1zNdU9P0tk7HU6en/wmWxbs8Bnb3GNDWuuGvLHqOeIb6PvfxnnbePHKN72qD546FEXl4c/vZtRN+qD0vwo876WUaU2w/ImZJ8epGvLfzbk48xQAFxQw/t133zF06NCAjhNA165dGTJkCN9+66bD79KlC7169WLfvn11HvvgwYO8/fbb3HDDDYwcOZLJkyfzj3/8g9zc3HqdW2VlJa+//jrjxo1j5MiRTJs2jcOHDwe0Xb9+PbfeeivDhw9n8uTJfPnll7hcwdl3/5VQVZVnx/+TkrxSN+tt7QDjYRBf/v1afn1Hz7T8x9ermTtjMYAuTVdVVCpLrTw19mWdrElNtZ0nL30JW6VNx9Dt2feHl35h3S96CZEfpv/Cxrlull3PYOGRNMnPKeSFKW/p7ItOF/P8pDdwOVy6tF7ZpYAK79z9KYe2HtXtM+O+zzm01R1b4+GD8fx7dEcW7979mc7+yI7jvH3HJ6iqqrtuRVZwuWRemPImBScLdfu8fMsnnM0pqj1/VXc9W5bs5YfX9JqC6zcd5evvN7jP3UdkVFFUamqcPPbsHKptmsCwS1a459O5lFfX6OQePC+WmRv38stmjQka3PIrszLdZb6MzSpQVF3Nbb//puOOqnDUcNfGn7HLLl255wX55oEVrMvXRHABvsv+nd1lbpZyjyPkSWU/XV3AO0e+0dkX288w6+SbKMg6iRYFBRWFX069S35Njm6fLQUvUebwiNCq3j0ACmt2s7PoHZ19Wc02jpdMr7X2Td1XUFQH+wvuxuFDYKmqKicKb8Mp59Ue31OHe9+y6vkUVOglYsqqf611nDQ7z/nJSgXZhdejqNr9U1Q7h/NvOsdx0vbNq/iY4mr9M3Ks7EvOWJeecx3u86tx5bP97AM6Bmurq5T5p55DVl06OgjPvqvy3+d0tcaaDfBz7g8cqzpaa6fq/s2tzuXr7K/051SZx0v756Cg6mgtZFVBURWe3vsjp6uLdftMWzef7MpS79m77d2/rT1zgrd2r9PZrz52grdW1/YNn3FEUVVqnC7umDmXKh8iTVlReOC93yitrA7YN+au28+c1Xr5lgW/7WTh3J1uO59xRFWhvLyap//+s668utLGk2Nfxm61+487wNfP/uwn5vvNszPZushdhza2uc/pzPGzvHTNOzr7s9kFvHjlm7icsl8dqqLy5q0fcWz3Cf7K+HPs4hcDxo1wQc5TdnY2ycnGZHnJyclkZ2d7tzMyMqiqqpsB+ccff2TNmjV0796d+++/n3HjxrFnzx5uu+02srKyDPdVFIXHHnuM5cuXc8UVV3DXXXdRWlrKtGnT/JyvzZs389RTTxEZGcm0adMYOHAg3377Le+++26d5/ivwO5V+8nJPBWcR0SFX95egCy7B1pVVZn9xryg/CmKrFCYW6yTF1j98wYqiit1iuO+EEWB2W/O92477E7mzlgcVMJAdikc3HyEw9s19faFny5HdslB9aIkSeTXdzUnsDS/jJU/rQ963YqssGbWRorOaDIVc2csDs7Porr3WeCjn3d830kObA6stwfutpz/2SrsPs7QzF+2Bk2TVhSVysoaVqzS5FnWHTzBmdKKoJIuAvDN6u2a46aqfLZze+BrwP3yyiorZd1JzVGZe3IPVpc9KKmhJAh8fVRzfqtdNSw5uz4o74+Cwq6yQ5yqPust21q8hGBabe7rENhSvMi7XeU8wynrmqD8RSoKWRULsMsa8/Kpiq8MyCJVFNXB2crZ3hKrfSs1zkyC8zCpFFV+jqpqrOJuxynYcKbgUgqoqNauo8S6CKdSRHC5FZG88k+1I6hOTpR/T7C2UpEpdxyk1K45BfvLFiOrzqD7CEjsKvnVu13prGRj8YY67t8Oiu2aMzTr5MagS5gq7mf911xN9/FIWSEbz54MKreioPLd4V1UO7W+8eWWHUFpChRVpcru4Le9mjzLpv3Z5BaUGfaN7/7Y7v1gUlWV2T9tDkoFpsgqeWfK2LZZG3dWfL8Wa3l1UDJOURJ1Y1tNtZ35H/4RVOZJdinsXZPJiX1a/1vw8VJjyRhJ9H7MXsT/Hi7IeQoLC2PPnsDCjx7s2bOHsDBtndpmsxEeXrf69JVXXsns2bOZNm0al112GTfeeCMzZsxAlmV++OEHw31Xr17N/v37eeKJJ7j55pu54ooreO+99xBFka++0n+xffjhhzRv3pw333yTcePGMW3aNK677jrmz59PTk5OkBr+ddi9cr+h7hxA0ekSzp5w669VllRx8uDpoE4KgGSW2L1K+5LdvXq/ISmcoqgc3HwUp8P9Esref5KqMqvhOYmSyJ5V2ozKzuV7DYnkZJfCzmV7vdv7Nxw21OcDtzN0YL2m8bZj2R5kV3CyQUVW2OFTx551h+tkVq+utHHigFvMVJYV9h84Xae21q69J73bW4/mGmbIqUBOYRnFlW5JiTOVFeRVGctvmESRzae0OrYUGn/VyqrKlsJs73aWNRe74gi+Qy32lWszgceqdgcUBfZAQeFY5W7vdoFtV53HV3BSXKM9h2W2TXWQRSqU1mg6ZFX2TRgTXoJLKcLucrePrFTWOltGz5WJKrumJ1lRs7mOOhSqnQe88ixVzhM4lDLDcxKQKLJpuo8nrTsNCSxVZE5ad3q3s6zHkVVjZnUVlSNV2kz61uKjhkSqCipbi494tzedPVkn7WG1y8mBEk33cVvOKUNtO4AtOdrH6Y7DuYYZciqQV1xBQZn7Y7q4qIq806VGPjySSWT39mzv9u7VBwyTlhRZYd+6g17pqOO7s7FV1RhegyAKuvFzx7K6xjaZHUuN34P/aagIf5Jh/OLMUzBckPM0YMAA9u/fz1tvvUVZWZnub2VlZbz11lvs37+fAQMGeMuPHTtGw4aBA1x90bFjR8znpL+mpaWRkZFRp1OzZs0a4uPjGTRokLcsNjaWoUOHsn79ehwO94slOzub7Oxsxo0bh8mkre1PnDgRVVVZvXp1nef5Z1HfUDOPWb1D03ztzjOa7YKqqMc+Opt6X7fPsla96lB1v9eny3v28V0YCm57btPW8zo8Sy/1bdtz6jwf1PuZ8qmlPtehtzn/OuqH869Da6D61nUBdXjszjsytL5te3725+5Vn3t+Ic/U+d6/C3puz/P+qed53fqqLmTcqUfbnn/I8L8VF5ft/u9wQc7THXfcQXp6OvPmzWPy5MnceOONPPDAA9x4441MnjyZefPmkZaWxh133AFAcXExdrudESMujMpeVVVKS0uJiYkxtDty5AgtW7b0y6Rq27YtNTU13qW7I0fcX2LnBsAlJiaSlJTE0aP6GJ3/C3Qc2NZwNgUgNjmG1FrNtuiEKBq2aGAoryU7ZToM1LIZOwxoayjaK4gCLbs182a3ZbRvTHiQrBYPFFmh40BNOqXz4HaGs1uSSaTzUI3huG2flnXOCgmCQLt+2r3pPKSdoY6VKIl0HaoFxXbo07JOba3QiBCa1pJ0miSRtq1TjRXUVZVOHbTsmm5NG+EyalugUXw0iVHu4N6GUVEkhwfOxvLApSj0bKgF3nZPTMfohouCQLcELUGgWWQa5iCZbr5oF63xMTWL6IhoJDmCSLOITt7txNBOQW09EJBICNWCs2NCe2A8yyMSE6oRhEaE9MRYOgUkMRZLLeeTKEQRYmqJsfaci4gQjRE+MrRHHXUIhJlbe7XtIiwZmMU6eK+QiQ/1lcvpXIduoETjcK09m0Y0M7wXHrSI1AhCe8Q3N9Q/lASR7vHa/e6Z0rhOVyVUMtEu3j3uCIJAl8aphvIsAD18Asa7tGyEqw5tyeS4SJLj3O0ZnxBFcooxJ5zsUujYRXvWO/RvY+hziaJA2z6tvO+C5p2b6Eh8A0FVVDr6jJ9dhrSvc2zrckmHoH+/iP+/cUHOU0xMDJ988glTp04lISGB7Oxsdu3aRXZ2NgkJCUydOpVPPvnE6+wkJCTwxRdfMHny5As6yWXLllFYWMgll1xiaFdSUkJCgn9qrqesuLhY928wW8/fA6GoqIjDhw97fy50ia/7yM40bJ4StHMKgsDE+8d4l/YEQWDyg5cFHTBESSQuJYaBk7QXxLDrBhARHR7UKVAVlUkPXubdDgkLYdxdI4M6N5JJpHmXDNr6UByMvXOE2z7I2Cq7FK64X9PvSmyUwKDJfYJetyiJ9JvQUycmPPFvYwx1rAQBLrtrpHe7VbcMWnZtErxtRYGxNw0m1Ef/7soregZ1uARBIDzMwkgfba2hHZuTFB0R9KWiAlMHd/MuLUiiyM1dugV9vUuCQFp0NEOaaCSQVzTpQogkBd1HUVVuaqHd7whTGMNT+gaU6gC3I9QuujkZEdqLrlfCpXVooyn0TtTuX7QlndTwvkFjmAREMqJGEyppWUuNo28iuKMiIGAiNVJj544M6U+IqQXBHS6BxMibveSXgiCQGHUHwd+mIpIYR0y49qwnhI/DJMYSfAhUSY2+zbslCRYyoq8l2IMuIBFlbk5CqMZl1yl2DIKBY6Mi0y1ekxGKMcfQK753UAdKRKRTTGeSQrR40ylN+hku26mqyhVpmkxQ+/gUuic1ChrDJAoCV7fsTKRZ6xs39+oeVARbAMLMZq7opDnLAzo1o0F8lOHHyLXDu3n/LooCk64OLHXk+XtichR9+2vjzsgbhxAaERJ0rFIU1T1e1iIsMoyxtw83HNva9G6pYx+/7O5RQc8J3GPbhPsuNbT5T+Oitt3/HS5YniUsLIzbbruNmTNnsnjxYubMmcPixYuZOXMmt912W73im+qDnJwc3n77bdq3b8/o0YF12jyw2+1YLP48Np4ye21GiGf5Lpit3Sdz5FzMnz+f22+/3ftzodQLoijywrzHiIqP1HVozwu/34SeXPXoeN0+Y+8c4dWJ83UMREkkLDKU6Que0HEkhUWG8eL8xzGHWvT2tbM4E+8fwyXXakurADc8fxXdhnX0q0MQBeIaxPGPOX/XxRo0yEjmyR+mIUmiTrTYM1N05xs30GGAnttr2kd30LRDGgh4j+XRtWvStjEPfXqXzr5d39bc/fZNuuN6fhclkce/u5/UZhrXkyAIPP313SQ0iNWdq2ew7jygNTc+NUFXx5CBrbnyip7u44r6fSwWiZeeu4IIH2fLLEm8f9sEIkItOgfKs+9l3dtydf8uujpu79qDMS3cLwDfl5coCMSEhPLZZRN1HDtxIeG83+cqzKJJZ++Zabi79UAuaaifPb2p6QRaR7tfAL76aAKQFBrP31vfrLNPDk1jYuO/1arS+TwjtY7L5Y3upmGYno+oT/IzRJob1x5V8O7hPufW9Eh6SGcfF9afjNgHa89Dc4gEJAQk2iW/p5NCEQSBpklfYBLj0Q9R7n2jw4aREvM3fR0RVxMXcZ3OznNeohBGRuI3iD4SKZIYRqvkL2rLfO3dvydHXq8TEgZoFXcHyWGe/uJ7XgIWKZ6eDd7VPW+R5kTGNnoKsfY6fa8bYEDSraRFdNHVcW36VNLC02rt9C+ulNAG3Jxxq66sTXRjHmk7wX3mPo6aJIiICDzT4UqaRCTp9pkx6HJSw6P1d6/2vHsmNeaxboN19iPbtODOfv59QxIELCaJD6aMIyZMa1uTJPL23yYQFRai6xue/jeyZ2uuGaHP1B4/uSdDR7TX2Xl+j4gIYfrrV+v6fmRsBM/PfRRziFk3TnlsrnxkvE7AHOCWl6+h06B2+jpqx6DERgk8M/NBnX3jlqk89s19iJLoN+4A3PveLbTppZcJ+qtB/ZNLdurFZbuguCCep38XiouLuffee3G5XHz88cckJhrLB4waNYqhQ4fy+OOP68o3bdrEY489xhtvvEGvXr346aef+Oijj5g9ezYpKXqCxTvuuANJkvjoo48C1lFUVKSbmcrJyWH69OkXzINRVljOos9WsOKHdVgrqklv04hxd42k/8ReAYkcVVVl66KdzP/wD47vzSEsIpQhV/XjsrtGknCORp4HBScL+f2jpaz9ZTOOGgetujfn8ntG0W14YCJO2SWzZvYmFn66jNNH84iOj2LEDYMZfeslRMUFJsTLOXiKee8vYduSXcgumU6D2jH+vktp2zvw4GK32Vnx/ToWfb6cotMlJDSM59JbhzF86qCgZHWHtx1j7vuL2bs6E0ES6DW6K+PvG02TdmkB7avKq/nj+/Us/3kT5cWVNGyazJibBjFoQo+gcjY7duXw2+87OXw0D4vFxKB+rRh/WVcapAReMi6qsDJ7014W7zpMtd1By9RErurfmcHtmgVsW0VVWZZ1jO/37eFoSTFRFguXt27LNe07kRjkgyPXWsqPWdtYceYwdsVFl7jGXNe8J72SMgLaOxUX6wp38MfZDRTYi4kxRzIsuQ/DUvoQHkSy42xNDluKFnK0ajeg0iyiE30Sx/o5Tlod1ZyoWMjxyt+pcRUTbkqhRcwEMiJHIYmB7195zQ5OV3xPhX0HgmAiIWwYDaOvI9wc+Dpccikl1p8osf6CrFQQYmpGYtRUYsIuDSiHoqoqVTWrKK76FpvzAKIQRkz4OBIirscchIjT7sqjoPJ7SqoXIas1XpLMmNBBQYgcZc5Yl5FTMQur8yRmMZrGUZeRHjUJixT4GSmx57Kn9HeyqjajqDKNwtvTJW4CDcPbBbR3Kg42F29iXdEaShwlxJhjGZA4iH4J/QmRArftoYpTzD65iR0lxxAQ6J3Yiilp/Wge1SCgfYXDzuxje5lzfD8lNdWkRcZwbasujGvaFrMYeMZvS04u323fzd7TZ7GYJEa0bsG13TuTFhv4uovLrfy2dh9LthzCWuOgeaMEJg/pzKDOzQPOSimKyub1R5j/2w6yswoJD7cwdER7LpvQjbggJLVnswv4/cM/WP/bFhx2J617tmDCfZfSZWjg5TSX08XqmRtZ+Nly8o6fJSYxmpE3DmH0LUOJiAm8rH5i/0nmf7CEbX/sRpVVOg9tz/j7LqV1j7rliP5T8PA8xdzXAlMj41AMI7hO2yh//9hFnqcA+NPOk81mo6qqKmhszbnOSX1RVVXFtGnTyM/P5/333ycjI6POfa655hoaN27M66+/ritfsGABr732Gl999RXNmzdn6dKlTJ8+nY8//ph27fQD2KRJk2jbtm29Z5QuyrNcxEVcxEVcxF8JnvdS1L0tMDW68FUg1+lqKj+46DwFwgXJs4DbIZk5c6YheaUgCKxateq8j22323n88cfJzc3lrbfeqpfjBNCyZUv27nVT6PvO2hw8eJDQ0FDS0tK8duB+wHydp6KiIgoLC7n8cj3r7/81VFUle/9JrOXVpDZvEHQGyRelBeWcPppHaEQIzTo1qVPYUnbJZO3NwW5zkN6mUb2ELQtPFZOfXUBkXCRN2gWWG/GFw+4ka082iqyQ0SGd8Ki6v3jOHD9LSV4pcQ1i6yWIbKuycWJ/LqIo0KxTkzpVzVVV5eTB01SWVJHcJFEXSxUMFRU2ck8WYzZLNG+eYhisDu4v5iNnCrE5nKQnxpIQbRwYDlBotZJTXkaE2UKbxMQ629apyBwqz8epyLSISiLaUjdrcEFNMUWOUqJNkTQKS6lHHXbya7IBleTQDCxi3XVUOnKwyyWEmZKJMAeWcvGFS6mgxnkUMBFuaVunaK+qqjhch1GUcsymJpikwDMpvpDlIpyuLAQhDIu5XZ2ivaoqU+PMRFFrCDE1Dyrl4osaVz421ylMYjSR5hZ1tq2sOCiyZ6Egk2DJwCLV4xmxF1DmKCPaHE1KaN3XbXM5OFZ1FgGBFlENCJWMRXtVVeV4eQmlNTYaRkbTKNI4aBug3FbD8cISzJJImwZJmCXjtlUUlaxTRVhtDhqnxJIQW/d1lxZVcuZkCWHhFjJapdRrbDu+Jxun3UVam4ZBZap8UXCykIKTRUQlRJHeplHdY1uNg6y9OSiKStMOaUFlqv5qUP9kxtzFZbvguCDnae7cubz99ttIkkTnzp1JSkpCqqMT1ReyLPPcc89x4MABXn75ZTp0CDz9WlRUhNVqpVGjRl66gcGDB7N69WrWrl3LkCFDADd1wqpVq+jXr583xqlp06akp6fz+++/c/nll3vPfe7cuQiCwODBgwPW+X+B1TM38NUzP3PmmJu4UBAEel/WjXvevlkXx+NB0eliPnrwa9b/ttXLQZKcnsjUZ6cw+hb/gHpVVZn3wRJ+euU3SvLcrMKSSWLI1f24680biU3yn3LPOXiKjx/8mu3L9nhjcNPbNuLWV66j3+U9/exll8yPL/3Kr+8u9PJEhYRZGH3LJdz66nWERfi/hA9sPMwnj3zLwU0aB02bXi0CxkiBm+Tuiyd+YPHnK7zklhEx4Uy8fwzXPzM5IGfW5gU7+PzJH8mp5XMC6Da8I3e/dSMZ7f2X+srLqvnooxWsWnEAV22Aenx8BFdf25crJvUMOMDO23yAjxdvIq/EzeEkCgJDOzXnkUlDaBDnP4ifKi/nhTWrWZF13BvenB4Tw4N9+zG+jf91K6rKV0c38fmRjZQ43JxDZlFifFpHHu04ghiL/yB+oiqXL0/8wv4KLWu0SXgjbsyYQNc4/6UiWXGyuuAntpUsxKHYausIpXvcaC5JuR6T6O/gFNq2sa/obcocGjliQmhXOiY8THxoez97Wakkt/RViqxzUHHHFEpiLA2ibic1+u6AgdWV1QsprngFp8tDjisQHnoJSTHPYzH7Lye65HyKy/6B1bYAT4C6JKUSF/UgURHX+90/VVUpsX5HQcV7uGQPcahETNhlpMY9h1nSxwoBWJ3ZHCp+hSLbejydI9zUlFbxD5ISMdzPXlFldhT/yO6SOdgV9zMiCRbaxoymX9IdWCT/WYGsquPMOvWzl2kcICO8KVPSrqJ1VBs/+xrZycdHl/Fr7hZqZDdnW4QphCnpfbmjxTBMAZbhVuVm8er2NRwq1Zj5+6Wm82zvS2gb70+AXFZdw2tL1/L73oM4a8edhIgwbhvQk5v6dgvYN5asz+TT2RvIK6wA3H1jYPfmTJs6lNQkf0et4EwZn7y6gE0rD3rJLFMaxXL9fcMZPt5fzUJVVX57dxE///M3SvPdpKwms8TQawdw15s3BnSiTuzL4aOHvmHXCk3tIqNDGre9ej29x/jX4XK6+P6FOfw2YzHVFe7+FxIewtjbh3PLy9cQEmacwXcR///igpbtrrvuOiorK/nggw+8szn/Krz33nvMmTOHfv36BcyuGznSnVX18ssvs2TJEmbOnElqqnvGQpZl7rvvPrKysrjmmmuIiYlh7ty55Ofn8+mnn5KerqW6bty4kSeeeIKuXbsybNgwsrKy+O233xg7diyPPPJIvc/3zyzb/f7RH7x37+eaPFgtREkkMjaC97e+ohO9LTlbyr09H6ckvywg0eQtL13LNU9M1JV98cQP/PzPuX62okmkQZMkZmx5RTfI5Bw8xf19n6TmHNkDjwbUY9/+jeHXazxaqqryynXvsnrmBj9+F1ESadOrBa+vfA5LiPYVvHdtJo+NeAFFVnQZboIoIIoir/7xtC5mwelw8ujwF8jcdMSPtE4QBAZc0YtnZj2sG8BXz9zIS9e969YF8zkxURIJCbPw7oYXdTqAVZU13Hv315w5Uxow6+7Kq3pz593DdGVfL9/OO/PW+dlKokBcZDg/PnotyTFarMbpigrG//QD5TU1AUkHnxsylBu6dNWVPb97ET9m+TOTS4JAs6hEfh58iy4zKqsqlyf2vYlLcemYyT3Bx4+1uZ3eCZ295YoqMzPnZY5VbffLuhMQyIjoxHUZzyH6zN6crd7Aprz7a+199xERkRjU6HPifSgNZMXGofwpVDsPEijrLiFiMk3jX9fdv3LrjxSU/h2/zoGEKESRlrIQi0nLTJTlIk4XjK51gvzriIt+hLhofSB7fvkbFFS842cLEmapIS1SFupmoazObDafuQpZqT6H9NN9jh0SX6JRlNb/VFVled6rHK5YxrkQEEkKbckV6e9g8okRO1Z1lDcO/xNZlXX3Q6j9b1rLh2gfo/UNlyJz//av2Flywo+JXkBgYHIbXut6HaKPc7oo+zD3rJznPkffqxYELJLEr2Ovp12C5kBV1di56rOfyS4uDfjcTu3dhafG6DXeZi7eyTvf+a86SKJAdGQYX710HSkJmgNVeLacaVd+QHlpdUBiytsfHcMVN+mTWz5+6Gt+OUfCCtx9vFHLVGZsekkXx5S1N4dp/Z/CUeP0H9tQefrnhxg8pa+3XFEUXpjyJhvnbvPjcxJFgfYD2vDPpc8EFTL/T8LzXgq/pxVSwwtftpPPVFP94ZH/82W7HTt2sGzZMvbu3UthYSHx8fF069aNW2+9VRfrnJeXx1VXXRX0OJdddhmPPvqoYV2+PJC+uOOOO7j++uvrfc4XlG2Xn5/P0KFD/+WOE7jJNMHt3EyfPt3vxwiSJPHaa69xySWX8Msvv/DRRx8RExPDO++8o3OcAPr168f06dOprKzk3XffZe3atVx//fU8+OCDQY7+r0VVmZWPHq7VGTtnPFJkBWu5la+e/klX/sP0X4I6TgBfP/OTTtbk1JEzAR0ncGvonc0uZPYbev2uTx/51s9xAo0MbsZ9n2O3admIu1buZ9XP/o6T5zoyNx9h2Terdcd5565Pkc9xnMBNnaAoCu/c9alusFrx/Tr2rz8UcFBVVZV1v2xhuw/Tr6PGwbv3fK47b99zstscfPL373Tls2dvCeo4AcyauYWcWq08cAeKz/h9fUBbWVEprarm08V63cC3Nm0I6jgBvLR2DWU1Nu92ZlleQMcJ3OzixyuK+CFrm67886zZuBTZ70Wq1v730fGfcCnai/9I5TaOVm0LSFegonLCuocD5dp1qqrMroIXAzhO4CY2kNlV+IqutLDqJ6qdBwhGV1BsnUOVQ2PaVpQqCsue9p7FOVeOolZSVPaSrrSsckZQxwmgtOINXC5tBtLhOklBRTApJhmnfIbCyg90pUdK3gjgOGnneLB4Oq5aRnKAPNu+gI6Tew+FgpojZJZrkjGqqvJ9zrd+jpPb3v3ftzlfo/hQEyzN28v2kqyAEj4qKmsLDrKhUGMkd8gyT21YGvDuyaqKXZZ5fssKXfl3W3ZzIojj5Pn74bPaDFZZRTXv/7gmoK2sqFRU2fhszkZd+Q8frAjqOAF8+dYSyko0ea8T+08GdJzA3cdPH8nj13cX6co/evBrP8cJ8GqLvnv3p161BYBtS3az4betAYkwFUVl39qDrPppQ8Bz+Kvgv4Wq4OOPP2bXrl0MHDiQadOmMWzYMFatWsVtt92mS9CKjY3l6aef9vvxcEj27Om/MhIIPXr08DtG//79697RBxfkPMXHxxuSL/4ZvPfee6xduzbojwdPPvkka9eu9c46eRAVFcVjjz3G77//ztKlS3nvvfdo08Z/qhtg4MCBfPHFFyxfvpxffvmF2267Tcc4/n+JVT9vwGUPLkIsuxTWzt6Mtdy9DOZ0OPnj69XG0iaCwLJvtEFryZcrDeN1FFlh4afLvIND0ZkSti7eZShJUF1hY8Nc7YW96PPlhnUICDrduUNbj5F76HRQjSlVUTl9NI9Mn+W8BZ8sNSTWFE0iiz/XBvxN83e4lw+DzKl65FwKcjVn6Pf5uwyJNSVJYMkizUFbsPWgIZOyrKj8vjUTe61Qc5XDwe+HDxvKXLgUhfmHNFma2dm7DAkQFVR+ztLET/NsBRysPG4ot1LurGRXmabRt7NkSR1EjiI7S/7wbhfatmGT8wnOqaRQ7jhEuV1bciqsMpZVAomiqp+9W5W2+aiqkZSGjLXmD2TZ/aGgqi4qrD9iTHopUlk9y7tVap2J8fAnU1L1I2qtXIpdLqagepWhzIys2sivFQ4GOFC20EDTD0Blf6n28ZJrO8kpW25Q3i0VlWJHEUcqNWfo19wtQXm9wL1UNjdX66+rTmVRYrcFtVdUlc1nczlZWeYt+3nb3qA8T+CeTZqzU5NsWrLhYFBdO3D3jaUbDmKrcTsq9honK383HncURWXV77u1Or6oY2xTFBZ8ot2Ls9kF7F6137COypIqNi/QnPhFny03JMkURIGFnwZ2jv8q+G+hKrj33nv56aefuPvuu7nsssu44447ePXVVykpKeHXXzX9x7CwMEaOHOn3U1JSQkREBP369atXfWlpaX7HaNq0ad07+uCCnKfRo0ezZcsWbLbgnfAijHH2REGdgciyS6bojDtOqbKkCnt1cP4pcHfmsyfyvdv5OYVBnRQPKkuqvDFEBSeL6lRKkEySV28PIO/YWUMCS1VVyfM9p+yCoLa+0NWRVWB4HYpL4fTRPG3fnALDQc+DgtqZJKdTprys2tBWUVTy8sq822dKKgxJAAHsTpnSKncfKbRaDRnJwU2kmVtR4d0+ZS0zJEAEyLNp9gX2EgNLNwQE8ms0p7HEcRbVwNlSUShxaG1rdZ2psw633Wnv73b5NMYPlkyNSyObdc8Q1fURI+OS3eelKBWoat2i406Xphvo8JmFCgZFrUSpPa7dZeQwuiFgwuZz3HLHmTo0/aDSqYk0F9mLDCw1FDk0u9O20qDC0eB2hnKrtS/33MqyOtnCAU5VuWOIVFUlv9K4bWVF5VSZ9hzmFVbo+KACwelSKKn9MCwrrsLpqItRXiAvV3u+83MKDMcdgJK8Mq+wen5OoaEtuJf7fMedM8fPGjpbqqJy5nh+0L9fRP3RpUsXv8SALl26EB0dXScRdVFREbt27WLQoEGEhNQ/Bs1utxtyOtaFC3KebrjhBtq0acNDDz3E7t27qa42fvFchD+iE6LqlBABiK7lNwk3YAr3QlV1WXRRcZEIdWSqmEPMWELN3nOqC4qs6Oyik6LrlFvxjamKCsLX4rdPQqTP78bnJYgCMT4BqFFxkYaDnteutg6TSSQkxPhlLYoi0TFacHZMeGidulaCAJG12YAxoXVnrimqSqyPXawlLCgTtAdRPvFOkaa6YxtUVKJMWhxIuBSNsawJhJu0trWIxhJJHoSIsd7fTWJdWVwiZlGLLRLFWIxFfn3tQBQjqEtIGAQkUctilcRY6rpuMCEK7jY11+O6VWTMPtcdZoo1nNUDCJG0tokw1Z2JBhBp0vpGjNn4ngsIxFm048aFhBnOIvnagTseKCLEOCNSEgVifUgyoyND66xDACJrSWcjo8PqvBWKCtGx2rVGxUXW+fEZFhnqTQaKrse44x7bfNo2sR5jWz3GzP8k/pu17aqrq7HZbHXKsq1cuRJFUc5L/m3JkiWMHDmSESNGMHXqVJYtO/8ZxAtynoYPH87atWvJzMzkgQceYMyYMQwZMsTvZ+jQoXUf7H8UQ67qZ7j0KUoinYe0Jy4lFoDQ8BD6ju9pOKMiuxQdY/gl1w001M+TTCKXXDvA6/E3bplK8y4ZxktkksiAKzQdsuHXDTKcFRJFgRE3aNmLnYe01zk6gRAVH6nTjBpxw2DDc1IVlRFTtToGTOyFyRz8ZSoIAhkd0khv08i7PXxkByQpeB2yrDBsmJZFNrp7a8OlCUkUGNyhGZG12TjxYWH0T0s3dIZUVWWcT1DmuLSOhst8kiAwIV0L/m4WkUaDUGMqBotopmd8R+92p7ihGM+oCHSO1RI3UsL7YRKMX/JhUjLxoVodCRGTMHZuFOIjJni3IsMuC24KgEiopQdmk+f+hRARdlkddbiIDNeCuWPDJwDBl81BIiZ8HILg/rAIMzciJqQTxkOmQIMITdKjdfQww1k9AZE2MZqsUIvIlsSYjV8UYVIY7aO15/CyRt38mMh9oaJyaUMtCWF4egtCDDKjBaBZTDxt4rRMw/Gd2xrOJMmKymWdtNCIkX3bGH4YiqJA704ZxNSm+0dEhdJzYCtEg/6nyApDxmrP+tBrBxrOPEkmUZfYktEhnfS2xpQE5hAT/cZrMTPDrzce2wRRYOSNuCp3DQABAABJREFUQ4L+/a8AVf1zDpRn+MnJydHJkhUV1W+W9M9g9uzZOJ3OOmXZli1bRkJCAt26+WdLBkKHDh247bbbeOmll3j44YcRRZEXX3yRuXPnntf5XZDz1KlTJzp37kyXLl3o3Llz0J9OneoWEf1fRUqTJC67c0TAziwIAoIAN72gzypwp+SLAR0JQRQYclU/mnZs4i1r3681PUZ1CehwiZKIOcTM1Y9N0JXf+vK17ndpkDFmysPjdPQGAyf3oWnH9IB1SCaRmOQYxt2tvSBMZhO3vHRt4IPX4ubp1+gyWC67cwTxDWIDfmlKJpEm7Roz+EotSyY6IcpP2sYLwf1Cue3la3Vtf9VVfbBYTAFn90RRoHv3DDp11pIOmqcmcGmPNgQai0VBQBQE7hjdR1f+YN9+7nsb+LS4qkNH0mNivWUDUprTPSEt4DKLJAhEmEK4qaUmQSEIAjdkTPSz9cWUxqN1LOOdYocSb2kYcIZERCTGnESXOC0F3ySG0Tb+Lj9bX7RPmKbjVkqJuhmTGENg50Yi3NKRuDCtDrOpITERNxP4IXSXJUQ/piuNi34AATOBhzSR8NBLCbFo41GYpQtRoSOC2guCmeRovQRMy7hpunM4F02ipxJi0pyOplEDSAppGbBtBSRCpWg6xk3wlkmCxKRGV/rZ+mJCwysw+1BHjG/cg+TQ6ICxcZIg0iQikdENNacjJiSUezv18bP1QAUe7zFY1zdu6dedMLM54HMoCgI9MxrTt6nWN9JS4xg7uH3AviHU9o3bJutjU667dziiIAQdD4eP70rjplrbdr2kA12Gdgg6toWEhzDl75frjnHrK9cZ6jhe/dhEnYLC0Gv6k9amkU52ygPJJLpVEW4zfrH//4Lp06frZMnmz58f1FZRFO+SWF0/wWbvd+/ezddff83QoUPp3r17QBuA3NxcDh8+zLBhw+rkA/Pgww8/ZMqUKQwYMIDx48fz+eef07RpUz799NPzWsb7S8uz/Dfgz1AVyC6ZT/7+LfM/XIIsu4k9FVkhNjmGv395T0DekT1rDvDq1BkUnSpGlET3l5EAo24ayt8+uE1HCQBgs9bw1u0fs3rmBneysyigyAoNmibz9M8P0rpnC7861s7ZxDt3fUplSRWi5D4nk1li8sOXc/P0q/0e0rLCcl6+7l12Ld+HILpTqhVFoXnnJjwz++GA5JfzPljC549/T43V7q0jJDyEW166hiumjfWzz8vK54Upb3Js1wlEUXBnCyluqYSnfnqQuGT9F7uiKHz73Gxmvj4fl8PlrSMqLoL7P7iNIVf5BxYeOZzHi8//xpkzZe46VBVVhcFD2vDIo5cRFq5fvnC6ZF6ZvZK5mw6gqqq7bRWVpJgIXr7hUnq28s9GXZudzd+XLqGouhpJEFBUFUEQuK5TZ54eNNiPdLDKaefR7XNZkXfYrUVWu09GZDzv9p5Cmxh/LrDVBVv4LGsW1XINIiIKCibBxJS00UxpPNrvBVXpLOaX3Nc5WZ3pncVQUWkU1orJaY8RY9HzHamqytGyb8ks/QhFtSMgoSJjEsLpmPgwTaOv8Dsnm/MYx4ruocZ5BLfD4s73igkdQrOEdzBJsefUIVNUPp2yqi9wB4KLgIwkxpMc9xaRYSPPrYIa+1byS+5Blk/jdtTcMxOR4ZNIjHsNUdBzYimKjdOlj1FW/VttiQAomKXGpCV8QESI/6BdYF3B/qJncCpltdetICDRJOYGWsU96EfIaZPLWXbmZU5at+EhHFBRiLc05dJG/yAuJN2vjjWFq5iV+zN2xe69f2bBwoRGExmZ4n//8mylPL7rRw5WnEaktm+g0jUug5c6X01iqH6mV1VV3t29kQ/2bMahyEiCgKyqRFtCeKHvcCY29+fpOnS2kGkzF5BT4o6ZUnH3jRFtW/DKxFFEnrO053LJvP3tKuau3IuqaH0jISaCZ+8ZTa+OGX517Np0jDcen01JYSWiJLj3EwRGT+7JXU9ehtmiX1qvrrTxxq0fsu6XzbqxrWGLBjwz8yFadPUPAF7503pm3Ps5VWVW95igKJjMJq5+bAI3PHelX9uWnC3lpWveYe+azNqxzR3/2LJ7M56Z9ZCOSuavBM97SbyjHULD+i0HB4J6xoryaSZPP/00TZpoH+YJCQlB5dJ27drFtGnTAv7tXHz33Xe644J7luvee+8lJSWFGTNmGOrkfvnll3z99dd/mkph3rx5vPnmm7z//vv1nvS56Dz9Sfwr5FlK88vYMHcb1RXVNG7VkF5jugbVXgM3n9X2P/aQcyCX0IhQ+l7eg6TGCYZ15J3IZ8vCnThrnDTr3ISuwzoaeuoOu5PNv28nL6uAqPhI+k/oSUyi8XLbif0n2bV8H7Ks0L5fK9r2aWU4TW6rcmfuFZ8pJT41lv4TehmykquqysEtR8nceBhRFOk6rINupi0QKoor2TB3GxUllTTISKbv5T38HExfKIrK7l3ZHDuaj8Violef5jRsaMz4nl9WxZp9x6m2O2nWIJ7+7TJ0Ar/nwqUorD5xgqzSEiIsFkY2b0FShPEAl11VzNqzx3AqMu3jUumdmGHYtnbZwbaSfRTaS4g2R9InoTMRdcRE5dmOk2Pdj4pKk4j2NAwzFj11KlWcqVpZyzCeQmrEEEyi8f2rsm/D6tiDm4xyEGFmf+fdFy65CKttCYpagdnUlIjQ4d6ltMB1yNjsa3A4DyMIYUSEDsdkamxYh8N1ikrbchS1hlBzGyJDBwUk7fRAUR0UVq+h2nkSkxhNSsQwLHWwkpfYs8m17kBRZRqEtaNBWPs67p+dXWU7KK1lGO8W150wyZjV+kBZLrtLcxAE6BHfnFbRxoz95fYaluQcodRuo3FEDMPTWxBqkG2sqipbTuRyIK8AiyQxqGVTmiTEGtZRWFrFuh3HqbY5aNIwnr5dmmIyDD2Q2b7+KLnHCwiNsND3knYkJBuPO2eOn2Xrol047U6ad21K10s6GLato8bBpvnbOZtdSHRCJP0n9qqTlfz4nmz2rDqAoih0GNCG1j3rZpX/T8LzXhLuaI+Q+iecpzwr6qcHzuv9VlxczNatW+tlO3DgQCIjtdm+/Px87r33XiRJ4oMPPqhTz/aaa65BkiS+//77etUXDB7925dffpkBAwbUvQMXnac/jYvadhdxERdxERfxV8J/0nm6UJSXl3PvvfdSWVnJ+++/XyePZGZmJnfddRe33norN95445+q+5dffuHdd9/lww8/DKpqci7qRWr06quvAm4Gzvj4eO92ffD444/X2/Z/EaqqsnvVftbO3oS1oprGLRsy+pahJKf7S0N4UJxXyh9frSInM5fQ8BD6T+xNj1Gdg84kyS6ZLQt3sun37ThqHDTvnMHIm4YElGbx4Mzxs/zx1SryTuQTGRvJJdf0p33/NkG/thw1DtbO2czOFXtRZIV2fVoz7PqBREQHn+3I2pvD0m9WU3K2lPiUWEbcOITmnTOC2ldX2ljxwzoyNx1GEAW6XtKRwVP6BtW3U1WVzE1HWPnjOipLq2iQkcyom4caauiVl1WzdMFujh/Jx2yW6DOwFX0GtAqa2aMoKpsP5rBi11Fq7C6apsYzvl97kmKDZ/ecqahkzv79nCgtJcJi4dJWreiXnha0bZ2KzIozh1njM/M0sUlnYgNIs3hw2pbPyoJNFNlLiDZFMiipFy0imxjUUcPBirXkWPcBKmnhHWgXM8RQ367cfoDTVQuwy8WEmVJoFDmBKEtwpXlZKafc+gs2xy7ARGTYEKLDLkUIom+nqioOx2ZstvmoSjmSKYPw8GsNZ5JkuRBb9c+4nIcQhDBCwkYTEjI0qL6dqspYa1Zgtf2BqtZgMbclOuJqTFLwL16bM5e8ql+wuXIxiVEkR4wlNqRH0LaVFQfHq9Zx0rodVZVJCWtL6+gRhEjBn5FT1afYULyBUkcpMeYY+iX0o0lE8FnWapedxWf2umeegB4JzRiZ2jGovp2qquwqyGP+sYOU1NhoFBnNlNYdaBYbfAatzGpj7o5MDp4pwCxJDGrTlKHtmgXVt1MUlR17cliz6QjVNgfpjeIZM7wjyYnBZ3mK8spY+tNGco/lExYRQv+xXeg6qI3h2LZx/na2LtyB0+GieZemjLppiGEW3Kmjefzx1SrycwqIjo/ikmsHGM6S22121szaxO7V+1EVlfb92jDsugH/Ffp2KgLqnyK6/PfMrtlsNh599FGKiop4991360XA7cmQGz7cXxYJoKamhvz8fGJiYoiNjQXccm2e3z2orq5mzpw5xMTEnJeDWK+Zp8GD3QGE3333HWlpafXWfhMEgdWrV9f7ZP4b8WdmnipLq3h2/D/Zv/4QkklCVRSolUG5/dXrdQGPHiz8dBkz7vu8NtbJHWApu2RadG3Ky4ue9GbneVCQW8Tjo6aTe+g0kklEVd0DpySJPPLVvVxy7UCdvaqqfPvcLL6fPsc7YAmCO5Ov+8jO/GPOw36Dxol9OTw++iVK8kq9dSiKQlhkGM/9+gjdhnXU2csumXfu/tRLdOeJiZBdCiNuGMzDn9/tp1W3Z/UBnp3wT6orbd7zUmSFuJQYXlnytJ/TZbPWMP3Kt9i6eJf3nDz7XPvkFdz04tV+g+XqZQd47bm5yC4FQXA/v7Ks0Cg9nldnXE9Kqr5tSyuruW/Gbxw8WYAkilrwowCPXTWUKYM7cy6+2rGTl9doRKaCICArCt0apvLZhAnEhunb9mRVCTev/4FcaxmS4K5DRcUimnir10RGNNITwKqqyrc5vzL/zArE2tgiQRCQVYVe8Z15sNUtWET9CzXPdoSZJ5/FJld4g5tVFELFSKakP0fjcL0enqI62VP4JHnWxbVxP2ptLI9MetRVtE94ym/Zq9K2klPFd9SSX3r+JmOSGtIk6SdCzlm+U5RKSopvxuHYiPsbT8ETkxQV/ThRUfpgboBq689UlD2KRnMgAi5MprbEJf6IJOnjU1zyWU4XXoPDddinDvd+KXFvEB3hH7x9ouxDTpS9hyduy3PdcaF96Jj8ASZR7xCV2LOZn/sYVa7CWsJM9/0zCSFc2uh5mkTqGZEVVeG7nO9YXbi69v7VlqPQJ74Ptza9FZOo/+bdWZLNg9u/p9JVg4g72URWVeIsEczoeQPtYvSCzTUuJ/ctX8DynOOYBBGl9vUqqyp3du7J470H+fWNZfuP8uhPi3HKsju+SHBn2aUlxPDZrVeQds7yXXmFjUdf+IWDR/KQJJ++ocJ9tw1l8jj/eLL5X6zmk2fn4OmsnjGhVdcmvPD9vcQk6Nv2bHYBj4+azumjebqxzWQ28fh3f2PQ5L46e1VV+fLJH/n5n3O9geae8bP3Zd15+ucHCQ3X8wQd23WCJy59ibKCcu8+iqIQER3OC/Meo9Mgf63IvwI87yXl9o7wJ2aeyLMifrbv/3zm6cknn2T9+vWMGTPGL2suLCyMgQP17ylZlpk0aRKpqal89NFHAY/pib266aabuOWWWwB3jNT69evp168fKSkpFBcXs2jRIvLz83nqqae88m/1Qb2cp7Nn3URuiYmJmEwm73Z90KBB3Wrg/834M87TY6NeZPfK4Ky3T/74AEOv1ijjty7exVNjXw5oK0oizbtk8MHWV70Dn+ySub3Tw5w+lheQmVwQBN5a87xOiHfhp8t4565Pg9bRf0Ivnp39sLesqszKTa3up7K0yl93ThQwWUx8uudNGrfUZnu+fOpHfn71t4AM3YIgMOXhcdz+2lRvWV5WPrd1fAin3emXOixKIhEx4Xx95D1d3MJL177D2tmbgrbt396/jcvv0dLKM/fm8uAdXwdMTZYkgQYN4/hs5t2Yap06VVW56bWfyczJD0pZ8M494xnUSROwXXzkCPf9viCgrSQI9GzcmB+unOIts8suRi39kHxbhR9lgYA702nO0FtpH6e17fzTy/km51cCQUBgaHIf7m2hta3VVconx27HodT4pdULCJiEEO5o8QnRZm0m9EDRy+RU/kQwioOWsffRMk7LyKtxHibr7Cjc1ADn7iNhEhNpkbqulq/JjeKiqdjtqwnGGh4b9y7h4T5tVbOW0uJrgpyThMnUmoTkpV6nTlVlTuaPwOE6GqQOgUaJswgP1fpfXuWvHCx+IuD5gEhC2BA6p2gDuUOu5vusqdjk8gCUBQKiIHF1xmfEh2gzSnNPz2XemXkBaxAQGJ48nGubaNmqebYyJq19F4fs8iPLFHFnZM4d/CBxIVrbPrxqMb8dzQzKxfRM36Hc2klzbvblnuXaD36uddz1kESBBjFRLPj7TVh8+sb9T/7MvoOng1IWTH9iPIP6tvJub1qyhxdu+iSgrSiJtOmWwRvzNf1Kp8PJre0eJP9kof/YJrh52d7dMJ02vbS4vbkzFvPBtC8D1yEKDL1mAI9/d7+3rLyogptb34+1wuY3joiigDnEzOcH3qZBhr+Q8n8a/23O05VXXhnUr2jQoAGzZs3SlW3dupW///3vTJs2jUmTJgXcL5DztG3bNn766SeysrKoqKggNDSUtm3bcu211xpm9QVCvXL7GjRoQIMGDbzSJZ7t+vxcRGAc23WCncv2Bn25C4LAD9Pn6FI5f3rl16A8T4qscHRHFntWH/CWbV6wg9xDp4NKugiSwMzXtIFaURR+eOmXoOesyArrftnMmePaQ770m9VUFFcG1p1TVBSXzLwZi71l1ZU2fn13UVBpE1VVmfv+Yq8sDcC89xfjcroCOjaKrFBVZmXp16u9ZXkn8lk9c4MhUeZPr/zqZR8GmPXdxqDMy7Kscjq3hE1rNcmYXcdOs+/E2aCOkygIfLlYC5pUVZUZmzYHnQSXVZXNubns9RlAFp/K5Ex1eUCup9pvc748qunnORUXv55e6mer7aOyumAzJY4yb9nu0iU4FFtAPiIVFZfqYFepphHmkEs5WTmLYI4TwInyr5EVTV6lpPIz3LM6gfaRcSn5lHsz3sDpPITdvoLgcisClRXv6PqGtXIGwYczGZcrE4ddk3eqrlmNw3XIoA6Rksr3vVuqqnCi/MMgtgAKxbaVWB3HvSWHK5ZRLZcG4XpSUVWVvaWao2uX7Sw5uyRoDSoqKwtXUuXSGL9n5WzBofg7Tu4zUrG67Mw9pekj5lVV8uuRA4Yklh/u3oLTp298vXYHghDk7ikqp0srWLZfk+PJPJzHngOngjpOgiDw7Sy97uNP7ywJyuWmyAqZ27I4tOOEt2zDb1vJy8oPPLa5J+WZ9bqWTi+7ZH58JfBHBbiXGFf+uJ6CkxoT+ZIvV1FVHlhvT1FUnA4Xv3/4h9/f/kpwz8YJf+Ln33Oes2bNCirJdq7jBNCrVy/Wrl0b1HEC6Nq1K2vXrvU6TuDWvnvrrbeYO3cuK1euZNGiRbz55pvn7TjBBfI8XcSfx6b52wPyh3igqio5mafckimAtdwaVBzXA8kksXGepmO1af52Y/0nl8KWRTu9RJrZ+3MpzC0Oag/u2aTNv2t6ahvmBhbO9EB2Kaz9RRso96w+UKfMjKPGya6VmlbWul+3GGr6qYrK+t+2eLe3LNxpSBwIUHS6hKw9btp/RVHZvO4IskHbipLApjWaptiavVmGGXWKqrL3RB5ltfIs+VVVHC4qMqSjlASB5ce1l+/KvCOGumWyqrDsjKaFd7wqh0qXsZSGgsrOUs3BPlyx0ZD7RkXhUIUmDFxo24hqSC4Jrv/H3lmGSXFtX/9X1TauwDA4gzsEghPcPVhCSAgREuLu7u5GjISEECAECS6BENzdbfBh3Nuqzvuhp7u66O7quST3vfnfy8ozYapmV51TtmvXOXuvJYrIdezwLReULsZYd06ioFQLGuz25RgTXgoU5QSK4nmZCrUEp3NdmDbMOOzai67IvgzjlE+FUsca1DKNvRLXCezu0wb2ADJZpb/7lo4XrsUoZ0SgcLRQC+gOFx3GoRo/G4pQ2JevXb+VF4wDIRXBygualuHvp44b7h8gu7SEvVkemRIhBL/vO2ZICCtLEqv2afftus1HMRlU1AkhOHwsg+xcz72al1nIkZ3phoSUJrPMhiW7fcsbftsaljB4w/wtPt90dMcJci/khbQv6xmbFmradmvnbDKWhVL0vu2fiP/LDOP/dPwlFdzs7GwOHz5MYWFhSLbsfv36/ZUm/mvhKHUgS1JYEQqn3Vn2ryuMJSDp7Rx2Z1gJGKEKFLeCyWzyadwZQZYlnV24QAjA5dcnZznagEuOoxzb2Iu1fjhLnUiyhFCMj93bhqqq5ThP4HRqQYPD6Q5KAhjQhsvzQre7jQMO8HyRO/zs7IrLULcMPMnkvrbU8PeIhKSzcxkK8HrgVrXzr5bDHkAR2vUQItw9InRCwEKUUp5EVe9+BeUjthO6PtkJK+SIQAgXSBGoYY/Bwxjub+cWjrBtKMLvWpTj+gG4/LZxKOG3sfvZ2N3usjwt4375b+M/ChUMqhA4/JQMHE53udKMnWV6dk5HOe5bSfL5QvD4hHDi9G6XgqqqmEzl822SLOv9Tjl8W3n2+x/FXxT3la4ETyFxWcGTw+Hg7bffZuXKlSFHHUQZ+d+V4Ck46rSsjdtl7JQiYiKoVMNT9RNXIZb4inHkZxaEtFfcCnVaaPkTdZrX5I+Z60M3IEHlWpV81WrVG1TBbDXjdoZ+0StulTS/NupdlcbRHSdCSiXIJpk6rWr5lv23NUJac82ubqva7Fi5J+Som8ksU7+1lluU1qJWWG07k9lE9QZVADCbTVStnsS5Mzkhh6klCWrX1XIb6leriDtMG/HRESSVVRumxsYSY7VS5AztbN2qSqOKWm5Rw/gU/sw4FlKiRQLqxmn21aNSw74YBYJa0Vq1WuWIeuQ5L6CGGLWRMJESqVXQxVrLk/cgEWvRck0iLI3LKuxCnS8TERatPNhiaYKxdAogRWAyeQgmJSkeWU5BVY1EWhXMFi2512ZpTCG/GDZhNqUiS54k5UhLDWSsqIS+fgI3MRYtgb9iRH0ulB4IKQ4sIVPBpt231SKN+ai8qBGlEWs2jK9CTuaRkALSJkmmUXwV33LjChXDBuSyJFEv0cMbJ0kSdVKSOZaRHXIrWZJokKpVJ9atXSnssxETbaNCmd5cUko8MQlRFBmIc7tdCrUba+enTvNabJi/1SDtAao3rOrTtqvRqComs2wo6aIqKrX9/E791mmcOnA2pMSVbJKpd1UgEecV/G/gsqbtJk+ezPLly6latSrjx4/nkUce4fHHH9f9PPHEEzz++OPhd/Y/ik7D2xKbFBNynl82yfS/pQe2Mm00k8nE0Lv6hdZ4k8AWaaPHDVpVQt9behgOn0tIDLunv285JiGanmM7hxwOl2WJitWTadNXqyIbdGefsA5p6N1aAF29QVWad20cug2TTOOODajVRCtVHXp3P8NgSHGrDJ6kJX9f1asZKbUqhtTKks0y3a7rqCtnHjambVBbLyRJot9QTSOs39UNiLJZQn5hy5LEqK4tfISANrOZMc2ahcyrkoA4m43+9bUk2jG1rzLMORDAjXW0fida42mb1EJXpaXrEzJVI1NoFKsFQ62TBoYMnDxtKLRO1LTmEmxNibM2KqscC3YcJipEdiTKolV4JcVMwFjoVyUxZpxvKSKiD7JcgdDuyURU1BhfgrkkyUTF3GJgLwFWIqNG+tbERY0qk3MJBYn4mFt8CcpmOYbKMcMJPZ0oYzVVIDmqm29N04RBIQMn8EyJNk/U5HQqRVSicVxjw+tXK6qWLngaU7N9yMAJPFO7o2poEj7tU6tTKz4x5H1okiT6165PhUgtyfiGji3DjtGNaKtV1Hbv3IDoKFvIkVlZlhjctwWWMv1Js8XEwJu6hBQ+lySJyJgIug5r41vX71ZjWRQBOt+WUDGea0Z2CJkqIZtkUuuk0LK7xq4+eFJfQ21QVVEZctc/e3BA5S9O2/1/oir4v4jLCp5WrVpFrVq1+Pbbb5kwYQKDBg2if//+QX+uIDisNgvP/PwgJrMpIC9JNsnUalKd8Zdo241+bAiNO9QPCKBMZhlZlnnih3t1vEqJleJ56OtJHj0p/2ClrAz/ql7NGHqP/uG//a0bSU1LCQhuZLNHC+/p6Q/6vuYA6rSo5dOq89/G28d+t3Sn0zB9YPLw15OITYoJbMMkE5MQzaNT7tatbz+oNQMm9tLtF/A52/EvjqHeVWl+62Wenv4gFps16LmtXLMid7yjJ1UbeG1r2nSo63H4fqfX28aDTw8i2Y+fJirCyqu39EeWpQDRVFmSaFIrhQn99GXo93XsQKOKFQNeXCZJwiTLfDhoIDY/hueq0Qk836q/z8YL72+9qzRgRC09HcLtaWNIssYHvIBlZGwmCw/Uu0VXhl4tqgkdkkeX7de/Dc/vbZKGUiu6lW5fLSq+jkmODgigJExYTUk0q/CCbn1c1FDiooZd0nvwBiIpCc/pqAokyUJi0heAhcBgRcZsrktcnJ4/LjrmdizWtgS6NBMgkZD0EbKcoK01JZGS9EGZ/aVtSERaO5IQc5tubZ3Eh4iy1AxoQ8KEjJmmFT9ElrTrl2SrRceKd5TZyLotABrE9aZurJ72ZUKtCcSYY4Jev0hTJLen3a5b36FCXcbUbF9m4/dslP1+e91uNE/UPkQkSeLjngOJMJsDRKpNkkRqTCzPd9IHJtde3ZTujdK45NHw3ffPDe9JaoL2bETYLDz/6CBkWQ76bNRLq8T4MXoagevu70ed5jUCfZtJRjZJPPH5BCL85JEqVkvmgS8meirrAnwbtBvYmgG36/l/Jr1/M5WqVwjwOyazjDXC49v8+aQaXF2XG5/zVHT6B3bePg6e1Ie2/fXPxj8NnoTxv/ZzBcFxWQzjvXv3ZtiwYdx9993hjf/L8VcZxo/uPMGMt+by5y8bUdweXbshk/oy4qFBQaVKHKUO5ny4iHmfLiHrbA6yLNF+cBuue2I4jdoFl9PYvWY/P785l61LdiAEpNSqyPB7BzDk7r46AV4vCnOLmPXOfBZMXk5hThFmi4lu13XiuieGU7NR8KmF9fO2MPOdeexb50mqrtW0OiMeGETfCd2Dks9lnc1mxpvzWDLld+zFDmxRNvre3I0xjw+jUvVAgkIhBMu+X83s9xdwYs8pABp3qM+oR4bQeXi7AHuAUwfPMuPNufw+fS1up5vYxGgGTuzNqEeHBJVjcLsVfvtlK3NmbOLC2TwkCVq3q8OY8Z1o0bpW0Db2nbzAlCVbWL3rGKrw6NqN7taSsT1bERnk3BY7nXy7bTs/7tzp07frW68ed7ZtS5OU4CXP6zKO89Xh9Wy4eAIB1IxJYnzdtlxXuzXmIEnr+a5C5p1dzvKMdZQopVgkM9dUbMvwqn1IjQzexoGCP9mUNZvzdk9FYUpEGm2TR9AkrlvQ61fiOsvx/G84UzQfVdgxSdFUjx1BWvwEIsyBBK9CqOQV/0R24ddl9AAQZetAcuwkYiN7Bu2Ty3WAwsJPsJf+BriR5SSioscTE3Mnshx4/YRwUFL0DcXF36Iq5wAJW0QvomPuwWq7OsAeoNSxidzCTym2rwQEZlNVEmJuIT7mFmTJFmDvVgs5lf8NZwunl+nbmakU3Z+a8ROJsdYPbAA4WbSR7dk/c67Uk/CcaK1Jy6QRNI4fEFQGJteZy+ILi1mTuQaH6sAqW+mU3IkBqQOoYAv+bCw8t5Mfj6/jcKGnWrNpfDVuSutMr9TgbMkn8nP5fMcm5h45gFNViLPauL5Rc+5ocTVJkYHEtm5FZcbGXfywdgenc/KRgPb1anBbt6tpXzdQnw/g0NEL/PjLJv7ceARVFSQlRjN8QCtGD21NZBBiW3uJkzlfrmTBlD/IyShANsl06Nec0ff2pX7L4NP9O37fw4w357J9xW6EgNQ6KR7fdlffAK448Mg1zXx7Hgu/XEFRXjEWm4Ue13t8W7X6VYK04ClYmfXOPA5s9Ny3dVrUZMSDg+l1YyAf1j8F3veSfUJLROXQZKzhIF0oImLKzisKGkFwWcHTrbfeSu3atXnmmWf+HX36P4W/S55FcSs4HS4iomzleiCFENhLHFhtlqBOIhjcLjdul4It0lr+NortWCOtutEmIzgdLoSq+qYbw0FVVRwlnuCpvKrYjlIHkiwbatT5Q1EUnKVOIqIjyn3cDocbs1n28TqFg1tRcbkVIqzmcrdR6nZjNZmCBkDB4FQVFFUlwlT+NuxlL1+TgVabP7zJ4WY5OOt3YBsqirBjkiIM9eD8oaqlSJIpJLN4YBsKQjiQpMhyHzeiFCQrklS+tE4hXAjh+pfaUEUpsmQLyV5+KRThQggVs1zOZ0OoOFUnVtmKXM5z61BcSEhYTeU7bkVVcShuIs2W8t9TLjcmWfbxOoWDW1FxudxE2MrfhqPEicVm/sf5NoQIqWjwT4L3vVQ6oRXqXwie5AtFRE7ZcSV4CoLLmra77rrrWLt2LWfOnPm7+/M/C1VVUVyKYdl/wDZuxbC8PsBeUVFc4au+dH1yq4blukHbcKvlPg5PtV/52xBClLVhnGwfrI1w1Tn+UNxK2KRzf6iqiqKo5R7mFnheXEZl5gFtCNUwvyXAHoEqyn8tPNuohjlQl0KgIkQw8ssQ9kIAStk25YUCuMrdhgdujKkLLukXCmGT1C/ZQgi3YU7TpVCFgsq/9owrQg1bGXepvftfuUeEwP0v3odKOapTdW34fEL57IUQKG73v+TbFLfyL/mEy/Ft/2ob/wT8X+F5+r+Iy6q2q1ixIm3btuWOO+5g1KhR1K9fn6io4BpmLVu2/Cv9+6/H4W3H+Om1X9kwbwuqKohLjmXQHb0Z/djQoLpw9hIHv7z7G/M/X0ruhTwkWeLqfi25/slradqpYZAWPEPb01+fw46VewCoUC2ZYff0Z/j9A4KO3hRkFzLjzbks/GoFxfklmMwyXUa2Z+yT11K7WfDh8z9nb2TGW/M4tOUoANUaVGHEA4MYcHvPoCNKF09lMv31OSyf+geOUifWSCu9x13DdU8OD8rYq6oqS775ndkfLODUgbMA1G9Th9GPDqXrqA4B9gAn951m+uu/8sesDSguhej4KPrf2pPrnhhGfIVApXaX0828aRuY9+MGMi/kA9CibRpjbu/KVR3rBtgD7D56jikLNrNu93GEgMS4KEZ1b8G4/m2IDHJuixxOvt68lWk7dpNbWoosSfSom8ZdHdrSPDU4qewf54/y5aF1bMnyTFdWjYpnfL12jKtzddBRqzxnAb+eXcrKjPXYVQdmyUSnCq0ZUa0/VSNTAuyFEBwsWMWW7F+46PDw9VSw1aJN0giaxPcOMW13ihN5kzlftACBE1mKpGrMcGolTCTCHKwNhYLiqeQXfolbOQmAzdqGhNh7iI7sG2AP4Hbto7TwI5z2JYCCJMVjix5HZMxdyHJ8kDZKcRR9jaP4O4R6EZAw264hIuYezLb2Qdsota8nv/Aj7I41gMAkpxAbcwtxsRORpUBdP5eSz5n8yVwo+hm3WoCEieSovlRPmESMtVFgA3j4nnbkTCfD7uFbirdUpUXiSJokDAk6WpfjzGHBuUX8mbUOp+rEIlnokNyewVUGUiki2JSoYN7pHXx/fD3HCj38TI3iUhlftxP9qzQLev2O5WTzydZNLDxyCJeqEm2xcl2TZtzZui0Vgvhyl6Lw85pdTPtjO+dzCwFoXbcat/a6mk6NagU97oMHzjHtx3Vs3HAUVRXEJ0QxZOhVjBnTnsiowNGb0qJSZr3j8W35mQVIskS7gVdx/ZPX0rh98CnRrct28fMbc3zkwJVqVmDYPQMYfl9/zJbA11teZj4/vzGXxd+spKSgFJPFRLfRHbn+qWuDpiQIIfhj5npmvj2fI9s9HFk1G1djxIOD6HdLj3/stN0V/PtxWdN2Xq0776ZGN9AVbbvQ2LJ0J88NeQNVFbpRDtkkU71hVT7482ViErSqF3uJg0d7vMChrcd0X0xymXbU09MfDAgklkxZxbu3fYYsy7o2JFmiRbcmvLrwKV0AlXsxn/s7Pk1Geqa+T2YZk9nEm0ufpVkX/Uvix5d/4fvnZyDLku+LVJI8Xz29bryGR6fcrQugzhw+x/2dnqEov1hHfmkyy0TFRvHBuleo0VCr1hJC8O5tn7N0yirffgFfezc8M4KbX7pO16d96w/xeO+XcLvcumpA2SRTsXoyH61/laTKib71Lqeb5+/+gR0bjulGBrxt3P/iMPqP1OfNrNp2hCc+88it+H+Jy5JEg5qV+OLxUUT5DfEXOhxcP20mh7OydV/6pjKNwi+uHUK3OvrS5x+ObuHlnUuQkXwl5t6nrXtqPT7pMFoXQGU7cnliz9vkOQtQ/SrcZGSssoUXmz5A3Rh9APxHxtdsyZl1Cc2BBAhaJgymZ+W7dc94ofMQW8+NQxGll4y8mLCaEmib+jORFu1FJITKxZw7KS71StN425ABlaT4Z0iI1edPuhxrKci+EU+Vnn8bMrI5jfgKc5Bl7foJUUpR1lgU13b0lX0mQCUq4SOsvqR1D4qKfyEr976yfujbsFmvJqXiz7oAyqXksOv8GErd6QFtSJhomvINCZH6529b9jQ2ZX3tO5/+qBvbg96peh3Ai/ZMXtr/KsXu4oDrF2Gy8XSjJ6gW5X9uBa/s+Y1Z6Vt1LXjvl1vrduH+Rr117e68cJ6xc2biVBQdDYZJkqgUHcOvo66ncoyWU+ZSFB78+jfWHjihG4mQJQlVCJ4a2YMxXfSFC+vXH+GFZ3/Bo3Opf57S0irx/kfjiPLTkSspLOXhbs9zfNdJvb1JBgmen/UIHYfqn78Fk5fz4aQvkU2X+DZJonWfFrw8/3FdAJV9Ppf7OjxF1tkcnb3JLGO2Wnh75fMBeaPfPv0T01+f4+GNU7X3nRCC/rf15MHJd/wjAyjve6lo/FWolUOLJIeDfKGQmO+3X5m2C4LLmrYbP34848eP5+abb+bmm2/2LQf7uYLgcNqdvD72QxRFDZgeUhWV0wfP8v1zM3TrZ7w5l8OXBE5eeyEEb938iU7WJOdCLh/cORkEAW0IVbBr1T7mfaKXg/jqsR8CAifwsJG7nW5eG/uBTtbk6I4TfP+8p5/+Ts/rZFf8sIZ1czbr9vXubZ9TlFccwBquuFWKC0p455ZPdes3zN/K0imrdPv1b2/aK7M5tFVjOFYUhdfGfoDL4QqgUVAVlcwz2Ux+ZKpu/cIZm9mx4WjAlIq3jY9fnEdWRr5vfXGpk+e+XOwJfC+9HkJwKP0i3y3UH/dHazcGBE7gkWZRVJUHf1uE3W9a9XRxLq/s9Fwff24eUfaz6vwRfjm5U7evr0/MDAicPNt78mc+PDxFd4xnSvawJWdW2X79++X5fWfeb5ws1hjlhRDsvfg4blESZMpKwaXksT/red3aopJfKS79za/nWq8AcvJfwenSpG+EcFKYexfBp95UVPcJSgre1K11FH0VJHCibHtBSd7DqGqutlbJJiv34bL+BLbhcG6hoPAr3doTue9Q6j4VtA2Bm4OZD6D6EVhmO06UBU5waeAEcLTwd44WrtKt+/bEdwGBU9lRY1ccfHlcr8229uIRZqVvDWjBe798c/RPduac0tYLwf3LFuK4JHACz314sbiIl9bo+zRnw17+3H8iYArHex+/MXsV53I0/rnSUievvTIv+LOhCo4fv8gP36/Vrf/p1dkc350eaK+oCEXljRs/orRYI1K9eDqLj+/+ymfjDyEE25btYuGXK3TrP39wClnncgLsFbeKy+Hi1evf103t7994mOmvz/HsU+fbPL8v/nqljpH8n4gr1Xb/PlxW8HTLLbcwYcKEcv1cQXCs/XUThblFIefcVUX1VKKVsdwqisL8z5eGzjUQHibvFT/+6Vu15NtVhnk7QgjmfarpzhXmFrFq+tqQ2whVkHU2h61LdvrW/fbFMkMJGNkkM+9TLUBLP3DGUGZGVVQObDzCiT3pvnXzPl1sKMVgMsv89rkmvbF9+W4unsoKea5Ut8ofM9eTn6U5/HnTNoTNLFn6qxZELN14EIcBmagqBLNX7cJdliPhcLuZuXtPyNwSARQ6nCw+pAURM45vD8nH48WPRzU5nhxnHltydge8eH19QnDOfpH9BZoO2Y7c30JyNoGnxH5n7m++5QLnHopchwjF2yRQyLGvp9Sl5UMWFH2LsasxUVD8g2/JaV+GUHMIneOk4CiZhVA98h5CqDiKvwvZJw9cOEs03caikpkY5zipFBZ963tRutVCLhbNJXQelYpLzSanRAs89ueFP7d7cuf6ljPsGRwoPGhw/VTSS9I5Waw9Gz+f3BRAOeAPkyQz86QWxG88c5pT+fkh70NFCJYeP0pmsfYR9tOanWHZfn7doMkprV51gNISZ8gXr6oKFi7Y6WPsdzldLJi8PLTfEVBabGfV9HW+dYu/XokRxb/Ao5HpRe7FfP6cHVrmSVVUMk5mstNPFmrBv+jbruB/C1e07f5DOL47HbPFuMrDXuwg87RH264gq5CCrEJDe9ks+8r4AU7sPWVg7UHGyUyf7MGZw+fDsp6bzDLHd2v7PbYzNLs4eJzS8V0nfcsn94TvE8CJvZqO2LFd6WFJMo/uOKFtu+eUYbDl3ebM4fOAh734/Okcw3xkIeDkEY3B+uiZTEMCUoCCYgc5hR7W5POFRRQ7jWUozLLMocws3/Kh/Ish2cXB091jhZqQ6ZmSC2GTiyUk0kvO+ZYv2o+FJXK8aNdG9Yqch0Pa+qPIpQVoHgFeo8BGwenU9NoU1wHCp2M6UBTPPSJEPkLNDGMvo7o1HUCn6wDhJGAU9QJCeAI0u+sUwoBdHEDCTLFL0z/MdBwJe26znZrW3JnSs4b799mVaIHpwfwLhveIIlQO5J/X7LMzwwbkqhAcy83x9FEITmbkGN5VqhAcPa/dtyeOX8RsEHQAFBc7yMn2nNvcC3kU54dmFwePCoD/B9WJvaeMC0AEnDl0zjdKfvrg2bAFILKs959Gygng8W3H/HzbPxN/JVn8UmavK/DHX9K2O3z4MCtXriQ9PR2Hw8H7778PwIULF9i/fz9t2rQhLi4wMfcKwBZlK1fFii3SkzNjjSxHeazQ7AFsEVZkWTIW9ZQlTGVBXESQJM5LoaoCm5+dLcoWLJ1DB/++l+s4uOQ4yrFNRLSWP2GNtJarisa7X9kkYTLJhtU9kixh88sNs1nN5RrStpXlXESYwz9qQgidXaTJost1CgarbPb7PTx1g0Do7CxBuIwuhcWvtD5YEnUw+NtJ2BCUGlhLSJKWpCxJkRgHW167iLKty9MnCfzsPNuGezFIIHnOVXmOW6Bi8rOz+NoIff3MfnQN1nJSN1j8aCQiTOGveaTZz95sKVe1n/99aDGbcBpUmcmS5LvPwUMAXJ5nw2rzbFMenyAu9W2R1oA8zkthtph8uZbl8SFCCF1fIqLCPxvl2e9/EloQdPnbX0FwXPbI0+eff87EiRP5+eef2bBhAzt27PD9TQjByy+/zNKlSw328L+NjkOvNnzwJVmidrMaVCwjjIyOi6LZNY1CSo6Ap5S24zAtqbLjsKsNv5xks0y7Qa19PCc1m1SnUs3Aah5/CCHoMFiTSehybXsdM3WwNq4ZqSXRtuzeRBfoBIMt0krLHhq53zUjOxiOJEmSxDUjtDY6DG4TdgSmQrVkajf3kPvJskz77g0N21AVlQ49tUT5blfVRTH48pUliRZ1qxAf4yE6rRwbQ6NKFQ3FhBUh6FVPk07pVbWBYeBkkmT6VNUqLOvG1CLObMzpIiPROlE7t/XjuhhePwmZ+rHX+JaTIzuFkTUBsxxLgu0q33J01CBCy5oACKKjNDUCS0QfjIMnCdlUB9lUy7MkR2K2dQnThhuLX1VfVGQ/jKftTETauvmCpkhLGhHmmhgHXCpJURrhZ1psF4wCJwkTdfwYxuvH1iNCNg7SzJKZpvGaRl+fKk0MR5IkJHqlavY9atUOm+BcMSqKppU8FZOSJNGjeZ0ApnB/qELQvZl233buXN/wQ0SWJRo0SCWpTNsuoWI8DdvWDSnPAh7f1smPDLfj0LaG/tNkluk0vK3vWOu2qk1SamJIewAkj5qBF11GtA8th4Vn2i5Upe8/BX9JmqXs5wqC47KCp0WLFvHzzz/ToUMHpkyZwrhx43R/T01NpWHDhqxbty7EHq6gTotatOnXMuQLW6iCG54ZqXN0Y58aEXK0SjbJNGpXj+bXaI6y3cCrqNmkenA9J8nTxpjHhmn7kGXGPTMiZJ89zqIjqWlaKXrvm64hoVJc0OOQZAmLxcywe7UXY2RMJCMeHBTyHSRJMPz+gTqahqH39MNiswR1rrJJJi45lt7jtZdQSs2K9BzbxdDx3fD0CB053uhbr/F83gbZxGSSqV67Iu27aYFK87pVaF63SsiXiioEEwbrmc/v7dQ+5Be5SZLoWLMGTStr57Zf1UZUi04ImtPiHVCfUF8rwTfLJkZUC621JSHRo1JHEq1amX/zhP5Y5ehL5EO89jIW2UaLxIG+dVZTItXirscoiKgVfxsmv9Gq+Jjb8QQ2we51EyY5lZhITePNbKmPxdab0MGQICr2Ad2zYYu5ByPhYdnSFLO1k29NpK1bmQBxqDZU4uPu9S1JkkSNhHsIHQzJJEf1IcqiyQTVj+tNlCk56LkFCVky0SzxWu0YTDYGpBpfv16VehBt1ipwx9RqS4Rs0UmzaD2SiLNEMLy6FshWjollREPjgOuuNu10FZw392hT1n4gTLJE9QoJ9GyuUXk0bFSFli1rhgyGVFUw7qZOunU3PDPS0Lc169KIhm21NjoNu5qq9VKD5yRJnqs06pGhWj/NJm542sC3yRK9b+xKxWrJvnV9b+lObGKgjBR4fJs1wsKQu4LTbFzBfz8uK3iaO3cuNWvW5OWXXyYtLQ1zkCmJmjVrXiHRDINnpj/gK/v3atzJJs/PpPduDviqadOnBQ9/NQmTxYQkSz76APB8Wb00/3HdC8VkMvHGkqd9Zf/eNiRJwmK18PRPD9Cko778tN8tPRj/4hifHp7JpLXRpm9LHv5mks4+Oj6at1c+7/uq82n1SRAVG8mrC5+iSh09f9GNz49i0MTeZfbeNjy3Yr9be3Lzy3pNv8q1KvH64qeJjIvUtimzT0yJ5+2VzxGbqB9xefDLO2g/sLXWp7LzigQ3PjeKgRP1ulcNmlfnqXevw2oxI0no+lS1ZjKvfXWzju1YkiTevX8ojWp5js1UpuMlSRJmk8xTN/eiU3M97UCf+nV5rld3TJKELEmYJMn3krqqWhU+GTZQZ281mfn+mnFUj/acW7Mke2gNAJvJzCcdRtE4QX9uB6Z2Z1jVPoCnvF1G9rGLt09qyW1po3X2UeYERtd8k0iTJ6Dy6LSVTeOaYhhV4w1iLXpJkPpJj5AaPdhn7y3VB6geeyO14vWacFZLfSpX+L5sOk7CE7B4fIbZVIXUirOQZT23UGzix1isHcuWzGjBl0xU3NPYoobr7C22jkQlvI9HD8+rV+dpQ7Y0IiZpqo4SQJJkUir8hMXiDYi9bUiAlQpJHxNh0z9/KTHDqZX4aJmNXHbcnjYSIjrRoMLb+j7JkQyt8R4xZXI1kt95ssiRDKj6GolWvbTJ4CoD6VnJoy0n+/0H0KlCB0bXGKmzrxwZz+T2NxFr8YxYmSTteifZovmqw80k2qJ127zcrSd90jyBiPee8t5Xd7Vpx/jmer22RtVTePeWwdgsZs/Vk7X7tnqFBL68ewSWS5jAX3j5Who1LvM7Zc+eJHumx+97oC8dO+l5m9oPas19n93u8U+X+LaGbevywpxHdb7NbDHz1vJnqVI31dOGn2+zRlh5dsZDNGhTR9fG4El9PAFUmR6ev29rP6QN93+u1w2MS4rl7ZXPk1ApXtcGeETUX1/yDJVqGI/U/6dxpdru34fL4nnq06cPgwYN4r777gNgypQpfP/99zpOp8mTJzNr1ixWrFgRYi+hUVJSws8//8z+/fs5cOAAhYWFPPnkk+USGr7vvvvYuXNn0L+ZTCZWrdKqYUaPHs2FCxcC7IYMGcIjjzxSrr7+VXkWIQT71h1k9Yz1lBSWUrVeKn0ndKdClaSQ2+RezGfZd6tJ33+aiCgbna9tR6uewcnwwEMwuWXJTjbM34rT4aRO81r0Ht81qL6bFxnpmSydsorzJzKITYyh+/Wdadi2bsg2XE4X6+ZsZtvy3aiqSpMODeg+tjOR0aGnIdIPnGH596vJPp9LUuVEet/UlVpNqoe091bc7F9/CEmWaNWzGV1GtAuqz+fFoS1H+f2ntRTkFFK5ViX6TugelITTi8L8UlbO38HRA+ew2sy069aQNp3rh0wOF0Kw9cBpft92hFK7i9pVkhjUuQnJ8dFB7QEuFhXxy579nMjJIdpqZUDD+lxdrWrIc+tWVVZfOMLq80dwqQpNElMZXrO574UZDBfsmay6uJFMRzZx5liuqXg1aTHBNcg8bTg5VLiG08W7AUG1qGY0iOuqy3e6FIXOQ5wvmo9TycJmqkyV2GFEW2qHtFfVIopKZmN37kCSTETauhMd2RdJCn79hBC4Xdtwls5DqIXI5lrYokZjMgXXIANQlRycpTNRXIeQpEgsEX0x27qElI4RQsXu+IOS0iWowo7V0oiYqNGYTKGfP4f7HBeKZmN3ncIsx1ExeiCxtlYhr58i3JwsWsep4i0IoZAS2Yj6cb2xyIHalV6cKz3P2qz15DpzibfE0alCR6pHBZI4elHqdrLk3F525KQjIdG2Qm16pzYxlGnZczGDeYcOkGsvpWpsHCMbNaFGfEJI+4ISO79tOcDBMxexmE1c07g2XZrUxhRCXkgIwa6dp1jzx0FKSp3UqJFMv37NSUoOPbWccyGXZd+t5tTBs0RER3DNyPa06NYk9LlVFDYv2sGmBdtwOl3UbVmbPuO76fjxLsX5ExksnbKKjPRM4pJi6XFDl4BAyx9Oh4u1szey4/e9CFXQtHNDul3XqVw5Uf8peN9LuWOvxp1y+XnH5owCEn/acoXnKQguK3jq378/vXv35qGHHgKCB0+vvvoqGzdu5Lfffguxl9A4f/48Y8aMISUlhSpVqrBjx45yB09btmwhNzdXt660tJR3332X9u3b89Zbb/nWjx49mtjYWMaM0Y90VKtWjcaNG1Me/F3adldwBVdwBVdwBX8HrgRP/35cVrVdWloa27dvR1GUoKKKdrudbdu2Ub9+cEr9cEhOTmbOnDkkJydz8OBBJk6cWO5tr746UD192bJlAPTu3TvgbxUqVKBPnz6X1c+/C1lns1k3dwvF+SVUq59KhyFtDEdTFLfCpkXbSd93hohoGx2GtDEcTQE4c+Q8mxdux1HqpE7LWrTu09xQENNpd7Ju7hbOH88gNjGazte2IzElwbCNoztPsGPFHhRFpXGH+jTr0sgwObW4oIQ/Z28i53wuSZUT6DKiHdEGIzbeUbp96w8jl4081W0VeqQDPKN0a3/dRGFOEZVrV6LTsKsNRYsVRWXHmkMc338Gi9XM1T2bUC3N+Nyezyzgz21HKXW4qFUliU6t0gwFhZ2KwqrDxzmRk0u01UrvBnWoHGfMAny0IIs/zh/DpSo0TaxMx5TahnkrdsXBxuxdZDlyiLPE0D65JXEW42Ty86WHOF1SNvIU2ZTUSOPr51LyySpZ5hl5MqdQIaoPZjl0G0IIHM71OJ07ADMREV2xWoJLmnihKhko9qUIUYBsqoUpojeSQYWgEG4Uxx+o7oNIUiQmWy9kc+gRNwC3+yR2+3KEsGOxNMJm624o9qsKBzkly7G70zHJcSRH9cNqMp6+ybIf40zJNtSykacqkS0Mz22pYmdLznbfyNPVSa2JNgeXwPIct2BHzhm2Z5/yjDxVrEWzxNAjdAA5JaUsPXqE3NJSqsbF0aduXSItof2Oqgo2HTjFwVMZWEwmOjWrTe3U0CN0AJkX8tmw+iAlxQ6q1apA+2saGFK0uF1uNi7YxumD54iMiaDj0DZhp8ZOHzrL5kU7cDlc1GlVm9a9mxuKjNtLHKyfu5kLJzOJS46l87VtSagYH9IePDJau1btQ1UFTTo1oEnHBv9IZvFLIfiL1XZXqApC4rKCpwEDBvDWW2/x7rvv8sADD+j+VlxczFtvvUVOTo5vWu9fhdVqJTk5ObxhObF8+XIiIyPp3Llz0L+7XC7cbjeRkaGH0f8dcLvcfPbAFBZMXg54khYVt0pcciyPfHuXrqrNix2/7+H1cR+ReyEPk1lGVQWfPTiFXuOu4cHJdwQofpcWlfLWzZ+y9tdNSGU5OaqiUrF6Ms/MeCioZtTqGev4YNKXFOeVYDKbUBWVT+//lmvvH8itb9wQEHTlXsznldHvsXvNfo/TkjzVaTWbVOf5Xx6meoOqAW38+uFCvnnyJ5wOJyaTCUVR+Oier5nw8vWMfGhQgGM6c+Q8L418R8fhpCoqTTs35NmZD+mkVsAzVTnl6enMevc3VEVFNskobo++3X2f3kaPsV0C+nRoRzqv3TWFi2dyfZI3X740lw59m/HIB+OIitFPkzldbt78ZgWL/9yHJwEYFFWQFB/F83cNoG0QHcDVR0/w+Pyl5JaUYiqTfnl12WpGt2rKM327Y73k3BY47Ty4cS6rzx9DRkKSPFV51aMT+LTTCJokBurhrczYwNfHZ2FXHZgkGUWofHl8JiOq9eG66gMDzm2hK5P5Z17hvP2gL7lZoFLJVoeh1Z4j3qpvQwjB6fzJnMz7BIELCRmBwhHpReokPk6VuLEBfXK5DpGVcwtu93E8uUWC/IIXsdm6kJz4RcA0mRBunAWv4C75Hk/6rwlwgxSPLeEtzBGBidWKYxOOvHsRagZeWRZ4CVPEYGwJb5XlXGlQ1RLy8h7CXjofTw6TBCjIcmUSkz7HZmsX0EZ28WKO5jyJohbgcZ8KJ3JeJDX2ZmolPhkQdJW681l2/kXOluzQndsEaw36VXmRJFutgDaWXVjF9NO/4FSdyMioqEw5+RMjqw1hUGq/gOt3ujiX+zbO5EB+hi+gVoWgZVI1Pmw3kpRI/ciDKgQfrF/P5M1bUFQVkyzjVlWirRae79GDEU2aBPTpQHoGj32xgHNZBZhkj2Ds+7PW0KV5bV6+tT+xl0xhuVxuPnltAcvmbgckj29TVOITo3n0lWtp06leQBtbl+3izZs+Ju9ivubbHphCn5u7cd9ntwfocBYXlPDmTR+zYf5Wj2+TJVS3Skqtijw78+GgU3HLf/iDT+79xqNrV+bbPrn3G0Y9MoQJr1wXEHRlncvhldHvsW/9IZ3fSWtek+dnPxKQz/lPw6Wc/pez/RUEx2UljA8cOJCePXuycOFChgwZwsKFCwGYOHEi1157LatXr6Zfv35069bt7+zrZSEvL4+tW7fSuXPnoMHR9u3b6dOnD3379mX06NHMmjXr/1vfPr7naxZ8sRyhCoQqfLQChTmFvHDt2+z6Y5/O/sj24zw14DXyLnpkQnyq4AJWTvuTN278SGcvhOCFa99m/TwPC7Xw09DLPpvLY71e4tRBPTHfpoXbeHXsBz7SOsXtUYFX3Cqz3vuNb56YprN3Olw82uMF9q33EBCqqiY3c/rgWR7q+jy5F/N12yyYvJzPH/zOQ84pPG14GdK/fHQq8z/TU1zkZxXw0DXPkn7AU4Cg+knaHNh4mEe6v4Cj1KHbZsrT0/n5zbl+/ffw1BTnl/D6uI9YP3+Lzv7M8Ys8cd0nZJ3L87Xh5YratGIvL936dQA/zsufL2Hxn/vLEiuFj08rt6CUh9/6lf3H9Pl0W0+d5c4Z88gr8XAeKaqHUEEVghnb9/DcIn1+oKKq3LLmZ/684CFSVBE+QsRzJfncsOpHzhTn6bZZl7WNT47+iF0tY6YXatm/CjNPL2bm6cU6e6days/pj3LB7iG1FKiIsqq1TMcJpqc/jF0p0p+rgm85kfdeGWmk8BFBqqKUIzkvcKHoV529WznPxczhuN1ekkMFb2Wcw7GezOwxCKEnEHUWvIi75LsyO4GPVkAU4MidhOLQy3uorgPYc8b5kWUqeF8din0Bjtx7dPZCCHJzJmL36e1pGnqqepHsrOtxuQ7qtskr/ZNDWfegqF6yWndZGyrnC6dwIvdVnb0iXMw/8zDnSnYHnNt85xnmnrqfYne2bpvVF9fyffpPOFVnWa889m7h5ufTv7Lkgv4eyXeWMu6P7zhc4DluVQgfe/ie3HPcuGYqJW49uedH6zfw6cZNuFUPEYa7jHKj2OnisSVLWXJYT4R6JjOPie/M4kKO57gVVWtj3d6TPPDx3IBKuQ9enMeyuTu0Z6PseS3IK+H5+6axf5eeLHf/xsM8M+h18jM9rP9e3yaEYNn3q3n31s909qqq8uyQN3zyKEIVPvbwzNPZPNrjBc4ePa/bZu2cTbw1/hNKCsqePz/f8PMbc5j6/Eydvb3EwSPdX+DAZs+z4e93Tu47zYPXPEdBtjFx8RX89+KyeZ6ee+45HnnkEVJTU8nKykIIwaFDh0hJSeGhhx7iiSee+Dv7edlYuXIliqIEnbJLS0tjwoQJvPTSSzz++ONUqlSJjz/+mM8//zzk/rKysjh06JDvJz09PaStEc6fyGDR1yuDEtYJ4fmfVzPOix9f/kX3Utdtowr+nL1Jx3i7d+1Btq/YE5QPRVVV3E4XM96c69eu4JunfvLw/gT75BCeESP/YOiPmetJ338mKJ+UqqgUZBfym18w5HK6mPLs9CA71/D9cz/jdGgv0wVfLCcvsyCotILiVjl96ByrZ6z3rcvPKmDWu6Fz7SRJ4tunftKd+18+X4nT4Q5aLq0qgl3rj7B7w1HfumOns1ix8VCI6+d5uXz76wbd+o/+8CyHOLX8ums/6Tl5vnVrLhxnR/bZoAzSihCUuJ18c2iT1k+hMvXkvFCHDcCvZ5dR7NYIK/flrSDfdT4oE7ZApcidzZ48TYJCUUtIz/vYsI0Tue8hhLa/oqJvUEUBwaVNFFyuvZTatXtEVc7hLvmB0GcKnIXv6NY6iz7BPyjTQ0VxrEBx7vKtcbm243D8HtIeXBQW6j9G0vPeJTTppeBC4VScbo2F/njhn2Q7gjO4C1QcahF7cuf41ilCYeaZOQG2/ph99jdfYAUw6+R2LtqLfEGyPxShcqo4h99O7/Gty7fbmbxlS4CtFxLw9p9rdff1D8u24XCGeDZUwc6j59i4X/ODp09msXLBrpDPhhCCHz9fpVv/w4uzfH8L2EYV/P7TWt/HE8COlXvYs+ZAcN+mqDjtTma9o/kAn28zmIWa8fY8CnK0YOj3n9Zy9sj5oH5HVVRyM/JY9NW/XhD1/xN/hV38rxJs/rfjL8mzDB48mClTprB06VJmz57N4sWLmTp1KkOHDg2/8f8nrFixgoSEBNq0CZwCe+ONNxg7dixdunRh4MCBfPzxx7Rt25aZM2dy8eLFoPubP38+t99+u+/nlVdeuax+/TFzg+G8vKoK9qw5QM4FT/J7abGdjb9tDUsMt2q69kW+avpaXXn9pVDcKr9PX+uTOTh75Dwn9pwyZCBWFcHaX7UX9u8//WlIbqcqKst/+MO3vPuP/WFlZgpzi3UaU8t/+MOQMVySJVb+uMa3vG7OZp148aUQQpC+/wynypyxEIJVc7cZn1uTzOp5mrbdig0HjYkDVcH6nccpLtMmzCkuYWP66ZCaYuDhelq0X5P3WHBqn6FumSIEc09q5+lE8RkuOrJD2gM4VRdbcrSX6f6ClRgTPwr256/0LeWU/okijKU0nMpFChwaaW5xySxCa8IByJSU+AURpQvD9ElFde1AVTwyM0I4UOyLw7Rhxm2f71sqLZmLcdaCgr10gW9EzO46TbFzN8bknYLsEm1k70jByhAcT15rlUMFy3zLhwqPku8qCGkPUKqUsjtvv2953qndhoSwEjD/lHa9Vxw7htPo2QBO5uVx0E8maNHGA4YqBSZZYulm7b5ds3SPIZmvqgq2bzxGYdnodlFeMVuX7Qzr21b/rPEGrpq+zlB3TnGrrJym+YSTe09x5tA5w9J7t8vN+nlbfcsrp60xzGsSqmDZ1D9C/v0fAfE3/FxBUPwleRYvbDYbNts/r2zz3Llz7Nu3j2uvvTYoF9WlkCSJ0aNHs3nzZnbu3Bk0kXzIkCF06qQRvKWnp19WAFWYU4QsS6jGUnIU5haTVDmR0sLS8HIukkRhjjbF4hEeNpa5cDvdOO0uIqJsFOQUGdqChx/Fv42CrMKw/SrM9etTOdq41C7cNkIV5PsFZIW5xWGlG/z363YpOO3GunOqqlKYpwUNBcX2Msca+tiFgKJSB9FRNgocjpB2XkiSRF6pphyf6yw11C0DKHRp+y1yGwc14CFaLHJroq92dwHhPGSpor3Q3Wq+gaUGl5+dEMYBAagoqhb0CZGP57vO+PoJNQ9MVUCUYBw4AQjw65Oq5hP+zeBGiBIkKb5cxy1hwqXm+ZbtSr5vmi4UHH5TosV+18UIxYpml+c0kr3xHGGuU7sv8u12ZEkyDOIB8uye/QohKAnzbCiqoKBEu28L80s9bYQ5v0WFdmLjoyjKKw57KaRLfFtRXpGhegJ4tEG9RU3l8m3yJb4tuzCslE15/dl/ClfkWf59+K8WBl6+3JOIHWzKLhQqVfJUVhUUBHf4FSpUoEGDBr6fmjUDk4LLg9S0lLAPv8lsokIVTyJ0bFJMWFkToag69u/KtVMMlccB4pJjffpMKTUrhq0gUdyKro2QLL9lkGSJKn72/tsaIdWvwq1K3cqGbOEms0y1+qm6bcMFTkiQUlahaLGaSahgXO0myTKpNbQihqqVEgy/xsGjf5cQ66mQqhgTjSWcWLGqUj1Rq/qpEZ3oIzwMhSpRWjJwJVv4IguBoHKEVr2UaK1qODoiIZNo1aq2Isyhebj8EelnZzLVwHgkyYzFrDFzS6YaGEunAMjIprJrLsWCZFxJ6NmvX5/CVOABSFIckuS5L2zmVMK5S4GbCL/9xlur+UgxQ7RAnEVLOK5kKx/hYiWbRlpaIzopKLu4FyZJolaMloxfPT4+bODktQNP0JKSaHxuTbJE1QrafVu5WhKKYtyGxWIisYzvKTElHkuEseSPoqi65OzKtVMM/Q5AcpVEX3FLuGpk8IyS+/udcL5NliWq1v1nJ4xfwb8P5QqeunbtSrdu3f7ln+7du/+7+2+IFStWULVqVZoEqR4JhXPnPFMBCQkJ/6ZeedD9uo6GDkM2y3Qb09FXum+xWug3oYeh/hqSRO/x3XyL/W7pbhhEyCaZQXf09gVMyamJtBt4Veg2JIiOj6KTn37egNt7GQaBQhUMulOTMKjfpg41G1cLOdUnyRLVGlShkV8V4KA7ehtO2ylulQG3a4zh7Qe3ITYxOuT7WjbJtOnbUifFMPDGTmGnH/tep0mh9OvcGANzTLLEwGuaYLN6RjyjrVYGN2loONVnMZkY3ESTgBmT1jJoLovvOJC4oa4mvZEaWZHGcXVDvkwlIMESR6tEjR6geeIAw9ERgUqLBI35PCGiHTZTFUIHQzIx1qZEW7XrFxN9U8j9e+AmOvoG35I5YiBIRpWvJkwR/ZFkz4eFJJkxR12PsbadijlqlG8pKuo6jEe2TERHj/ORa1pMySRFGknGgCxFkRylVQE2jh8YNN/JH00Thvh+rxldnZpR1UNqDUpIVLJVoEGsVql2Xe3WhiM8ihCMrqXdI91q1yYpMjLk1TNJEu2rV6davBYMjezawpAWQ1EFw7poeok9BjQ3DjpMMj0GtiCi7KPNFmmjz41dg8tIeftlkuk5TquQ7X9rD2PdTllisJ/fSalZkVY9mxn6trjkWNoN1M7VwDC+TVUFA+8o/4f5fwR/lV38yrRdSJQreGrRokXAT1paGkIIz5dJSgqNGjUiJSUFSZIQQpCWlkbz5s3/rZ3PysoiPT0dtzvwK/Xw4cOkp6fTq1evIFt6RpYuzYtxu91MmzYNi8VCq1atgm73dyE6Ppq7P5gABA4OySaZ2MQYJrxyvW792GdGUKFqUkgHcOtrY0n2E7+sWjc1pJ6TbJKpUieFUY8M0a2f+PaNRMZGBLThDbDu/3yijg6hRbcm9Bp3TdB3qSxLNO3ckN43acKykiTxwOQ7kM2mgDbkMvmGByffoRsB6zG2M827Ng4a3EgSdBvTkat6afea1Wbhgcl3ICEFjFjJJpmIaBt3vjtet374bd2oWqdSyHM7+u5eVKujjZolxUdx99iuQW1NskRSfDS3XKuX93igW0cSIyMD8pi8S0/36Up8pEaH0CgxhZvrBfKWgeclVz++IuPq6nP5bk8bjUW2+CQ9tDYkQOKuumMx+ZXT14lpR92YjgS7gBIStaLbUD9Oe2lJkkz9Cq+WjVZdeq5kZMlCveQXdGujo8ditbQkVOARHXUDNqsmyCrJ0VjjvFPhl/bLBFIc1lh9QYo15i4kU5UgbXi2t8Q+guzHTG42VyM2NpSKgAmTqToxMXfp1tZKfKKMxyp4G3WSXsHkJzNTObIpDeOCa9VJyKRENKJh/ADd+ltqj8MkmYJeP1mSuLX2Tch+o5H9qzWhY6XaQQMuCehTpRHXVNaCLYvJxKtlI/EBZ1aSsJnNPNe9m279mJ4tqV0lKeTHxQ29r6JuVW00LC4hiokP99M64QfZJJOQGM2Nk3ro1o97fhSJleIDg66y7Se+fRPxFbRR1pqNqzP6Et/l30b1RtUYdp+eVPmuDyZgi7IG+jZZQkLiwS/v0PHrtenbkq6jOgQdjZdkiZY9mtL9uk4Bf/snwcvzdNk/V3ieQuKyGMYvXrzI3XffTfPmzZk4cSIpKdpLJSMjg8mTJ7N3714++eQT3zTYv4rZs2dTVFREdnY2c+fO5ZprrqFePY8TGDFiBDExMbz22mssWbKEGTNmkJqaqtv+008/ZcaMGfz444/UqBE4RO9Nbu/atSupqakUFhayfPlyTpw4wcSJEwPEjkPhrzKM/zl7I1Oe/ZnTZZQBkizRaVhb7njnpqBDzdnnc/ny0an8MXODr/w+NS2FG58bRe+bAl/mQggWfrmCn16bTeZpT16J2Wqm5w1dmPjWjcQlB05XnT50li8f/YFNC7f75vzTmtfkllevp93A1gH2iqIw4815zH5/ga90NyLaxsDbe3HzK9cHlTE4sOkIXz3+A3vWHPCta9q5Ibe/OY7GHQLPo6PUwXfPzmDhl8spLfLkV8QmxXDt/QO5/snhQRPjtyzZwTdP/cSxnSc9KyRo278VE9++iZqNAqUuCnOL+ea1+fz+61ZcTk9Anlw5nuvu6c3AmzoHdaJL1x7g69nrOZORB3gCp+7t6nPvDV2pFET+5lx+AW+sWMOyg0d90ye1kxO5v2sHBjQOPG4hBN8d2cLkAxvItHvyK6yyiZG1W/BY8+7EWgMlWtKLz/LdyTnszNPObd2YGtxYcyjNExoG2CvCzcasn9ieMw+H6m0jipaJg+lYYRxm2RqwTZ59Cydy36bAsdO3LiGiPWmJjxNrCxzpVdVi8gtep7hkGkJ4rp8sVyA2ZhKxMXcGlU9x25fiLHwb4T5StkbGZOuNNe6ZoMSXQsnEUfAain0+3mk/yVQNS8x9WKLGBNoLQUnJTxQVfoiieCu5LERGDiMu/llMpgoB25S6TnIy9zVyS1fi/SyPstSnRsIjJEUFfqgJobIjZwY7c2diV/IAMEs2GsUPpH3F24JKtBwvOslPp37hQKGWhF0vpg7X1xihG3XywqG4+fjAaqYf30pxGS1BnCWCG+u0ZVLDa3Qiv16sPZnO22vXsjfDUx0oAV1q1eKJrtfQoELgcReW2Plo9loWrN+Ps8zvVEyI5uZ+VzOmR8ugz8bqJXuY+tlKzp3KATwfR517Neb2h/pRsXIgKWXmmWwmPzqVtbM3+kZ8qtZL5aYXRtPj+kCOPiEE8z9bys9vzCHrrKcNi81Mrxu7cvub4wL0LgHS959m8qM/sGXJDt+oSt1WtbnltbFc3bdlgL3iVvjptV+Z8+FCCnM9uWaRsREMvqMP418aE8Cr90+B9710cXQHXBUvn2HckllApZkbrjCMB8FlBU8vvPACFy5c4Isvvghpc+edd5Kamsrzzz9/WR0LpTsH+IKlUMGTqqqMGjWKxMREvv7666D7OHToEFOmTOHIkSPk5eVhNpupV68eI0aM+JemG/8OeRYhBKcOnqWkoJTKtSuRWMmY7RY8yYxnj14gItpWNg0WJp9GUUjfdwan3UnVeqlBHculyD6fW6b/FEPVeqlh86FcThcn955GVVRqNK5mqGvnRUZ6Zpm2XUK58hLsJQ7S959BliVqNa1uyMTuxZkj5ynILqRSjQqGmoFeFOWXcPZ4JtYIMzXqp4bUtfNCCMGJs9mU2l1UrRRPQlxoJmgvcopLOJ2XT7TVSp0KSWHPrVtVOZx/EZeqkBZXgVhL+AKNbEceWc5c4szRpEaGP7du1UmWIx0QJNtqGuraeVHqOo1LycZqTiHCnBrWXlWLcbmPIGHCYmkYUtfOCyEEQjnm0bYzVUMKw+QNnkRy1X0SSYpEMtcLqWuntaHidh9CCDtmc21kOSFsG04lE4f7LGY5jghz7fC5gsJNjuMEqlBIstU01LXzIsuRTa4zj3hLHJUiwh93qdvF0cJMJKB+XCVDXTsvTubmkme3Uzkmhsqxxnl/AIUlDtIzcrGaTdSpmhxS184LIQSnjmdSWuKgctUkEpJCKwh4kZ9VwLljGUTGRFCzcbXw51ZROLn3NC6Hi+oNqhiqFHiRdS6Hi6eyiEuOpVq98Pet0+Eifd9pVFVQs3G1f7SuHfgFT6M64ArDnm4ES2Y+lWZdCZ6C4bKCp8GDBzNkyBBuv/32kDZffvklv/3222Vp2/1fwhVtuyu4giu4giv4J8H7XsoY+deDp5RfrgRPwXBZVAVOp5PsbGM+maysLJxOp6HNFUBuRh6/fb6M36evpTi/hOoNqjB4Ul+uGdU+qPacEIJ1czfz2+dLObHnFBHREXQd1YEhd/fTJUD74/yJDOZ9soS1czbhLHVS76o0htzdj7b9gyvBu11uVk1fx4LJyzh3zKNt1+vGrgy6o3fQaT6AE3vSmfvxYjYv2YGqqDTr0ohh9w6gaafAaSLw8FYt+241i79ZSfa5HJJSE+l/S0/6TuhGZEzwr/J96w8x95NF7FlzAEmWuLpvS4bdO4C05sErHgtyCln05QqWTf2DwpwiUtNSGDixFz3Gdg46YiWEYOuKPcyfvIIjO05isZrpNKQ1Q+7opasY9EdmdiFzFu9k5Z8HKHW4qF29AsP7t+Sa9vWD5ogoqsqy/UeYvnU3xzJziLFZGdi0Addf3YKKscG/mI8XZPPD4W0sP3MYl6rQIrkKNzVoQ+fKwXX9XKqLVRe3sOzCOi46somzxNCjUnv6VO5ITAh9tIzSI+zMnUt6sYexuXpUC1olDaNyZPDr51YLySicxYWi2biULKzmyqTGjKFSzLWY5OAjjg7HekqKvsXl3AqYsUX2Jjr6FsyWwKkoAKFko5T8hFo6FyEKkEy1MUWPRY4YhCQFui4hBMKxErVkGrgPgBSBFDEAOWpcWT5UIBT3GUqLp+CwL0SIUsyWJkRG34zV1jvosyGEm+zi38gomobddRKzHEeF6OFUih2LxRT8+ctxnGR37hxOFm1EFQqpUU1pnjicqlEtgp8nxcnqzA2szFhHTtnIU49KHemR0pFIU/BzuzP7LFOPbGHjxZNIkkTnlNrcVK9tUPkegPxSOzN37mHO7v3klpRSNSGe61o1Y0jThlhD0Lps3nOSWUt3sP/YBSxmE13b1GVkn1ZU98uz1B13Rj4Lpq7lj/nbKSlyUKNeCoNu6kynAS2CjpSrqsraXzcx//OlnNp/hsiYCLqN6cTgu/qGHDE+e/Q88z5Zwrp5W3A5XNRvU4ehd/ejTZ/g2oEup4uV09ay8MvlXDhxkbjkWHrf1JWBE3uFHI0/uvMEcz9ezLbluxCqoPk1jRl234Cg0lZX8L+Dyxp5uvfeezl48CDvv/8+TZs2Dfj7nj17ePDBB2nSpAkffvjh39LRfyr+ysjTib2neKT7CxTlFvuIKmWTh5+ow5A2PDfrYcwWzZGpqsrbN3/Kih/X+Oy820RE23hz2bM0bKt/Ee1avY+nB76Gy+nW2auKytC7+3H3R7fonIzT7uTpga+zc9VeJFnyVblJskRiSgLvr3kpQM9p9Yx1vD7uI4/uWlmugskso7hVbntjHGMe05OmFmQX8nD35zm577RnhcCXGFqzUTXeXf2iLjkU4Jf3fmPyI1N9+/W2oaqCx7+/l5436LXqzp/I4KFrniP7fK7uGIQqaN61Ma8tekonECyE4IvHpzH3s+UB59ZkNvHK7Ido2a2xro1DRy9w/3MzKLW7fFxXcpleXc8uDXn2gYG6KT+3ovLgrAUsP3hMx7UjSxKxNitTbx5Fg8r66ZnV545xx5pfUIXq43wySRKKENzZuAOPtdRPMZcqDp7f+zGHCk8iIfkIFCUkKtgSeb35g1S06V92e/OWsPz8+z6NOo+9CYFCj5R7aJGkT8x1ujPZdeE67G6vxIb3AgqirU1oXvlHzLI+yC4qeI+iwnfwJFt7CzVMgERC0mQiIvXJvar7GK7sMaDmoVXFebifJFs3LIlfIElavokQKmr+Uwj7L4FtSDZMid8hWa/ybwKXYzN5OWNBOC/pk0JE1A3ExL+pezZU4eDwxYnk29f4+uLtl0VOolHlGURa0nRtHC1Yw9JzL5edJf25bV/hFtpU0OdWFrtLeH7v+6SXnNGtl4DKEZV4qenDJFj1z8bUI1t4acdSn44heO4RVQjebDuYa2vpg7Rz+QWMnTqT8wWFvmIqWQJVwFXVqvDt9dcS5fdxIYTg0+lrmLZgKyZZ8lF0mGQJWZZ5+5FhtGteS9fGsX1neGLMJ5QU2gOejc4DW/LEp+N1z4aiKLx+w4ce8uBLnr/I2AjeWflCgAj4tuW7eHbomyhuxccC7t12xIODuOOdm3TXz17i4Ml+r7B37cEA35ZcJYkP/nyZlJr652/5D3/w9oRPfbqjoPm2Se/fzLX3D+SfCN/I04i/YeRp9pWRp2C4LJ6n22+/HVVVuffee3n66af5+eefWbp0KT///DNPPfWUTxD4tttu+1s7+98ERVF4fthbFOVpgRPgcxobF2xjxpt6qY3fPl/GijImbX8KAlVRsRc7eHbwGzpZk5LCUp4b9iZOhyvAHmDep0t8+/Pi++dm+DT1/OkBhCrIz8znxRHv6Ijjzp/I4I0bP0JVVF1Zr/f3r5/4kd1rNEZkgA8nfcmpA2f1DLZlv58+dI73btfn0u1dd5DJj0zV7df7u1AFb938iU7HSgjBy6PeJScjL+AYAPb+eZApT+slYv74ZRNzP1uuOz/e390uNy9cp+n9AbhcCo+9+qsucAJ8v6/88yC/LtJYtgG+Xb+VFQePeez8zqEqBEUOJ5Omz0Pxuxdy7CXc9eds3KqiI8v0/v7F/g0sO60lFQN8d2IORwo9Uhn+zNMCQbYjj3cPTtHZZzlOsvz8+2UWip+95/ffMz4ho1SvdXYo61Hs7jMEXkAodh7kWPaLOnuHfXVZ4AR6MksFUMjLuRNF0fIbhVBx50wsI7X0LxX3/C4cf6AUfaprQ5TOLAucgrQh7Ci5E32J6gBCLSE/52YQjiB9AnvJNOylenmks3kfk2/3Mvjr++VSczmceYfu2Sh0XWTZuVcQKEHP7casbzldNtLnxdfHf+Z0yTkuhQAy7Fl8dnSqbv3unHO8tMMjbeNPa6EIz9V/YvMCjhVk6bZ5YM4iMgqLdFXo3lt459nzvP37nzr71VuOMG2Bh3nbn9tMUQVuReGJ9+eRX6SRdSpuhRcmfEVJkSPos7Fu0U7mfLVK18acDxexZtZGj90lz19poZ1nBr+O26VVVRfmFvHCtW/jdrh18inebWe/v4A1v2zUtfHNk9PYv8FzL1/qF3Iv5PLy6Hd19mcOn+OdCZ/qdEc9x+f5/fMHv2P/Rv2z8U/DFXmWfx8uK3hq3rw5b731FikpKaxdu5bPP/+c119/nc8//5x169aRkpLCm2++SbNmzf7u/v7XYOvSXZw/nhGSh0mogjkfL/I5DCEEs99fEJJeR1VU8jIL+NPPYaz8cQ0lhaUhOZIkWfLsswz2Ege/TV4W0l5xqxzfnc6+9X4SIl8sN5Q8MJll5ny40LeceSabP2dvCnncqqKyfv4WMtIzfevmfrwoLCHegi+W+34/sOkIR7afCKpJBZ4RvIVfraDUz+HP/nhJSCJOoQpKix2s+EmTh1iz6Qg5ucWG7Ooz5m/1/d2tqHy/cUdI2hRFCM7lF/LH4RO+dbOO78KhKCG3kSWJbw9t9i0XuUtYmbExJO+PisqBwuOcKNJGNXblzA9DkmliZ64WxJe4TpBnX0toRm+Fi8W/4VS0af3ioi8JzY8kAIWS4h+1Nc51COWEQRsCpXgqQnjY1YUQqMXfEpp7SgWRhyjV7kN76dwyJvNQPD4SpUWTtT0IBxmFUw3sFeyuoxQ4tOdvX94CQw4tCRO7cn/xLec681mftdUnBhx4FCo78vZxvlSTjvr+yBZDIlVJgmlHNVmhfecz2Hn2fEjmelUIftm1lyI/RvzpC7eF5HkSAhxONwv9RMw3Lt9L1vm80L5NwJyv//CJBauqyuwPFoZk81YVlexzuWyYr0mnLPtuNY4SZ8htZFli9vtavm1JYSmLv14Zsk+KW+XQlmMc2nrMt27+Z0sxInMzmWXmfbI45N+v4L8bl80w3rp1a6ZPn85HH33Efffdxy233MJ9993HRx99xPTp02ndOrCk/Qo07Ft3EJPFiNQP8jMLuHDSE0QUZBdy/niGIWmZyWJi3zpNCX7f+kOGVXhCFRzbedI3WpW+/wylhfaQ9uAZFt+7Vmtjz5/BxTm9UNwqu/3oCA5uOhJW8gABB/y+6Hb/sd+YrE5RfaNlAPvDHDd4pBtO7D1d1keFw9tPGOvnSRL7Nh7xLe89eDZsFV5GZgE5eZ7y5gsFhWQXG8unmGWZ7ae1UYdtmWcMdctUIdieeda3fKLoDC4RjpkbDhQe9/1+pmS3IZGjQOFMyW7fcqF9e0hbDQpFDk1PzeXcgrF8iorL4Sdw7NyOMeElIPIR7jIxWlEEynGMGf1MCJcWRLidW8O0IVDchxGq5/rZXcdRhLEmI5gosmsv+HMlu8MQkCqcK9HO07Gi9LCSJgCHC7UAe/PFdEMiVUUINmVqor3bzpwLy9zjcCscyPD4HSEE+46eN2YlF7D7sHYf7t96IuzHTk5GPtkX8gDIPpdL1hnjHFqTxaTzO/s2HDKw9oxyHdx0xDeqf3x3Oo5S4xxcSZZ0/nP3mv0hP8DA49t2rd4X8u//GIi/8HMFIfGXtO0kSfKRZl7BvwZZlst1c3qTjo3kSfzhb1fubSR9W+XtU3m3uaw++QU/UphAKLBPsmHQEbCNJCFJGI6gSVxyHFIoHujgbYQrt/bfr2/bsjaMjkRvX75vIf+ehyvjv9SecrahHwUqxza6/Za3Da9dec6tpN+vJP8L2/0LffI7jn/13JbvjkI3ClSe+0q+5J4qDyRdG4S7CfVt/IvP+OX4NlmWCPdwSP9qnwS6j65wH2CX9umfiCvadv8+/Fdr2/2T0apnMx/JZShUqJZMSi1PAmNsYgw1m1Q3dJaKS6FlD22qtGX3psbyLLJE444NfJVnNZtUJzbJmP9JVVRa9dTaaN27haFkjMks06aPFlw36dQw7FepbJJp2lmr8rq6b4uwcg9t+rT0Lbfo3sRwFAk8MjPeKj2TSaZpxwaGx6GqgpZdNVmT1s1q4DY4t5IENaomkhjvqW5LjYulSrwxj45bVWlfW9Nf65ASvIrQC5Mk6WzSYqpjC0JoeSmaJ2hVQrWi24SdtqsZrbGYx0e0JVzQIWEl1tbSt2y1dcF4lEcusylbsnUgrNCvXBHJXMvTnhwD5sZh+uVGsmqM7xZrJ4z182TMluZIZYzhEZY0zHI4jjCFuIiOvqXq0W0MAyIJE9X9zm392DTMkvGIm4REo7i6vuVrKqcFMNbrjkKS6JKiJbG3r1U97GdFtNVCk8oeXjBJkriqcXXD4EMIQesmGmlpi471jXU7JahcI5kKZUSZyamJHv3KML7N3++07N7McARbNsk079rEFwCltahFVJwxt5YQgpY9tAKo1n3C+7ZgxJr/KPyVUaf/j6NP27Zt44033mDs2LH07t2bMWPG8Oabb5KVlRVgq6oq8+bN45ZbbqFv374MHTqURx99lD179gTZc3AsWLCAcePG0atXL66//npmz579L/f5LwVPe/fu5fvvv+fdd9/ljTfeCPpzBcHRvGtjajerYajnNOqhwT66AkmSGP3IkNBz/CaZlJoV6ThEc8bdxnQkoWJcSAegqkIncWC1WRh+34CQWsIms0yTjg2od5XmjPvf3hOz1RzS8amKYLhfRUpipXh63dg1ZJ9kk0yP6zvrZGaG3TsANYTQqCR5+uWvMVWnRS2aX9M4ZMAlSRLD7u2vYwceeX//kIGmbJKJS46h+yjt5du+dRpVUuJDvlSEgOuHtfWdF1mWuKVjm6C24KlcqlMhiQ61tZfQ8NrNiLHYQmrVKUJwW6N2vuVIk43+qV1CvrBlZK5KaEzVSI12oXniIMPgCQQtk7RqyQhzVZKj+hA6GJKpHDsai0mr8ImOuZ3QwZCMJEUQFaVJEUmW1kjmpgZtgCn6Vh1dgRx9O6E9vQnkFKQI7R6xRQ5AllMM2lCJjJmk7V+ykBpnVABjItranBhrS9+axvH9MUk2QgV1AoUWSZp8Uqwlmm6VOhhcP4n2yVdRwaYFcTfVuzrkUUuASZIZW1dLoahbIZlOtWuEDLgkCca2bkGkRau2Gzvw6pC5fbIkERtto19nrRL1qq4NqJpWMXTgIWDknT18z0Z5fFuVupW5ul9L37qeN3QmNjEm5OiQqqg66amIKBtD7+4X0k+ZzDKtejSlVhPt42XQHb2RTXJIf6iqgmH3Dgj+xyv4l/DFF1+wY8cOunTpwv3330/Pnj1ZtWoVt912WwAt0meffca7775LWload999N2PGjOH06dPcd9997N+/P0QLGubNm8dbb71F7dq1uf/++2natCkffvgh06ZN+5f6fFnBk9vt5rnnnuOee+7h22+/5bfffmPx4sW+nyVLlvj+vYLgkCSJl+Y9TsWqySD5TZ2VvfD73dI9QJup901dGfnQYABdYCBJEvEVYnl10VM6mRJbpI3XFj9NdFykbnjZu+1NL4ym07C2ujbGPnUt14z0BAle5+d1OKlpKTwz8yGdfYUqSbw45zEsNrPOWcomGUmWeOirO2nQpo5um7s/nECTjg10bXj/bdiuHvd+qn9J1W1Vm0e+vQtZlgLaMFvNPD/70QCOq2dmPEiVuh7mYO+xe7ftNLwt454dqbNvP6AVNz8/Und+vNtGxkTw6pxHiIjWqA1MJpm3nxtJQnyUzrl6hX9HDrqKgb30BRM3tG3BmNbNdHZS2U/FmGi+GDtUF4zFWSP4ttsYIs0WXQDlffE91apnANfTuJqDaZ3oeZF59dG8L+PqUZV5sIFepDfBWoWB1Z5GxqwLoiRkJEz0r/oEyTb9CFj95NeJsXpflt5tPPddQkR7aideojtna0dc/OtlR+ofrMgg2UhInorsx5EkSRKWpC/AVNXXG/825IjhmKL194gUMQgp+k6dnW9bKQ5T4hQdtYEk2YhP/hFJikMf3Hi2jYq5n4hIPUVDatxEkqOG6uy829rM1ahX8QvdyznKnMjAaq9glqwB5xagW8qDpEbqpWxurjWKxnH1ys6O/vqlxdTkjjo36Ozrx1finbZDkSVJFxCZJAmzbOKTjiOoFp2g2+bdof1Jq+AJwLzTbd5tu9dN4/6uHXX27VvU4u7rPfqUpkumriMjLLz32LVER2rnVpZlXvruDhIrxmo3ONrzN/CmzgwYp9eEG3B7L4be49HD8z1/ZdsmpsTz6sKndIFSZEwkry16isjYiKC+7dbXb6Bt/1a6Nm56YTQdhrbR9cW7bbX6VXjypwd09ik1K/L8L49gsgT6Ntkk89h394TkmPvnQPobfv79uPvuu5k+fTqTJk1i0KBBTJw4kTfeeIOcnBx+/fVXn53b7WbevHl069aNZ555hiFDhjB27Fjee+89FEVh+fLlBq2Aw+Hg66+/pkOHDrz88ssMHjyYp59+mt69ezN16lQKC8PlNWq4LJ6nadOm8eWXXzJgwACGDRvGxIkTGTVqFD169GDXrl1MmzaN1q1b+yRa/pvxVxnGS4tKWfHjn6yavpaivGJqNKrGoDt606Jbk5BfSfvWH+K3L5ZyfFc6kTERdB3VkT43dyMmITjJYkF2IYu/+V0jyWydxuBJfQOCGi+EEGxdtouFXy7n7JHzxFeIo+cNXegxtrOOG8kfmWeyWTh5OZuX7EBxKzS/pjGDJ/WlRsOqQe0Vt8K6uZtZ8u3vZJ7JpkLVZPpN6E6n4W113Fb+OHP4HPM/W8ruNfvLpupaMOjOPlSqHqjFBR49vFU/r2flj2vIy8ynat1UBtzeizZ9g5P0ARzZeZIFX63k0LYT2CKtdBzcmn43XUN8heBTbkXFDpas2svvaw9SXOqkTs2KDOvXkuaNA7XzwHNut6Sf5eetuzh6MYeYCCuDmjZkSItGxNiCT7ll2YuZcXQny88cxqkqtKpQhXH1WtMoMThxpypUtuXuY9mF9VywZ5FoiaN7Sjs6V2iFRQ4uh5LvvMDuvIWcKtqGQFA9uiUtEgeTYA1OLqkKJ1nFS8komo1TuYjNXIXKMWNIjuqBFGLqyeU6RGnx9zgdm0GyEBHRi8jocZhMwY9DqCWo9nkoJfNA5COZ0zBFjUWydgz5bAjnTtSSaQj3fpCikCP6IUWORJKDc92oai72khk4ShchRAlmS1Mio8djsbYKai+EoMC+lotF0yl1HccsJ1AheijJ0cMwhZBcKXJlsS9vASeLNyKEQmpkM5olDiHJViuovSIUtubsZmXGOrIcuSRa4+mR0oF2SVdhloOf25OFOUw7to1NFz38Xp0rpzG2zlVUvSRw8sLhdrNo/2Hm7NlPTnEp1RPjGd2yKV3r1g6ZF3X45EVmL9/J/mPnsVrMdGldlyHdm5EUH5x4tbjQzsrZm1kzfwfFhaXUbJDKwHGdaNquTggCUsHetQf57YtlnNx7iqi4SLqN7kTv8V2JDiF5lJeZz+Kvf2fdvM247C4aXF2HIXf1C+CE8kJVVbYs2cmir1Zw7tgFEirG0+vGa+h+XaeQOnUXT2Xy2xfL2bZ8F6qi0rJbEwZN6lsuWZf/FLzvpfNDO+Oq8Bd4nrLySZ239j/G8zRo0CBatmzJK694hMIdDge9e/dm+PDhPPjggz670tJS+vfvz3XXXcedd94Zands2LCBxx9/nDfffJMOHbSZhL1793LXXXfxzDPP0KdPn3L17bKCp5tvvhmA7777DoCuXbsyYcIE3/oTJ05wxx13cPfddzN06NDgO/kvwRV5liu4giu4giv4J+G/IXgqKSlh8ODB9OvXj0cffdS3/s477+TEiRM8/PDDtGjRgqKiIr7//nt27NjB5MmTqVIl+AcfwNSpU/n666+ZN28eiYlaaojL5aJ3796MHDmSe+65p1z9u6xqu7NnzzJo0CDfsiRJuN1a8mXt2rXp2LEj8+bN+68Pnv4OuF1u9q0/RHF+CdXqVwk5WuOPs0fPc+rAWSKibTTp1BCrzVhg1V7iYP/6QzhKndRuVqNcIrwn9p7i/PEMYhNjaNyxflC5GH8U5xezf8NhVEWlXus0kionGtoLITi89ZhPGLjB1XXDVg/lZuRxeNtxZFmiUfv6IUfbvFAUhQMbDlOQU0Rq7UrUbhZ+mD0jPZMTe05hsZlp0qlhWBFQp9PN3n1nsNtd1KieTLVq4cWHT2TmcDIrl2iblVY1q2AJd25dTrZlnsWlKjROrERqtLFSuhCC48VnyXR4hIEbxtUKW41XqhRwvvQQIKgc0YAos7HTFUKlyLnbI89iqky0NfRoqReKcgG3ay8SZszW1siycRK9EG5w7QC1AMw1kcx1De0BhPsUuI+CFAHW1kiS8fUTwu6hUxB2TOYGmMw1DO0BSpyHcbjTMclxxNpaB5WL8YdDKeZ86QFUoVApoi4xluBSLlqfBMeKT5PtyCPBGkf9mJphz222vYTd2eeQkGhVoQrxNuMEaUVV2X3mArklpVRJiKNBSoWwbVzMLODoiUwsZpmmjasSGWK0xguX083+DYcpKSylev0qVKsffrTmzJHznD54lsiYCJp0ahBW/Lu02M7+9YdwOdykNa9BpRrhRZSP707nwkmPPEuj9vXC+rbC3KIy6gNB/TZ1yiXe/o/AX036Lts2PT1dtzo5OZkKFYKP+P9dmDVrFi6Xix49eujWP/PMM7zwwgu+0SiAKlWq8OmnnxoGTgDZ2dmYTCZd4ARgsViIi4sLKzvnj8sKniwWCzab5pAiIyPJzc3V2aSkpLB+/frL2f3/DIQQLPhiGd+/MJP8zALf+sYdG/DA57cHfdGfOXKeD+/8kp2r9vrWxSZGc/2T1zLy4cEBzk9VVaa9Mptf3vuNkoIyUkgJru7Xigc+vz2oozm05Sgf3vUVR7ZpfEDJVRK55dWx9BnfLcDeaXfy1eM/svCrFbjsHs4o2STTdVQH7v30tqCaUVuW7OCzB6Zw5rDGDF61XiqT3r+ZdgOuCrAvyivm43u+ZvXM9T7uFYvNzIDbejHx7RuDDrmv+HEN3zw5jayzOb51dVvV5r7PbqdRu0A9tcwz2Xww6Us2L9rucxqRsRGMeGAQ454bGeBghRD8MnsLP/60nkI/fqwWzavz0IP9qR4kiDqakcULc1ayI13jc0qMimRSz/aM7RCox+VWVd7b+SffHdxGidtzbiWgV/V6vNq+D5UiA8/t3vxjfH50FieLtTYq2hK5NW0oXSoGnlunamd1xmT25i9DLeOJkjHRKL4HPVPuwmoKnDLJLlnGyZxXcCga4WakpS5piS8QH9kxwF5VsinMfwqnfREa0WQEkdHjiY57QpeP5IUomYEo+hBUreJGWFogxb2IZGkcaO8+hSh4Dpx+fkeKheiJEH17AHWAECqlRZ9gL/oc4cfhZLFdQ3T8m5jM1bkUxY69nMh5hmLnLs1erki1xEeoFDM6wF4RLtZe/IZduQtQhIdnSEKmXmxnelS+j0hzYBC8M+8gXx2bxZnSDN+6yhEVuKX2tbRLbh5gX+hy8OLW5cw7sQ93GeeTRTYxKq05z7TuSaQ5MPhYuOcQ7yxdw4WCIt+6hpUr8uzA7lxVM/DjLSu7iPc+W8b6Lcd8lB6RERZGDmnNzWM7YTZdem4Fcz9dyrRXf6UgW2ujaeeGPPDprdRoFNjGqYNn+eDOyezx44WLS47lhqdHMPz+AQHPhqIo/PDiLH79YCGlRWXPnwTtB7bm/i8mBtXD27/hEB/d/TXHdp70ratQLZnb37iBHmO7BNg7Sh1MfmQqS779HZfD82yYzDLdr+/MPR/dQnS88cfbfxxC8vz8le1BF6iAZ/bplltuCbqJqqq4XK6gf7sUVqs1aMC+c+dOvvvuO7p37x7AGRkVFUXt2rVp0qQJrVu3Jicnh2nTpvHUU0/xySefkJCQELI9h8OBOYR2o9VqxeFHDhsOlzVtN378eOrUqcNzzz0HwB133EFxcTE//PCD70Tce++9nDt37rJKAP8v4a9M2/385ly+eTIww182ydiirHy88XVqNtJyZzLSM7mrzeMeSZcglWFjHhvKbW/otbI+vOsrFnyxLGgbiSnxfL7tLRJTEnzrj2w/zgOdn8Xtcgdt475Pb2PwpL6+ZVVVeXbIG2xZsjOAHkA2ydRsXI0P179KZLQmaLp58Q6eGfw6CHQVNt5756V5j9N+kPbA2EscPNDpaU7sPR3QJ0mWuKpnM0+yvF9ws+jrlbw/US/zAp6qN5PFxPtrXqbB1dooRl5mPpNaP07uhdzAMmsJ+t/ak4e+1M+lf/vdGn6cFviBIMsS0dE2vvj0ZlJTE3zrT2bmMuaznyh1unQyF17c16cjd3TXqueEEDy4dgHzTuwP+Hg0SRJVouP4beB4EvxGGPbnH+fJ3R+jCDUo19XDDcbRI0UrElCEm1mnnuBsyb4AQkcJmcoR9RhT8x3MfhQIWcWLOJx1r7eXui1AokmlqboASlULycsciKKcJLDqTsIa0Y+4xK90TlQUT0EUvh7Qf2+SuZQ0C8miUS4I5QIie3iZFl6Qyr6oCchxT+pWFeU9j6PkmyBtmJDkJBIqLkY2aTqOJc4D7LswAlU4CMY0XjPxOSrHTdD6JATzz7zA8aKNXPr5LyGTaK3G9bU+0gWnO/MO8uLeT8sGDPyejbI9PNHwdjpU0Kg/HIqb0ct+ZF/uhQDWcFmSaFepBlN7XIfZL8dv7o59PDkniE+QJEyyxPcTRtGqhvYFn19QysQHp5KZVRhw30pAn+5NeOohfdXZj6/8ytSXfuFSyCaZyJgIPtnwClXrauf23LEL3N32CUoKSoP6nXHPjmT8i2N069659TOWfrcqYGRFNstUqJLEZ1vf1GlkHth0hIe6PofqVoJWDz78zV30m9Ddt6woCk/2e5Wdq/YG9W1pLWrywZ8vh8wD/U/CN203uMtfn7b77U+eeeYZatbUPuaNRp527NjB/fffX679//DDD7r9gmeU6+677yYlJYWPP/6YqCjt+XC73dx66620atWKBx54wLf+9OnTjB8/nlGjRjFp0iRC4f3332f+/PmsWrUq4G9DhgyhdevWPP/88+Xq+2VV27Vs2ZJdu3b5Xnw9evTg9OnTPP744/z666+8+OKL7Nmzh3bt2oXZ0/8u8rMK+P65n4P+TVVUHCVOvntW//dpr/xCcX7wwAlgxtvzuHBSk244sfdU0MDJ20ZuRj4z356vW//lYz+EDJy8f/eXNdmyZCebF+0IyqukKion955m6bfajaqqKp/c+01A4ATeZcHH936j0/tb/v1qju9OD9onoQq2Ld/NZj8dudJiO1889F3w4y7TqZr8qF4jbNY7v5FzPkjgBCBg8dcrObbrpG9VZmYB034KPrKqqoKSYgc/TFunW//x8vUhAyeAT1dsILtIYyHfkXWOuUECJ/DQFJwtLuC7g9t067889mvIwMn7d5eqfRUeKVzLmZI9QZmwBSrn7Yc4WLBaWyfcnMh5keDzAZ51x3Nf0F1be/EPKCHlVgRO+2JcfqNFQs1HFL4bxBY8UitORJH+76L4i9CBE0DJFM90XhkU97EQgROAglBzKL1EP+9U7puowkkoiZZTeW/iVrUR5FMlOzhetIFg8yYClRznafbkLdLWCcGXx2YGBE747eHL4zN1jOJzTuxld05wuRVVCDZkpLP8jMbW73C5eW3xH0H7rwqBogreWqLXu/xl/jYuBgmcvP1aumofB/xGkLPP5/Ljq78G2EKZVl2RPSCwmvriTEoLgwdOAD+99itZ57QR5MPbjrF0SmDgBKC6VbLO5uikpwC+ePj7kIETeLTqHKXayMOG+VvZsXJPSN92dMcJVv74Z8Df/mkQ4vJ/vKhZsyYNGjTw/RhN2dWoUYMnn3yyXD/Jyfrp64yMDB5++GGio6N58803dYETwK5duzhx4gSdOumrNatXr07NmjXZu3cvRkhOTkZRlICZMpfLRUFBQUB/jHBZwdOAAQPo2LEjmZkeCv8RI0bQoUMHNm3axIcffsjvv/9Ow4YNueOOOy5n9/8TWDV9nU/bKRhURWXd3M0U5HimE5wOFyt+XGNIPifLMsunao5x2XerDcklVUVl8TcrfS+6i6ez2Pn7XkNiTXuxg7W/anpqS7793ZBITiBY+JVWPrp/w2HOH88IyekiBFxMz2TPn9rQ/aKvV4bcP3i+Ahd/o9lsmLdFG8YPAlVR2bPmAOdPZJS1KVj89QrD4zaZTR5nXYblK/YZk/qpghUr92Mvm8YstDtYtvdIyMDJ0w9YsFOTh5h1dI+hbpkqBD8d1qaPTpdkcKTolCG7eqG7hC05GhfKntwlYUgyJXbnafpdefZ1uNTMkPYgKHUdpdipyVaUlkwjtCYcgAl7id+Hgn0xYDTsr4BjNaJMP08IF5T8ijGxpglRqr3QHSWzMCbuVLCXzEAIzz6d7ovk29cYtiGEk5xiLRjal2d8bkHogqejRac4W3rR8PrlOPPZk6dJk/x8dKdhMbksScw4qt0jqw4dp9AeempCFYKdZ85zMlt7ufy2dJehhqPJJLN4hfbS+n36OkO6flVRWfPLJkoKPR9hpcV2Vv+83phYE3SBSnl828KvVviWzx49z/71hwyPo6SgRKeftziMb5OQdG38I/EfIMlMTk6mf//+5fqJidHSDvLz83n44YdxuVy88847QQM0b9Dj/3HthdvtRlGMyXXr1fOkaxw8eFC3/uDBg6iq6vt7eXBZOU/e6NO3E7OZN954g4MHD3L27FkqV65Mo0aNykVv/7+KzDPZmEwybtXAGauC3Ix84pJiKcot8s25h4IkSzqNqKyz2WGZtovzS3CUOomIsulyg0LBZDaR6dfGxfRMw6ADgc4+nIaVZqf15eKpLEPpFFVRyTipvdAzz+Qgm2TjfgHZZ3NIrZ2C2+WmMLfY0FZVVLLOan3PzCxEliVDZ+x2KxQUlBIRYSGnqMRYHwzPiy4jX8u9OV9SaKhbBpBZquWTZDnyDG3B4/D97QpcF8PorwkKXNpoptN9IWwbAE7lAuBha1aVcNsoqIqmjSaUC3gCG6P7XYB6EUzJIIoAY01GT0e0fijKeQNDbxMlCFGEJMXjUi4S7k0iYSo7bg/CnVvw0Bh4UZ7rB5Dl1OzOFRcY9koVgjPF+b7lCwVFyJIU9l7MyC+iVnIiQghy84w1GRVFJTNbu2+zzpY9fwa+TXEr5GcWEBUbSX5mQVi1BVmWyDztd67OZocNtgqyClEUBZPJVC7fJptkMv39ThjfJoTg4qlABuwr+NdRWlrKY489RlZWFh9++CHVqwfmGwK+9StXrtTNbB06dIjTp08zePBg3zq73U5GRgbx8fG+PKirrrqKuLg45s2bp6MqmDdvHhEREbp14fCXtO0uRcOGDWnYsGF4wysgoVJ82Jc7Ej5+oej4KExm2dBhCCF0+UsJFeM9+lEGTswWacUa4UkoLU8FiaIoJPjZJaUmhg1UEiv59amcVSoJlbRchcSUeAqyQ5OXySaZpCpa9URCpbjw5xZIKDtXZouZyJgIw9Eq2SSRUFHre0JilGHgBB6HHxvryfWKj4oMq5+nCkFyjDZMXSEiCpMkBZ2S8SLRL98pwWIsrQOeYCjBolW4RVuSyHOdMxjtkIg2a+fWYirfsLa/nSwnoarnDKxNSLLG9STJSRiJFWs7LksIlqIBC8ajVYDs36fyVApZkSRPQrDZFL6CUqDojjvanIiEbBhARfpVNCZYw18/gASL9mxUjIwmy14c8urJSLqiguToyLCBE0BSjOe+kiSJ2JgICg2eDZNJJtGv6jWhYlzYZ0OSJJ8UVGxSTNgPEVUN9G3h/GF0fJQvD7I8fkdVVJ3fSaqcwKn9Z0L3S4LEypefT/T/BYK/mDD+t/XEEC+//DIHDhxgwIABpKen66r7IiMj6dLFk8zfoEED2rRpw5IlSyguLqZt27ZkZ2cze/ZsbDYbo0aN8m134MAB7r//fl1yu81m49Zbb+X999/nueeeo23btuzatYtly5Zx++23ExdnXMXsj788NJSZmcmGDRtYsWIFGzZs8E3lXYExul/fyfC+9Oq1eV/Ytkgb14zqYDxU7VbpOU6rGOl1U1fDLzrZLNNnfDffCGFqWgqN2tczFLu0WM10GaFF/L1v6moYqEiyRL9btFLTZtc0Itkv0AmGxJR4WnbXNKb6Tuhh2CdVUenrVwXYeXhbLBGhy5slWaJ+mzo+kjtJkuh7c3dDqRzFrdLrpq6+5V49mhhPZcgS13RpQGQZ83JCVARd6tc21CEDGNhS+/i4tk5Tw8DJJEmMqqtVX9WKrkKNqMqGemoRso22ydq5bRLfO4yIsqBpvFYgkBDZBXMIwkkPJGzm6sRYtaTmiKjrMHY1ChFRfozvEQPC2MtgbY9URq4pSVaIGEy4aTgpYqhvyRZ1LeGm+WyRI3wUBDZzFWJtbQ37JWEiKUqTImoc38cwcJKQaJrQz7fcILY2FW3Gz0acOZoWCdqo/6g6LQysQUUwMk1juu/RsA4RIUhoPX2CBikVqFtRCwL792pqqG2nKCp9e2hM6T2u7xR0WsUL2STTYfBVPpqR6LgoOg69Ooy2pEqPGzr7lnvdeI1xCoNJ1iV/12xUjTotaxn6EVukVae40Gd8d8NnXEKi34QeIf/+j4AA6S/8/P8Kno4ePQrAokWLeOWVV3Q/H3/8sc729ddf59Zbb+X06dN88skn/PLLLzRr1oxPPvmEGjXC04wMHz6cRx99lOPHj/P++++zd+9e7rnnHsaNGxd2W39cdvB05swZHnroIUaNGsWTTz7JK6+8wpNPPsmoUaN46KGHOHPmTPid/A+jQpUkna6cPyRZwmSWmfDKdbr1454dhTXCGtTJSBIMuL0n1RtoJcAN2tSh6+iOQR2GbJKJjo1kzOPDdOtve2McsiyFzOcZ9+woHfVAp2FtadyhftA+yWaZSjUqMHBiL986k8nEne+OD7pvL+54Z7xOZmbA7T1JrV0paOAom2QaXF2XztdqAV10fDQ3X1KZ44UkeY5t4ls36taPenQIMfHRwc+tLNH52nY6eoOqVRMZMjg4C7UsS1gsZm68RILivj4dMZnkkAzON3W+isp+4sEdUmrQrUpaUG07kySRaIvi1kaaXp4kSdyWNtzze9AWYHztQUSYtMq5RnHdqWhLC5qbIyGTZK1OkwRNE06WbNRMeCLA1h+1Ep/W0QJERk8w0JGTsVg7YrV109o1VYDoO4PYeuxBRop5WN/XmEkgRYZoQ4KIa3XVeWZLE6yRIwh+pkxIUhSRsXfr1lZPfLzsPAV3m1Xi78HiN0JVO6YtVSObhjy3MeaKNE/QphlkSebW2iMCbP0xvvYwLLIW/IxKa07tuKSgQblJkmiSmMLAmpqgdbTNygM9OwXYevrkuYce7XuN7vkfM+xq4mIjdNIsvm0kiQ5Xp9G8seZ3UmpWZPg9/QJswTOCa7aYuOm5Ubr1N704BovVHDxIk2Do3f1Ira2NTjbp1JCOQ68O6dtiE6MZ+fBg3fqJb9/k63Mw3PzydUTFaiO514xqT/3WacF9W5nenv+H4T8S/4Gcp8vBzJkzWbNmTdCfmTNn6mxtNhvjx49n6tSpLF++nEWLFvHGG28E5Cu1atWKNWvWBKVUGDx4MD/++CMrV65k+vTpjB49OizH2aW4rOApIyODe+65h23btlG9enUGDRrE+PHjGTx4MDVq1GDbtm3cc889ZGRkhN/Z/zBueW0sN70wGluknuMmNS2Ft5Y/R/3WevmUGg2r8u7qF6neQE8EZrGZGfnwEO779PaANh6feg+DJ/XRBSMAac1r8v6fL5NSU8/z1Pyaxry68CkqVtdPz0TGRDDxrRu5/snhuvUms4nXFj9NlxHtAm6+5tc05oM/Xw4gsuw2phNP/ngf8RX1Q6RxybE89v099LxBz7cSHRfFe2tepkU3vQ6YJEl0Gt6WN5c9EyDpMuqRIdz57ngiYyN06ytUS+KV354I2Fel6hV4/8+XqdOyVsDxDZzYiyen3R9wfPfe3Zvrr2uPxaI/t9WqJfH+u2OpXUt/bhtVqcSU20ZSPUk/chNhMTOpRzse7qc/bkmS+KLbMEbWbRYQcDVPTuWXfjdQKUo/1dM6qRHPNLmNRKu+jShTBJPqjmRI1a669WbZyuiab5IWE1gZWyu6NWNqvoNV1p/DlNgx1El6PWAEyiJXoH6Fj8uEgzXIpiQSKszFbNXztYCMLXIY8UnfB0i6SDH3IcU8WBYQ+cFUFSnpOyS/kS0AyVwTKWkamC+VHLJA1Hik+JcDji8m4R1sUbd4bPybMNcnrsKvmMy1dOtjbVfRIGUqVpP++ZOlKKonPEbV+PsuWW9iWI1XaRDXLWA0sEpUE0bXei+A56lDhZY80mAC8X5TqwAx5ijurXcDvVL0ORnRFis/9xpHp8r6vkpAz6r1mNbzemwm/bNxU4dWPD2gW4AcUKXYGD4ZO4ROdWvq1ldIjuHTt26gvh+1AHhGVwf0asqLTwwNeDbueHscY58c5ksJ8B13WmXeXv4Mac31IwS1m9bgnVUvUOUSyRNLhIXrnxjOpPdv1h+fJPH09Afof1vPgI+qelel8cHaV6hQVe/DrurZjJfnP0FyVf0UbFRcJJPev5kRDw7SrbdYLby5/Dk6Dm0TEGO36tmM9/54URdsXcH/Fi6L5+nNN99k0aJFPPTQQwwZMiTgwZk3bx7vvfceAwcO5LHHHvvbOvtPxN8hz1JSWMqWJTspKfAwjDft3NAwChZCcGDTEdL3nSYiOoI2fVsEJaL0R15mPtuX78Zpd5HWomZAYHYpVFVl1+p9nD9+kdikGNr0baHjagqGi6ez2LVqH4qi0qh9PR1HVTC4XW62Ld9N9rlcklMTuKp387BswqcPnWX/hsPIskzzro0Dgr9LYS9xsHXpTgqyi6hcuxItuzcJW8hwZPtxju08iTXCwlW9m+tynYKhqMjOlq0nKC11UrNmBRo3qhL2+m1PP8fJzFyibRY6169FTIQxV8zF0iLWnU/HpSg0Ta5M4yRjhnhFqOzOO8xFew5xlhhaJzXCGkLXzos85wXOlOwBBFWjmpBoNWa6V4WDvNK1HoZxc2USIjqFZdp2uw7idu0CTFhsnTCZjBmnhVoMzj9BLQRzTbBcHfbc4toN7iMehnFbZyQ5wfg41Fxc9j8Q2DGbG2KyBJKV6ttQKXRsxu5KxyzHER/ZFZMcXHvNiyJXFqdKdiKEQuXIhgFiy5fCrSrsyjtItjOfBEssrRIb6UacguFEQQ7bMs8gSdCuUg2qxSQY2ttdbtYePUleiZ0qCbG0q10dU7hn43gGh49dxGox0bpFTZISjUkii/NL2LpsNyVFpdRoUIXGHeqHvX771h/yMYxf3a9lWCLK3Ise3+ZyuKjbqnZIXTsvFEVh16p9XDiZSVxyDFf3axmWq+nCyYvsWXMAVVVp0rEB1eobM1n/p+Hjeep/Da6khMvejyUnj9TFa67IjwXBZQVPI0aMoH79+rz+ejASOw+efPJJDh8+fIUk8wqu4Aqu4Aqu4P8jfMFTv78heFpyJXgKhsuqtsvLyyMtLc3QJi0tjc2bNxvaXIFn9GX9vC2s+WUDRbnFVG9QlQG39zTUYDt96CyLvlrJyX2niIiOoPPwdnQZ2T6kvp2j1MGqn9ez8betOEod1G1ZmwG39yI1LbiaPXhGXxZ/vZJzxy4QmxxL9+s60W7gVSE1oIryilk+9Q+2r9iNoqg06dCA/rf1CKlvJ4Rg95r9LPt+Ndlnc0iqkkifm7rRoltofbTcjDwWf/M7+9YfRJZlWvVsRp/x3ULq2ymKwpbFO/l9+p8UZBWSmpZCv1t70qBN6FG38ycyWPTVSo7tPIHFZqH9oNZ0v75zSH07p9PNutUH+XPVAUpLHNSsXZEBw1pTo1boaq6jF7KYvWEvJy7mEBNhpXeLevRoVjekvl2xy8m8Y/v5/fRxnIpC84qVub5BC6rGBK8MEUJwoCCdJec3c8GeQ4I1hp4prbk6qUFIfbtSpZDdectJL94FCKpHNaNFQp+Q+nZCqOTZ13OxaB5OJRObuTIpMSOJs7UOef0U5Tz2kum4nDuQMGGN6IYtckRIfTsh3OD4HWFfBGo+mGshRY5GsjQKag8g3CcRpTPBdRCkKKSIXhDRP6S+nRClOEoX4CxdCpRiMjciIvoGTObQoxfFzv1kFP5MqfskZjmBCtGDSIrsEXLUzaEUsy//d04WbUMRClWiGtI8oR+xIfTthBDszT/O8ozNZDrySLLG0Svlalom1At5brNKi5l5ZA9bMs4gIdExtQYj6zXVsc/7Q1FV1h1KZ9GOg+QUlVA1KZ5r2zalafWUkG1kXMhn0fwdHDl0HrPFTPuOdeneu4mvKOJSuJwu1s3ZzJ+/bqIkv4TqDasycGIvajYOXoYOkH7gDIu+XMGpA2eIjIuky7Xt6Xxt25Aj0qXFdlZNX8emhdt8I08DJ/Y2HJE+tOUoi7/5nQsnMoivGEeP6zvTpl/LkL6tMLeIZd+tZueqvaiqStNOjeh3a4//O/p2V/BvwWWPPDVs2JBXX301pM3TTz/NwYMHr4w8GSA3I4/H+7zMiT2nfOX+3vLb654Yzi2vXh/gyGa8NY+vn/gR2SyjulUkWUKogip1Unh75fMBWnVnDp/j0V4vkXUm22crm2SEENz78a06qRXwOO5P7/uWeZ8u8fXF27cGV9fl9SVPB0wR7t94mKcGvEpJfqmnckt4k95NPPPzg7oKFvA41Vev+4B1czdrbZQdT/vBrXl25sMBgeCG37by8uj3cLvcHu4qyVPtEhkbwasLn6JpJz1FRlFeMU8PfM0zxXfJuR10Zx/u/eTWgOm7hV8u56O7vgJJQlVUJElCCEFylUTeWvF8gGBz5sUCHrt7KmdP5/hKrb1tTbizO9ffrM9hEkLw2ZINTF6+CZMsoajCx7lTJyWJryaNpEKcPhA8mJPJDYtnkGUv8Ul0yJIng+atLv0ZWa+pzl4RKu8enMHSC1swSTKKUJGRUVFpnlCHV5vdSpRZP/2aXrybWadfwKU68GaISkiYJCsjqj9DWow+V0lRSzlw8S5y7X/iSdBWfP9WjBpI/YrvIEv662cvnUdh7n14yDJVvEkkkpRAfPJ0LNZmOnuh5iByJoD7AJ7UTFVrK+pWpNjHAp4Nj6TLG2X2iradqSpS4lSkS7TqFPdJCrKvQ1XOXNKGSlTc80TG3BZw/U7mvsb5wm/8jtuzXbS1KY0rfY/FpP9YOF96mFnpz2BXC/GKrEjISMgMqvYYDeP094hbVXjj4FT+zNwVcP3aJDXiucYTsJn0wcqqM8eZ9PtcnIqC6rt+EGWx8m2vEbSrrD/uIruDu7+Zx/YTZ333offfa9s25bmRPQOm75Ys3MX7by4EPLQBXtqNpKRo3vzgBmql6f1O1rkcHu/9EqcOnNWejbJn/KbnR3Pj8/qEcYAfX/6F75+f4bPzble9QRXeWvFcQA5T+oEzPNbrJXLO5/qeVdkkgxA8MPkO+t/aU2evqiofTvqSRV+tDPBtTTo14NWFTxEdp59+3bv2AE8NfB17kd1H7CvJEharmedmPUy7gZfm8f0z4Bt56vs3jDwtvTLyFAyXlTB+9dVXs27dOhYsWBD07wsXLmT9+vW0bds26N+vwOOIX7j2bdL3e6oSveX+3vLbn9+Yw5Jvf9dt8+evm/j6iR899mV2XhLMjPRMnhrwmq5E2OV08UTfV8g5n6uzVRUVoQo+uvtrti3f5d8Ev36wkHmfLtH1xdu3I9uP89oNH+rs87MKeKr/q5QWlHqcS1koLlSB2+Xm5dHvcXLfad02Xz32I+vnb9G3UfbvpoXbmfzw9zr7UwfP8tLId3A5XRrpp/Ccw9IiO08NeJXci/m6bd686WMObj4a9Nwu+GIZv7z7m85+56q9fHDnl6iq8Nl7nWVuRj6P93kZp0PjEVJVwTMP/sSFc3m+Zf+2pnyxij9W7MMf87fuZ/LyTZ6+eO3L2jiZmct9387TMa+XuJzcsGQGuY5S7yH7tlGE4JE1i9iaoZFLAkw7uZylF8rObRnBplpWLr837zjvHJyhsy9wZTHr1PO4/QInT1sCt3Dyy+mXyHXqCSWPZb9Art0rPaPo/s0sWUR63gc6e5dzD4W59+AhvfTen55SHiHyyc++HtVP1gRA5N4Lbq+siHebsrZKvoFSvXSRsP9epoUn/PpUtp1yAZF7q48tHDyjWgXZN6D6yDL92xCUFLyA065ntr9Q9ENZ4OR/3J7tip0H/PT+PLArhcxMfxqH6iVgFWX/V1Fx89uZN8iwH9NtM+XEAtZm7va0cMn125ZzkM+O6mVPThbkMnHlHByK2xc4eVsqdbuYsPwXMkr0HGnPzljGzpMe3i3vfej999fNe/nm9y06+727TvPu6ws8z0aZnfc2zcsr4fEHf8Lh92wIIXhuyBucOeI5t75no+z5m/riTFZO08ua/D59Ld8/P0Nn593u3LELPDP4Dd2z4bQ7ebz3S+SVPffev6mKiqoK3pv4BbvX7PdvgplvzWPRV55reqlvO7DxCG/frJfjybmQy1MDXsNRbNe1LVSBy+HihRHvcOawEX/ZPwD/R6rt/i/isoKnCRMmEBcXxzvvvMP48eN5//33+f7773n//fe5+eabefvtt4mLi+Pmm2/+m7v734ODm4+yf8Ph0BxJkkc42P+h/fmNOSF5ShS3Svr+M2xbpgVD6+ZsJsOAJVc2ycx8e57fPhRm+C1fClVR2bpkJ+kHNBqKJd+uoqSwNDgfivD8b+5HmgRFYW4RCyYvC8l8LlTBoq9X6kgx5368WBeYXWpvL3aw5Bst0Dx96CwbF2wz5J+a+c583C6NwXrGW/NC8syoikrWmWzWzt7oW7dz6wlOHLsYUmJHkiRmTNW07YQQfLNiS0gKAUUV7D2V4XupAcw7foCs0pKQXE+yJPH1Xu1F51Rc/HImuG4ZeDh/1mTuJsOusSjvyF2EW7hCcD0JVKGwPWeh1ob7IhnFcwgttyI4VzAVxRcwQGnxV4QmT1ARIg9HiaZ1Jlx7wbUFQymUoskIP/Z1Ufwlod2ZAspJcGjnxmlfjqqkG7QhU1r0ubZ/oXA2P1Bo2r+NfPt6ip2arNDevBU41GIDrieJbdna81bstjP/3NqQvFsCwbKMzeQ5tWfj+wPbUYUadAtVCOyKm+mHdvvWnc7OY+Weo4ZEmVPXbMfp1p6NmdM3IJuCXz9VFeRkF7F6pRao7F6znyPbT/iCoEshSRLTX//V59uEEEx//VdD33Zs50l2/6G18cfMDWSfyzX0bbPe0XQ7XU4XM/2WA46jTA7r3DGNIX7RVytxlDiC+jYhQKiq70PzCv73cFnBU0pKCp9++iktWrTg5MmTzJ07l2+//Za5c+dy4sQJWrZsySeffEJKSuicmv91bF603ZDwEgHnjl7wCf0W5RVzeOsxQ7kVk8WkE8jdvGRHWP2nHSv3+Ig0T+w9Re6FPMN+y7LElsVaG5sWbjPsk+JWfaNMAHvWHAgrM+N2utm1Whu12TB/izGzuirY4NfG1qW7DMnwAPIzCzi2y8Niq6oq25fvMgy2ZJPMZr/j3rLhKCYjTT8hOHr4Anllsi8ZeUWczMw1/JAzyRJ/HjjpW1595oShbpkiBL+f1kYuDhWepthtLFMiEGzJ0bTRjhZuCiPPonKkUAsa8+zrMdapA1WUUuDY7lt22pdjTEgJDoefRpjDOx1o1Mg5T0BEWUWea3uYfpkRfsGTy7EK45RPFbdzI0KU6a+5juukV4JDJrd0tW/pWOFmjD7dBQpHi7Rzuz//OE4/0eagvRIqO/I0od8Vp44aEqmqQrDi9FHf8vpD6SFtvcgvsbP/jMfvCCHYsvEYqhK6DUmW2LxBuw+3LN4RQI3iDyEE6fvPkF02Ip6bkcfJvafD+rZNCzUR7M1LdhhWzapulS1LdvgCtKM7TlKYUxTSHjxB3ZYlO33LGxdsNSTJVNwq6+dtCfn3fwSE9Nd/riAoLluepXr16nz44YdkZGRw9OhRiouLiY6Opm7dun85aCopKeHnn39m//79HDhwgMLCQp588kn69+8fdtvFixeHrAKcM2dOgGry2rVrmTJlCunp6SQkJDBgwABuuukmzOa/VbkmAG6n28NsWR47wOU0Dji88LdzO92GciDg+YJS3Aoms8nXliEkSWfnP5UVCm6n9uK8rONwhZfq8O+H2+n25ECEGXP2Hofwm44IBSFEYJ/K4Ve8fXeFEawET56Ry48R3qUoYUfN3X7TtG5RnjbArfodhwh//RQ/G7Uc9pfaCUONOo8FwqktCSflOrm+NspzTwl08i3CRXnmJIRwe/J7wkm/ACB5RIq9vSrHuVKF1ndXOa4foNPDdBpIL3nhUPT3VFidIMDl9yGhGAROUDZF73ffenxb2G75nr/yPN8QzLcZB/GKW0VVVUym8vk2SUJnF+4j79I+/RMhUcYU/he2v4LguKyRp/vvv5+vv/4a8IxCderUiT59+tCpU6e/ZbQpPz+f7777jvT0dOrWrXtZ+7j11lt55plndD/+Cs4AGzdu5OmnnyYmJob777+fLl26MHXqVD788MMQe/37UP/quihhnEZ0fBQptTx8PvEVYgPI3S6F4lJocLVWSdagTV3DrzlJguoNq2CN8CSg1mhULYDU7lKoikr9q7Vr0qhdPUNZE9kk07C9xvxav7VxlWYwu4bt6hpKN5jMMo07aMmM9dvUCattZ7GZqdm4Wtn2Jmo1rW7MMCvQVenVa1QlrDBpYnIMicmee65yQixxYbhk3KpK0xra89OiYuWQbOTgmbZrmqzZ145OxRSims7vMGgQqxEUVo1shGQwyiMhUzVKq26LtTULaeu/VYy1sW/JYmmO8UiSCbP1Km1rSzPCBkRSlIf3CUCKA5MxJxUoZfsta9HaHOORKgnZVANJ8ly/CHMt5EsJO4O0EWPT5HKqRDUMyi7u1wKpkdp9WzfGmBfNi3qxWgL4VRWrGEr+mCSJ1pU0TqKm1SsTrkbIbJKpV9nzkSlJEnXqVTJ8NiRZon5Dja+rPL4trkIsFcr8WXJqYgBh7qXw+DbN79RvXcfw41OSJdJa1PRV0NVsUg2z1fiDWFWFzn82al/fcOTeZJZp3L5+yL9fwX83Lit4OnDggKF20V9FcnIyc+bMYdasWUyaNOmy9tGuXTv69Omj+7HZ9C+vzz77jDp16vDuu+8yePBg7r//fm644Qbmz5+vEyb8d6DD4NY+Ud1gkGWJwXf28VWdybLMsHv6h3RikiwRHR9F9+s1/afe47t6NN5C+BgBDL9P0+KKio30aLyF6lOZJEHL7ho79+BJfQ0DFVVRGX6vNmKYmpZCm74tQwZcJrOHgsCfhG7YPf0N21AUlSF3aVWDzbs2plqDKobH0fsmPcXB8PsGhnypSJKE2Wqmr59WVteejYmJjQh9PSSJYaOu9k3tWcwmxnRqETIYkiWJpJgoejTVXhDX1W8eVJrFC1UIJjTRqn0SrDF0q9QSOcRjLSNTJ6YqDeO04Kl10kBDEV6BSuskTeYi2tqQWFsrQgdDJpKjemMza2zUkdG3YjxtJ4iM8tOVsnUFuTKh3ZMMkWOQJE/VoCRJSFE3Efo7WfIEWxHacdgiR3hINI10AKNv811fkxxFSswYwz7ZTFVJiNCq51omDjAc/RSoXJU01LdcKSKRdslNQl4/EzJN49OoFa0FKuMbX2U4bacIwbiGmoxQi5qp1KtcIajUCpSxhrdqSEK0FigOH9U2dMAlebbpP6ilb1Xna9sRXyEupB6eJEsMvaufTxXAZDYx9O5+IafaZdkjInzNyPa+df1u6e6ZGgzl21TBtfdrvi0uKZaeN3Qx9Ak1G1ejiV/V7pC7+hp+IClulWH3hp8N+Y/iSsL4vw2XFTzVqFGDCxfCzf9fPqxWa8D02uWgpKQEJcR0ycmTJzl58iSDBw/WTdENHz4cIQSrV6/+y+0bwWwx8/zsR7BGWHSBhFd7rVGH+ox7bqRum5EPDaJN3xaed4HfS/j/sXfe8VEb29v/Stq1173bmG56771D6AFCQihJaAkJCaT33kklvZNKKi303iHU0HsH04xx79717kp6/1jvasU2X3Lz3vzu9XM/3FizI4000hwdzZzzPJJBxGCUeGne4zo+osjYCJ7/7REkSdR9QTmNVM+RnRl8jz6dd9Lbd5DSvKaHIRMNIiERJl6a97gu1qBmo2o89Nndrjqu+uVGauTjQ2k/sLXuWI9/ex/xVWM9DJkoicQmx/DE91N15W37tWRMuQaf+z7O9u7/6C5qN9W+xgVB4KV5jxMWGeLRhiAK1G5ag8nv6kUgB97V2+V4ul+7ZBARRIFnf32YqHjt6zjYZOSlt0diMIq62CfnbWndPoVb7+iia2Nyv460qVPNMZXuVi6JAkEGiQ/vHILRLVYkKSyCD3oORhQE3eyC0wEbVb85w+s2wR0P1L+Z6qEJHnIgIgIRxhBebDpO9+wkhzSgd6JD+8l9lsT5d/eEsdQI1UvZNIx/v1zD7VoHSsRkqEa9uNd0pUGmQZhCJ7rquF05IBAePR3JoDl0giAhxHzuRauuvOeMLRDCH9Y3HToOgnu71XNvQ0KI/gRB1GaeRTGSiJivXL+7XwOA0dQfU9h4XRM1ox8nLKiZdh5ubUhCKA0TvtTJzMQEVWVA8kPlZ+TZt21jbqLeNbI4jzQYTaIp2sNpFhGIDgrnyUZ36Mo7VanJQ60cz5n7M+L8+4UOvXWzk4Ig8N64wYSbgj0cKEEQqJ0Qw1PDeurK+w5oTr+Bjlk7d4fIqdP49Is3ERun9W1QsJGX5z+BMdiotzuC41/Lnk0Zc43M0+inhzvEwAX9hJJkEDEEOW2lRtEQkxTNs788hCjqbZvz/PqO7UG/8frruPe98dRsXM3TtkkiYVGhvDj3Md3YqNOiFlM+mOiq414f4PbnbtEJmFfifwvXxfO0cuVKPvroI2bMmEHt2rX/htPScOLECSZPnvwvxzyFhIRgNpsxGo20b9+e+++/nxo1tBfsmjVrmDZtGl999RVNmuhfQCNGjKBx48ZMmzYtYHt/lWE87Uw68z9czsZZWzGXWKhaJ4mhUwZw4+S+OmPhhN1mZ/UPG1n8+SounkgjOCSIHrd25tbHhvgknztzIJXfP1jK9kW7sZXZSGlek5seGES/8T29Bl2aSyws+3INS79aQ+bFLMKiQuk7tie3PHKjT/K5g5uPMv+DZexdexBFUWnSuQG3PHyjQ7zTy2xLYU4Riz5dyYpv15OfmU90QhQDJ/Xh5ocG65wUd2xfspsFHy3n2I6TCIJAm74tuPWxoR46dU5kXspmwUfLWfvzZkryS0ioEc+Qe/szbGp/QsI9l2AURWH9L1tY+OkKUg9dwBBspMuwdtz62FDqt/G+3HgxNYv5s3eyed0xyiw2atSKY9it7Rk4rDUGL0GzVrud+TuOMHvbQS5l52MKMjCoTSPG92xDrQTvhKIHstL55vBu1l86g11RaBqXxJ1N23JTncZe+7bEbmFx2laWXdlBdlkBEYZQ+ldpz4gaPYgPjvLaRmrxPnblLORCqSMzq0ZoU9rH3ky9iPZe61vlbK4UzuRq0e/YlTyMUgLJEWNIjhiHUfJsQ1VVrJZllBZ/h912AJAIMvUhNHwyxiDvbaj2i6ilP4J5CaglIFVHCL0dQse4Zp30bdjBvAC19BewnwEhGIIHIITdiWD0PjbttmOYi7/GalkJqhXJ0ABT2ESCQ0d56O0ByIqFjOJfuFr0G2X2y0hiOAlhw0mOvAuTwfuy2+XSI+zOWUhq8R5UFKqYGtIubjgNIrp6Hxu2EpakbWFl+g7ybEVEGsIYmNyJ4dV6EB3knVB0w6WzfHt0N3sy0hAE6FylJvc060DXqrW81s8oKOaXP/axeM8xisxlJEWHc2un5tzWpRVhXuyOoqhsXHeUhfN2cfZ0BgaDRKeu9bl1TEcaNvYuVXLpZBrzP1zOpjnbsJSWUa1+MsOmDGDwPTd4Jb20WW2s+m4Diz9fxeXT6QSHBNF7dFdueXSIB8eaE6f2nuX395eyY+ke7FY7dVrW5uaHBtPn9m5ebVtpkZklX6xm+Yy1ZF3OJiw6jP7je3HLIzeSUN37B/v+DYeZ/+Ey9q8/jKqqNO3aiFsevpHOQ9t5rf9PgPO9lHFDT2wx0dd9HGNePknrN1fyPHnBdTlPBw4cYNasWRw8eJBhw4bRqFEjYmO9x+O0atXqL53gv+o8bdiwgT///JPWrVsTFhbGyZMnmTt3LsHBwXz77beumKxZs2bx5ZdfMm/ePI84rcmTJyNJEl9++aXH8bOzs8nJyXFtX7hwgWnTplU+XJWoRCUqUYl/BCqdp78f15VS9vDDD7sYXefMmeM3mPDvXv66Fn369KFPnz6u7e7du9OhQwcefPBBfv75Z5544gkArFZHdk9QkOdXVlBQEKWlpV6Pv2TJEmbOnPlvP++C7EJKC83EJkcHFKkER3ZZzpVcTGGmCssE5F7No8xsJb5abEABXnDMQOVnFBAWHUpkrPcvXneoqkp2Wi6KrBBfPdan3IE7SgpLKcwuIjIuPKAAKDgkV3LSchFEkfhqsf6DvMtRmFtESX4p0UlRAcWNwfEFnHMlD2Owkdgq0RVqIz+nGIvZSmxChE+ZHHdYrHZyCksIDTYSE+FfVBYcfZtZWoJVlqkSFu5TysUdpfYy8qzFRBhDiDQGbkNRFYpsOahApDHOp5SLO+xKETY5H6MUg0EMD1hfVe0o8lUQJESxSoX6VlVyQSkGKQEhYNB2ebaenAFCCILkWybHHYqciapaEKUkn1Iu7pAVM1Y5C4MY4cEq7v2cVIrsuSiqXN63Fbl/FvJtJUQaQwk3BL5uWVG4WlKMIECVsAi/yQZOFJZaKCy1EBseSqiXGadrYbfJZGcWYjRKxCZEVGxsZBVgLrYQlxzjdTb9WlgtVnLS8wgJNwUU5QZH3+ZezcdWZiO+Wqwrlsof/lXbpigKOVfyUBWFuGoVs23/CPxVuoFKqgKfuC7nacKECRUaNP8UtGjRgiZNmrB3r8YT4nSanE6UO6xWq0dwuRPDhg2ja9eurm3nzNP14uCmo/z4yhwO/+Eg1wsOCaL/hF6Mf3WUV8NRnF/CL6/NY8W36zEXOzh9GnWsx7iXRtFhUGuP+uBgJv912u+cPXAecGTxDbm3H3e8MMLr8lV2Wg4/vjyX9b/+4UrXbdO3BRNeHaXLanNCVVVWfrueOdMXc+WMIxYupko0tzw0mFsfH+rVmF08kcaPL89m64JdKLJDiqHL8A5MfG201+VH2S7z+wfLWPDxchdjetW6SYx84iZunNzX6/N4/M/T/PTyHPasPQgqGIIM3HB7Nya8NsbrFL2ltIxfp81n2VdrKM538DPVbVmL258fQY9bO3vt271bT/HL5+s5ceAiAKbQIAaMaMcd9/clIsqzb/OKzcxYuoMlO45iKU9zbl2vGvcO6USHRjU96gMsPn2cz/fu5FSuY8YzOtjE+OatmNqmEyYvlBrp5ly+PbuGdVcPYVdlBKBzfCMm1e1Ho0jPpSVFVdidu5Id2YvItzn4fSINcXSOv4mOcUO8vuiLrSc4l/cJ2eYNgIqARGLoIFJiHiLU6LlUpKpWSos/x1zyA6riuA7JUI/Q8PsJDhnp9f6p1t2oxZ+C1cmFFIwacjNC+ENenSJVKUYt/gzMc0F1cPqohuYI4fcjmPp41AcoM6+mtPhD7LbDAAhCBKbQsYRGPILoxRkss2dyIf9TrhYvRMVhO6JNnakd/SBRJs9lHFVVOZi/nq1Zv5NrdRCghklRdIgbSpf4m5FET0f7UmkW351dzeasw+XyLAJdE5owqc5A6oRX8agvKwrfH97Ld4f2crXEcd01IqKY3LIdY5u28tq3Ry9c5culO9h+7Dwqjgy7Qe0act+QLlSN81w2L7PYmP31JpbN/pOiAgf3Ve36Sdx2by96DmrhUR9g37pD/PTqXI5uc/CKBYcGM/DO3ox/ZRSRcZ4OS2FuET+/Oo9V32/AUlIGQJMuDRn30kja9W/ptY3Nc7fz6xvzST3sGH8RMWEMnTKA25+/xetHaObFLH58eS4bZm11USq0G9CKia+O1mXzOaGqKsu+WsPc95ZwNdUxNuKqxjDikSHc8uiN/3wn6q8GfVcGjPvEdS3b/f/Ev7ps5wsvv/wye/bsYflyB1vyPyHm6Y/fdzBtzIcIoOMZEiWRhBpxfLrzLd2sUklBCQ93fYFLJ6/oss+cmnWPfzuFgXfpXxILPl7Ol4/OdNVxb6Ne6xTe3/SqLsg881I2D3Z6jvysAh1DsCiJCAK8vuQZjwDwrx6byfyPljulu7TzEgQ6DW3Ly/Of0BmZswfP82j3FymzWD3aCDIZ+fCP16nXOsVVLssyr4/6gO2LdunoaZyznzc9MJAHPpmkO6e9aw/y/I1voaqqrq8kg0hkXASf7nxLF79VZi7jyRte5eTus177dvL08Yx8fKiujbWL9vLBc7879Ol0fStQrVY87/82RedA5RWbmfDOLNJzCl1yGOAIAFdReXPSYAa00z9Dn+7Zwfu7tl3btYiCQLsq1fh52K0ES5oDdbk0h8m7PqPYbnHJezjqi0gIfNT2blrFaPFbqqqy9Mrn7Mtbizc0i+rBLdUf1c1CFZQdZP/VceUcRe4JGRIGIZS2yXMIC9JSvlXVRkHuBGxlW9DTAziuKjT8QcIin9G1q1rWoeY/UL7lvo8EYiJC3O8Iknb/VKUYNfc2sJ++pr5De06IfA0hdIyuDXPJTIoLnnfVcd9HMjQmJn4hgqjNhpbZM9ifPpIyOeua63b0TbPEL4kL7Y071l2dyfbsBXgMDgTqhbdhTK0XdM5pavFVpuz5jDLF5nH/jILEJ22n0DhS+7hQVJWH1y1j6dmToDu6o7XbG7fgjR79dA7U7pOXuP+zBciqnt9MEgUiQk38/NQYqsdHu8qtZTaevfsHjh24qLMhzvE38ZH+jLlHH5y94bctvDXuE0RB1GVmi5JIlZREPt3xps6BKswt4uEuz3PlbIZu/ImiQ/vx6R8fpO/YHro2nDqfzvNw36dRpwZMX/eSbqYrPTWDBzs9R3FesS6LTpRERFHgzZXP07qPRmehqiqfPvAtS79c48W2QfcRnXh+9qN+yTr/U3At2/Xu9deX7TZuqly284J/3l3/m3DlyhWio6Nd2/XrO7iHTp7UG53s7GyysrJcv/9dsJSW8d6kLxwv92u4mBRZIetSDj++qNfv+u3NhR6OE+AyaB9P/UYna5J5KdulE3ct35MiK5zed44FHy3XlX/95E8UXOM4Oesriso7Ez7TyZoc23nK4TiBx1eKqqrsWLKHTbO368o/uOcrysxWr21YLTbem/SFrnzL7zvZtnCXB6+f02Au/mwVR7adcJXLdpl3JnyGoigefSXbFQpzivjqsZm68kWfruLErjM++/abp352sb0DFBWY+fTlhaDi5f6ppF3IZvaMjbryr5Zs93CcoFzfToXXflpLqUWbCT2bl8v7uxwSL9d+4Siqyu70y8w6ekhX/sGJRRTb9I6To76CXVV4/cgcFLffzpUc9Ok4ARwp+INTRRqLsqqqHM96upwE89pMVhm7WsqJnJd0pZbSedjKNuPJq+S4qtLiT7HbNEZ5VS1DLXi6/Pdr95FByUQtel9/pJJvvThOuLbVwtdQ5WztKHIGxQUv6eq47yPbj1NarJdjOZf3nhfHybm/yonsp1DcyD7TzWfLHSftWt3OmDPFezmUv0lXOv3E71hkq9f7Z1PsvHVsjs5RWHP+jIfj5N7ab8cPseOKpi0pKwov/rgK2QsxrKyoFJVamD5Xf07LZu/i2P4LHjbEeR4zP17DlQtaHGhJYSkf3PNV+djwHONXUzP5+dV5uvJfXvvdw3GC8rGlwof3zqCkQJP8uXL2Kt8++4vuPNz3Ob7zFIs/X60r//LRmR6Ok/OcZFnhnfGf6rKzD/1xzOE4gRfbBn+U26V/PCppCv4W/CXnKTs7m7lz5/LGG2/w7LPP8sYbbzB37lyys7MD7/xvQHZ2NhcuXMDupsOUn5/vUW/Hjh2cPHlSJ1SckpJCzZo1Wbp0qW7ALFq0CEEQ6Nmzp8dx/p3YPHc75iKLzwdUkRXW/LwZc7Fjily2yyz/eq1/viO7zNqfNAmKVd9t8EskpyoqS75Y5TI++VkFbJn/p09uE1VRKcgqZOcybflz+Yy1fonkRFFgyRea/tPZg+c5teesz+tQZIeO1el951xlS75YHZAkc9mMNa7tP1fsI+9qvk+CUNmusG3xbnKv5rnKFn++0j+hqCjo9PM2LN3vlxlZkVVWzd3lYiA2W20s2XHMw3FyQi2vs3qP9iKcdeygXwJEgJ+O7Hf9fdWcx585p5B9kD+qqFy15LM3101KI3dlQCLH3bkrXdsFZXsptafim2BSpqBsD6W2VFeJuWQm/k2NhLnkF23TshrUInxbbxksS1EVx4eCqipQ+pufc8Lxm3mh1kTpHD/Hd9Q3l/7oYrG2yQVklSzHN1+Vil0pILtUc0T35q5C9EtAKrA7R/t4OV+SwZGCC3hXqnNoE54vyeBY4UVX2c9H9vuNbZIEgV+PHnRt7zx+kYz8Yp/adrKisuVoKpn5mpTJ0lk7/faUKAqs/F1zsDf8tpUyi2c4hOs6ZIVVP2zAWl7HWmZj1fcb/No2m8XGht+2urZXfrve74yPqqgscdOdy76Sy86le/3atpwreexZrfXVshlr/Ns2SWTJl6t9/v5PgKD+9X+V8I7r1iBZsGABX375JTabTf8ltGYN33zzDVOnTuXmm2/2cwT/mD9/PsXFxa7Mtm3btpGZ6fjyHzFiBOHh4Xz99desWrWKOXPmkJzsII6bMmUKDRo0oGHDhoSFhXHq1ClWrFhBYmIi48aN07UxdepUnn32WR5//HFuuOEGzp07x8KFCxkyZMjfTsFw6UQaBqPk9wVss9jIupxLzUbVKMwpoqTAexC7E6IkculEmtbGqSsBZRhyruRhtVgJDgkm/VxmQGZuySBy8XgalN/a80cv+SWSUxSVi27ndPlkxVTIL51Ic9EDXDx+OYDTqHD+sPZCuXzyCqIk+t1HVVSunM0gtkoMdpudrEs5Pus66188qV1HWmoWoiT6vfbSkjLyc0tIqBJFVn4JZTb/rNkGSeS8m0N3Nj/PLwGiCpwvyHdtXy71fw3geGGfL8mkfZxjZjXLcjGgtl2WRZu5cHeK/KHUlkqo0bH0Ksvn8O/YyMh2Ta9NtafiME3++ssGchqIjUAtBDU/wBkJqPI5F3uSbD9LIPEJVclBVYsRhEgs9rSAMjMCBkptmtOfVXYRxS8BqUqOVRPZvlSaFeAaHLhYkknTKEdc2em8HL8iv7KqcipP+5g9n5HrWGb291ypcCEjj8TocFRVJf1Srs+64PhQuJSqnfvlk1cwGPzbNktJGTnpeSSnJJF3Nd8Vv+kLLrtTjkunPGfgr8XV85nIsowkSVw5czUgs7rTfnYc7GC7v3D0sn/bJitcOHrJ5++V+O/GdTlP69ev5+OPPyYqKopx48bRokULYmNjyc3N5eDBg/z++++u390z3/4VzJkzR0fE+ccff/DHH38A0L9/fw+pFSf69OnDzp072b17NxaLhbi4OIYOHcrEiRM96BS6dOnCtGnTmDlzput8x44dy8SJE6/rnP8VhESEBNRTAwiNcGSHmcICZwChOo7raiPM5CCE8ye4WU5C596WPyiKSmik1kZYZIhHzMG1CAnXjmsKD9wGXHMdESEUZBf5rCsIEBqlZZOFhJv8ziI5EVrehmSQAjqyoiQQ6hZcbwoNrtC0dkioI+YitAIZeKqqEuomjxNmNAZ80YW4BYyHGAJnMqmohBq0ZylYDJyFFyxp1y2JgTMiASRBqycIIS6BXe8QEYQIt/qhfh06rWJ5Gy6mcH83RNDqA4IQRmDlLtHFJyVVoJ9UFN11B4uhCPjXWAwS3Z5zKfD9Awhxu3/hxiAyKfFTG8LdMopDg4P8Pk9OhIU49hEEgWCTkTKLb50+URIIcbNPIeGmgI6Ks577f/1BVVVC3OxTSLgp4AdSkMnomp2qSBuKorhsAuCwcwEeK3c79Y9EZcD434brWrb77bffiIqK4vvvv2f8+PG0atWKmjVr0qpVKyZMmMB3331HREQEv/3223Wf2Ny5c10O07X/nLNMzz33nG4b4J577uG7775jxYoVbNiwgXnz5vHYY4/55KHq3r073333HevWrWP+/Pncfffdf7soMDiCDf0NfEEUaNCuLvHVHFlhIeEhtO3Xwu/ylWyX6e4mYdD91k5+v5wkg0i3Wzq6grlrNq5OtfrJAd8pXYdry589R3XxayhFSaT3GE0yplXvpjrnyxtCwk20vkEL3Ow9pqvf61aB3qO1DMjON7UPeA3JdZKo3cwReCsIAt1v7eR3il62K7q+7TagGbKf+yeKAi071SW8/Frjo8JonuJfq05WVPq20WLtBtdt4PdFJwkCQ+ppchKNIqsTH+xfI8wgiHSN17TqmkV3x19nCQg0i9ICdeNCuiMGSOU3ijFEmbSkAlPIcPxr2ykEhwzRNk39CaQ7h6EhSI7MQUEwQXCvAG3YEUyahE9wyI34n9mSCAruhyA4nIgQQy1CjfXw/2CpxIf2c201ierm13ESEGnq1rctousQEYCSIFg00iFW01MbWq+R32dKAIbW1Z6Rni3q+JRmcSIpJpxG1RNd2z0GNtOx6F8LRVbp3l9j2g5kd0RRoFm3Rq5s4si4CJr3aIwo+RkbdoUeI7WM10D2UzKI9BjZ2RUoX7dVbRJ9EPy6zksS6TRUkzvqNaqrB1P/tfX7uMlh/SPxV+KdKuOe/OK6nKcLFy7Qu3dv4uO9c6gkJibSu3fvv10f7v8yajaqRvdbO/nUf1IVlfEvj9SV3fHCrQ5HxcsuouTQhGvcUXv5tu3Xgobt63nVkRNEhwzM6KeGa2WCwIRXR/scMIIoMPDO3ro0/z53dCepVoLXNkRJxBQWzE0PDHSVBYcEc9uzt3hvoByjnx6uywAcNnUAIREmrw6UKInEV4vjBrdMnPiqsT7pC5yY8OpoXczE6KeGI4ii131ESaR+mzoOaZxyNGhWnbbd6nu/f4Jj6eP2KfpZ13uHdPbpDImCQO9WdalbVRtT/WrXo0FsnNe4J1EQMIgS97TU0uMlQWRSnX4edd1OixE1uhAdpM2OtI7pS7gh2mvck4CISQqnbWx/V5lBjKBG5J0+2wCoHT0VUdBmO0LC7nawfXs1NxKiVFvnPAmGWuU6dL7Mk+qgK3DrFyFsCo4H19s9l8DYHoxaXxmDumAwtsO7w+U4RmjEg1qJIFA7+mF8v00EksJuIsSoZcI1jepGjLGKV606ARGjGESHOE1/LUg0MCGlr4/jO3BbrV6EGrRZlLFNWxERFOz1GZEEgYTQMG5tqDk2sRGhjOrR0l8oJFOGdNE91yPu7I4oCV615yRJJKVBEh17aplYdVvWptOQtj4/eFQVxr6ol54a++JIVAWftq3D4DbUa6Vl4Ha8sQ11W9by2oYgCoiSyKgnb9KOIYpMeGWUz2sWRIEh9/YjtorG2dVvQk9ik6N92rbQyBCG3Nff47dK/G/gupyn8PBwTCb/06AhISE+l9Yq4cBTMx+gy82OWRyxXJ9OEASCTEae+H4qHW9sq6vfvHtjXpzzmMOxEMBglFyzJa1vaM7Lvz+ue6GIosgby591cTM5l6fAsWT12uKnPWRHeo/pygOfTnKciyhgMEouA3XDHd158PO7dfVDwkxM3/Ay1esnu9qQytuITozi3XUvk1hD72SPfuombnv2ZoeRc2tDEARGPXkTtz+nd67iq8Xx3vpXiK0S7WjDKDlEQYGq9arw/sZXdNPtAPd/fBf9JjiC/kVJ1F3P1I/u5IY7uuvq121Zm2lLnyG0nFrA4NZGow71eHPlcx6cLs99dAdtujmcVUkSMZTfi2CTkWfeH0OLDvq+7dK0Nq/fOZBgowEBR4yTcxagR4s6TLtTT8VhlCR+GTqSpvGOWQCDIGIod/gig4L5ccgI6sXq+aqGVe/A1PqDkAQRAQGDILl00oZV68jU+oN19UOkcCamTCM6yNGGiOQKco40xjEx5Q3CDdG6fepEP0z1iAk43nQiAgYcpkQkJfpBqkfoYwslQy2i42YhiM4XkwFnxIBkaEB0/FwPuRUh6k0wOZ1uqby+AAQhRE5DMOmdRCGoFUL05yA4l9cMuBwjY3uEmC/1zpYgEBU3E2NQB7f6xvLfwoiM/Q5jkJ6SIyFsAPXjXkPAiGNOTmsjMexGGsTrqU2MYjDjU94gLriGR9+GGiIZW/t1YoL0vE0ja3RnYkpfRARHz5bfPwGBUTV7MPEa5yohNIzZw0aTGOawtQZRe0ZqREQxZ9gYIq/hrHtsRE9u7uJwqERRwFA+9gyiyKM3d+emznq5o9r1kpj21UTCy5fNJIOm51ivSVXe/OYu11hx4rnfHnbFDjm1NxEcPHbP/Pwgbfu11NVvc0Nznv31YYJDgjxsW/uBrXhh9iO6+pIk8dbqF2nYrm55G5ptC4sKZdqy50hppudN6z+hF/e9PwHJ4GnbBtzZ26Vj50RYZCjvb3qVqnWSXG04bVtscgzT179MXHJggtT/JCoDxv8+XBfP0/Tp0zl06BA//PCD1yUuu93OxIkTad26NY8//vi/5UT/qfir2nYAqUcu8se8HZQWmqneIJk+t3fzy7ZtLjazcfZ2Lhy9hCksmK43d6BB27o+66uqyvE/T7NjyR5sFit1Wtam56jOfpnMC3OKWP/rFtLPZRARG06v0V2o0dC7vhQ44gX2rTvM/nWHkGWFpl0a0nlYO79sv9lpOaz/dSs5V3KJTY6hz+3dPBwtd9htdnYs3cux7ScRRYFWNzR3LGX6ybq5fDqdTbO3UZhTRJWURG64o7tP7Txw8D39MW8nZw+kYjQF0XloWxp3auB3FuvMsStsX3sEc6mVmnUT6XljS0L9xKgVmctYvfsE56/mEWYKom/bBtSv5vu6VVVld3oaGy6cw6bINE9IYlDdBjp+p2uRZy1mdfp+rlryiDGG07dKS6qF+hbbVlSZM8X7OV9yGFWFWmFNaBDRzi8TttmeRkbxMqxyNiZDFZLChhJsSPRZX1WtlFlWYrceAMFAUHAvjEFd/Pataj+Dal4BajGCVBNChiKIUb7rK6VgWYFqP+VgGDfdgGD0TuLoOCcVu+0AVstqVNWCwdiYYNMwBNH38plNziezZClm+yUMYgQJoYMIC/IkWHRvI7XkEOeK96OoMtVCG9IooqNXgkwnsssKWHt1P1llBcQGRdCvSmuSTL5f1HZFYf2Fs+y5muYgRa1Wk541Uvwu6V3MzGf13pMUlJhJjo1kUPtGxPphu7eW2diy5ihnjl3BGCTRoUdDmrap5ff+nT14ni3zd2IuslCjUTV639aVsEjfbZQWmdk4aysXj6cREm6i24iOuhmna6GqKke3n+TPZXuxldmo2zqFniM7+2Uyz88qYMOvW7l6PpPIuAh639aVavWSfdZXFIW9aw5yYMMRFEWlWbdGdBrS1sNh/CfB+V7K6t4bW1T0dR/HWJBPwpaNlTxPXnBdzlNxcTGPPfYYISEhTJ48maZNtS+VI0eO8M0332A2m/nggw/+62ef/h3OUyUqUYlKVKIS/y64nKdu/wbnaWul8+QNFYqMHj16tEeZ3W4nJyeH+++/H0mSiIqKoqCgwMWZFBcXx913383s2bM99q2EHhdPpPHHvB2UFJRSvUEyvcb4/zqzlJaxea5z5slE15s7ULdlbb9tnNx9hh1L92A1W6nbKoXuIzr6/Toryitm46xtpJ/LIDwmjF6ju/j9OlNVlQMbj7Bv3WEUWaFJ5wYBv85y0vPY8NtWctPziK0STe/buxFf1XtgPziYxv9cvo9j208iiI4Yr9Z9mvn98k0/l8HG2dsoyi2mSkoivW/r6lfLylpmY+v8nZw9cB5jsJFOQ9vSsH09v22kHktj27J9WEqt1GyQTI+b2vrNjiwxW1n350kupOcSagqiT4cG1Knme1ZIVVX2paezKTUVmyzTLCmJ/vXqEeRHGiLPWsKqK4e4as4nOiiUAVVbUDXE98yFoiqcLjrE2ZJjqCqkhDeiUUQrv/p2ZvtV0otXUCbnYDJUoWr4YIIlf9dhw2xZjdV6AJAwmXoRHNTJb98q9nMo5hWgFiJItRBDhiKIvmcOVdWCalmJajsJggnR1A/B2NRnfQCb9RAWyypU1YLR2ARTyI1+NfRsciFXS5ZjtjlmnpLCBxFmrO3nnFTOlxzjdPEBFFWmRmgDGkW2R/Izq5dTVsTqKwfJLCskLiicAVVbkmjyPeMmKwqbzp9nz5XymacaNehas5bfmacrWQWs3XmS/GIzyXGRDOjciCg/2WM2q51ty/dz9vAlDEaJDn2b06hdit/7d/7opfKZJzPVG1aj95guXiWhnDAXm9k0ZzuXTqQREh5CtxEdPZbf3OGcVd+1fJ9r5qnbLR396ksW5hax4betZJzPIjIugl5jupCckuSzvqIoHNhwhP0bjqAqCk27NqLD4Nb/fGmWSvytqNDM06hRvgPtAmHu3LnXve//BfyVmacycxnT7/yczXN3uCQC7HaZYFMQj8y410OOAGD74t28M+FTSgvNGIwSiqqi2BU6DG7N87Me9Yj9Kcwt4rWR73Nw41EkgyO2wW6TiYgN5/lZj3jEHgAsm7GWLx75HrtVRjKIKIpD4mTAnb15+Mt7PESFMy5k8eKwt0k9fNHhLAkg22Tiq8fx+uKndVIr4DB4P70yl9/eXACqqqUcCwKjn7qJO6fd5mGQzx48z0s3vUPmxWxH3IHqyC6s1bQGry952sP42W12Pn3gW1aUk+mJooBsVzAESdz73gRuun8g12L/hsO8PuoDinKLy9tQke0Kzbs35uX5T3gs95mLLbxz3/f8ufqQdv9sMiHhJh7/dAJdh3hqDa7ecYI3v12DxWrHIImoqoqsqPRpX5+X7x2I6Rqjn11Swn1LlrA/PR1JcAT52xWF2JAQvhg6lPbVPbXqfjm3jU9OrkZWVSRBRFEVVFRG1erIE01uRLrGIcoqS+f71HfJKrviislRkIkNSuSulKepYtK3oaoKJ/I+ILXgJwAEJFTsCIjUj7mfulH3eNy/Mus+snPuQlEy0L7Z7BiNzYmP+xGDlHxNG2XY859BsSzGEVck4siOC8IQ9TpSqD7gGECxbEQpeKycYNOII2NPhqBuSNGfIoh6p1lRCsjPnYy1bItbGzYEIZLo2C8I9qKHl1b0OydypqGo1vLrVgCF5LBhNEl4XRcoD1Bgzebn82+RbknV9W2EIZaxtZ+meqheyUBVVb47u5Fvz2xAVVWHvEk5UefYlO7c37C/h0N7MjubyUsWcamw0BXvZFcU6sbE8u1Nw6nlpqwAYJcVPvhlI/PXH0QUBURBQFYUDJLIA6N7MGZAG4/rPrzjNNMmfU1hjn5sNGlfhxd/uJfohGvGRomFd8Z/yraFu3S2zRQazOPfTqGXW3asE5vn7eD9SV9gLrFgMEguu9PlpvY888tDHqLe+VkFvHLLexzddsIRxyQ4hIsj4yJ4ad7jtOzl6TQv+nQlM578CdnmZtsUhRsn9+PBTyd5fOyln8vghaFvcfF4miveSbbJJNVK4PUlT5PSvJZHG/8EuGaeuvbG/hdmngwF+SRsq5x58oZ/vLbdPx1/xXl64/aP+GPudu98TwK8ufw5nY7c0e0neaznSw7Jg2t2cWbbvb3qBVeZoig80v1FTnqRHRFEAckg8enON3UxBZvn7WDa6A+8nq8gCAye3JdHvpzsKrOUlnFP88fIupTtkZ4sSiIh4Sa+PfKBi3IBYN77S/n6yZ989sukt+5gzNPDXds56Xnc3exRSgvNHtchGkTiq8by7ZEPdF+0nz74LUu/WOOTRuG53x6h9xjNgKcevsD9HZ7BbpM9OKJEg0i9Vil8uvNNXXzVS7d9xt6NR1Hka9oQHH31zsLHaN5Fezn+efgCD0+f75W3VBQEerWrx1sPafp5dkVh2C+/cCYnx4MsUxQEgiSJpWPHUseNhmPxpb28engh3iAA41K68UhjzXE0yyVMP/E4xfYClGvoAUREQqRwnmz0PuEG7eV4Ku9zzuR/6bUNgKZxL1ArUtORs9svcjWzTznX07Xp5RIGQ22qJK5HcKNAsOU9Xu44eU9HN8R8g2S6wbWtWg8i547CKZVybRsY2yPF/uxy6lRVJTd7BDbrbjxZwwVAIi5hKcYg7eMis2QdBzMfxDsEqobfTNOEN7RrUKx8cuoR8q2ZHn0rIBIkBvNggw+JCdLixGaf3877x5f5aAPurd+Xu+tpTl12aSkDfppJYVmZxzMiCQIJYWGsHjeBCLeg8Y9+28TsVft85g2+PHkgg7tpep8XT6XzYL+3sFntnmNDEklpXJWP1zyrozN45Zbp7Fi6x5NOQHCE2r+z9kWdjtzBTUd5su+rjvHqxbZ1HNyG1xY/7SqTZZkHOz7H2UPnPWSeBFHAEGTgi93vULuplv247pc/eGf8p16vWRAEhj80iKkfapmkpUVm7m72KLnpeV5tW1hUKN8e+UCXofdPgct56vJvcJ62VzpP3vA/o233T8Olk2lsmr3NJ1GmIAj89Ip+1u6X1393/OFlF0V2BDWe2HXaVbZ//WGO7zjllQ9FVVRURWHOu4u0MlVl5kuzfaYxq6rKim/WkZ2mMVlv+G0rV1MzvfK6KLKCudjC4s80mQSrxcqv03733kA5Zr21AEtpmWt76RervTpOAIpdIfNSNut/1aQbctLzWPbVWt/8UwLMfGm27vc57y5GkRWv5JqKXeHUnrPsXaNJN5w+eIHd6454Ok4AquP+zfpArxv4zcLtPnljFFVlw+7TnHPr2/Vnz3IyO9sry7iiqthkme/2alI5sqrw5en13q/ZcVrMOr+DfKvGVL87dxNF9nyPlzuAgkKpXMSfOdoxbUox5wq+99kGwOm8z8u17xwoKv4GVbXg3RGSsdvPUmrWHAbVfgHFsshHfQABuehD/VFKnHqI3u65DLadYNunXYd1JzbrTrzLrTgIboqLPtFKVJWzeZ/gm+dJ5UrxQsw2jQX7SME2cq1XvfatioJNKWNn9grtnBQ735zxff8Afjq3mVK7NjZ+O3SQAi+OEzjYxTOKi1lw/JirLK+wlLlrD/il75kxX/9BN/+LtchePiqgXE7pyGV2rz3sKks9fIFti3Z552FSQRDh59f02nY/vzbP4dj6sG07lu7h7MHzrrLdKw9wet85D8cJHLZNscvMe2+JdgxFYeZLvkNIVNUh55KXWeAqW/vTZrIu5/i0bSX5pSyfsc7nMSvx341K5+k/hC3z//RP/KionNh1xuWomIvN7FlzIAAxnMQf83a4tv+Yt8NvzJFsVxxaduVxahdPpHH55JVAii5sdRPD3Dx3m/+YFVlhwyzNsTmw8WhAmZnSQjMHNhxxbW+YtdU/oSgCG2drbWxfvNs/w7gKV85c5fwRh6SLqqpsnrcjIKGoe99uXbLPL6mmIivs33yC4vJrzSko4fDpdP+kl6LAhl2aTMmKU6f8atvJqsoyN2Hr4wVXyLQU+qwPYFNltmRqIsr787b5JXJUUdmfv821nV26FUUt81kfwKrkkWc54NouNS/EtyYcgEipealrS7asJhAZpWo/hmp3SJuoahmUbQjQhgHFomn0WcxL8R/yKVNmWY1aLvRrtl+k2HaaQCzmmW7adofyt/klWVRQOJi/xbW9P/c8hTZ/TOxglm3szNY+kJacPBGQMXzpSe1+b9l/zi+5K8DVnEJOXtBEsDcv2uufEFYS2bJUc0w3z9sRYGyoHP7jOAXZjme1MLeIg5uOBiS91Nm233cEIAxW2DR3u+sD6dzBC2Sc9y9/I9sVdizZ49reNGebn9oOh2z9b1v81vlPo5Kq4O9DpfP0H0JpYalPgkxdvSKH5pOlpCww26vgcDxc+xZbUBX/hlK2ydjLxWvd9/UFURR19YrzSwNKMZQWafXNRYHbcJxLqde/vUFVVUryNYkKc5HZK6HftSgpvw67ze7qA19QZJUS9+sotuCXadBZr8ThaJT6EUp1QhAESsxavWKr1a+2HUCpTZvhKbH7d2rA4Wi617Mo/vsWwCxrdeyqfykQb/VUNVAbCoqiffGjllAR06Sq5ZI9qpnAg0MFVRO7VZSSCuyjlM+YgV0JfN0Coq6eRS7165gClClu41UO/IyA/j4XW/3vowKFZVr9ErPVbxC5Vs+xj6qqlJn9t6HIistOAZiLLH4/qJxw2gWz276+IAiC3rYVeZ+JdofVbHWEOKC3Qb4gSqLO1pQUlAZ8RALZpn8EKtnF/xZUOk//IVRvWA273d+XMhiDDSRUd8SzRMZFEBblX19LkRWqNaiqtVE/OeALPjY52pV1l1wn0e/XHDiCtGs01Nqo1aS6f+VxUaCG2zlVa+A7Y88d7tdRo3F1v46mZBCp2USLbajeoGpAwyoIAlXrOoLMjUFG4qv7zhIDRxyFkwgUoFrdJK9LBu4ICQ8mOt4RpJwQHU6w0X92jl1WqOkWP1EnJsbvzJMA1IzSMrBqhPnOVHRCRaVWmMYplRRc3SsDttaGSFKwxu/lL6vMHWEGLZDWIKXgfyZJwmjQYsMEKQX/0ikABgSp/LyECBCiA9RXEaTa2t7GOgR6OwhiLILgoFoJMVRF8Cv/Aip2Qt36J9FUwxUk7vX4CMQHac95TT88XO6o6Xb/6sXG+nWGJEGgvhuRaq3kmApp29Uofw4FQaBKLd8cZOBwOqrV1eK2qjdI9juLCxAcGuwivY2pEh1Qu1O2K1RvqLdtgWxVYq14V0Zc1bpJASWbFFmhupvdqRnItkkiNRv75r6rxH83Kp2n/xB6jursyB7xMaBFSeSGO3q4gqAlg8Tgu2/wazAkSaR/Oas2wKBJffzOCgmiwND7Bri+EqMToug6vIPPNgRBICo+Qqf/dOPkfv6VxxWVoVM1TbF6rVKo1zrFZxuiJFKnRS0atNXYuYfe19+viLJsVxhyr8Y43WFwa6ITo3x+/YqSSOdh7XSBnsOmDPA7W6UoCoPu1gKU+4zsiGT0b1gH3NEVY7nosinYyODuTf3qipmCDPTvrOmQjW7ePODM09hWrVx/Vw2JoVN8PZ8Ol4hAkimKjvEaoWrnuL5eY3KcUFHoHK/1bUxwG0INtfBlOgQkYoJbEx6kJSGEh0/0ew0gEx6msZKLIQMdDpHPt52EaBrioiwQBAkh9Daf5+Q8MyFkhGsrJHS0n+MDiISGjUcoz2wzStEkhQ3040AJGMRIEkM1BvD2sf1Q/Cwlqqh0jNeC9+tEJNEsqoaLEd7zjARqhyXQIlpL3b+9RUu/zpCsqtzWQiMJ7di8Fgkx4T6/qSRRoHOL2iS50XkMubNnwKX5gWM1jbc+t3fDaPJNFSBKIv0n9HKR9AYFGxl4Zx+/ts0YbNCpAgy6+wbXrJI3CKLATVO1vo2vFkfHwW182zZRIDY5hvYDW7nKhgSybbLC0PsG+Pz9H4G/MutUOfvkF5XO038IIWEmHvvmPgQEj1kV0SASXy2WO6eN0ZXf/vwIqnn54nK+9B/4dJIunT6xZgL3vON4KV1r/ERJpG7L2ox49EZd+b3vjScyLsKjDVESEUSBJ76/X0dV0LRLQ0277hr7KogCHQa39hDPfPzbKQ7Fcy9tGIONPPbtFN359hzVmc7D2vk04EPu7Ufz7prYrcFo4KmZ9yNKgkcbkkEkIjac+z6YoCu/+eHB1G9Tx7Nvy9uc9OYdOjqEiJgwHnj3dtd1XnsdVWrFc/vj+r6dfEsXEmMjPBwo58zBs3f1c6nZA9SLi+OhTg4x4muvXBQE2lStyu1uL0aAZ5oOIcxg8qAjEHGkpL/a4hZdqnuDiJa0i+mJL7SM6kzTSE0TThAEWiZMQxSckiwaBCQkwUSz+Jd15WGhYwgO6uZR33lVEeFTCQrSMq8EwYQh6h2c8i96SCAmYIh8Wlcqhk0GQ12fbYgRLyBImjCsJFUhIuplXR33NgyGhoSFT9GV1o99AqMU68WBEgGBpvFvIInaDEr10Hp0jR+KNwgI1AtvSeuYXrry55vfjEkK8qAjEBEwihIvNR+hGwcD69VnYL36Pt3AkU2b0bWG5mxJoshL9wxw0XforloUCAsJ5vFxvXXlQyb2oGHb2h71nacx7umhVK+rjY2wqDAe+WqyI7POy9hIqpXAhFf19DdjX7qVKrUTvNs2AR764h7CozXVhWr1krnz9dvKz+OaNkSRhu3r6jQ1AaZ+dCfh0WEeWnUOKgWRJ3+4Xxcj2rJXU90Hk/7aBboO70C3ER29/v5PQWXM09+HSqqCv4i/yjC+b90hfnp1Lke3OQJ/jSYj/cb2YOLrY4hJivaoX5RXzE8vz2XVDxsccVBA/bZ1GPfSSDoPbedRH2Dz3O38Mu13zh+5BEBoZAiD7+7LuJdHevBCAWReymbmi7PZOHubKxaoVe9mTHh1FM26Nfaor6oqy75aw9z3lnA11RFoGp0YyfAHBjP66Zu8SrScP3qJmS/NdgV3C4JA52HtmPjaaK/cKXabnbnTl7DwkxXkl2fEJNVOYOTjwxg2dYBXx+ro9pP8+PIc9q93ZAIZjBI9R3fhrmm3kVjTU2HdXGzml9d+Z9nX61yxDLWa1uD2527xqZ6+a81hfn1vOaf2nwcc2l39b+vM2KeHEhnrya6fW1DK1wu2s2LLUcpsjlmJ5vWTufvmznRqXttrGwuOHeOrXbs4m5sLQGRwMHe0bMkDHTtiMnp+4V8uzeXzk+tYd/UIsqogAJ3i6zGlQV+aRXvyQimqwtbslWzOWkaBzdFGhCGaHgk30jNhiFeizIKy45zK+5Qs8xYcn6ciVUL70iDmQd2skxOqWkZh0ScUl/yAouQBIEm1iYx4kLBQT14vAKVsB/aij1FtzgSFIMSQ4RgiHkOQPGVgVKUQpfgTVPNccMZZGZoghj+AaPIu4GoxL6e48EPsdkdGmiCEERJ6B+GRjyNewwsFYLFncibvI64WL0PFEW8WY2pPnegHiA3p4FFfVVX25K7jj6wF5FozAAiVIukUP4ieCbdg8CLRcr44ky9PrWVTxjEUVAQEuiU25L76/WgQ6bnsbVcUvt27hx/27yOr1HHdyeER3NO2LeNbtfa6rHfkbDoz5m9jV3nShCSJ9O3QgPtu7UrVhCiP+pZSK7M+WMHyH/9wxQrWqF+FMY8MpM+t3h2I3av28/Or8zj+pyPAPTgkiH7jezLhtdFEe2mjILuQH1+ey5qZG11xVo061GPcy6PoMMiTMw1gw29b+O3NBVw45kgeCIsKZci9/bjjxVs9eKEArp7PZOaLs9k0ZztyedhEm77NmfDqaJcGqDsURWHJ56uZ9/4SMi9mA45lxlseGszIJ4b9YyVanO+lnI69sUdGX/dxDIX5xP1ZSVXgDf8W56mwsBCz2UxSkm+W1v9W/LvkWfIy8ikpNBNXNcbroL8WZeYysi7nYgoL9svK7YSqqmSn5WK1WEmoHueXXdyJ0iIzuel5hMeEeTV210JRFDIvZqPICkm1EipkWIryiinIKiQqIZKImMBSPrJdJvNiNoIokFgz3q+unRP5WQUU55UQmxzj1Vm8FtYyG1mXsgkyBRFfLbZCwa+5Vwswl1iIS47BFBq4b80WG1n5xYSZgoiL9q1j6ISqqqQXFWGVZapGRvplF3ei2GYhp6yYyKAQYoICt6GoCnnWbEAlJijBL7u4E1a5AKuSR7AYi1HyzfytXYcNWU4DJCSpeoX6VpWzUNViBDERQaxIX5WBnA6CCUGqErA+gCyno6oWJCnZQ6TYG+xKCWVyFkYxgiA/rOraOank27JQVIXooHgkIbC4Q5HNTK61hGhjKFFB/uMdHeekcKWoEAGBapGRFQoMzy8yU1hiITYqlHA/WpdOWMtsZF/JwxhkIL5qTAXHRh6lRRbiq8U6RM0DwFJaRnZaLiHhpgoJ76qqStblHGxlNhJqxPtlF3eipLCUvKv5/7JtUxWVxJrx/1inyYlK5+nvx3U7T8XFxXz33Xds2LCBgoICBEFg48aNABw7dowffviBu++++7++wyu17SpRiUpUohL/JLicpw7/BudpV6Xz5A0V0ra7FoWFhUydOpVLly7RoEEDoqOjuXDhguv3unXrcuTIEdauXVvZ4QGQnprBgo+Ws2HWVsxFZqrWq8KwKQMZOKmP1y8o2S6z9qfNLP58FReOXyY4JIiet3ZmxGNDqNHQe+ZH6uEL/P7BMrYt2oW1zEbdFrW46YFB9Lm9m9eZG0tpGSu+XsfSGWvIOJ9JWFQofcf25JZHbiTBR1bakW0nmP/BUvasPYRarm13yyND6DSkrdf6RXnFLP5sFSu/XU9eZj7RCVEMmnQDNz0wkMg479pzf67Yx4KPlnF0+ykEUaBt3xaMeHSILt7JHdlpOSz8eAVrf95McX4JibUSGDK5H0Pu6+/1C1hRFDbN3saiT1dy9uB5DEEGug7vwIhHh/jUDrx86grzP1zGprnbKTNbqdGwKjfdP4gBE3t5/Tq12WRWrDvMwpX7uXwlD5PJSN8ejRk5tC3VfHxlH03P4Ps/97Hh1DnsikzTKkmM79CKQY0beP3yL7aVMSd1L7NT95JhLiQqKISba7ZkXL2OJJi8z+6dKDzOuoxVnCg6DqjUD29Iv6SBNIlq5rW+Rc7jdP4cUguXUqbkESIlUCdyOPWiRhIkebahqiolllXkF32LxbYfkAgz9SEm/F5MwZ5yIACK/TLWku+wmReiKsWIhpoEhY3HGDrG6+yQqsrYzQuxl85EsZ0CIRjJNJigsEmIxgZe27DaTlJYNIMS83JUtYwgYyMiw+8iLHQEghftOVkp42LRfM4XzqHUloZBDKN6xBBSosYSavCeSXq+5DQbM5dzvPAgiqpQK6wevRIG0Syqrdf7V2gzMzt1F/Mv7CO7rIiYoDBurtma21M6EhPsfeZty7nz/LBrH7svpTmWwGvV4K6ObelY03OZFiA7t5jfl+9j1YYjFBZbSIyL4KaBLblpQCtCQzxnTlVVZfPc7Sz8ZAVn9qdiMBroPKwdtz421EN+yYm0M+nM/3A5m+duw1xSRvX6yQybOpCBd/X2upRvt9lZM3MTiz5fyeVT6ZhCg+k1qgu3PDpEl+nqjjMHUvn9g6XsWLIHu9VO3dYp3PzgYHqN7uK1b80lFpZ9tZblM9aQeSmb8Jhw+o3ryc0PD/Y5g3/oj2PM/3AZ+9YfRlVUmnVtyIhHh+jUH/6p+KtxS/+/Yp727t3L2rVrOXToEFlZWcTGxtKmTRsmTZpEfLw+21NRFJYuXcrixYtJS0vDZDLRoEEDxo8fT/PmzX20oKFHD0/ZM4DJkyczduzYCp/zdc08ffzxxyxYsICXX36ZPn368MMPP/Djjz+yadMmV51nnnmGzMxMvv/ePxvx/3X8lZmnE7tO81Tf1yizWF1p787x3qx7Y95a+bwrIwUcxuWVEe/x57K9CKLgIoKUDCKiQeLN5c/Rqrf+Zbdz2V5euWU6oLoyR0RRQFFUet/WjWd+flDnQJUWmXmyzyuc3p+qk0oQJZGwyBDe3/SqR0zS8q/X8tGUr5EkUWujXK9uzNPDmfTWHbr62VdyebT7i2ReyNZlzIiiQEKNeD7a+rpOzgVg5ouz+fWN+ZoOXvl1y3aFBz+7m2FT9VkvF45d4tEeL1FSUKrRFpRLQ9RtVZv3Nr6iE19WFIXpEz9n3S9/uPrH2QbAS/OeoMtN7XVtHNx8lOcGvYlst7uu23lf2g9sxWuLn9a9JKw2O0+9Np99hy4iCLjISCVRwGg08OHro2jqlo4NsOLYSR5buBJBALn8nERBQFFVRrVuxuuD++peEgVWM2P/mMmZwmwdx5AoCMQEhfJrz4nUDtf37dqrq5h3eRYioivzzvn38Gq3MjhZH/RcYrvC+st3Y5FzyrXdXK0QbqzGDdW/wyRpjqCqqmTlv0RByXc4NOScGWgSoJAU8xGRYSN1bcjWw5TkjC7ncHLWd1ynZGxLaNyvCKK2BKuqdsrypiKXOQk2ndfu0Kwzxf6AFKxlawGUWjaQmT0RlwZe+TWAQmjIEBJiv9I5UHallB3pk8kvc7Jpq+VnJSGJoXRJ/o6oYC1bEmBnziZmXZzhtW97JQxmeLWxuvuXbSlmwrbvuFySh3LN/UsIjuDnbpNIDo3WtfHp1p18smUHkiC4sjOdf7/QtxcT2utf8hfTcpn67G8UFVt0WayCIFCnZjyfvjGGiHDNOVVVlQ/u+ZJV32/0GH+qCs/PeoQet3bWtXFk2wmeGTANm9XmZtsEVFTa3NCc15c+q/s4tFltvDjsHfauPYiA4MoSlgwiBqOBt1a94PGRtGXBn7wxxiElda1t6z+hF49/N0Vn24rzS3ii98ucO3xRR6IrSiLh0WF8uOV1ajbSf4Au+mwlnz/0PaJBdF2Hsw/GvTSS8a9cv+7r3wnneym3/V+feYrd/ffPPN1zzz0UFhbSq1cvatSowZUrV1iwYAEmk4nvvvuOuDjNZn322WfMnTuX/v3706JFC4qLi1myZAkZGRl8/vnnNGnSxE9LDuepXbt2DByoTyioX78+KSnePwS84bqy7bZt20bnzp3p08dTONOJ5ORksrL8M7r+L0O2y7xyy3TKzFYdX5CqOv4d3XqCX6fN1+2z8OMV7FruYPJ1H/yyXcFutfPKiOk6WZOivGKmjfkARZZ1KbdOg7lx1lZWfquXg/ju2V85c+C84/hubrUiK5QUmnlt5Ps6+oNLJ9P4eMo35UK9iq4+wOx3FrHHTdYE4MN7viLrUrZHqrGiqGSn5fDeXV/oyvetP8yvb8zXHdd53eDQsbtw7JJbH6q8NvJ9veMEDp5EVeXcoQt8+/QvujbWzNzEul/+0PWPsw1ZVnjjtg8pzClylVstVl4d8R52q0133c77smfNQX5/X2PNBvhl3k72H75Ufo5auayoWG12nn9zoY77K7OomCcWrUIpFw929VP5znP3H2H5UY1hHOCtQ6s5V6R3nJz75FtLeWzXAl35hZLzzLs8y1HHzRFy/r0o7XfOFJ3S7bMz4yUscu41jpNjrxLbFfZmvq0rLbGsLnecQM8CLgMqGXmPYbO73z+Z0tzJ5UHf7vUdudOybR9lRXr9RXvpT8hla9zqubchY8m7F9WNwFJRisjKuQcHn5R7G+WkiublFJXo9RdP5n1OftkR13loZyUjKyXsyXgUVdX6JLssg9kXvy4/qmffbspawdHC/bo2Xj+0lLTSfJ3jBI77l11WzPP7F+rKd1+6zCdbHMzb7rQWzr+nrdvE8QzNDquqykvTl3g4Ts7fUi9l89kPG3Xl63/dwqrvHWXXjj9FUXhr7CfkZeS7ym1WG6/cMh2r5Vrb5rAp+zccYc47i3RtzH13CfvWHXKNUfc2bGXlxyvTCGHzMgt4646PkWXFq21b8+Mm1v+iZ//++smfSD1yyUN9QJEVivNLeH2U3ralHr7A5w87Pv4VL7bt59fmcXDzUf7x+D9AU3D//fcza9YspkyZwpAhQ5g8eTJvv/02ubm5LFig2Sy73c7ixYvp1asXL7zwAsOGDeP222/ngw8+QJZl1q5d66cVDTVq1KB///66f/+K4wTX6Tzl5ORQu3Ztv3WMRiNmc8XYpP8XsXPZXnKu5Pkkc1QUlaVfrsFmtZVvKyz4ZIVP3iZVUSnJL2XTnO2usrU/bsZqtvmUWxEEgQUfa/prpUVmVv+w0fc5yQqXT6VzYKMmnbLsq7UIkn8Cy0Wfavpd6akZ7Fq13yd/imxX2Lv2EGln0l1liz9b6ZesTpJEln65xrV9eMtxLh5P83sdq3/cREmB9jJd8PFy3zxPKtisdla7vVQ2z9tBUW6xT/4pVVFZ+OlKl/SN3S6zYPl+n/dPUVRy80vZ+ucZV9m8A0f8cviIgsCPu7SXb15ZKcsuHfHJDSWrKsfy0zmcq+mvbcpc75ckU0RkY6am35VfdoZsy0FUH/xFKjKXSzZhtmsv7Pwi54yTbxSUaM6svWwTqpKGb207BWvpry72b1VVsZX4m+FWQC3Bbl7kKikunV8uVOy7fwuLvnHdL7ti5kLhfJ/npKJQak8jy6yNv+3Z6/3Ks4iIbM7SdB+vmgvYePUEsupjbKgKu3POc65I69uf9hzwyx0mCQK/7tM+Xo6dSufs+Syfz62iqKzZfIxCN0buQGNDtssu5wpg64JdFGQV+pRIUhWVxZ+vcmW7ybLM4s9X+qyvKCqFOUVsnb/TVbb6h43YbXaft08Q9batKK+YtT//4dcmnD9yiaPbtY+RpV+u0YkdXwuHbVvp8/d/BP6K4/T/0YFq1aqVRwhJq1atiIyM1IUEybJMWVkZMTH6EIeYmBhEUSQ4OHBCghNlZWWUlQVWZfCF63KeIiMjyczM9Fvn4sWLuqm2SuhxYtcZpACM08X5JS49psKcIrIv5/itLxklTroJA5/cc8Yv8aOqqlw8nub6ort0Ii2gFIMoiZzcpb3gj+086ZdpW7YrHNuhzVyc3nuuQgPy1J5zWhs7Tvklq5Ptis7ondx9NiD7sM1ic6U3y3aZ1Gum8r3h5B7tuk/tPhvw/uWm55GX4aBVyMwuorDYvwyFJIkcP605jYeuZPh1nhRV5cjVDO38CjOw+3jxOiEAh/KuuLbPlpz2S5KpoHC2RLvu3LJjPuu675VXpt0PR4yTPzZ9GYvVTeDYepCA4ZhqMYq93KiqhajyJfw/WAYUm+ZEWK0H8G/+VOxyKmq5zEyJ7SJyAJkZAYn8Mm0mIrUCfXvRrW+PF6RX6F11JF9zfg+kpetmJa+FrKrsS9Pu9/HT6QFVhex2hbMXHGn5qqpyZn+q37Ghqiond7vZnd2BbVtBViHZaQ5ajJwr2jjxBYNR4oSb3Tm154zf260qKmcPpLpmty8cvRRQgkkQBU7tPuvaPrrjZEC7c2zHSZ+/V+KvobS0FLPZTJSbikJwcDBNmjRh1apVrFmzhoyMDM6ePctbb71FREQEw4YNq9CxV61aRf/+/enXrx/jxo2r8IyVO64rYLxly5Zs27aNzMxMEhM9+VbOnz/Pn3/+yeDBg6/n8P8TkAwiPqeE3OuVG6GKpsa6x9hIBimgoRQEXF9XFWpDVZHc2vAW+Ol5TtpxK34dkte/fcHJ5O1oQwyotwe4rkMQBV0MmTcIgnBN31bsu8N57v6+YHX13SgIDKKoi43yBncyTEMFqAXU8uNq+wfuW/c6YgVNhuiWii9gqIAsoxb/IggGKuRhu9qooBkT3BIwBImAeh2ueiBWoJ9ALT93ByrSt+7HvZbY1BcM7vtUgKrDKP5r9QEMbs+3KInIim/nVxAEnU2QDFKFbp/TtlVkfKt42pFAY0MQRVc8mVgh24bO6auYbbuuV+j/N/y7AsbdZ38A4uLiPAK5/92YN28eNpvNIzzohRde4JVXXmHatGmusqpVq/L5559TtWrVaw/jgWbNmtG7d2+Sk5PJyclhwYIFvP7665SUlDB8+PAKn991zTyNGzcOWZa5//77WbNmDQUFjq+G8+fPs2zZMh555BGCgoIYM2ZMgCP976LDoNb+9Z8ESK6bRJXaDuc0Iiac+m1S/M4kyTaZdm7yAu0GtPLbhiiJtOzdzOXQpDSvSXRilM/64JhCd5cw6Di4jd9zkgyiLuOueY/GGIL8GxyDUaJFTy3or9OQtn6dFUEU6OjWRrsBrQLOIkXFR1CnhYN5WRRF2tzQ3O9slSIrtBvQSmtjYGtkm58XiihQt2UtF+N7YnwE1QNw1siyQoc22rp797q1/DtOokCPerVd281iqhJu8D9tLQBdEzV5lhZRrQMu27WM1gKOk0LbE8hsSIKJOJOW9RJqugH/y3ZCeR0HDME98T9TBYJYFVFKKf87DNHYJsB52ZGCe7q2QoJ7418/TyQ4qAOi4AhKDzemECx5Equ6Q0UhMaSra7tpVOuAy3ZNI7W+bR1bk2DR/9iQBJEO8bVd233q1fGrfygKAn3qac9Uh9a1A36zhYcF07CcMVwQBNoPaOXByu0OVVFp7zY22g9s5VqS8wZBgJqNq7k4nGKSoqnVtIZfzijZJtPejSiz3YBWfiWbJINIuwEtXces1zqFiBj/HGGqqtK2f0vXdqcb2/rlkZMMok9i4n8M/k3LdtOmTeOee+5x/VuyZInPJhVFcS2JBfrn6yP3wIEDzJw5k969e9O2rT5jOzQ0lJSUFG6++WamTZvGY489hizLPPfcc+Tn5wfski+++IKRI0fSrVs3brrpJr799ltSUlL4+uuv/6VlvOtynurWrcsrr7xCcXExb775JosWLUJVVSZOnMj06dMpKyvjlVdeoUaNGoEP9j+Kxp0a0KhDPd9OgQqjn7xJZ1BGP32zT6dAMohUb1iVdgO0wd99REcSasT5dAoUWWHUkze5HUNi1BO+pz1FSaRNvxbUbqrd14GT+mAKM3l3oMqLbn5Im4GMjI3gxnv6+nS4BFFgwF19dDIzwx8cRHmqnOc5iQLBIUEMdpNRqNmoGu0HtfbrDN362FCdzMyoJ2/yGQ8hSiJxVWPocWsnV1mbvs39iiKrisqop4a77p8gCNzhg4kZHI5Qg7pJtGiiZfsMbdaI2NAQn2SHiqJyV0fNsJgkI+PrdfT5uhYFgX5VG1M9LNpV1jOxN5Ig+XzJC4JIrwStb0MMCdSKGIhv0yFQP2okRjcyy5iIyfieihARhUhdtp0U1BLJ2B5/DldwxBSX7hyAMXwKvmOkJASpFlKw9gUbGjIAg1TTTxsKUREPaFclSNSLvsvn+QhIxJna6bLtOsT2JFgMQfDRVyoqPRMHubYjjCZG1W7v816ICAyt3oJ4k0blMa5tKwTB+x6CAEGSxOjWmoRPteQYunes51doe9SwdgS5zajc+vhQv2MjJimKXmM0p7Flr6bUbVnL99hQYczTN+vGxpinh/t8kYoGkZTmNXWZxL1GdyG2SrTPMS7bFUY+rtmyoGAjIx4b6ldLtPPQdjpKhMGT+2I0GX3aNkEQGHb/QM/f/gvxwgsv8M0337j++VseO3jwIP369avQv4sXL3rsf+HCBV544QXq1KnD00/rZZjsdjuPPvooYWFhPProo/To0YPhw4fzwQcfcOXKFWbNmvUvX5vRaOSWW26huLiYkycrvgx73dp23bp1Y86cOUydOpVevXrRtm1bunfvzn333cesWbPo3Llz4IP8D0MQBF5Z+JRLxdv5heM0OKOeGMbge/rq9uk5sjN3TrtNV885sBNqxPPWyuddKuIAxiAjb69+kZikKFeb4DAUCHD/x3fpvhgBRjw2xCWy62zDaaDqtarN8789oqsfnRDFWyufJyTcpHP0RFHEYJB4ftajHtQGk98bT8cb23hto92AVkz9cKKufq0mNXhhzqMYjAad0RcEgeCwYN5c8byHlM2zvzxE/TZ1dMd2tjXo7hsY9dRNuvpt+rbgwc/uRhA1PTxBcDhs0QmRvLPmRR0ruyiKvLniOZJqOWYjnPfB+YU+/pVRHpIug29oxthyB8oZ5Ot0jKpVjeHt52/R9WFYUBA/3DGCqBATAprdFwWHTt0bQ/rRrqY+tXpqox4MreGY9XEuAzlnJlrHVufNtnqjFxsUxwP1H8UoGnUvbQEBo2Bkat2HSDTplQPaJTxDYkjb8nqS7r/Vw3rTPG6qrr4pqCVJsZ/gpA1wtgACohBBtYRZSKJ+xjMkdgaiwcnN5NzH0UZQ2CSMoeN19Q2m/hgjntXVc/aYICZhiv1Zt6QmCEaS4mchSc5rc29DICbqZUJDNEFkgJTI26kdebvuep37RQTVo23Se7r6YYZwptR7FpNkAl3fiohIjK/9ADVC9Rk+jzbpS58qDgfs2vvXISGF55rr9RJT4mL4/JahGCVJ52QLgkCIwcg3o4ZTJULPu/XcQ4Np0sDhJDjHk/N5HNi7KePdPhIAWvZsyqNf3YuoGxuOS4qMi+CdNS/qeNMEQeD1pc+SXKd89srZRvnYuOP5EfQdp+faueGO7ox98VZdPed+ySlJTFv2rG5sBIcE8/aaF4mKj3A5MqBpcD785WQP2pYxzwxnwMTeujac19OwfV2e+vEBXf245BjeWP4sptBgnQMligLGIAMvznvcg9rgHwf1L+ralfuztWrVomHDhq5//pbsatasybPPPluhf9fGRWdkZPD4448TFhbGO++8Q2ionln/4MGDpKam0rVrV115jRo1qFWrFkeOHOF64Aw/KiwsrPA+ldp2fxF/lWHcZrWxbeEuNs3dTklBKTUaVmPwPTdQr5XvtMkLxy6x/Ot1pB65SEi4ie63dKLnqM4+JVfMJRY2ztrG9iW7sZqt1GtVm8GT+/kkngMHB9XKb9eTduYqUfER9L6tG52HtvMZs1SYW8SamZvYt+4Qsl2mWdfGDLq7jwdfkxOqqnJg4xHW/LiJrEs5xFePpf/4XrTq08znVHn2lVxWfrueo9tOIIgibfq2YMCdvYh0U4B3h2yX+XP5Pjb8toX8rEKq1q3CwEl9aNLJO2EiwJWzV1k+Yy2n96cSFBJE5yFt6XN7N0LCvcu6WC1W/vh9J1vm76S0yEztpjW4cXI/3ezctTh7PpMlqw9x4VIOYaHB9O7WkB6d6+u+9t1RXGZlyZHjbDx9DqtdpnnVKoxu3ZwaMd6XWFVVZX/uJeafP8DlknziTGEMrdGcHlXq+YyrKbIVsi17CyeKHAHh9cMb0j2hJ5FGX20oXC3dyfmiFZjlbMIMVUiJHEqCqY3P5RebPY3Ckl8xW/ciYCQspDcRoSORRO+yLqpqw25Zg828BFUpQDTUISh0DFJQC6/1ART7GWylv6HYTiAIoUimARhChvqUXFGUUkrMiyk1r0JVSwkyNiUibCxGYz2fbeSXHeVi4QKKbRcIEqOoGj6QKmG9EAXvsiCl9hJ2527heNEBZEUhJbw+neP6EBPke2zsyTnPoov7STcXkGCK4KYareiUUMenZE5WcQlzDx5h96XLCAh0rl2DW1s0IzbU+3Mrywo7955jzR/HyC8wk5wUxY19m9OsYVWf9y89NYPlM9Zyau85gkxGOt7Ylhvu6O5T8shaZmPr/J388fsOSgrN1GpcnRsn9/WqXelE6pGLrPh6HeePXSI0IoQet3am+62dfEqumIvNrP91KzuX7cFqsVG/TR2G3NvP5bhdC1VVOb7zFCu/20D6uQyiEyLpc0d3Ot7YRvfh6Y7CnCJW/7CxnCRToXn3Jgyc1KdC0jH/KTjfS3mteyOHR1/3caTifGL2//9hGC8oKOD++++nqKiIzz77zOvK1bp163jttdeYPn06HTvqZ/LHjRtHWFgYX3311b/c9vz58/n444/54osvaNbMOzHwtah0nv4iKuVZKlGJSlSiEv8k/F9znsxmM4888ggXLlzg448/9tmW87oGDhzIc889pyu/9957GTp0KI8//jgAFouFjIwMoqKiiI6OBiA/P9/1txOlpaVMmjSJ4uJiFixYgNGL2Lo3/KVUgWPHjnHixAmKi4s9CA/BMZU6YcKEv9LE/wTMJRb2rjlISUEp1RtUpUln77IbTqiqyqm957hw9BKmsGDa9mtBWJT/YMjC3CL2rztMmdlK3Va1fcqNOKEoCke2niD9XAYRMeG07d9Cx3buDdlXcjm06SiyrNC4UwO/M1vgmBnat/4wuel5xFaJpvUNzQNmr6SdSef4ztOIokCLnk18zmw5YbVY2bPmIEW5xVRJSaR598YBxYTPHbrA2QPnMQYbaNO3hU+5GCdKCkvZu+YglpIyajWpToN2dQPev+PHrnD5Yg4hoUG0a1+HkABiwrnFpew8ewmbLNO0WiL1kvxnuiiqys6MC1wpKSQmOIRuySkES/77NqsslxOFZ1BRaRhRlyST/zZk1UZayV7Mch5hhgSqhrYOmJVmtp2hxHoIAYlIU2eMkme2rjtUpZSyss0oSiEGQ22MQR0CitHarYex208gCCEYg7sjit5nz1zXoeRTYvkDVbUQbGyMKci/xIOqqmRbDlBsu4xRjKBKaCcMon8x4XxrPieLTqAgkxJWhyom/2PDrij8mXWeDHMRccFhdElK0WXNecOl3Hz2X0pHANrVrk5ylP/n1lpmZ+/eVAoKzCRViaRly1p+Y6HAMTN0Zl8qhiADrW9oFlBUt7TIzN61hzAXmanesCqNO9YPODZO7DrDpRNphISbaNu/ZUAx74LsQvavP4ytzE691rX9zmyBw7Yd/uM4V89nEhkXQdt+LQIKpWddzuHwH8dQFJUmnRtQtW7FBKf/4/irXE3/n6ZWXn/9dY4fP87gwYO5cOGCLrsvJCSE7t0d6gANGzakXbt2rFq1ipKSEjp06EBOTg7z588nODiYkSO12Mnjx4/z8MMPM3HiRO66yxGvuGDBArZu3UqXLl1ISkoiJyeHFStWkJGRwfPPP19hxwn+grbdc889x5EjR/ymhF+P81RaWsrs2bM5duwYx48fp6ioiGeffZZBgwYF3Pdf0cd56KGHOHDggMcxOnTowHvvvedR/ndAVVV+e3MBs99eiKVEi/Kv0agqT3w3lSadPb3vswfPM33iZ5w9qD1cQSYjtzwyhImvj/aYerbb7Hz91M8s/XKNjuekYft6PP3TA1718PZvOMyHk2eQfk7jEAqNDGXCK6O4+eHBHsavtMjMx1O+ZuPsbbqA9rb9W/LkD/d7nd7eNGcbXzw6k7yr+a6y6MQopnw40SNWCBzK7O/d9QW7Vx1wlQmiQM9RXXjkq8k6qRVw9O3iz1Yx86XZlBRo/DxVUhJ5dMa9tOnrufRz+dQV3p3wGcf/1DhrDEaJG+/tx73vjdcFmIODsO3nV+Yx7/0lWC0a+3FK85o8NfMBr5pfJ46lMf3tZVw4n+0qCzYZue2Oztw+rpvHy6vMZuftZZtYsOcodrcPlDa1qvLWqIFUj/V8eW1MO8Pzu1aRXqoxokcFmXiqVS9ur++px1VsL+GrM7+yK/eAjpm8XUwLptQbR6TRU6vuZMFKdmZ9iUXW+HlCpTi6JT1CSoSndlSZ/QqpOY9TVLbDrVQiPuwWasa8hiTqX5CqqlJS/AUlRR+5uJYAJEMdoqLfJyjYM/jebjtBcf4jyDb3uIdgTGF3Ehr5jC7mydGGnaz8N8gv/gEVjd8s2NiC5LiPCTZ6jr9M8z52Z06j2KYxohuEMJrGTqJh9FiPsVEml/HrxZ/YmbNDx/nUOKIJd6XcQ0yQ59hYffk4rx1YRZal2FUWGxzKMy36MbyW53ObW1LK8wvXsPlUquvuCcCApvV5dVhfIkM8Hbsli/fy3TebKXbjHktKiuSRxwbRoWNdj/pXzl7l3Qmf6fjUDEaJQXffwH0fTPRYVlMUhV9fn8+c6Yspc1M9qNW0Bk9+P5WG7T2XRU/tPcv0Oz/n/BGtb4NDghj5xDDGvTzS46PHWmbjq8d/ZOU367C7Zb426dyAp358gGr1PB3UPWsO8tF9M1z8eQDh0WFMfH0MN3kJ/i4pKOHDe2fwx7ydunddh8FteOL7qcQEyE7+T+P/irbdmTMODq8VK1awYsUK3W9VqlRxOU8Ab731FrNnz2b9+vXs2rULo9FIixYtmDRpEjVr1vTbTvPmzTly5AjLli2jsLAQk8lE48aNefrppz2y+gLhupbt3nzzTVavXk2rVq0YOHAgiYmJPteLW7Vq9S8dOz09ndGjR5OUlETVqlXZv39/hZ2nf0Uf56GHHiItLY17771Xd4y4uLh/qRP/yrLd98//xqy3FnqUi6KIFCTxybY3dC/gy6euMLX905SVWj2zXwQYcm9/Hv7iHl3xmyNeGh8AAQAASURBVHd8zKbZ2zycXFESCYsK5at975JYU0vBPrL1OE/0eRVFUbxm9k166w7GPD3ctS3bZZ7o8wrHdpzyOCfJIJJYM4Ev976jmxnbPG8H00br5TXc8eyvD+scqJLCUu5v/wzpqRkehJyiJNKwfV0+2Pyabtbq9w+WMuMJvbwGOBwuURR4d93LtOih0SFkXc5hSpsnKcor8bgOQRToMaITz89+VPdy/Oyh71j8+SqPrzNREgkyGfls19vUaqwJs547m8ED987Ebpe9plmPvq0z90zRMsJUVeX+nxaz5eR5D7JMSRSICQ1h/kNjiY/Q+nZLeioTN8xB9RBoceC19v0Z10B7vm2KjecPT+dCSZoHoaOISNWQJN5u8QzBkvZlfqJgBZuvvuPl6A4MqPYmtcO1gE67nMfRqzdilTPwpCAQiQzuTIPEn3XZc8WF71Nc9L6Xo4uARFzCYoxBrVylsv08BVmDUD0kXQAEgkNGEx6j/yhKz3mEwtJ5eH5eS4hCGLWqrCHIoBnjHMsR1l++p5xd3bN3m8XeR9PYSa5tRVV4/+S7nCo+6XE3RERigmJ4scmrhBs053Rt2gke2DHP5wf/O+2HcXMtLaO21Gpj1IzfOJ+T50GWKQoCTaom8uuk0QS5xSouXLCbzz7xJAV0BIELvDt9DG3aanYnJz2PKW2epDCnyIP6RBAFOg9txysLntSNjRlP/MTvH+jlicAxNoxBBj798y1Smml9e/7oJR7o+Cy2MpvXzL6bHx7M1A/vdG07JZi2LdrlYadESSQiNpyv9k/Xif0e2HiEp/u/jqqoXj/6p3w4kVse1gLybVYbj3Z/idP7znm1bVXrVuHz3W/7jIf8T8L5Xspv8deX7aIP/f+Jefq/huvKttuxYweNGzfmo48+YtCgQbRt25ZWrVp5/fevIi4ujoULFzJv3jymTJnyL+1bUX0cJ8LDwz30bf5V7/N6kZOex5x3F3v9TVEUZJvMDy/q0y5/ef13744TgArLvlrDZTeG6lN7z7Jx1lavhkKRFUoLSz3O4Zunf0H14TgB/PTqXIrztZmA7Uv2cGTrCa/nJNsVrp7PZMU3mn6eLMt89fiPXo/txIwnftLxxKz6bgNXzlz1ymSuyArHd55m26LdrrKSwlJ+eGG212OrioqiqHzz1M+68nnvLaEo39Nxcu6zed4OTu7WGI6vnL3q1XFynpPVYuOX1+fpyn/4ZrNPxwlg7pydZGdp2R57UtPYfCLVK8u4rKjklpj5edt+7TxVlWl71/udqX93/ybMdm2WbFv2HlJLLnllwlZQuGxOZ3OWJoshqzZ2Zn7p4+gAAjsyP9M9cxnFP2GVr+Kdu0mhsGwbhZY/tDbkbIqLPvZxfAVQKCp8S1daWvSpD8cJQKXMPBu7TWO6t1iPUVg6F+89JaOoJeQWfqYrPZjzWbmen/fePZr7LWVyvmv7cMEhThaf8OrGKijkWnPZnLVRK1NV3jy4xqOuO945tA6bG2Hlwv1HOZeV65VlXFFVjqRlsPqodt1ms5Vvv97k9diq6vi/r77coCuf/8FSCrI9HSdwjI3ti3frZqQyL2Yx/8NlXttQZAWb1c6PL8/Rlf/0ylzsVu+OE8DCT1Zw9bymanFsxym2LvjTq51SZIWi3GLmf6A/h6+f/AlV9e44AXz//CzMxZoszZb5f3Jy9xmftu3yqXRW/7DJ67Eq8d+P63KeysrKaNmyZcDYg+tBUFDQdcu6VFQfxx12u53SUv+yC38HvM0GuUORFXat3E9BtuNlarVY2TR3u0/jAo4vrnU/b3Ztr/1ps19ySdmusObHTa7zSE/NcMwg+SGfs5XZ2OKmMbX2x01++ZRURWXld5rzdGTLiYAyM7npeRzcrMmArPp+g495FAdESWT1TO0ltG3hLqwW3zIzquKIq3Dq56mqyuqZG/3KzEgGibU/aX27/tctfmOnFFlhy+87MZc4lkWKiszs3HHab98KwPp1mrzH4n3H/OqWKarKgj3aEtXJ/CxOFWT57atiu5X1aZoTuDFzh18iR4ANGZpe26WSXZQp/tJ5VQptV8iynHCVZBfPxTcHE4BEdokmgm0xLyGQnIu1bAuy7FhWVlUrVvPCAPtIlJm1NgpLf8c/cadMYck8VNWx1F1qzyDLvNfvdajIXCrWnvXtOVv9EpCqqGzN1pzGAzmXSSst8BtmkltWyvaMVNf2/H3+U7NFQWDBfu2Z2rH9NBa3JWaPc1Lh7JkMzrsta63yo3cJjlmYtT9ucm2v/3WrX+JcRVbYvni3S1uytMjMtkW7/BP6iiLrf9WEfh22zff9U2SFVd9rTuDFE2mc3udfZqastIzti/e4ttfM3Ohf3gqVld+v9/n7PwL/JpLMSnjiupynevXqcfXq1X/3ufwt8KaP48SlS5cYMGAAAwcOZPjw4Xz77bfY7f71j/5dyL2aH1iyQ4X88pmI4vwSv4zW4JhCd48hys8sCMi0bSkpc+nZBdKXApAkiVy3NrKv5Po1rAC5borr7urr/uB+HblX8/0OYkVWyCnXyXK0URBQ2869DbvNTmmhfxFrRVZ0556XURAwuFa2O76AAQryzQGZnUVRIC9Hm9XLLirxq1sGkFeqnXe2pcRPTQcEIMusxdLkWQv8OlsAeTbtuTDb8wK2AVAqa/fDpvh3lkEuX9JzQFGyCSQkrNWjPCbKvyYjgCprDoEsZ/upWV6fMpTyeCtLBa5bQMJi164135rvV9sOoNCmOaLZZYHvn6Oedv+yi0r93j1FVcks1I6bm1sS8LkFyMt17KOqqusZ9gXZrniM8UBtqIpKYY7juIU5RQFtiOhh2/L9sphDuc0sF+auiN0RJVFn23LS8/zbTxVy0wMf9z8Jgb/G8/Tvnx7578F1OU8TJ05k27ZtHD16NHDl/zB86eNUrVqVcePG8dJLL/H888/TuHFjfvrpJ15//XW/x8vOzubkyZOuf75mtAIhvloscgCDIYiCi+AyPCYcY7D/+H5VUXXZZ3FVYxECZJaFRoYQHOKIZ4mvGpi3RJZlEqprbSTVjPfvqAjo4g7iq8X6rusG93rx1WP9jmJREkmspSUExFeLDWiMAeLK2zAYDYRH+89WFCWBuGuuw98skuO4kitTLzo6NLCzJavEJ2gZUklR4X5nngDiw7XzrhLqP7sKHD5ocqjGqxQfHOt35klAIN4tqDnMUDE9K/d6QQEy6kAiSNKCeyWpCoHkWUBAFB3HFYRwwH+2G4AoaRlSBilwtpQghCAKjnikkApct4pMiEGLH4wNivU78wQQbYx2/Z0UEvj+ASS5MYxXiQr3+4ITBYHkaK1+fHx4wOcWcD2HgiAQneidh8sJySB6jHFF9t+GZBCJSnAcNyo+IqDmpaKoxFfX27ZA+pKRcRGuWFz3seuzDVnR2Z3EALZNEAQSalzfKkkl/u/jupyn3NxcOnXqxEMPPcTbb7/N/PnzWbVqldd//0n408d55plnuPPOO+nZsycDBgzgrbfeYujQoWzcuNGvU7hkyRKdxo+7OOG/gt63dfW77OOUC3ASQAYFG+lzWzf/+muKQt/xWqZT/wm9/H6diZLIwDv7uJZfE2sm0KJnE79tBJuC6HaLlunUf2Jvv46KgKBjSm/SpSFJtRN8CxYLkFAjjuY9GruKBk26wUdlBxRZYeCdmnPcZXh7TGG+aRVEUaBZt0Ykp2j6XYMm9fF73bJdcbETA/Qd293vV6lkEOk1pquLeTk8wkTXbg39OlCiCH36NnVtD2/b1O/MkygIjGivEbrVi4qnaUwSop/XaaTRRO9qWjZV78TOfmeeVFT6JGnB39XC2hEi+XOyBaKDahIfrBGRxoeNxr+pkUkIH+XaMoUMxX8isERQcG+kcq05QTASHHorgZbhHHUccMjB+F/miwobjVBOvRBiiCcppKNPqRUAUTBSI1x71rvGd/c78yQg0D2hp2u7RUxVaoXH+nWGEkzhdErUgrlvbdss4MzTiDbaM9W5S31C/dBiCIJAw0bJ1HBzCgbedUPgsXGnNjb63NE94DJ7txGdXBQEIeEh9BjZyb9+nqrSd6yWceWwbf5DGNwlm6rXT6Zxp/p+x19IhInOwzStugEBbJuKGtA2/cdRuWz3t+G6nKe33nqLrVu3YrfbWblyJZ988glvv/227t9bb73F22+//e8+3wrDnz6OL4wePRqAPXv2+KwzbNgwncbPCy+8cF3nF50QxbiXR3r9zZmt5ZRicWLsSyMJiwzxachufXSoyyEAqNOiFoPuvsHrrI1kEIlOiPSQKZk8fTySQfRpZO5+e6yOd6XD4Na07dfCa2yAKInUbFyNQZM0x0YURR74ZBIgeDhQzu37P75L51gOuLM3Kc1qer1uURRo1bsZnYZqznFImInJ08d71IXybDuD5PH7yCeGEZMU5bUNQYD+E3vpMh8TayYw+pq+c79uU7iJcS/p7++d9/Qk2GT02bd3jO9GbJyWedWqZjKDWjTw6mhKokCVqHDGddFTD7zUrh+iD60zgBfb3qDje+oc15aGEXW9OlwiAnXCatI9oYPWrmCgS+JDPo4uICDQNfEhXTxkYsQ4gg218O7ciESF3EBEcBetRIwhItLXmBVBMBIR9ZyuNCT8QQQxykcbEBx6F5KhjrZtrE9U2EQfbUhIYjSxEXq5jpbxDyIKRp8OVIvYqQRJ2ixPk8imNI9q6XVmT0QkyZREzwTN6RAEgZdaDSzvRT2c8jwvtBqAwW1sDGvZhCbJiV7FgUVBoG2tavRtrNECBAcbmXJ/X4+6zvZFUWDqNb+PePRG4qrGeJ3pEQSB3rd101EPxFeN5fbnbvHahiiJmMKCmfjqaF35+FdGExJm8mnbxjw9XDer3rB9PfqO7eHTtsUmx3DLo0N05fe9P8El3+IN9703QScz03V4B8fHpJePXFESqduiFv3G9/T47Z+Ev7Rkp/7/oyr4v4jroipYuXJlhetWhGLAF06cOMHkyZMrTFXgREZGBvfffz+SJPH555/71eFxh8VioX///owaNYoHHngg8A78NaoCVVVZ/Pkqfn51HoU5GidPw/b1ePTre70SWV46mcaH987g8B/HXWVhUaGMeXo4o58e7hHEL8syv7z2O79/uAyLG6dLm77NeeybKS5tNncc23mKT6Z8reOSikmK4q43bmfgXX086lstVgffyncbXFxSzvT+h764xyvJ5J/L9/L5Iz+QflaLdamSksjUj+70qlRelFfMJ1O/4Y/fd7q+Bg1BBgbe2Zv7PpjglcBz9cyNfPfcb7pYiZTmNXn4y8k07eKFw+diFh9MnsHeNQddZaawYG55+EbGvzrKg45DVVXmvbeE395coOOSatatEY/MuFdHU+DEubOZfDh9OcePXXGVRUSaGDehOzff2t7j/tlkmU/WbOe3HQew2Mr7FujeMIVXb+lLYqQnB9POjIu8uHs1Zwq0uJ6kkHCebd2Hm1KaetQ3yxZ+SJ3HH1k7kVVH34qIdEtoz6SU0YQaPFOxzxVtZkfmZxTbtQyoKGMNuiU9TPWw9h71bXI253OfI9+8FufnrEAwiRF3UD36GUTBczaktOQnigrfRVW0+CmDsQVR0e9i9CLRIttTKc5/CrvVjUtKCCckfIrDubpG2kRVFXIKPyK36Esdl1RocFeSYt8jyFDLo41cyzF2Z75JvlXLLguWYmgeex91ozwdBpti4/fLc9ictRm7aiu/boHW0W0YV2sCEUbPJbEtV8/y2oFVXCjWrrtaaBTPtuxP/2qNPOoXmi28vnwjKw6fdGVmGkSR4a2a8OzgXoQGeRL/rV1zhG9mbCAnR4tnql07nocfG0iLFp5cOdlpOXw4eQa7Vu13zUYEhwYz/IGB3DntNo9lN1VVWfDRcn6Z9jvFeVrfNu7cgEdn3KujKXDiwrFLfDh5hi5zLzw6jNufH8Gtjw3xtG12mZkvzWHhJys0LikB2g9oxaNf36cLL3DiyNbjfDz1Gx2XVGxyDHe/dYdXR8hSWsaXj/7AmpmbXFxSoiTSc1QXHvr87oDL/f8pON9LhU17I7sJgf+rkEryiTxaSVXgDf9oeZbrcZ4qoo/jC+fOnWPixIlMnjyZsWPHVmiff4c8i81q4/CWE5QWllKtfrJXw3ItLp1M48Kxy5jCTDTv3igg+7e5xMKRLcexWmykNK9ZIYbcMwdSST+XSWRsOM26NQoYl1CYW8Sx7Q6+pwbt6+riILxBVVWO/3manCt5xCVH06hj/YDs3znpeZzcfQZRFGnSpYFPXTsnZLvMkW0nKMwpJjklkbqtagfMEk0/l8G5QxcIMhlp1q1RQB4Xq8XK4S3HMRdbqNm4eoXEQs+nZnH5Ug4hocE0b1GDoCD/8WwlZVb2pqZhk2UaV02kaoz/OBRVVTmSe5W0kkJiTaG0ja+GFKBvC2xFnC5KRUWlfngK0UGB2lDIMB+lVM4j3JBAgqlRwL4ts1+h1HoEQTAQHtwOgw9dO60NG1brn6hKEZKhNkZjY7/1AWT7OWTbKRBCMAZ3QBD83z9FKcVctgtFNRNsbESQ0beupBP5ZaddDOMJIa0QBf/3r9Rewpni08iqQq2w2sQGBR4bh3KvcNVSSHxwOK3jquuEf70hq6iEw2lXEYBWNaoSE+b/umVZ4eiRyxQWmklMiqJ+/aSA9+/q+cxy9n3H2AjE/m0ts3Fky3FKi8zUaFiVWk0C2+MLxy+7GMab92jiU9fOCXOxmcNbTmArs1GnZS3d7Ls3qKrKmf2pXD2fRWRcuW3zwVPoRGFOUXkmskKjDvWIrfLP1bUDN+epyb/BeTpW6Tx5w/9Z5yk7O5uSkhKqVauGweAwXBXVxykpKcFoNBIUpH3tqqrKq6++yoYNG/6lB6VS264SlahEJSrxT4LLeWr8b3Cejlc6T97wl7Tt/i7Mnz+f4uJicnIcab/btm0jM9OxPDBixAjCw8P5+uuvWbVqFXPmzCE52ZGpU1F9nFOnTvHqq6/St29fqlWrRllZGVu2bOHw4cMMHTr0/+tDYi6xsPG3rWycvY2ivGJqN63BjZP70ayb76/4E7tOs+yrNZw9eIGQCBM9bu1Mv/E9PSRKnCjKK2b1DxvZtmgXlpIyGrary5Ap/anXyvsXtqqq7N9whBXfruPyyStExUdywx3d6TW6i08NqOwruaz8Zj27V+1HlhWad2/MkPv6+9S3k2WZnUv3svqHjWReyiahehz9J/amy7B2Pme4rpy9yrKv1nDoj2MIokj7Aa0YfM8NPvXtrGU2Ns/dzvpf/iA/q5Bq9asw+O6+tOnbwmffnj14nmVfreHk7rMEhRjpelMHBtzV2+cMV2mRmXU//8HmedspLTRTp0Utbry3H006NfBaX1VVju27wIrZf3LhTAZhESZ6Dm5Jn2GtMfkI5M0rNrNo+xE2Hz6L1SbTIiWZkd1bULeq9+VoRVXZfCmVOScPc7Ewn4SQMG5p0IRBKQ0J8vGFnWnJY2naTvbmnUJVVVrH1GNYtS5UCfE+QyKrdk4U7uRg3nqK7XlEGRNoFdOP+hFtferbFVvPcaloDvmWfQiCgYTQnlSPuJVgycd1KKUUlS6msHQhspJPkKEe0eFjCQnu7PP+lVkPUFT8E1bbEQQhlLCQIYSHjUL0McNlVwrILZ5HnnkVilJKaFAzEiLGEuplWRAc9++qeT8n8hdTYLtIsBhF3ch+1Inoi0H0Pvubby1gQ+ZWDuQfRlZlGkbUo29ST6qGeJ/9lRWFDWlnmXv2IFdKCkkKDefWOi3oX6OBLt7JHZdzCpi7/RC7z1xCEAQ6N6zFyM7NqRLt/bm1Wu1sXXOE9UsOkJ9TTHLNWAaOaE+bLnV9zv6mHrnI0i/XcGLXaYzBRroMa8/Au3oTFe+9b83FZtb9soXNc7dTUlBK7WY1GHJvf69L5k4c23GSZTPWknr4IqGRIfQa1YUbxvbwOcNVmFPEqu83sH3JbqwWG43a12PolP4+9e1UVWXv2kOs+GYdV85eJTohkr7jetJjZGefM1xZl3NY/vVa9q49hKootOzZlCH39Se5jv8Zrkr8d6NCM089e/ZEFEV++uknatSoQc+ePStEkCkIAhs3bgxY71qMGjXKJ4+U01l68803PZwnf/tVqVKFuXPnAnDlyhVmzJjB8ePHyc3NRRRFatWqxZAhQxg2bNi/RP75V2aeMi5k8USfV7h6PhMBAVVVkQwisl3hxsl9efjLybpzUVWV7579lTnvLnbVcwZMxlaJ4b0NL3to1Z09eJ6n+r5GUV6xKzvMue+d027zCOyUZZl3xn/GxllbXfUEUUBVVGo0qsZ7G172mLLet/4wLw57G7vV7opHEiURVJXHv5tK/wm9dPXNJRZeHPo2BzcdRZREFFlx/bd598a8sfxZj6Wydb/8wfQ7PwfQtWEwSryy8CnaD2ilq5+XWcBTN7zK+aOXEEUBRdH6tufIzjz768MeTtqcdxfz7TO/aH2LI3YrPCqMd9a+SP02dXT1L59O54neL5OTnoeAg2DQue+tjw1l8vRxHvfvy9eXsPTXHUiSiCwrCIJjv8Sq0bz782SSquudlcOp6Uz9bAGlZTZXPIskCsiKypO39uT23m109a2yzNR1i1l34SySICCrKiICCipN4xL59cZRRJv0fbs9+ygvH/4RRVVQygNaRAQEQeDFpmPpmdhSV98il/Dr+ZdJM59CQERFcf23bnhrRtd8HoOodwQvFc7lWM6r5fWcWW4ikhBMm6QZxIbo49xs9itcyhqJzZ6K4yFXcQSDy0SGjqFK7HseMUx5Be9SUPQhjm9CO87BIYpxVEn4naBrtOrM1pOczhyDXclFSytytFEl8hGqRj+mq6+oMluvvsWZolUISOXX4Ti3SGN1Btf4jNBrKA2OFZzk3ZOfYlVsrgw0EREVlbvrjKVPYnddfYvdxj2bfmfr1fOu++f8b5v4aszsM5qIIL2Ttmr/SZ751RGH6szOFAUBgyTy4cQh9Giif24L8kp4ZtL3pJ686hobzvHXpW8TnntvDAajfmzM/3AZXz3+o8fYCI0M4Z3VL3po1aWfy+Dx3i+TdTnHbWxIyHaZ4Q8OYupHd3qMja8e+5EFHy/X7I7guCvx1eJ4f+MrHqEGJ/ec5ZkBr1NSUOph2yZPH8/Ix4fq6tttdt68/SO2zP8T0SCi2BXX9ac0q8n0DS97OIK7Vu7nlVumI9tlnd0RBHjqxwe96nD+E+B8LxX9G2aeIipnnryiQs7TQw85smeef/55EhMTXdsVwccf+5JZ+O/A9TpPqqpyX5snuXD0ks+U2/s/vovhD2rLlet++YN3xn/qta4oiSTWjGfmyU9cToHVYmVsylQKsn2T0L266Cm6DNMCfH+dNp8fX57tldBRNIg07dyQDza/5irLSc9jQr0HsFpsXhnTBUHg891v6xyP9+/5kjU/bEJRPM9JlERuuKM7T83UAvbPHjzPlLZPeaUGEAQBY7CBH09/qpuBevKGVzm05ZhX1nBBgHEvjdJlO/65Yh8vDHnLo67znCJiw/kl9QtXNo4sy9zV+BGupmb67Nsnvp+qozdY9ttOPn91kc82atRJ4Mulj7jGVrG5jMEvfkeJxepVogVgxkMj6NBQi5F7+8/NzDi4y2uGsSQI9KyRwvcDR7jKrphzmLDzHeyq97R9SRD5rsMT1ArTvrJ/v/gOxwt3lEuV6CEg0C52MIOqapqReZb97Eofi/e8ZxFJMNGjxjqCpGjAMTYuZAymzHYEX3QCCVEvERt5n2u7pHQxWbn3ea0LEpKURPUqOxEEx+yCopZx9Ep3bHKWzzZS4r8kJlTTOjuU+yt7sr1L0whIxJsaMqTGDNf9K7QV8dD+57AqVp+p+683fYZ6EdrYePHP1fx2er/LiXWHKAgMqdWYj7tpWZ5nrmYzYvovXp8PATAaJJY+M5GqsZpT8PzkmezfedbrcysIAqPv6cHEh/u7yvauPcgzA7xTsoiSQFhUGL+e/8L1waMoCnc3e4wrZ9J92rZHvprMjZP7ubZXfLueDyd/5bWuZBBJrpPEd8c+cs2KmYvNjE25n2IfkkoAb658XvdRNfPF2fz25gKvdkqURFr1acY7q190lWVezGJiw4ewW+3e7aEk8tW+d33Ocv0noXOeQqOv+zhSaaXz5AsVoir45JNP+Pjjj0lMTNRtV+RfJbzj0B/HOHfwgl+ukrnvLXY5GKqqMufdRT6dVkVWuJqayc5le11lm+fuIC+jwKdxESWRee8tcW3brDbmf7TMJxO2Ylc4vOU4Z/anuspWfLMOW5l3x8nRhsCCj5e7tvOzClj742avjpPzOtb/toXcqxqj88JPVvhM71dVFbtNZvnX61xlqYcvcGDjEZ9yK6oKCz5erpNwmffeEp9p0oqsUJBVyKbZ21xlu1cecOjt+ehbQYC50xe7+kVRFH7/drNPsk9FVrhwOoMDO8+6ypbvOk6xucyn4ySJAj+v1+53qc3KT0f3+6RmkVWVDRfPkVqg9e2StO0+jw+ACosua9ddYM3iWOF2r46To7rKvrw1WGQti+tCwY9++JEUZNVMWpGbPIt1D2W2g/jjYcot+solnQJQUPQFvs2ZjCxfodSs8c7ll67C5lNvD0Ako1B7mSuqnSN53vUSwUGQmWU5RrZFy4LdmLnVr+MkIrLiqibvkV9mZs7Zg14dJ8c5qCw7f5yrpVpm7qytB31ypqmAXVaYu/2Qq+zSuSz2bjvt87lVVZUlv+7EYq7o2FApyitm3S+adMq+dYe5dCLNv21zGxuqqjJ3+mKfY8OpI+eeBbvht61+mcmvtW1l5jIWfrrSp51SZIV9aw9x4ZiWhbdsxlpku+LTHgoCLP7sP8tlGBB/labgHxsR/Z/HdfE8VeKvY/+6wwGz17Iu5XA11RHrVZRXzPkjl/zq4UlGiX3rNEO5b/0h/6SassKRrSewl6fAnz9yKaAUgyiJ7F9/2LW9d+1Bv4zFsl1h96oDru0jW08ElFVwOGmaNtruVQf8GmJFVti9ar9re//6I341qcAh3XDukCMmTpZlDm0+GlA3cN96rW/3rz+MZPR9/1QVLh5PIz/TIW2SlV5ARlqeX2MkSSIHtmu6c3+evOiXWV1WVP48cdG1fTg7g1K7b90ycBxuW5oWC7gr54RfIkcZhT9zNIfgfMlhAllUWbVxuVRLN88xb3dbqvMGlRyzpp9XYtlKIHkWWcnEanc48YpSjNV2CP/6eQbMZZqOXJFlG/5DPhVKrQdRFIf8TYH1IhY5z099EBC5UqpxxB0qOOaXLFJB4VC+Rsi7LytNJ/rrfR+VnRna/dtyPNUvkaqiqmw9cd61vX/nWd8EteUoLSnj7HFN9/HAxiP+iXAFgf3uY2PdIb9jA+DK2QyyyyWVctLzSDud7n9sGCX2rnVrY8PhgPp5BzcecdnLswfOU1roX8PUcR2aVuCeNQf9XrdsV/hz5X6fv1fivxv/yIDx/wXIsuL3xeiEc/BWRG7k2noV3qfc+Fa0vrusjD+n5i+dk1s91ccslc9zkhVHDFmAl7yrDZWAunOqql7XdTjPy9dMmw6C/riyrAY8L/dZI7mCibOK6taGWoH753ZcXzNOHvu41avIPnrnyhlLFGgn2cu+/uq7n5NMRT6rncdWKtSGoLtWpSJ9i/u9qNj9c69XEakV2e3ZczyHzhgyP+eluI+/gIPjmudWqZAmmnOfgMe/pr7r7wqMWVVVEQShYuP1mvGnBPjIu/ac/pH4q7NHlTNPPlEh52nmzJnXdXBBEJgwYcJ17fvfjmZdGzL7bf+DMyo+giopieV/R1IlJZGr5zN9PtCyTaZpV41Er0nnhmyYtdXn8QVRoE7zmq4sk1pNa2AKN+nINK+FIis066qtfbfo3phTe7zHT4AjXqFFjyau7UYd6yMIgt8ZNARo3Km+a7N598Z+VddFSaRlT438sWmXBgGdleDQYFKa1yw/R4n6bepw5oAf1XUVmnZx69suDVn0mX+y2MSa8cRWiXb8nRxNdFw4+Tm+Z/Zku0KTNlr8RMu6yWw9mupzWU0UBFqkVHVtN41LJEiUsPqZvVCBdlU08s5WMXVJM2f7dKIkQaRljBaTUz3Uk6TR47wQqRqiBRBHB7cm17LTj5MjEmNyY4gPbocj4NtPG0IUxnI+JlGIxGCog92eim9rbyc4WIvtCw9uS27JPD8tCJgMdZFEBwlplLEmRjEMm+JbvFdFJjGkuWu7UWR9ThWd9TmzJyLSKEJ7zlvGJSMKgv9lVKBNvJYU0rZudVYfOOlz9kkSBdrX07iVmrau5X/sAcYgA3UaOpJwBEGgYcf6nPzztG9HTRB0Y6Npl4bM/3CZ3zZik2McmpVAXNUY4qvFumaivEG2yTTrprdtWxfs8llfFAUatNMyB1Na1CLIZMRq8T0zqyoqTd1sW/MeTTjvJyZVMoi07NnE62//GFQ6T38bKrRs98MPP1z3v0p4R7uBrUiqneBzWU0QBW56YBAGo8O/FQSBWx6+0WtdcBiLqPhIetzayVXWd1wPQsJMPqe3VUXllkc0CQNTaDA33tPXZ6qyKInUblZD56ANua+/17pOyHaFmx8a7NpOrBFPl+HtfV63KIl0urEtVWprYrI3PzTY/wyXqurOo3GnBtRtVdtvG4Mm9dFl9I14dIhPx0kQBYJDgnQMxN1u6UB0onc5F9Dul7MvJYPEsHFdfC6ZiJJAQnIUHXppfTu8czMMkm+lOkVVuaOPJs8SFWzilgZNfZIpSoJAm6SqNInT+nZ4ta5+Z59kVeHm6lpGUXxwdVLCWvoUvBUQaRLVnXCDlpFZK2qcH8dJQECkeoQWvB8a3AOjoTa+l+5EoiMmIgqO4H1BEIgMn4xvSy8iClGEhQxzlcSEDkcUIvBtAlUSI+92bRnEYBpH3ewzdktAIspYk+QQLfvxhsTufhNrFBQGVtG00RJDwxlUs5FXqRVw3L/uySmkRGoZmXd0bxVw2W50F412oX7TajRoVh3J19gQBQbc3IawCE1oecTDN/p0nBwJG0adtl3nYe2Iqxrjd2zc/NBgFzGlKIrc/NBgP2NDJLZKNF1u0pzf/hN7ERRi9B0Deo1tC4sMZeBdvvUrJYNI/bZ1dFmDQ6cMCBiS4J7QU4n/LVTIeapocPi1/z766KO/+fT/70KSJF5b9LSHVp0zMLr9gFaMeWa4bp9h9w+g92iHSKtuH0kkODSY1xY/peNhCosM5ZWFT2EIMuhEN537Dp7c10OS4M5pY2jazfH15e50OZyzCF7+/QmdwUquk8RTMx9AEAWd9pXz7zun3UbLXnpJkEdn3Ev1BsmO4zgPJTiMarV6VXjs2ym6+s26NWbSW3fojuv8WxAFnvj+fh2flCAIvDTvcaITo3TX4Py7SecGruM50ef2bgybOkDXP842DEaJlxc8qZNiMAYZeX3J0wSHBnncC4DuIzoy/CG9YR15d0869G7s6k/XPqJAaFgwL30xXhcHFxsRyvS7hyBJIpJbfeff4/q0oU9LfYr4C5160yw+ydmlWhuCQGJoOJ/00et9pYQn83hDh+MiuaX+O/9+oP5wGkXqGe+HV3+EKGPiNQps5eLSwTV1mXYACaE9qBM9pbyW5LaHhIBIi8TpmAxaGrogiFSL/6Gcm8ndRDn+Dg3uRlzkI7o2IsLGERbqdMDcnS4JQQgmMf5HRFHjQZPEUOomfIcgBHnUB4gNG0Vc2BhdG63i7qRKiNNZdXuuEAmWIrih6pu6sREfHMf99SYhlv9PuwrH3yOqD6VFtH7mYlqHAdSLindp2WltCFQPj+a9zvr716JWMk/e1LP8mvTPiCDAKyP7UbeKngftufdHEx0frh8b5X/Wb1aNSY8P1NXvMbIzNz/s+AC6dmxIRomX5j2uk2AyGA28tvhpQsJNXsdG55vaedAIjHh0CF1v7ujRhiiJhISbeG3JM64PSYDIWIctMgRJOpvg3Hf4g4PoNVrTSwS4++07aNShnsPWXGMXohOjeHGOnpqiZqNqPPbNFATBu22bPH08TTr/szPQKrXt/j78oxnG/y/grzKM56TnsfSL1az/bQulhQ4JgyH39af3mK5eA8oVRWHrgj9Z8sUqUg9fwhQWTK9RXRh2/0CvOnUAaWfSWfzZKrYs+BObxUq91ikMu38gnYe28/rlZrPaWP/LFpbNWMOVsxlExIbTb1xPhtzXj+iEKK9tnDmQyqJPVrBr1QEXX9PwBwfpltPcYS42s+r7jaz8dj3ZV3KJS45h0KQbGDipj09CvMNbjrPwkxUc3nIcQRRoP6AVNz80WCfY646C7EKWzVjL2p82U5hTRHKdJG6c3I++43p4JcRTVZU/l+9j8WcrOb3vHEZTEN2Gd+CmBwf5JPvMvJTNks9XsWnOdszFFmo3q8GwKQPofmsnrzN4sqzwx4pDLJu1g8tnswgJC6bX0FYMub0T8Une+zb1ai6zNx9g48Ez2GSFZrWSGNOzNV2a1PJ6/yx2O/NPHWHWiYNcLnLIs9zasBm3N2rhwfHkxInCi8y/tIW9uadQgdYx9RhRoztNo2p7rW+RS9iXt4YDeesosecTaYyjTcwAWsX0xeiDLDLHvIMLhb+QbzmIIEgkhvaiZuRYIoLqe61vlzPJL/6JwpL5yGohQYY6RIePJzJ0uItywB2qqlJqWUFR8UystmMIQghhIUOJCL8To8G75FGZ/QJZRT+SV7oCRbUQamxCQsR4okIGeO1bRbVztnANJwoWUWhNI0gKp17kABpFDSfE4J1Q9GLpZValb2B//mEUVaZBRF0GVLmBZlHel0BL7VbmnT3E7NMHuFpaRHxIGKPrtmJ0vZYeHE9OHEi9wi9b9mskmQ1qMbZHK5rW8E7EWZhfyop5u1m7aB9F+aUkVY1m0Mj29L2ptc+xsXvVARZ9uoJTe846SDJvas/wBwd5cMs5kXU5hyVfrGbj7K2YiyzUbFKdoff1p+eozl7lUGRZ5o95O1n65WouHLtMSLiJ3mO6MnTqABJreCdSvXzqCos+Xcm2Rbuwldmo37Yuwx8cRIdBrb3eP2uZjXU/bWbZ12u5mppJZFwE/Sf0Ysi9/bxqcAKc2nuWRZ+uZM+ag6iKSsueTRj+4CCadQssFfSfgvO9VFyvN8pfoCoQS/MJP1NJVeANlc7TX0SlPEslKlGJSlTin4RK5+nvR2W23T8AqqqSduYqJQWlJKck+vwCckdxfglXzl7FFGaiRsOqAUlLFUXh0ok0ysxWqtVP9inl4o68zAIyL2YTGRteISkCu83OxeNpKLJCjUZVA4oVg+PrNPdqPrFVor2qoF8Lq8XKxRNpiKJIzcbVdFP5vpCemkFhTjGJNeKISYoOWL+0yEza6XSMwUZqNq4WUKxYVVUun7qCudhCcp0kImLCA7ZRmFNMxsUsQsJDqFYvsCCrrCicT8vFbpepkRxDqA+ZHHdklZSQXlREbEgI1aO8z2q5w6bYOVeUjYpKnfAEgqTAfZtTlkORvZBoYzTRQYHFUu2KhQLrBUTBQFRQrYCCuqqqYrFfQFYKCTZUxyj5F9QFkJVCyuznEYUQgg31AvatqqqYbWeRVQshxloYxMDjz2zPp9CWgUkKJyoosBC0rMpcKs1AVmWqhSRhkgLfv4ySYjJKi4kPCaVquH8BZYAym53z6bkIgkBKcizGAFQoAFcvZlOYU0xCtRhiEgM/I+ZiM5dPpWMIMlCzcbWAgrqqqpJ2Op3SIjNVUhIDCnmDQ2D8amomIeEmqjeomG27eDwNW5mNavWTA4oVA+Rl5JN5KYfIuPCAQsLgZtsUhZqNqvmUqfqnQeCvLb1VXGvjfw+VztN/GNsW7WLmS7M5f8RBziYZRLqN6MTkd8aSWNNzGS4vI59vnv6FjbO2Yrc5gnCr1U9m/Msj6XN7d4/6qqqy6vsN/PrGfDLOZwFgNBnpN64nk9663asxSzuTzjdP/cL2JbtdQdT129Thzjdu85BBAYfxmjt9CfM/XObiNQqNCGHIvf0Y/+oor07UyT1n+faZXziwQeNVadmraXlcgucyjtVi5adX5rL0qzWUFjq4d6ISIvl/7H13eNRG9/WRtLvuvReMTTPVFNPBgKmm994SSAihhCSETggECCUhhJLQe++9GzC9g+mYZhv3XtZti6TvD+1KK++u1iFv4Xt/Pnn2CRqPNKMZzehq5t5z+n7bDQOm9jA5iT+48BibZ+3B6/sc8SRBEGjaPRRjlg6HfzVfo/zKnAJsmrEb57dHQaOLyvGs6IEhM3qjy5ftTU7il/fewPZ5+5EYkwwAkMkptB7YHF8uGQ43H2NjIiMpGxtm7cW1I/f4CMWA6r4Y+WNftOzZ0Cg/y7I4dCEaO47fRbqOg8tKIUP3NrUxdkBL2Nkat+3rzEwsuXIVV2LjeBfqej4+mBLWEk0DjFXttQyNDW+uYdf728jTcG3rILfG4KDGGFutNeSk8TTxVvkah5MO4G3Baz6tpmNt9PUfiAq2xltkGqYYj7LW403eMWhZLprThnJDLZehqOk8wEhqBQCyiy7iQ+4yFGn0nF8k3Gw7oaLLDFjL/I3ya+ksJOcuQm7hYbDg+k8hC4SX4yS42vczyg8AacpD+JC3GiVabvwRUMDTvieCXKaYNNTy1Mm4mb4O7wuu81QY7lZV0NRjFALtmxrlZ1gGx5Iu40jiReRoOHJLa9IKET7NMbRiN5NG1LPMNCy6ewXXkwU+pybe/pjWqBVCvYwNNbVGiw0n72D/5ccoKFYBAJzsrDGkfQN81rkRZCacpKOvvsSWnw8j5gHHlUUQBBp3rIPR8/ohINh4bBTmFWLTzD04v/UyVDoCTY8Kbhg8vTe6je1ocmxcPXgL237ahw8vkwBwQROtBzTDl0uGmdSjzEzOxsZpOxG17ybPBVehui9Gzh2I1gOaG+VnWRYn113A3sVHkP4hEwCgsJaj02fhGL1oCOyc7IzO+fAqCRum7sCdUw/5qMPgRlUw6pchaNCujlF+Wktj75KjOLLiFPIyuf6zc7JF9687YfhP/c3q4X0yKI+2+7ehfNvuH+KfbNud3XwJy75YYxS6T8pIOLk5YPXdxaK9/tyMPExoMgMZCVliagAdbcvYZSPR9zuxQ+mOeQewfd5+I2oXkiLhX80HK28uFE0yiW9SMLHpDBTlF4vKIEhOaGrW3u/Qun8zPp1lWfw2+i+c3xZlNNBIkkDtsBpYfG425AphknlxKwY/tJ0LWsuIyiApEiRF4tfIOSJ/Aq1GixmdF+Jx1HPjiDgCaDu4JabvEEsGXT9yBz/3WwYQYh4ZkiJh42CNVbd+EflqFOYXYVKL2Uh4lWSSdmHorL74bL7YgfjoqjP4c9JmXp9OD0pGwtXHBX/eXSxa6cpMzsbEVvOQm5Evbltd/09a9Tm6fN5GVMbKXVHYc+oBSoMkCVQJ8MDaOYNgYy20bUxGJvrt3gOVViviA9JH4K3v3RPhlQTqAYZl8MP9A4hMeWE0TxIg0NKzClY1GSJyJn+V/wJ/vP4NLBgRlxYJEhQhw9TqM1HRTvBDoxkVziVNRGbJC5OcT9Uce6OZ1xRRWkbBUbzJ+h7GnEQUZKQTQnyOigwoLZ2DN2ndodYmQswazp3v4zwTno7iQISE3DWIy11mVB+AgrWsAur5HIKcElZj8tTJOBA/Diq6oNR9cGV08JmFYCcheo5lWfz5di/Opd5EaZAgEOwQhIUhEyAnhf57nJGC/if3QsvQRv1HEQR2RPRHM1/BONXSDL5ddRS3X8QbcYIRANo3rIZFY7qIxsbtM9GYN4zTiSw9NqxsFFh+fgYCawhjo7igGN+F/YjYZwkmx8aAKT3x5ZJhorQTa89j5bgNRmNDHzm3+u5i0cdFdmoOxjeegZzUHFFkrf78CatGo+d4sSP7ppm7sXfxEaP6kBSJijX98cf1BaJVqPiXifim2UyUFKqM5zYAcw9PEUlVsSyLRUNXIGrfDeO2JQk0aFcHC0/NtEh2/N+A/r1UWDkcjI3zR1+HLM6F3bvybTtTKGcY/y+hML8IqyduAgAj3hVGyyA/S4kts/eI0nctOGRsOAH8u2XDtB0iWZOU92nY/vN+UR6+DJqTPDiw7IQofd0P24wMJ4CbZFmw+OOrdVCrBK6UJ1de4PzWKJNfKAzD4smVF4jcITA7syyL5V+tA62hjcpgaAa0lsbvY9aJ2uTS7uuIvvTMNJUAy/39kcEKlkatwe9frgUL1ugchmZQrCzBmu+3idIP/3HKrOEEALsWHkLi62T+ODcjD2snb9PdkzgvrWWQlZyDnfMPitK3/XwYeaUMJ32bAMBfP+xEQa7AI/T2Q4ZJwwng2vZNfDoOXYgWpc+7eMnIcAK4kHWWZTHj3AVoDTiwrqa9wQUThhPASa1cS3+DC8kvDK7DYFvcJiPDCeBC77WsBrvixW37Ov8EMkqemyXLfJ1/BBklAtM2zRThXfZsvhZi0NAyeYjPWSJKTc//04ThJJyfkrsYGm0Kn1qiTUZc7u8m6wPQKNF+QGLeOlHqzYz1UNGFJu6DKyMqbTk0jMCR9koZa9JwAjim8JfK94hMuyNKn3H9PDSlDCeA6z8tw2DatXOisRF5/zVuPTc2nPS1unD/NW4+i+PTtBot/pi0DWBNjw1VsRprZ4hlaI6uOov3Tz+YHRv7fz0mkjXJz1bir285mprS9WJoBtlpudj+0z5R+va5B5BdynAyPH/t91uRnyXI0sS/TDRpOOnLiHuegCMrT4vS13y7xchwAnQGJMvi9y/X8moLAMcwfnmvseGkP+fBhSeI2me6fz8VlEfb/ftQbjz9l3Bl302oDLTVSoPWMojaewOFOkkBrUaLc1suSzLasgyLC9sFQ+XMpouS/joMzeDkugv8ZJydmoM7Jx+aL4PlfK1uHhXI6U5vjBSF8ZYGQRI4ue4Cf/z6wXvEPUswy5/CMiwSXiXh1V1BpuTkuguSUgyUjMTpDUIZt0884GRmzAx8vZxLZlIWn3Zi7XlpeRYZibObL/HHkTuuShJxMjSDc1ujeEOzuKAEl/bfEjGhl4ZWrcXlA7f54+OXn4rCz0uDZYEjFwW9rw+5ubiTmGiWqZoF5wd1LS6OTzsYf98srxDArZAciBckR14rY5ClzjTL3s6CRVxRLJKLE4Vz8o5Aav2fAIU3eYIOWVbRaTCslJQGjayis9DQuVyZLI2sgj2Q0sIDICLFTCs4CGmPDgapBXvB6jiwirV5eK+8LslmrmGK8F4paLydS7kJSmKKJUDgTIpAYvsyKx3Ps9LNkmSyAOKVubiXlsSnHbryxCyvF8BRFhy+Ksgp3Y98htwMpXn9SppB9JWXSPsgjI2Ta89LsoBTMhJnNgoafZd2XQetMd9OjJbBhZ1XUVLEbTGqilW4sD3KrBYlwEWpRu4U5razmy6J6FdKg2VYnFx3nj9O/5CBBxeeSGj6AXkZ+bh7+hGfdnpDpGQZJEngxNrzZv/+SYD9F/zKYRLlxtN/CUlvUyGzsNyr1dDISuZWkvKzlCiWYP4GAIIikfIulT9OeZ9mUXckLyOfF8hNjcuwyD5MySgkv0vjjxNjkiUJLFmGRbJhnQz+LQXDfElvUiQnb1rLICFGWBVKfpcmqenHVYy7X4BbqcpJzZXOTrNIfi/cd1nKUBWpkJeRDwDITs2FVi3Nmk3JSKTotAwBIDE1V5IAEQBSddcHgIS8PMm8AGcufMgV8sUVZEnKgjBgEV8gvEgzVGlm8xoiQ5XB/1upSZbIyTFz56uFlYsS7QcQFt0xaahpbiWJZvLBsPkW8hNQaQUfohLNB1hyh9Uy+aBZbiVQqU2zKDNDgkKewb0mFaeDljiHBYuUkkz+OF6ZK3l9Pl++kO9Deq4kIznNsIhPE1ajk2PTzYpsGyI1nus/lmWRnpApmZfWMqXGRqrkBxUAaEo0yEnLBQDkpOVJMn8DnO5jisG8k/I+VdLYAoDMxGzQNGfEGY4rcyApUjRXJb5OliyDYVgkv00x+/dPAuXG078N5cbTfwkOLnZl0qWyd+ai4mwcbCyK3YJlYWdA5GjvbAfCQqSYTCGDXOf06OBi7GBZGgzNiPI5ujtYrJe9gU+VfRki0QCI7sPBVfocgiTgZBChyLWtZc0pPemlTC6Dwlra8ZOkCNF9OLjYWTRMQQC2jpzPhZ2T5ehGhmFhb5DP0d7a4ovO1kZwOHa0spbIyYEF4GQtOJk7K2wsRtQ4KQS/EVuZ5WcEAGwp4T4UpIX+AwkrSogmk5GOZdLDk5HcORz5pSW/EwIUaViGk8X7JkCBJLg2tS5DBB4DBlYG9+oot4N5fngOdpTQtk4Ky/0HAI4GXE+OJgIGDEEQnPO4HvbOf2/eIQgCNg7S9aJkpIhA1sHFvkxl6MeEnZOtxbAuhmVh72I4t9lLrgoBnASTPpCkLBGwDMOI7sPRzcFipF9Z57Ny/O+hTMbTwIEDP+o3aNAgyxf/P4rWA5pLvuBJkkDtltXh6s05VdrYWaNJ1waSqx20lkH44Bb8cZtBLfioFVOgZCTaDGzOb+35V/NFYO0KkhMGQRFo2acJfxw+qKXkqhBJkWg/vBV/XLdNTYvGkL2zHeobRL60GxomaUSwDCuKNGzeq5FkCDVBAAE1/FCxpr/umED44JaSX8u0lkGbQQZtO7C55IobSZFo3Lk+Twnh7OGIkJbVJfuPoRm07iu0bftmwZIvIYok0KmF4Fhfy8sT/o7SIe0KikK7ypX54y7+IRK5ua2lbgZ5ajuGQGGGBFMPJ7kTKtsLEZOVHDqZlTUBABYMghwEeR03286Q/uQlYa8IgZWMc2omCSs42XSCtAGlhYutIM/iYdfVgqAwBXfbziB1ZJyOCh94WFWF1FueAFDZQXjWW3mEgpG4DxIkwj0FB+VG3v5ws5Y2su3lCrTyD+SPuzSrIbltx7JA5yYCGWezznUhU0i0EwH4VvJEpdpCVGbbwWEWx0a4wdhoPbC59BY4RaJ+uzp8pK+Diz1C24dIjw0tI2IMbz2wueSqECUj0X6oMCcE1QmAX1UfSSNNJqNEEjBtB7eUFBcnSALth7Uy+/dPAXqqgo/+/bdv4BNGmYwnvTq14U+j0SA1NRWpqanIyMiASqVCRkYGn6bRaMqmJP9/FD6VvNDps3DTqzZcYBtGzhsoSh72Y3+QJGHyHJIk0LxXI1SpJ0Q5hbSqiXrhtU1OSiRJgJLJMGhaL6FYgsCohUPMbt0RBNBrQmdRBFmbgc1RobqfycmVpEg4uNjxsicAJ2vy2c/SRvWIuQNEIcDdxnaEo7uj6fuQkfCr6iMyGp09nND3265mRz7LAqMWDhEZiQOn9oRMITddBkWiTqsaqN+2Np8WVKciWvVratKoI0gCBEFg2I/9RekjZvfm/m6qy0kC7Ye0gF8VgRG6Wb0g1KzsbbIMkiRgpZBjcBdBUJckCPzQqqVRXkN81bgRHKwE46dnhXrwsXEWRdPpQREkPKzt0SdAKMOKskI3n56SZfTy6wfS4Ho1nAdATtqZNKAIUHBRVEGAvfASspL5wct+MEx3IBfZFuA8WZTq5fSN7vqmpjQSDtZtYaOox6c4WNWHs3WY2fwEKFRwHitKbeoxGuaNOgK1nXvCXi7QizR3r4cAWx+TOoAkSNjJrNHNV7hvGUliSkPp/vumfjPYyISx0TusDlwdbU36xlEkAT93J3RpKhjYDi726DcxwigvDxb4bHZv0djo/0N3KKwVICkTzyFFomazagjtWJdPC6juh7ZDWpqcp/SSTCPmDhClD/9pAAidRJPROSSBNgObo2JNwaAL7RCCWi2CzY5XuZUc/X4QjGWCIDD6lyFS3Yd+k3uIOPbaDg2DbyUvs3Obs6cTuo5pb+aCnwjKt+3+bSiT8bR//37Rb9OmTXBzc0PdunWxevVqREZG4ujRo4iMjMSqVatQt25duLu7Y/Pmzf/u+v9/jUlrvkTEqLYgCM4gouTcF6G9sx3mHJiMeuG1RfmDG1bGgpMz+AFOyShugiK4L7EZOyeJ8hMEgblHpqBJV06slKRIPqzWxdsZS87PFk1IANCse0NM2z6RX6qn5FwZJEWi1zddMObX4aL8CmsFfrv0E8/NRFIkv5zuW8Uby678bERM2f3rjhizdDjk1nKA0JVBEJBbyTB60VAjsU0XTyf8fmUe/Kv56O6b5CfN4IZV8NvluUZcUqMWDUG/77qBpEhR29rYW2PKlvFo0auxKH+FYD8svfAjXL2d+bbVl9Eooh7mH5tmNLFP3TYB4YNb8lpZ+rZ1dLXH/OPTUKOJmK+qTsvqmLN7Ir81oO8/giDQYWhLTFr1uSg/RZL4fVofNKrFhaaTJMG/JD1dHbB6dn/4lW7b6tWxoEN72Mg4nyEZyW0cyUgSXzdpjG+aNxPlt5NZYWuLzxHsyBEFUgTBG1KV7N2xtcUo0bYdAHTy7oIevr1BERQ484e7bzkhx6AKw9DCXfw1bif3RCf/P2Ev5/pPr2kHAJ42Iejot8KILDPI9Sd42Q8BN0URvA8URTigmvsqONuIOc1sFLVQyXMnZKSeP0gG/fTmZBOBiu5rRP1HEARqeq6Gm20HXQrJlyGn3FDbewvsFGL5lIr2jdHJ90coSDvdGZSubgTqOPdEmNd4UX45KcPCOhNRwzFIl5/k29bL2g2/hEyCm5Wz6JzB1etiTtNwWFEyrt8Irv/kJInJoS0xpk4jUX5nextsnDoAgT4cJxVFEryxHVzBE+un9DciVB0xsycGTIrgxgahe24JThj825Uj0aq3uAy/Kj749eJPPDeT4dho0CEEC07OMApMmbxpHDoMb200Nuxd7DDv8FTUbiFu21rNgzHv6DR+Vdpwbms3NAxTtojbliRJLDgxAw07cUab4dzm5uuCpZE/GUkqhfVtismbxsHajpsr9HMbJSMxYHIPfL5A/FFnY2eN3y7PQ5UGlQzK4O6zQnU//B41D07ulslLy/G/iY/iefr111/x7NkzbN682eT2iFarxahRoxASEoIffvjhX1LRTxX/CnmW9IRMXD98B4V5RagQ7IvmvRpLkq9pNVrcOvEAcc8+wMbeGs17NoJvZdMaVnp8eJWEOycfQFWsRuV6gWjcub4kP0lJkQrXD99ByntO2y6sb1OTpI+GiLn/Do8in4CmGdRqHoy6bWpJbgEW5Bbi6sHbyNJp24X1ayrpm8CyHPXBsxuvQOmW/g1V0E0hOzUH1w7dQX6WEt5BnmjZpwls7Mz7cNA0jXtnovEuOg5yKxmadAtFxRrGhIyGSIlNw82j91CkLEZgrQpo2j1UxGtVGmqVBrdOPkTC6xTYOtqgRfdQeAWY1u7S411CJm5Fv4dGy6B6kBeahARKbmUWqtU4+/oNkvLz4Wpjg87B1eBma35LiGVZPM5JxP2sWLAs0MCtIhq4Bkj3n7YAD3LuQanJg7PCFaEujWBDmWd3ZlkGKUX3kaF6DhIy+Nk1gatVNcn7VmlTkV10FlomH9byQLjZdgJJmN82ZFkN8osvokTzCgRhAyebjrCSm9Y+1KNYE4esokgwbAnsFMFwtQkHIcF8rmVUeKe8jjxNEqxIe1R2CBOtOJnCu4IEPMp5BZqlUd0hCCHO1STbNl+twunYGKQWKuFhY4euQcFmdQm5+2bx6E0SHr1JAkEQaBRcAbUreUuWkZuRj2vHHiA/uwCeFVwR1qMhb1iYAk3TuH/uMd4+jIVMIUOTrg0QWMuYdNUQqXHpuHn0HgrzixBQwx/NezaUHBsatQa3jt9H/ItE2DrYoEXvxvAO9JQsI/5FAu6cegiNSosq9QPRMKKe5LZ9cWEJrh+6g9Q4TtuuVb+mksoDLMsi5t5bPLr4DAzD6XbWCath0R/qvwn9e6k4oA1Ya+ePvg5RkgubD1HlPE8m8FHGU69evRAREYGxY8eazbNmzRqcO3cOR48e/Sf1++RRrm1XjnKUoxzl+JTAG08V/gXGU0K58WQKHyXPUlhYiMLCwn+cpxzcV83L269xZf8tFOUXwa+aLzqObM07iptCfpYSF7ZfQdyzD7C2t0bL3k0Q0rqm2S8hhmHwMPIpbh2/B3WJBpXrBaL9sFaiyJLSyEjMwvltUUh5x608hQ9ugWqhlc3m12q0uHX8Ph5GclwqNZoFo83A5rCWiAZKfJ2MC9uvICs5B64+zugworVZhXaA44O5sv8Wnt94BYIk0aB9HTTv2UhS3+7Nw/e4vOc68rMK4FPJCx1Gtjar0A5wMhSRO6/h7aNYKKzlaNotFKEd65rly2JZFk+uvsD1w3dQUlCCgJoV0HFka8nl/Jy0XJzfdgWJMUmwdbRFWL+mqNU82Gz/0TSDe/fe486d99BotKgW7IP27WrCVqJtk3LycPThCyTnKuFqZ4Nu9aoj2Nv86oiapnH2Qwxup30AC6Cxpz86V6wOawl9u/jCVFxKv4cctRLuVs5o79UYvjbm21bNlOBp7lUkFb8GSchQxb4+qjo01G3/GYNlWWSrniGx4ALUTAHs5f4IdOgOG5n5+9DQuUgrPIZCdQwowgZutu3hbN3UbNuyLIOskjtIK7oMmimBg6Iq/O17iJjFS0OpycKz3AvI1aTAirRHDadW8LEx/2KhGRo3s17gfnYMaIZBDaeKaOtVDzaU+f6Ly83BkVcvkFKghIetHXpXr4kqrua1H1VqLS7djMGTl0kgSQINaldAq8ZVIZebX4F5Gx2Ly7uvIy9TCa9AD3Qc2QZeFc23bWF+ES7tuobXD95DbiVHk64N0LBTXbOrPCzL4vmNV7h68DaKlcWoUN0PHUa2kdTQy83Iw4VtV/DhZSJsHGwQ1rcparesLjm33T/3GHdOPYC6RIOqDSqh3bAwSe3O9A8ZOL/tClJj0+Hk7oDwIS1FvqKloVFrcPPoPTy69Awsw6B2yxpoPaDZ/zf6duX49+CjVp7GjBmDxMREbNiwAX5+xi+7hIQEfPXVV/D398f69ev/JRX9VPFPVp4K84vwc7/f8DDyKb+FxjAMSJLA2N8/Q68JnY3OOb8timPo1tL8C53W0qjRtBrmH59m9NLOSsnBrC4L8e5xvFAGzUBuLcf07RMR1tdYj2vPoiPY8uMezhdLN2nRWhrNejTCzN2TjAyiD6+SMLPzQqTFZ/Bl0Foa9i52+PnoNNQJqyHKzzAM/pq0Bcf+PKvzu4DuHAbdvuqACatHG03Iz268wpyeS6DMLhCV4VHBDb+cnmW0faAuUWPRsBW4fvgun5/VsSqPnDcQQ2b1MZqQbxy9i0XDVkBdrOF9OmgtjcDaFbDozCwjPa78bCXm9FiC5zdjdGWwYBgWFEVi0poxiBjV1qhtT6w5hz8nbdH1s1BG3fBamHd4ipEeV2paHqZP248PCVmg9HWiGVhbyzFnTi80bSI2aFmWxcrIm1gfdZeLwtK3LcOiS0gwfunbCYpS27UvstPw2aUDSC8ugEznk6NlGbhZ2WJz2/6o6y72HaFZGite78OFtDu8Dw/LcqH6ffzD8UVQT6O2fV/wGPs+LIaKKdL5CgEMaLgovDGs4ly4WYnL0DJFuJU6DanFN0Ho8rNgQQAIcfsW1ZyHGrVtWsEJxGTOAAuNwTlaOCjqoLbXeigocf+p6EzcSx2HfPULnb8TCxYMSEKOEPcF8LXvYlTG3cyDuJK+BQDn7aS/j0r2jdDDfyYUpHhLOLEoA1Oj1yOlJJtvK5plYEdZY37I56jvIt52ZlgWC69FYUv0Q1AEwYvT0CyLATVrY0HbDpCVMuSfv07BtEWHkZtfLHpG3F3tsWx2X1QuZRCpVRosHbkKV/bfMhobQ2f3xYi5A4z67/bJB1g4eDlKilT82KS1NCrW9Mcvp2ca6XAW5Bbip95L8eTKC/HcRpGYsHI0un3VAaVxeuNFrBy/AQzN6LakCdBaGrXDauDno1ONtvQzErMwo/NCxD9P4HwaWW5r0drGCjN2TxJJrejvcefPB7Hj5wO8r6H+Plr1a4pp2ycaGUSxzz5gZueFyEzKFs07jm4OmH98Gmo2+zRXY/TvpRL/f77yZJ1YvvJkCh/F8zR8+HAUFhZi9OjRWLVqFaKiovD48WNERUVh5cqV+PLLL1FUVIQRI0b8q+v7P4VfhvyB6MucLAWtpUFrabAMC1rL4M9vNuPaodui/A8jn+DXUX9Cq9bq8tE8FUHM/beY03OJKFKOpmnMiFiAuOcJ4jJYFpoSDRYMWo4Xt1+Lyji75TI2z9oNlmF5uRR9GXdO3sfyMWtF+QvzizCl7VxkJGaJygCAorwizOi8kCPrNMDOnw/i2J9nAeglWRg+7P/k+gvY/tN+Uf60+AzMiFjAS5cYlpGVnIMp7eaJZE0A4I+x63Hj6D1RfoZmwLIsts7ZizObLonyx9x7i5/7L4OqWA2WFbdtwqskTO+0QET7wLIs5vb+FS/vvDEogwHLsNBqaCz7Yg3unYsWlXHz2D2sHL/RoJ+FMp5efYkFg5aL8ms0NH74YQ+SkrO5MmiGZyhXqTSYM+cQ3r0Tk//tuh2NdVF3+RcuzbA80eaZpzFYdCpKlD+7pAhDLuxBVgnXflqWgVbHqp2jLsawyL1IK1KKztn0/jgvK0KzDGiWAaPjZTqceBkHEi+K8meqErE7fj7UDCc6zIAGo6MJyFWnY1vcbKgZleicO+lzkFbMPf8saB2tAAMWDB5n/Y4PynOi/Lkld/Eq8wewUIMzgrRgwZGSKtUv8DRtjGhssCyDe6lfQ6mO0ZWh1ZXBgmE1iM6YjuwSsTTO87xLiErXS9MwovuILXiA00linbxiWoXvHq1BekmuqK0AoIhWYfrjDUgsyhCds+b+XWyJfqjLz0LLsjyJ6YEXz/Dbreui/BlZSnz38wHk6wh0DZ+R7NxCfDN3P/KUxaJzVk/YiKsHubYtPTZ2zj+IE2vErNlvH8Vibp9foSpScQaK4dh4nYxpHeeLZE0A4Of+y/Ds+itRGSzDgtbQWPH1etw+KW7bO6cfYvmYtaA1whyoL+PFzRjM6/ebKL9Wo8W0Dj8jMYZjW6c1ujqx3Ar1z/1+w5uH70XnnFx3Advn7QfLGs9t1w7fwcrxG0X5lTkFmNJ2HrJ1BLqG+QtyCjC90wKLBKKfBMoj7f4t+CjjKSwsDDNmzABBEDh48CDmzp2LSZMmYe7cuTh06BBIksT06dPRsqV02O3/ZcQ+jcfd04/M8qEQBIGd8w+KJvzdvxw2u33EaBm8uPWan7AA4N6ZaMQ+/WCSj4hlWRAEsH/pMeEaDINdCw6aDfFnGBaX9lxHapzwwo7ccRXZabkm74NhWGhUGhxbfYZPKy4swYFlx43yChUDDv1xCkUGE/7xP89CXaIxySfF0AzyMvJxYfsVPi39QwYid1yV5J/aOf+AiEpj39Jj3AqYiVNoLYP4F4m4c+ohn/by9ms8vfbSbP+RJIk9vxw2KtMcoShDc9sPbx/F8mlXr8UgOTkXNG1cKZblfgcOCFI5GprG2st3jPIannPw/lNkFgiG5t63j5GvVplkGWdYFoVaNXa9iebTlJpCnEi+JjmvHkiIhJoRXqa3s06AYWmTnDksGORrMvEsT5A1yVfHIrnwsgRRJoEXORtEY+ND7lqYn85oFKifIrdE+BjJLL6FfPVLM1xPLAgQeJcrvExZlsXNjF1mrs/dx2vldWSrBOmUi6mPkKnKM8kyzoIFzTI4nCjcd4lWg3UP7hrlFc4BtkY/RL5KUBo4fDYaJSqNST4whmGRryzGKQPdx8zkbJzbGiU5NnYtPMQzcwPQjVfWJCcso+U0MvUfKgB0ztVPzc9tJMHNM6XKlBobjy8/R8w9QbLp1vH7SDCjbqCv5/7fhLmNpmmjMkXnMCzOb4sSSTad23IZ+dlKs3ObqlhtZGiW4/8OPpphPCIiAocOHcLMmTPRv39/dOnSBf3798fMmTNx4MABRERIcImUAzeO3pMkhWNZFu+fxPMrOoX5RXgc9VySfI6SUbhxRHh53jhyxyK53a3j9/iJMv5FIlJj0yW/OAiCwM1jwkRZenWsNBiawZUDt/jjx5efo6RQJXEGJ2sSbTDhXzlwS1rTj2Vx9aBQxq0TpsV0DZGRkIX3Tzi5DoZhcPPYXWnSSxmJ60cN2/auZLQiwzB4eu0l8rO5VZvM5Gy8eRhrUSPshoFu4PXrryUj6miawdVrMfzx86Q0ZBcWm80PcNt3V14JBtrp+FeSRI4My+JU3Ev++EHOK2hZaQ25Am0xXuQJX/3P827wK1OmQIDAyzyh/5ILoyRJNQEWSk0sCrWcfh7NFCOn5AaktO0IyJBZJOgfphVd5Lf2TJdAI6P4OmiWky7KVichRy0tM0OAxFulcB9XM55IkgzSLIOoNEGb8F5SEgrU5vUuAc437foHQWbm8s0YSSJVluXy6HH3lIR2pQ7ZKTl480Dov+uH71gkhL1hODaO3pWcd1iGxau7b5GTzskE5WXm4+Wt1xbGBoXrh8VlWCIMvn74Lm9gv30Ux0tdma0Xy+L2SeED6erB25J1YmgGV/aXCwP/X8VHOYzrYWtri06dOqFTp06WM5dDhJLCEpAkAUb6PcQtlQNQF0tPqgAAAigpEvKVFKslBz/AfUHRGhoURVk0agCOa0hlWEZhicXlXf09lP63FEoM8pUUSmv6ARDp/qmKVCBIAqyJFRtxvbj70G8dSoGlWfF9F6lMkl2Whr7fynLfBEGI8pWUmF5REF3fQC+vuNTWickyAJQY5CvSSmuKAUCxVsivosvwHAJQMUI+LSN9DgsWakboPy1bAu67TrpPaN05DKuC5T0GFgwrlEGzlp8p7hw1KEIBLWM5PwECGlbov2JaZbFWKkZo/+Iy9AWXT+iPEpXlcwzzlBTqxoaF50r/rLMst3osBYZmRGNDVaQuUxi//lkvy7xDEKXmhCKVRRJmrVoLhmFAUVSZxh9JkOLxV4Z5p6SM89l/Df90+63ceDKLf6xtV1RUhJiYGDx+/Nhy5nLwCKpTEVoJ5XGA02by0EWGObo7iNhvTYHRMgg0kFWwxMECAJ4B7ryTpF9Vb8nVFID7ojMso1LdQMmvTJIiERRSUahTbct1AsR1r1Q3UPIrk5KRqFIv0KCMAItf15SMhF9VjhtLJpfBp5KnpBYBQQCBBoSigbUDoJWQvgE4slNnXWSRh78bbOylNcK0GhqBtQP446AgD8mVJ4IAAioITtCV3F0tGnQsgKpewjk1XTxNsovrQREEqrsIzsAV7XzM5jVEgK3AO+ZhHcA7V5sCARLeNoH8sZOiMu+vZA4koYCt3BcAp3EnJ90k87NgYCsXnLMd5FUs6udZUR6QEZwDv7PCBxQhrX/IgIa7lfCsV7H3k2xbEgQC7YR2quomzfWlRzWDfJUDPSWfEYokUMXAYTywToBFw4kgCVSozrUtQRDwD/aVHBskRYrGa2DtChbnNltHG7jqeONcfZxhKxEdBwBaLY0gg7ERWKuCWRcGfb39qvnwzu0Vgn0tCnkzDIOKBvdRuZ7lua2Swdz2KeL/l5WnBw8eYPHixRgyZAg6dOiAgQMHYsmSJcjMNPYp02q12LJlCwYOHIh27dph4MCB2LZtG7Rayx+Pepw8eRLDhg1D+/btMXjwYBw6dOhv1/mjjaeUlBTMmDEDXbt2xVdffYVvv/2W/9vTp08xfPhwPHr06GMv/z+PsL5NYO9iZ/YLjaRIdPqsDR/ZRlEUuo/taH4CIAC5tVyktRQxqq2kaC9BEug5XthedXR1QJtBzc0KbpIkAVcfFzTuXJ9P6/ZVB8lVG4Zm0GOcUEbFmhVQq7lpWQWAu+/gRlVEk1KPcZ0kjSFay6DbWEEbLbRjCNz93czeOykjEdavKZw9hJDpXhO6SL7gQRCIGC1Ez7Ud0hJWNgqzLxWSItHtqw48jYLCWoGIUW3N3jehExFu1V9gAO/WtZ7FLZlevQXpFC8ne7QJrmRSqgPg5FsCXJ3RKEgg/RwW3IB3YjYFmmUxPLgBfxzsUBGBtj5mBW9JkKjnXA0+BpQFjV27SGqEsWAQ6iKsXvvatYGCdIa5xiVAoaJ9V8h1TN8EQcLPcRikpjMCMnjb9+aP/Rx6SW7bASQqOg7mx6cVZYeajuFmtxMJELClnFDFQYhe7e7XTLJtGbDo5S/ICgU5u6CpXwVQZuYEiiBQ090DdTy9+LS+naWfEZph0SuiHn9cL7wWvIM8zRoepIxE856NRFQpPcd3ltx+ZFkWnb9oxx+3GdSC+1CQGBudR7fjiYDlCjm6jWkvMTYIWNtaiSSYunzRzoIwN4te44VoZRcvZ7Ts3dj8vEMS8KzogQbtBU3N7mM7lmFuK991+Vdg7dq1ePToEcLCwjBp0iS0a9cOly9fxhdffIGsrCxR3vnz52Pr1q1o0KABvvnmG9StWxebNm3C8uXLzVxdjGPHjmHp0qUICgrCpEmTULt2baxYsQK7dpn3aTSFjzKe0tLS8PXXX+P27dto2bIlatWqJXLerFGjBvLy8hAZGfkxl0dRURE2b96MH374AV27dkWrVq1w5swZyyfqoFQq8euvv6J79+7o2LEjJk2ahJiYGJN5r1+/jtGjR6N9+/bo168fNm/e/Lcs2I+FwlqB6Tu+AUkRRgOapDi9ts/mi+UCBk7vhSr1jJmlSYoEAQI/bBon4m5y83HBN3+N4fMYgiAJ1AmrgV7fiMOxv/p1BDz83YzyUzISlJzCzF2TRKtT1UIrY9iP/fhr8tfXhcmHD26JMAOxWwD4fuPXsHO0Mfqqo2QkbBysMWXLOFF6i16NBXFhg1vXlzdoem9eHgbgDM1ZuydBppAZlUFSJNx9XTF22Wei9O7jOqJueC0jg0vfDhNWjYaHv7C6Yedoi6lbJ4AgTPdfUJ0ADJ7ZR5Q+Yu4AVKjuZzI/QZGYvuMbEQ2Er68zxo3jXkql+5wggMaNK6Frl7qi9Nnd28LVzljrjCIJKGQUlg7oLDLYm3hWwOjqDblrGl5f9//BVeuhjW8lg3IJ/FB9GKwoBahS0wcJEvZyG3xTVazJGOLcGjUcmqL021RvrLbzGg5Pa2FVgSIUaOK1QCfjQpU6h4Sd3A913CaI0v0dR8HBKgTGUxonoRLsvhBySjAIrChX1HGfp6tT6XNIOFuFIMhRHC3c2utzOMm9jAwoAiQIgkJ3v2mgDJjJK9n7YFRQhO6KxpZEa48QtPWqL0r7pV0HOFpZGRlQFEHARi7Hrx3F9CXNGlRCN52ItuEp+n8P7tEQdQ0Y8kmSxIyd30BuJTP6SCIpEi6eThi/YpQoveuY9mjQoa7ZsTFu+eciFnAbO2tM2z4RJEmafNYr1vTH8J/Euo9DZvflVpNMjQ2SwNRtE2FjLzCsewZ4YPzK0aJ68PdOEqjfrg66fiXWnft6+Wdw9XExvm8ZCZlCjpm7JomMyprNgjFgSk/+mvz1df/sOLINmnVviE8a/yTS7j8YcTd+/Hjs2bMHX3/9Nbp164YxY8Zg8eLFyM7OxuHDQuDNy5cvcfnyZYwYMQLTpk1Dz549MXPmTAwcOBAnT57Eu3fvJMtRqVTYuHEjmjVrhvnz56N79+6YNWsWOnTogO3bt0OpVEqeb4iPMp42b94MpVKJlStXYv78+WjYUPwAyWQyhISE4NmzZ2auII28vDxs3boV8fHxqFJFWn6jNBiGwbRp0xAZGYk+ffpg7NixyMnJwaRJk5CQkCDKe/v2bcyaNQv29vaYNGkSwsLCsH37dqxYseKj6v130aRLA/xxfQGadG3AD057Zzv0n9wdK28uNOI14bSW5mLo7H5w8tDxORFAg3Z18NvluSJlcz26fNEOi87OFnEtufq44LOfB2HRmVlGMjAuXs5YfWcRek/sDFtHbrIiKRItejXGylu/oG6bWkZljJw3ELP2fIvKdQP5NJ/KXpi46gtM3zHR6Cs3oLof/nqwFB0/C+f07QDIrWToMKIN1txfaqS3RxAEpmwZj2/+/AJ+VYRto0ohFTFj1ySMWjjYqE61W9bA6tuL0LJvU96AsrG3Rs/xEVh9d7GR1IxcIcfCUzMxasFguPkKf6vVIhi/nJ6J7gYrW3q06tcMyy7PQ2iHEN4ucHR3wOAZvbH86s+wdRDLadg722HF9fkYMKUnHFx0qyYkgcad62P51fkmJ+J+fRthwfy+qFnDl0/z8HDAmDHhWDC/L8/ro4ePswMOjBuCgY3rwkbOta2MJBFROxj7xw1BSAWxjA9BEJjdsB2WNe+Kas7CalElRzcsbtoZvzTpZLQ6WtneHyvr/4Bwz1DIdASXClKOCJ9mWF1/imjVCQBIgkK/gKmI8B4NZ7mwauJrUxUDKkxHmEc/o/v2tm2Gdv5b4WvXCvppSk7ao5rzMLTz2worylmUnyJtUNdrGyo6TxBt4TlbN0GI1zZ42fcyKsPfoScae2+Am7XAB6Qg3VDVeRyaeG8EVYqzyVbmjOFBf6Chay8oSG6biQCJqg7NMCxwOSraiw0hABge1AFza49ANQfBgPGxdsWEqr3wY+3hRtt6gc4uOD54OAbUqgMrHUGpnCTRu3pNHB80DDXcxXxKBEFg6tiOmDq2IyoYPNOVKrhj9sTOGDeitVGdajYLxuq7i9G6XzN+bFjbWaHH153w1/0loo8EgNvWnn98Gr5YNBTuBn+r2awaFpyYbqRFCXAfPL9f+RkNI+rxxoaDqz0GTu2J5dfmG5FY2jnaYvm1+Rg0rRfvnkAQQMNOdbEsah7C+jQpXQR6jOuEBSdnoFZzgX/I3c8Vo38ZigUnZxjJwLj7ueGve4vR4+tO/BY6JSPRql9TrL67SHQdPb5YPBTTtk9EpTqCce9XzReT1ozB5E1ff9ISLQA3Lf2jbbv/UD3r1atn9J6oV68eHB0dER8vBEg8efIEANCuXTtR3nbt2oFlWVy6JKagKY2HDx8iLy8PvXr1EqX37t0bxcXFuHXrlukTTeCjSDJ79+6NunXrYu7cuQCALVu2YNu2bYiKiuLzrF69GqdPn8bp06f/7uWhVquhVCrh5uaGV69eYcyYMZgxYwY6dzYepKVx6dIlzJ07Fz///DPatGkDAMjNzcWQIUPQtGlTzJkzh887YsQIyGQyrF+/HjKdkOqGDRuwc+dObN++HRUrWt7P/lfJs6iKVSgpVMHexU5Sl0kPmqZRkFMIhY1CUqvNEMUFxdCotLB3sZP0F+DL0NJQ5hTA1sGmzGy6hflFoLU0HFzsyzSxaNQaFOYVwc7JVlLzSg+WZVGQWwiSJIwIJc1BXaJGkbIYDi72Fn26AM4AL8gphNxKJvralUJJkQqqor/ff1a2VpIs7IYoKlJBo2Hg6GhdtralaShLVLC3UkAhK1tsSJ6aCwBwVFiVqQw1o0WRtgT2MhvISMv3zbIsiukCkAQFa0raz0UPmimBli2GnHQwEhA2XQYDLZMHkrACRZatDC1TBIZVQ046gpDwU9KDYWmU0AWQk9aQk2Xrv0JtCWiWgYPMpmxtS9NQqlRwsLKCogzPFMuyUBZygQwOZZwT1CVqFBeUwM7JVpKpXw/92JApZEYfB+bwHxkbymJo1f/muS2vEAzDwt7ZvLvFpwL9e0nj3Qaswvmjr0OocyFPjcLs2bNF70M3Nze4u5fNR+9jUVRUhO7duyMiIgJTpkwBAOzcuRPr16/H3r174esrfFDGxcVhxIgRaNy4MX777Tdzl8T27duxceNGHDt2DC4uwseGRqNBhw4d0K9fP0yYMMHs+Yb4qGg7pVIJb29pIVqWZaHRlC16pDQUCgXc3KQdQM3hypUrcHV1RatWgu+Ps7MzwsPDceHCBajVaigUCsTFxSEuLg7fffcdbzgBnGG4Y8cOREVFYeTIkR9Vh4+BwlrBqXaXYXIBuK0pW0ebMhkDeljZWkGmkJVpcgG4FSdbR1vIFWV/TKztrMAybJknF5lcBlvHsk3cAPelbetg87c+ieRWctia2F4zB5Lktg//TtsqrOXc1ua/s/+s5FDI/0bbkiTsFQrIy1gnALCTcS+SspYhJyjYUtaSjtGGIAgCCtIGZBnzA+CMIJBlMpy4MkhQpL0FnyYxKMIaJCEvk+HE1YmCgrQVbdNZgjWl0PGrlbFtSRIOCgXkZRyvBEHA7m9Khsit5ABBlPk5JEkSto42kr6UpfEfGRu2Ciis5f/euc3eGmDLPjY+CegJ4f7J+QAWLFggSv7ss88watQoU2f8y3DgwAFoNBq0bSv4mlaowO1KPHv2TGQ86QPWMjLEpLOlkZWVBYqiRIYTAMjlcjg6Ohr5V0nho4wnFxcXJCYmSuZ5//49vLy8JPP8O/D69WtUrVrVaBDVqFEDJ06cQEJCAipXrozXrzlm7dKrRe7u7vDw8MCbN2/+I/WNfRqPfUuP4cqBW9CqtXDzdUH3rzuhz7ddTa4oqUvUOLb6LI79eVYnh0Kiec/GGDitF4Ibmtaee3bjFfYtPcqTcvpV9UavCV3QbWwHk0ZLYV4hDv5+EifXXUBueh4U1nKED26JgVN7mtWeu3PqAfb/dhxPr74Ay3KRKn2/7Yb2w1uZnGyyUnJw4NdjOLvlMgrzimDraINOn4VjwJQeRjIoAGeMX9x1DYf/OIk3D2NBEEDtsBroP7mHWb+DxDcp2L/0KC7uvg51sRpOHo7oNqYD+k3ublLXj9bSOLnuAo6sOo2k1ykgSQKNOtfHwKm9jCRm9Hjz8D32LT2K60fugtbQ8AxwR49xEej9TWeTX7QlRSocWXEax9ecRWZiNmRyCmH9mmLQtN5mI3ce33mHA5uu4uGNt2BZFhUqeaDX8Obo1K+R0bYdAOQWFGPHhQc4fO0p8gpLYK2QoWvTGhjZsSH8PZxNlnHu7RtseHgfD1NSAAAhXl74okFDdK1azWT/JRflYvPbGzj24TGKaDUc5dboW7EBPq/SHG5W9kb5GZbB1YybOJsaiYTiJBAgUNOxOrr5dEKIs/FWMABkquJxL3M/XimvgGY1sKNcUNelGxq69oHCxKoVw2rwNm8/3ubtQ6E2CQQo+Nq1QrDzSLhZ1zFRApBV8hSvcrYgpegaWDCwk/mhitMgVHHqD9JEdJ2KLsLtrGO4n30GhdpcUIQctZ3C0Ny9LzysTUeS3sqIwa64a3iQ/Q4sgCr23hgU2AJdfUNNtm1GQSE23XmAA9HPoFSpYCuXo2/dWviiaUP4OBpH3LIsi6jIFzi49zZev+T6r1Ydf/Qf0gwtWpteDU9+l4r9S48hcudVqIrVcHRzQNcx7dFvcnc4uhqXQdM0Tm+4iCMrTyHhVTJIkkBop3oYOLUn6rY23X9vo2O5sXHoDrQaGu7+bug5rhN6fdPF5IqSqliFIyvP4PhfZ5GRkAVKTqFlnyYYNLUXqtQ3rT335OoL7Ft6FPfPRoNhWPgH+6L3xC7oOqa9SeNLmVOAg8tO4NT6C8jLVEJho0D7oWEYMLWnyCXAEDeP3cOBZcfx/MYrsCxQNbQS+n3XDeGDW376htQ/jZjTnWtq5ckcGIYp88KJQqEw2YbR0dHYunUrwsPDERoqBMU0bdoU3t7e+Ouvv2BlZYXg4GC8ePECGzduBEVRUFvgSVOpVKLFktJ1UanKTj3xUdt2S5Yswfnz57F+/XpUrlzZaNvu8ePH+Oabb9C/f/8yL4GZw9/dtuvUqRPCw8Mxffp0UfqtW7cwbdo0/Pbbb2jcuDH27NmDNWvW4MCBA0ZG3pgxY0BRFNasWWN0/czMTJF1Gh8fjwULFnzUtt2jS08xq+svRjxDBEmgct1ALIuaJ1oaV5eoMb3TAjy78UoUbkzKOHfUOQd/MNJzurT7GhYPXwWCJPiINUJHpd0ooj7mHZ0qMqDys5T4NuxHJL1JEUW4UTIScis5lkb+hBpNqorK2P/rMWyYthMkRQpl6Lhkuoxpj2/XjBENkJT3aZjUYhbyMsXsvSRFwtHNAX9cny+ayFiWxaoJG3FizXkRR42+vM8XDMaQUs7ZMfffYUrbuVCXqEVtS1IkfCp5YcWNBSIdQFpLY26fX3kWcf2wICkSLMNiytbx6DBc7D9y59QD/NT7VwCsUf/VaFoNSy/8CCsb4SVRXFCMH9rOw5uH70X9R8lIECSJhSdnoEH7EFEZZw7cw8q5R3ScYNw5BMHNaS071Mb0ZYNEBlRmXiE+W7IXqTlKURQWRRKwsZJj4+QBqFZB7Dez/NYNrLp7ByRBgNHft+7fXzYIxYww8X2/U2Zg+LXNKNCqRNFkFEHA3coeu1p9AR8bIZKRYRmse78V1zNvgQDBR96RIMGAwfCKgxDhLfZhSCx6ioMfZoJm9dIsurYFCTerihhccRmsKMEAplk1rid/g/SS+7oUXVuB0xxs6rUE/vZircGEggu4nTZTVyeaLwEAPG0aI8xnhciAKqYLsPX9dGSqEkU0B6RuVWxY4M8IsKspKmNP3HWsiDkFEgRPRqpvg25+oZhVq69obCTn5WPAtr3IKiwSsb5TBAEHayvsHTEQldxc+XSWZbFmxQUc2X8XBEEIzy1JgGFYjBjdCsNHC6vwACe3Mjn8J6iKVEZjw6uiB1bcWAAXL2ehbWkaCwb+jutH7nJae6yQn2EYTN7wtZGO471z0ZjTY7FO6kg8NoIbVsbSiz+JPg5LilSY2n4eXt19azw2CALzjk4TRfkCwLmtl/Hb6L9AksK8o1+Rbt6zEebsnywyoHLS8/Bty9lIjU03mtsUNgosuzwPVRtUMiwCO+cfxLaf9pmc23pN7Ixxf3z+SRpQ/LadZ2vgH2zbQZ0LefqVv/V+e/ToESZNmlSmvDt27DByj4mPj8f48ePh5eWFVatWwdZW/KEUGxuLn376CXFxcQA4o2fs2LHYsWMH3NzcsHnzZrPlLV++HMePH8fly5eN/tajRw+Ehobip59+KlPdP8phfMSIEbCyssLEiROxfft2JCVxkgS3b9/Gxo0bMWXKFDg5OWHQoEEWrvSvh0qlgkJh/MWvT9NblnoL1Vxecxbo8ePH8eWXX/K/0suZZYVGrcHCQcuh1dBG4bAsw7GLb/9pnyh9/6/HjQwngON3YmgGi4auEMma5Gbk4dfP/+S1nPjrs5zUwr2zj3D8L7FG2IZpO40MJ4CjA1CXaLBg4O8icrrYp/HYMG0nVw/DMnR1PL0+EreO3xdda9kXa4wMJ/35+VlK/DbqL1H63dMPeRkEw3vXn79l9h6RrAnDMFgw8HeoitVGbcvQDFJi07Duh+2i9JPrLuDOqYe6thGXwbIsln2xBtmpOXx6cWEJFg5ZAYY23X+vbr/G3sVHRek7fz6It4+MWcb1Ol4LBi2HukT4ckpPzsWqeUcBFrzhBOheXixw/fwzRB59KLrW0r2XkVbKcAK4kPVilQYzNp4W3d/DlGSsussxNzOG963794aHD3DjwwfRtaY/OIwCnf+OqAyWRaaqED9HnxSl38m+j+uZnCOmIWWBnnV8R/xepBSnGlxHi+OJC0GzWpSWT2HBIEsVj2sZW0Tpb3J36wwncYgQp4vH4m76bKhpIZJGTefhbvocXY0My+DOTy++izd5e0RlXErbbmQ46e+DZrU4lLAUjAH7elxBOlbGnNLlMawT9++TSQ9wKU0cVDP7dKSR4cS1CQtliQpTT4jH64O773FkP8dKL3pudf2/fdNVvHohSMawLMsJ/BaqTI6NtA8Z+Os7cdue23wZ1w/fBUrtADE0A7DA8q/W8UoIALeCtHDwck5nz8TYeH3/PXYvEPPq7PnlMGLuvTMzNhhelFiPzORsTmeTFc87+u6/eeyekX7l2u+3IjUu3eTcpipSY8Gg5aI2jLn/Dtt0c7Cpue3oqjO4X0q/8pPDfyHaLiAgADNmzCjTr/QKVlpaGiZPngw7OzssWbLEyHACgKCgIGzbtg3btm3D6tWrcfjwYXTv3h15eXn8tp45uLm5gaZp5OTkiNI1Gg3y8/P/lrvQRxlPPj4++O2332Bvb49NmzYhMjISLMti+vTp2LFjB5ydnbF06dJ/u0OZKVhZWZlcutOnWVlxKwF6o8lcXn2+0ujRowc2bNjA/2bPnv1R9bxx5C7yMpVmCesYmsHpTRehKuYmDJqmcfyvs2bzsyz39XZxl6CVdW5LFC8SavIcAEcNdOcKcgsRufOqWU4lhmaQ/iETD84LhKgn1l6wSCRnWEbi62RJmRmGZvDs+ivEvxAiI4/9edYiSeaJtYLGVPSlZ0Zfl6IytAwu77nOS6cAXDtIcRExNIOzm4Wvlai9N1BcUGzWnYBhWJxYc44XElWrNDi5PtJsnViGhTK7ANcOCRIUZw/ek3TtIggCx3cJ0SGZeYW4FP2WFwIuDZphEZuajcfvBJmRnU8em+UVArgVj51Povnj57nJeJGXYlILD+AkR66lv0FyUS6fdj71kiSHFgkSF9Ov8sfvlXdQROeYJbFkweBZ7nmelZxlWbzN2wvzMz0LmlUjvuAUnxKnPAWG1Uie8yZ3L/8yVdFFeJxzSbJOSm023iiFD4UjCXckfbtIEDjwQZD3SMjNw/XYeIm2ZfEkORUv0wS/juOHHkiPDYrE8cOCXNGTqy+Q+Nr440gPRsvg6sHbvHQKwI0NS6srZzYKYtBXD9xGYW6R+bmNYXBy3QVo1NzWjlajxYm1582PDZZFUX6xSArl7KZLkq48BICjq4RgpbzMfFzZfxOMGd4mhmaQ/DYVj6Oe82kn156XnNsoGYljpT4+PzUQLEAw/+D3EcaTm5sbOnfuXKafvb2wxZ+Xl4fJkydDo9Hgt99+k7QfCIJAUFAQQkJC4OjoiIcPH4JhGNEWnylUrcrtmrx69UqU/urVKzAMw/+9LPhoksyaNWti9+7dmD9/PgYNGoRu3bqhf//+mDt3Lnbt2oXq1at/7KX/EVxdXU06fenT9Jal/v/m8pqzQN3d3REcHMz/yhKRZwrvouMgk0s7RBYrS5D+gWNYzc8qQE5anmR+SkbhXXScUMbjWGm/ahZIeZfGr3Ykvk6GVi3NcUXJSFEZr++/s0gk9/ahsCr07nG82byGMMz3+sF7iySZhqKh76LjLDqHazU0El4l6/6tRWJMssWvrHeP40RlWHJozctUIictFwCQmZiFovwiyfwyOYV30QZt9TLZAkkmi7jXworN+5Qsi3IuBAG8ShBevk/SUs2+rAHuhf00PY0/jslLNZuXrxeA1/nCOfFFCdKGKRjEFQr9na56B9KCs7eWVSFPzfn3aBglimlpR1ECJHJVr/njXHWMBf08oJhOg5blRJRz1KnQstL+FCQopJYI/fcqP8kiSebr/BT+OCbdmE3ZFF6mCcLcr1+ZN4QATv/w9UvBWH4XHWfR2ZvRMvjwkvNpZVkWcc8+QMq7g6GZUmMj1uLcVpBbyGvNZafkQJldIJlfJqdEq8vvHsdJyrOwLKfVqdft/PAyyaIEE0kSorkt5v5byXNoLYPX96V5hcpRNhQXF2Pq1KnIzMzE0qVLLa4gGUKlUmHTpk1wc3ND+/YCt1dJSQni4+ORm5vLpzVo0ACOjo44duyY6BrHjh2DtbU1mjVrhrLiH2nbyWQytGrVShTZ9t9G1apV8eTJEzAMI3Iaf/nyJaytrflO0VuYMTExqFlT8FPIzMxERkYGevTo8W+tp8JaITkhGeYDAIVVGbqK5SJb9JBbybmJUuKFSpBCpE1ZQnYZhuUidPT1s7FMLyAX1alsj5zhfRj+2xysDBxQ5VZyixIUhtclKVLk02AKBEEYtW1ZlrT1bSq3KhsNg2EfyK1kFnXIDKOFFGWITmJZwMrgxabnEpKCYR4FWbb+szLIJyNkUMG84UGAgIIU7psi5JLGFn9d3TmmHLtNgSIUJv8tBRJyvk6WwIKFzCCfFWX5HMP2LAsdAQBYGTi8KhSWz7EyHK9lnHcMn1dKLpP8qCIp47FRFk9a/TnyMsw7LAujsSHydTIBSk7x74CyzDvc+DPovzLUqyxz038VH7n1Jjr/P4D58+fj5cuX6NKlC+Lj40XcTjY2NggLC+OPf/rpJ7i5uSEwMBCFhYU4ffo0UlJSjLb5Xr58iUmTJokiA62srDB69GgsX74cc+bMQePGjfH48WOcP38eX375JRwdBT9YS/ioladJkybh7NmzknnOnz9fZqexj0VmZibi4+NFjOCtW7dGdnY2rl4VtgFyc3Nx+fJlNG/enN+uCwoKQkBAAE6cOMF/nQDA0aNHQRAEWrcWO8n+q9G0e6jkVw1BAAE1/OAZwC1d2jnZoWazapI6VrSWRlODyLOm3RpaVENvFFGPN54q1vIXkeCZAsuwaNJNWBpt0bOx5JI+KSPRsndj/rhum1qcrIkE5NZy1AuvzR+37N1EciWJIAm07CWU0bhLfYsvX1cfFz66jSRJNO5S36wsDcB9XTftZtC23UP5LTlTIEkC1RtX4Qn/3P1cEVi7gmRb0VoGTbsLbdukTQ1ppXmKRNNwIQqwVqA3nCzw+5AEgRa1hMilTlWqgJTqP4JAJwOi2uaelSGzEM5vJ7NCPVfhy7GhS32QElMNCxYNXOryx5Xtm1jUnXOW+8CZ17azgYd1qORKEgtaR7jJwcc2zMifyhAESHjaNAal43Byt/KDk9zTbH6uDAbVHISAjVaeNSVXfimCRBsvIVKtYQU/ntjUHOQUieaBAmFjyzbVLegfEqKIu8ad60nLEAFw8nBEtdBK/PnNujeU3L5iaLbU2GgoOTYIkkDleoG8BIyLpxOqNgiSXBGjtTSa9RDPbVKGEykj0aybEM1YpX4QrzNpDiyAxl0EKaIWvRpL1omkSIT1aWr2758C/n/Rtnv7lts5OH36NBYsWCD6rVq1SpQ3ODgYd+/excqVK7Fz5074+/tjzZo1Frfs9OjduzemTJmC9+/fY/ny5Xj27BkmTJiAYcOG/a06f5TxFB0djdRU6eX71NTUfyQWfOjQIWzbto0n2bxx4wbvJFZQwC3xrl+/HsOHDxdxO7Rp0wa1atXCokWLsHXrVhw5cgSTJk0CwzBGvBTjxo3Du3fvMHnyZJw4cQIrVqzAzp070a1bNwQGBn503cuCqg0qoV54bbNGAcsCQ2aKI3GGzOxjdluGkpGoUj8I9dsKRkfzHg3hX83H7MTHMiwGTu0lXIOiMGRGb5N5AYFp3L+qEAnX8bM2cHC1N3kfBEmAokj0NpCAsXO0Ra+Jnc0aEQRBoOe4CBGVQM8JEaDklMlzSIqEvZMtOn0ezqf5VvZG637NJA2uwdN7i7bdBk7tBZY23bakjIRvZS+06CW8GENa1URwo8pmy2AYViTPQhAEhs7qa/arn5SRqBNWQyQz07pzHXh4O5kug+C+lPt83pJPkssofNapkXFefRkEgS5NqsPTgLl+cO0Q2MrlJg0okiBgRVEYWkcwbFyt7NC3YgPJF/BnlZvBRiYYyBE+7c1rOIKEk9wRLd2Fl5CHdSUE2jWUNIaaug8RXbO6y+dmDS4CFJwUVeBlI5ThY9sCjvJKZrmgWDCo7vy5cA2CRCuPAWbrQ4BEVfuG8DCQmensWx/OCjuT0iyE7jewYnM+zVYhx6jGDYzyCnUABtULgYutEIHbo29DyM2NDZKArZ0CnbsLUWqeAR5oO6SlpME1cGovUQTugCk9uHnHxCn6CL2wfkLb1mxWjdOvlJh3hs7qK0obMquv2Q8FUkaiRtNqIgbwsL5N4B3kKTm39ddJqwAcn9zg6dJzW/igFvAyEFGOGN0Wto42ICkT/UcSkClk6DH+E9e20/M8/ZPffwD79+/H1atXTf72798vyjtkyBDs3LkTkZGROHXqFBYtWmTSV6l+/fq4evWqST6q7t27Y+fOnbh48SL27NmDAQMG/O2oyY/2ebKEkpISs3wKZcG+ffuwadMmHD16FABw9epVbNq0CZs2bZLUn6EoCkuXLkXbtm1x6NAhrFmzBk5OTvjjjz8QEBAgytu8eXMsWLAASqUSK1aswNWrVzFs2DB89913H13vv4MfD3yP4EYcNxMlo0CQOiJHAhi1cAjaDQ0T5W/SNRQTV38BUpeP23LjujCghj8WnJwhegAoGYXF536Ed5CX7pgESRLceXIKU7aMR0grcWh1t7EdMUg3yZAyUrStF9K6JqZuE1NPOLjYY2nkHH6FRV8vgiBgZaPAz8emw7+ar+iczxcMRrthYaL71pcRPrgFRi8aIsrvV8UHC45Ph7Udx3qtv399+UsuCOXrMXnT17whKZTBnTNgSk/0nBAhyl+7RXVM3zERMrmuHwzye1f0wOLzP4peKARBYP7x6QiqXYFvW33/kSSBcX98bkQb0WZgC3y5ZBivh2dYp6r1K2Hu4Smi/AorORZtHg13L0ejtpXJKExfNgjVavuLzhnRMRSDwutxdSIJEAR4nbvmtQIxc6hY78vDzg7be/eFg4JbYSEJgjek7ORybOnVB36llrKn145Aex/Op5EiOF1FPUlmv4oNMDZYvI0fYOuPb6t+DTkhB6H7T78S5SR3xMzq38OaEq+YdfObAV8bblWNBMWfBQAt3EegtrNYLsfbthlCPWZxOnMgwW0Gcs+Ug7wiwnxWiQgwCYJCmO9q2Mu5/iN0GnicGzeFhh4/wsu2saiMei4d0MpjkC4/qasRV0YF2xroXWGyKL+dzBqrG34BVx3vFcmfxcnZLK0/HEH2YpqUCWFN0a8utxol9B9X74jq1TCtvbhtvX2csXDZINjYciLVpO7ZBQA7e2ss+WMoXFzFnGbfrvsKoR05g7j02Oj7bVf0+76bKH/1xlUxa/e3kMllRmPDo4Ibllz4USTzRBAE5h6Zwss1GY4NgiQw5tcRCOsrXrFp2bsJvv79M1E+fRmV6lTEvKNTRXObXCHH0gtz4BnAGTv6cUeQBGRyCjN2TkLNptVEZfSe1AX9vu8uqpN+3mnQrg6+Wz9WlN/ZwwlLzs+BvbO9qAwQgLWdNRaenAGfoP88l2E5Pg2UmecpLU1wAB0wYAD69++P/v37G+WjaRrp6en49ddfQRAEdu7c+a+r7SeIfyrPwjAMHl18iqh9N1GkLIZ/VR9EjG4rOSgzk7JwZtMlxD1PgLWdFcL6NEWjzvXMMvhqNVrcOvEAt47fg7pEjcp1gxAxKlzE5VIaiW9ScHbTRSS/T4Ojiz3Ch7RESKuaZq1zVbEKUftu4tHFp6C1NGo2C0bHka0lJVTePorFua2XkZWSAzdvF3QY2RrVQk0TfQIceeeFHVfx/GYMSJJA/XYhCB/UXMSlZAiWZfHs+itc3HUN+dlK+AR5IWJUuFmiT4Djgjm3+RLeRsdCYa1A026haN6zkVkGdJqmcf/cY1w7eBvFhSWoWMMfEaPbwrOC+UiR1Lh0nN10CQmvk2HrYINW/ZshtEOIWXZkjVqLmxdf4N6VGGjUWlSt5YcOfULh5GK+bd8nZ+HYzedIycqHi4MNujSpgZBKPmb7r0ijwfGYl7iVkMBtX/j5o1f1GrA3QeUBcG37NDcJxxMeI0tVCC9rR/QOqIdgJ/PKAwXaQlzLuIm3BbGgCBJ1nWujsWso5KTprSqWZfGhKBqv8qOgogvhovBFHecIOCt8TeYHgGJtBmKVx5CnegsZaQ0/u3B427Ywy07OsFqkFF1DUmEUaEYFZ6uqCHToARuZh8n8AJCtSsajnAvIUafCmrJDLadWCLSrY35s0BpcSnuK25lvQLMMajtVQBe/UDjKzcubvEzLwJEnz5GqLIC7nR161amBEF/zbVtUqELk2ad4+vgDCIJAvdBAtO1YG9ZmfHJYlsXzmzG4uPMq8rML4BXgjk6j2qJiDX+T+QGO+uTclii8efgOcis5mnYNRfNejczKKjEMgwfnH+PqgVsoKihBQHU/dB7dljd4TCH9QwbObLqED6+SYGtvjbB+zdCwU12zY0Or0eLG0Xu4ffI+NCoNqtSvhIhR4XD2ML9F9+FVEs5tvoSUuHQ4uTmg3dAw1GpR3Wz/lRSpELX3Bh5degqGYVG7RXW0H97KSJ/vU4L+vcQ4twLkzh9/IU0uyNyr/1h+7H8RZTaeWrdu/beWtViWxddff/1f4Xr6T+JfpW1XjnKUoxzlKMe/AiLjSeb88RfSlhtP5lDmfbVOnTrxDLbnzp1DlSpVUMXAkVQPkiTh6OiIBg0aoEkTYyXschgjNyMPt088QGFeEfyr+aBhp3qSYfD61ar454mwtrNCk26hcDNQVDeF9A8ZuHsmGupiNSrXC0RIa/OrSAD3RXf39COkvE+DvYsdmvdsBAcXY9kNQ3x4lYRHF5+CoRnUbFYNwY2Mnw9DlBSpcOv4fWSn5MDF2xnNejS0KHL8+sE7vLj5GgRJoF7b2pJfygAXEn3z2D0oswvgHeSJxl3qSwoQsyyLJ1df4F10HORWcjTuXF/kB2EK2ak5uH3iAUoKVahQww8N2teR1PHSr1YlvU6BjYM1mnZvCBcLzqwpsem4H/kUWrUWVesHolYz07Ipeqg1Wty89w7pGUo4OdqgZZMqsLMgsvomNRN33ycCYNEg0A81fKUdpAs1akTGv0VGcRF87BzQLqAyrCW26lmWxbPcBDzPSwRFkGjiXgUBdtJccAVaJZ7kPkIRXQhPKy/UcqoLijDftizLIKnoEbJUsZCRVqho1xT2cun+K9SkI6nohm7lqQq8bRpIatzRrBavlQ+5lSfSDtUdG8NWZixpYoi4gkzcyXwHLcugjrM/6jj7S/ZfiUaLqBfvkJZfCDd7W4TXrAQ7K+lAi7dPE/D8zlsQBIG6LaqhYnXzK3QAt5J78/h95Gcq4VnRA026NhBtv5WGfiX3zcP3kCtkaBhRz+K2VU5aLm6ffIBiZQn8g30R2jHE4th4eOEJEl4lw9reGs26h0qukAPcSu69s9G6lacg1AmrIdm2GrUGd049RFpcBhzdHNCsR0OTck2GiH+RgOjLz8EyLGq1CDZiIi/H/z2U2XiaOXMm/+/o6Gh07twZ/fr1+7dU6v8KaJrGxmk7cWTlGdBamg+Xd/VxwZQt49GwY12jc57deIVFw1YiPT6Dk2BgWZAkic6j22L8ylFGhoGqWIXlX63DpV3XwYITJWUZFn5VfTBrz7cmJ4EbR+9i+Zi1yMtU8nWSW8kwYEpPjJg7wGgJPT9LiUXDV+L+2Whu0iI4h82qoZXw477v4VPJeII9tf4C1k3ZjmJlCV+Gjb01vlg8DD3GGTthpsalY8HA3xFz7x0XAcNyk3loxxBM3/GN0TI9y7LYOf8g9iw6DI1Ky5fh6OaAb9eOMfK5ADgtroWD/0BiTLKuDBYAgTaDmuO79WONDDutRou/vt2CUzryS70khmeAO6Ztn2jkTwYADy8+xa+frUZmUjZfJ0pGoeeECIxZOtzIaC5SFuP3rzfi2lEdYaau/wKq+2LWjgkIrGlsPEZeeYnl6yKhLCjh66RQyPDZoOYY2tc4OjJDWYipe0/j7vtE6P/EskD9ir74bXAXeDuJDQOWZbH52QP8dv8airVaXsrFQa7AnObt0L9abZRGfGEmZjzajTfKVJ3XDxcPGeZZHfNC+sOh1BYWwzI4lnwAkWlnQLM0L2niKHPCiMAvUdvJeGykFb/A+ZQFUGpSQIAECwYECAQ7RqCV17c8tYEeNKPCnfSleKc8A4Dhz7GX+SHM52e4WxtrtsXk38eRxNUopPP4/FSyDC3ce6Kd1xAjUsx8dTFmRh/EtfTXOn9r7j6CHb3xa4NBqGhvHN166O4zLDl5BYUqNd+2Ngo5vo1ogWEt6hvlz0jKxqIxm/Dy/nu+b1mWRd2W1TBtzWi4eIp91liWxZ5FR7BzwUFoSjT8c+jgao9v/vwCbQa2MCoj9mk8Fgxajg8vk/ixwQJo3a8ZJm/6Gjb24v6jtTTWTt6G42vOgdEyfBnufq6Ytn2iKJpWj8dXnmPx8FXITMzin9sVMhLdvuqAr3//zGjrvLiwBL9/sQZR+2+KxkaF6r6Yvfd7k1qRVw7cwoqv10OZXSDMbdZyDJnRB0Nn9zUaGznpeVg0bAUeRT4VzW3Vm1TFj/u+k9yC/BRA/H9CVfD/Iz5K264cAv7Jtt3qiZs41vBSPcA5FBNYFvWzKMLk/ZN4TGg6A1q11igyhSAJtBnYAjN3CfQQLMtido/FuH/mkVGUHkmRsLJR4K8HS0XRc/fPP8bMzgu5V5uJJ2PwjN4YtVBw6NaoNZjYdCZin34wCh2mZCScPJyw/vFvIh25s1suY9losQSLIb5b9xW6fCk4NudnK/FVvSnITs0xYggmKRIVa/hj9b3Foq/m7XP3Y8fPB4wvTnCuxAtOzhBpZaW8T8PYBlNQUqgyug+SItGgXR38cmaWaHJd+tlqRO64ahRBp3daXXnzF5Gg6cs7b/Bd2I9gGMa4/wiC1wHUg2EYTOuyGM9uvjZZJ1tHG6y5vQCeBvQS126/waxfjhrftw5jRrTCsH7CinCxWoP+q3bhQ3auETM5RRLwdnLA4W+Gwd5aWLXa8uwB5t0SS18YYkV4N/SsIlAoZKqUGHJ9JfI1xUakkSRBoIajHzY2/QoyUjAcDyTswsV0YzoUvcP5t9Wmo5qDUEa2Kg4H48eCZjVGUXcECATZt0KE31xRelTyNCQWXjORnwRJKNA1YCucFIF8+vuCp9ga+5NuWBgPjpbuvdDJZyR/rGFojLixHjH5xozsFEHCWW6LA63Hi4SUTzx8ien7zNPAzOoZjiHN6/HHhfnFGBe+AFkpuUZqAiRFwq+SJ1ZdmCGiB9m18BC2/rjX+OK6R3vekamiYIe0+Ax8Vf8HFCtLTD6HIa1qYmnkHNHY+H3MWh0LuPHYoCgSf1xfIFqZfv3gHSa1mA1aS5scGx1GtsaUzeP5NJZlMb3TfERfNlYrICkSNvbWWPvoV3gHCqund049wOwei80aBCPnDcSwH4UFAXWJGuMaTkNCTLLJuc3VxwXron+zuCL/34D+vcQ6hv3jbTsi/1r5tp0JfFS0XVxcHA4ePChi7jRETk4ODh48yAv3lcMY6R8ycPyvcyYjQfXac1vniCe4nfMPgtYYTy4A9zV0ec91xD4TdMhe3HqNu6cemqQ3YGgG6hI19i89KkrfPHMXdAsDJnHgt+PIy8znj68duoN30XEmOVdoLYOctFycXHuBT9NqtNg0Y5fpi+uwadZuXroB4PTxspKzTUorMDSD2GcfcPWAIFOSn63EnsVHTF+cW0zCphm7RBP7vqXHoCoyNpz0Zdw//xjPrguU/vEvE3Fh+xWT1AMsw4mh7px/UJS+bQ4n92Gy/1gWp9ZfQEqsEJjx8OIzPLn2ymydivKLcWTVWdE11my9Yvq+9XXYdxNFRQJh5Ynol4jNzDEp6UIzLJJz8nHkgSBZUaLV4Pf71yXLWHz3ikgnb3/8LeSpi0yybTMsi+d5ibieEcOn5apzcCndtOwFq/vvWJK4bR9k7dRp4RmXwYLF+4IryCh5w6dllrxAQuEVM/kZMKwGz7K3idIvpO7kc5jCzczjUGpy+OMraa/wIi/ZJIM7zTLIURdiX5wgx0MzDJaduWaU1xCrzt2ESiPw2p3ddQMZSTkmZZgYmkHCm1REHREkYwrzCrF74SGjvPrbImA8Ng4uO4HiAmPDSV9G9OVneHRJ0OhLepuCMxsvmh0bDMNi+zxx+PmOeQc4HUkzY+P81igkvhHY2B9HPcfDyKdm61RcWIIDvx0XXWPDtJ2SFBu7fzmMgtxC/vjy3huIf5Fodm7LTMrG2U3mPyLK8b+NjzKedu3ahd27d5tl43R0dMSePXuwZ88ek38vBxC176YkARtDM4i+9IyX9ygpUuHG0bvSjLoyEpd2Cy+2i7uuSfpO0VoGF3dd42UOkt6m4M1DY+Ha0udcPyxM+JE7r0reB8uwOL/tMn/85MoL5BroZplCfqYS0ZeFF/b5bVGSdSJJAhe2C0bDjSN3odWYZ0TWCy8nxHCyFSzLInLnVUlCUUpGinQDL++5bpFU89bxe7xQc15mPh5ceCJN7EeSiNor6Hdd2ncLlARXFUMzuLBL6O8379ORmJxjNj8AqFRa3DCQsjn+8KUkZSIL4NiDF/xxVEIslBppmZKUQiUepQuSICcTH4qEcUuDBIEzSY/44wc5d8zm5erE4l3ha+SoswEANKPGO2WUBdJLCm/yBf21WOV5sxxPXBk04pQXwLDcc5SrTkdi8WtJ8lUWLJ7nCUb8ycTHJjme9GDA4niicN+P4pKRkV9oNj8A5JeocPONwL4cue+WJGM4QRC4uP82f3zz+H2oSzRm87MsJ2USZ/ARdmHHFbOacIBu3hGNjRuSHGsMzeDumUdQ5nB8fYV5hbhz+qH02KBIXDaa2yTK0DK4sEOYE+KeJyD+RaJkW2lUGtw8do8/jtxheW47t/Wy2b9/Cvj/hSTz/0d8lPH0+PFjhIaGmg0fpSgKoaGh/4gk838deZlKSaI6PfJ1mk9F+UWSkwsAgCCQb7AqpMxWgpXQfwIAdYmGn0zzMs3zZ+lBUiRyM4Qy8tLzLEqh5GUJ183PslwGwBlQ/PkW6sUwrMggy88qMPtsisvg7kOr0UJloNhusgyaRX6WcN/5WQWSzNz6eum/ZJU50i9FgDMCDVf18rOUksLOAFCQJ+jl5esMNSkQBJCXL+TLLiyy6NaQXSjkz1WVWCwDALJLhHPyNdL1YsAiRy20T6G2QFJQV8jHPRcathiMhOGkRwktPCNqWtqA5+qlhZbh6l5EW35uCZAoooX+y1YXSBqNAJCrNmjborK1bW6hkC8/S1oTjmVZ5BqMn3ydH6PFMnRjnGVZFBo8Y6ZAaxnkZYmfW4tzGwsU5Ahjw9IcUnpsKLOVFrXqipUlvHpEWeYdkiJFc01uRhnmtjLMmf9VsP+CXzlM4qOMp+zsbHh6SkfieHh4mBTdLQcH70APi4OfkpF8FJ2Dq71FWROWYeFlsMfvVdHDogiog4sdf13PAHeTLMKGoLU0fIKEMnwqe0muwBAEIfI7MKyfFLwCBUdM7yBPyfugdAzg/LkV3S0bmgAvfSNXyOHkIa1pRFIEvCqK29ZSGXJrOZx113X1drYoJEzTjKitvAM9JL+uAcDd11Wok4WIPYBbWfA2yFfBxcmiPIu/q5Df36Fs2k/+9kI+bxsnizIlfrbCfbhauYNmpY0hAgScFdw5CtIecsI8ZxIHFg5ygSfJTu4NS28GOWkHGclx+TjK3SzKmjCg4awQ+q+CrStPHmr6HgBfG2f+2NdFOmKPz+dq0LYV3S1KiPgEChGNXoGWn1sA/HNIEATcfKUjeSkZCe+Khs+tp0WjX6aQwdmLe66cPZ0sas/RNCOaOzwDLI8NF29nPrLPUsQswK2IeRvMOz6VvCzKQnkHlW0+K8f/Hj7KeLKxsUFOjvT2QE5ODq8jVw5jtBnUAjIJUU9SRqJl36Z8CK1cIUfHkW0kDRWWZdFxZGv+OGJUW4vadl2+FKQz3H1d0bBjPckJw8bBGs0NdOQ6j24nuaTPgkXXMR344+qNq8A/2NfshE+QBHwre4kc5buO6WBxK7HzF4KDefOejWDnbJ7AjqRI1G9XRxQp021MB8n7prUMIkYJEjDth7cCpIwOGYkOw1rxYqa2DjZoM7C55IRPUSTaDhHkVjqNaC3dfySBLqOFOlXwdUHt6r6SX/3OTjZoGio4sfdrXEfkn1QaDMuif+M6/HEznwB429mbNSNIgkANVw/UcBNeKn0qNIaUVU6zDHr6C7ploS5NIJcQ7iVBoq5zA9jr6AFIgkIN5y4WtO0YBDsJUZyVHbtJ6ucRoFDFsQdIHS2CvcwZwQ4NJTX65IQVajkKquy9A0JN+nkZom9F4b5r+HqiqpebWWOWAODr7IBGQUKEZecRYZJjg6EZRAwVnqkmXRvAwdW8gzNJcTJBhhGyXcsyNka35Y/bDm0pufJLyTgpFH30qrWtFdoOCZMcGyRJcGNOh86jLc9t3QzmHe9AT9RtU8v8fRDch6ShbmeXL9pLGposI57bPlWUb9n9e/BRxlPVqlVx7do1szIpSqUS165dQ7Vq1Uz+vRycrMiYX0eY/BtJkbBzsMWoBYNF6UN/7AdnDyezk8zIuQPh7idEXvlX80X/yd3NluEZ4I4BBvpPAPDVbyNgZaMwnmR08/mElaNhbcAX1KB9CFr1a2pWdy64YRV0+qyNcBmCwKS/vgRJkkYGlF76YdKaMaLrtR/eihNFNqWfRxBo0asxGnYSQtcV1gp8s/oL3d+N66SwluPr30eK0vt+3w3eQZ5mJ9c+k7qiYk1B7NbNxwWfzzdNAEtSJJzcHDBsjpiB/7P5g2DnZGe2jC+XDBfJzFStH4guBgZb6TL8q/qg51jx5D1pTDvIZJSRAaVvh++/7gCZwQpY25qVEVYt0HT/EQQaV/JHRIgwjimSxC8tO4IgjNdhSIIARRBY0FJcp94VGqOqg7dZ/58uvvVQ10UIK7ehbDCgwlDT9w0SVpQ1evsNFKU3cB0CW5mbWT+mhm7D4Wiw8uQg90Ntl5Em8xKgYCtzRy2X4aL0jj4jISetzBppXX2/gBUlrICFugais2+IybsmCQLVHX3QJ0B4WRMEgR97t+MkVgjj/iMIAnP6tBf1beteDVG7WVWTBjNBEGjUvjaadBKMX7lCjkl/fclFnZYqg6RIyBUyjPvjc1F6n0ld4FfF2+xz22NcJ16KBeBkTUYvMtN/FAl7Z3t89rO4/0bMHQAHVwezc9uohUNEXGhBdSoaSSwZluFTyQt9vu0qSh/7+0jIreRG96Fvhol/fimK2G3cpT6adg81+aFHUiRqtQhGOwPD9JMEA4Bh/8Hvv30Dny4+ynjq3bs38vPz8e233yI6Olr0t+joaEyaNAlKpRJ9+vQxfYFyAAB6TeiMadsniraoQAChHeti5e1f4FtZLMfg5uOCVbcWomm3hqIB7e7nim/XjsGQWcbt/eXS4fj6989EiuKkjESr/k2x8uZCI024wFoVsOLmQoS0FnMU+Vf1wZyDP6DjyDaidIIgMGPXJAyZ2Qe2BnIFcms5unzRDr9enMOvvuhRL7w2fr34kxHHVJX6QVhyfg4atA8RpSus5Fh8bja6jukAhYHchK2jDQZO64XZ+74z+tJtOyQMcw9PgV8pXb06YTWw4sZCBNWpKEp3cLHHH9cXoPUA8eqQk4cjxvw6AmN/N37RDpreG9+tHwt3A6oAgiDQtFsoVt1eBA9/MYePd6AnVt3+BY0i6okWYjwremDq1glGkz0ATFwxEqPm9YejwWqBTE6h7cBmWHZhFuwcxdtVwVW88efiwahdXSxBU9HfDUvm9EWb5uJwY4oksXJ4d3wW1gC2Bhxh1nIZhjSrhzWf9Ya8FKlh24DK2BbRD9VdxVsh9Tx8sK/bYIR6icu2kSmwrsmX6O4fCrkBwaWDzBpjqrTDnJB+Ri/yMI+2GB00Du4K8bZIdcdamFb9J3hZ+4jSbWWu6BvwJ4LsW4i212wpN7TynIRGbmKDAADquY1FI4/vYU0Z9B9IVLBvjYgKG2EjcxXl97Dyw5jKS1DJvo4o3VXhjQEVfkCoq1g3kCAILKjXB19VDYeDTOAIk5MUevk3wMZmo2BDicdGaJAfto7pj1r+Ym60YB8PbPiiD8KCA0XpcoUM83dPQLfPW4vGhrWdFfqO74Aft3xlNDZaD2iO+cemo0IpEs1aLYLxx/UFInoNALBzssPya/MRPriFaOvZ0c0BXywehvErjYVX+0/ujh82j+O3xvXt0bhzfay6/YsRP5JnBXesvLUQjTrXFz0LHhXcMHnj10YfeQAw7o/PMWbpcDi5C3MYJaMQPqgFVtxYYER8WaVeEP64Ph+1W1YXpfsH+2HekakIHyTmtyJJEnMOTMbAKT1h4yD0n8Jaju5jO2LR2dmShLufBMp9nv5t+Giep9WrV+PAgQMgCAJyuRyurq7Izs6GRqMBy7IYNGgQvv766391fT85/CvkWRiGwbvoOBTlF8OnspekLpoeWSk5SIxJhrWdFao0CJJk7QU4p+g3D2OhLlEjoIa/RUZrgCOmTI1Nh4OrPSqFVLQoz6MqVuHNw1gwNINKIRUtsvYCQEJMErKSc+Dq44KA6uY15/QozCvE+ycfQJAEqtQPEq2CmQLLsoh9+gH5WUp4BXqUScgzNyMP8S8SobBWoGqDILO6dnrQNI23j+JQUlACv2o+Ij8kc8hIzELy21TYOFijSv0giw7uGrUWbx7FQqumEVjTz8joNYWklBykZSjh7GSDoAB3i/1XpNbgZXI6wLKo7utpkdGaZVm8zc3iGcaDnKR9YwDOefytMhUUQaK6oy+sKOmXD8uySCiORzFdDA8rD7gqLI+NIm02ctQfICOs4WFdld96MweG1SJbFQOaUcFRURE2MmPiytLIVacjR50Oa8oO3tamV+4MoaI1eJmXApplUNXBC44KSz5aQFxGDtLyC+Bmb4sqXpbrVKgsRuzzRIAgUKV2BVjbWR4bcc8+ID+rAJ4B7ibJbEsjLzMfcc8TILeSo2qDIIvGA8MwePsoFsXKEvhV9RatjJtDZlIWkt6kwtreGlUblGVsaPDmYSw0Kg0q1vSX1LXTI+V9GtLiOYbxoDoBFvuvpEiFt4+4SORKdSt+0rp2gPBegk0YCMpye5gDS+cBxeU8T6bwj0gyb968iSNHjuDVq1coLCyEvb09atSogd69e6NpU2MG5/9FlGvblaMc5ShHOT4l6N9LhPU/N57YknLjyRTKLM9iCs2bN0fz5s3/VXX5P4n8LCVOb7yIy3uuoyC3EAE1/NF9bEc07W6aCoJlWdw/F40Ta8/j/eN42Nhbo1X/Zuj2VQezGlCZSVk4seY8rh+5A1WRGtUaVkaPcZ1MSiQA3ErK9cN3cWr9BSS9SYGjmwPaD2uFiFHhsHMyvZqU+DoZx/48i3tnH4HWMghpVRM9J0SgWmhlk/nVJWpc2n0dZzZdRGZSNtx8XRExqi3aDW0JKxvTX8xvHr7HsT/P4smVFyApAo061UeP8Z1QIdj0ilVhfhHObbmMyB1XkJephG8Vb3T9sj3C+jY1G/n2+MpzHP/zLGLuv4PCWoEWvRqj+9cdza4G5qTn4fT6SETtu4HighIE1glA97Ed0bjU9oMeLMvi9skHOLn2POJfJMLW0Qbhg1qiy5ftRCzshkiL5whVbx6/B61Ki+pNq6DnuAjUblnDZH6thsbV809x5tB9pCXlwMnVHh161EeHnvVhY2alLjYpCwfOR+Pus3iwLIuGtQLQr0M9VDUjP1Gs1uDY4xc4HP0CmcpCeDs5oH9obXStXR0KM237KCMZ2189xP30RMhIEu38q2B4cH1UdDS9YqXUFOF0yh1Epj6EUlOECrae6O7XDC09apukMmBZFu8KHuN21lmkFMdCQVqjtlMzNHLrCEe56dXAQm0mXuUeRWzBFWiZErhZVUVN5z7wtQ012X8MS+NF/l3czTqHLFUKbCg71HNpjVDX9rChTI+N+IJs7H5/D1Gpb6BlGIS6BWBY5UYIcTX93Ko1Wpy7G4Oj154iLVsJd2c79GhRG12a1oC1Ge25d4/jcGz1GURffg6CIBDasS56Togwq/1YpCzG+a1RuLDjCnLT8+BTyRNdvuyA1v2bmR0bT6+9xLG/ziLmzlvIrGRo0bMRun/dyWwkW15mPk7pxkZRfjEq1vRH9687oUnXBmbHxt3TD3F87XnEP0uAjYM12gxsga5j2ptdTUr/kIETa87jxrF70JRoENyoMnqMjzApjQRw0cJXD97GqQ0XkPIuDU4ejugwvDU6ftbG7GpS/MtEHP/zLB6cfwyGYVG3TS30nBCBKvWCTOb/tMDCJBPz3zm/HCZRLs/yD/FPVp4SYpIwuc1PyM3I5yNm9HpLrfo3w8xdk0QTGcuy+GPsOpzecBGUjOSjTUiSgJ2TLZZG/mTkr/D8ZgxmRCyAqljNR47oz+0/uTu+XDpcNJGpVRrM6/Mr7p55xNcF4PwVPCq4YVnUPFE4PcBp4c0f8DtYsHzknb6McX98jt7fdBHlL8gtxNT2P+PNw/cgSE6PSv//yvUC8evFn4wkD479eRarv9kEihLuW++bNHP3t2jVr5kof3pCJr5vPQfp8Zk8MZ5eLyu0Y138fGyayDmUZVlsmrEL+5YeE7etzsH8l9OzUCdMbKy8fxKPH9rORUFuoVH/dfo8HN9vGCsygGmaxpIRqzmCTcO2JQk4uTvit8tzjV52Dy8+xY/dF0Or0Rr134ifBmD4T2Kn9JJiNX4cvx1P78fx96t3AfKt4IZft3wBNw/xlt+5my8xb+1ZEADPNE7pdBNnftER3VuLjezswiKM2HIAbzOyeTJ6vQZbPX8fbBzRB/altvzWPruDxQ+iQBEEz7hNEQQogsS68N4I9xcb2UlFmZj08E9kq5U8MSUJAgxYhLnXwZzaw0VyLizL4kTSBtzJPgsSJBidpysBEgrSGqMqzYW/rVioOr34Bc4kfQctU8JH3hGgwIJGTee+aOYxSTQ2aFaL3XG/4pXyHq9rx51DwEHuii8rzYerldhP8VJKDCbePgAWrMF9k6BZBtPqdMCoquLntqBYhfHLDuF5XCoInbyi/v+V/dyx7of+cHYQb/md3hCJ5WPXicYGKSMBFpi+4xsjX57MpCxMbvMTUt6n8zJM+melXtvaWHBiutEHzNY5e7FrwSGjsSFXyLDg5AyjD7G45wn4Ifwn5GcXGI2NdkPDMHXbBNHYYBgGv436Cxe2XzEaGw4u9vjt0k9GfoqPrzzHrK6LoFFpjMbGkJl98HmpgBt1iRqzuy/Go4tPRWODAEc5sCxqnpGf4pX9N7Fo2AqwgHhuoxl88+eX6D62Iz5FCCtPLUGQ/2DlickDW3K9fOXJBD7KYbwc/xwMw+DHHkuQl6kUhRrrJ4FrB2+J5AUA4NT6SJzewLEkG4bpMgyLwvxizOq2SCRrUlxYgtndF6GklOyI/twDy04gap/AaA1wMgn3zkWL6gJwL6fM5Gz83H+ZiKU3/UMGFgz8HTRNiygL9GX89e0WPL8pSG8AwMpxG/DucRx3Xd296/8f+/QD/vhqnSj/yztvsHriJoAV3zetZUDTDH4ZskIkawIA8/svQ0Zilqiuepmah5FPsK2Utte1Q7exb+kxUd31baAuVuPHHot5tnCA8yGb1fUXFOYVmey/c1su48Sa86IyDi8/hct7r4vy6e89P0uJH7sv5kn9AE5m5qdeS0QvB8P6bZ+3H3dOPRCVsfmP83j+MF50v3rHz9SkHCyZJpbFiEvOxry1Z8EwrEiihWY4iaBfNp7H6/h00TkzjpxHbGYOf2kAPN3Bk6RULDoTJcp/MyUeix9waYZSJTTLQsPQGBt1BOnFAtkjy7KY9WQzctUFIkZvPeHk9cyn2B0vlsV4mHMJd7LP6vIZtC0YqJkSbI9dAA0jMKNrGRXOJU0VGU5cfq79X+QewlulWCImKu0gYpT3+esK57Ao0ORgZ/wS0fOWVqzEpDsHQbNMqfvmzl3y9ALuZsSJyvh19yW8/JCmaweI/h+XkoWft4rr9Obheywfu85obDBaBgzNYPHwlSJZEwBYOPgPpMVncHXVXVv/rDyOeo5NM3aL8t88dg+7FnCSLkZjQ6XBnJ5LRLImNE1jdvdFRuSX+mf44u5rOLryjKiMY6vP8ioBpcdGQW4hZndfDForjI3CvEL82GMJ1CVqk2Nj9y+Hcf2ImKl+86w9iL78THS/eoHx9A8ZWDhouSh/8rtULBq2ArSWMZ7bWGDl+A2Iuf8OnzLKGcb/fSiT8dS6dWuEh4cjISGBP27Tpo3FX3i46TDrcgAPI58i6U2KWR4RlgUOrzzNTxgsy+Lg7yfM0uUwNIPslBzcOHKXT7u8+7poVaQ0SJLgrqmDukTNCRWbyc9oGbx58B6v7gryHifXXeAmIjODjJKROLLyFH+cmZyNKwdumb1vhmZw7dAdZCQKBKtHV502zwGjm/xOrRP082Luv8Oru2/N8k+xDIsTa8+jxIBV/ODyk2b5kTjjtAgXd17l024dv4/MpGzzPDAEcGj5Sf5lStM0Dv1x0mw7MTSDlPdpuH9OYOU/vzUKqmK1WUkJkiJxcPlJ/riwoARnD983qWWoL+PJ/VjEvRUMzUOR0ZLUjyRB4OCFaP74Q3YurryJNanXBnBG1LHHL5FjwEq+6cU9UGYcclkAGprBvtdP+LTo3HeIL0oDbSZOmgVwKPEqNAwnncKyLK5nHIe5wcGCQSGdL5JOea+8CBWTJ8H1ROBptmBgaxkNbmWdNivPwoBBWkk84ote8mkH4h5Cy5jnGKcIEtveCi/47PwinL3zymz/0QyLa4/fIylDYEc/tvqMpIQPAJxcIxhc75/E49n1V2Y5kliGxemNF0UfCgeXnzBLU8AyLEoKVTi/LYpPu3v6EdLiMsyPDZa7pl4WimEY0XNcGgzNIP1DJu6cesinXdh+FSUFJebnNorEIYNrFhcU49T6C2bz01oGz2/G4O2jWD7txJrzkjteFEXh2Ooz5jN8CiiPtvu3oUzGU926dRESEgIrKyv+uCy/kJAQC1f+v4snV55bZJzOSc1FSiz31Z+fpUTSmxTJh5mSU3hyRdAhe3L1hWSkCsOweH3/Hb9aFfssAUUG0h2mQFKkqAxTquaGoLUMHl0URENf3nptkeGYZVk8vyGI8D669EySEI+hGTy8+JQ/fnr1hUV5iOKCErx/wq3Q0DTN1UuCbJAgCDy5Km5bSi7RfywX0ZOdmgsASP+QiSwLunNG/XflhaQWF0MzeHpNeFm/fZkMtcq8ph93H8DT+3H88f3nH0yKAutBMyzuGeic3Y9Pkrw+AGgZBk+SUvnj26kJZo0tgFtRupUq6LU9yX0nycwNAPmaIiQWZQIAVEwR0lUJkBocJCjEFgp6ianFjyW17QAW2ep30DCcNEmmKgnFtLQUCgkSsQVCGbcz4iTlWWiWwR2Dladn71Mk+4KrFRD9VuiDhxef/q2x8eTKC8uRgUUqvIvm6sWNxRiLY1Y0Nq5YGBsAMhKykKn7QMpOyUF6fIZkfkpO4XGU0LZPrr2QVENgaM4Y0hto7x7Ho6RQWoKJIMVj/NEl08LDetBaGg8jn5j9ezn+t1Emh/GVK1dKHpfj78PSBCbk+3v5RayQZTzF1Kn/ynNEecp833+vMob5CYIo0wfT3ymD4E742+f+rf5jS7cVeJ8iyXr9jTqxpcsoy0Ni+Eh9zGNYpmek1I3/rTLK2o9/vwwh398vo0xnfMwzJfq35XOIfzAnlBXi8Vfmk/5mGabLK9u5f3/eKcs5f7ce/2kQLAvin7g1l7tEm0W5z9N/CXXb1BLt4ZuCm68Lr53k4GrPyZpIjFVaQ6Num1r8cUirWtJK5SSB6o2r8FwtgbUqwM5Jmr+EoRnUCxfKqN+2jqR0AyUjUb+9QCpYq7lppnBDECSBWi0E58QG7etISzdQJBq0E8oIaV3ToqCnraMNKoUEcHWkKNRsHiy5WsWwLOq2Nmjb1jVBa8z3H0EQ8K3izUdAega4i8g0TYHWivuPK898nUiKFJGZVqnhC4UFjTAACGkkBBU0rh0ASko3kCTQpLbgqNswwM/i+1dOkajjJzhON/UOMLttB3CO4M29hTLqOle2KGviLLeDvw0X5WVN2cLLOkDSkGBAo5Kd0LY+tvV4/ybTIOBqVRVyknPOdrfyhS0lza3FgEEle6GMph5BZlnVAW7brpmH0Be1K3mDssBpRBBA/WpCUEH9sowNA9LZum1qSa5mAhzBZpX6gbryCNQJq2FxzIrHRi3JsQFwxLDuflwEpJuvKzfPWZjbQkRzW03J+yApErVbVudX3ivVrQhre2uz+QFuC9JwPDVoZ3luK03o+8mBhY5l/CN/5baTWZQbT/8l1GtbGxWq+5rXqiM4SRA9+SVBEOg/uYfZDwGSIuHu54oWvRrxaW2HtISDq73ZrTuGYdFvcg/+WGGtQK8Jnc1+TZEyEsGNKiO4kRC11GVMe26CMTPx0TSD3t8IzNmu3i4IH9TC7KREUiRa928mItPrPbGLeaFRgjMCuxlEvVRtUAk1m1Uz+1IhSAI9vu4kiijqP7m72W07fTSjoRRDs+4N4Rngbt4XhGXR7/vufFuSJIl+33UzfQ/g7tuvqg9CO9bl0zp+1gbWdlZmdQAZmkHf7wT5HVs7K3Tp18hsfooiUa9JJQRUEqIl+7avZ7ZO3H0AfTsIeSq4OqNNcCWzxhBJEOhdryZcbIWIsNE1G5ndtiMAKCgKA6savOCdK6GSnY/ZrTsCQN8KrUTRdmEePc36IxEgYS9zRi0nIbItyD4c1pSzhB4eixAXQX5HRsrRzL0rzD3oJEj4WAchwFZgr+4fWB9ykjJrE9Asg5FVBJ1IFwdbdGlWw6wRT5EE2tSrAh83gdKi18TOYGgzkwLBGVvdvxbGRlDtAIS0rik5NrqO6QAbe6H/+n3f3exHGEkSsHGwRocRgu5co871LIrq9v++Oz8vEQSBft93N/uiJikSXoEeaNK1AZ/Wfngr2DnaSo6Nft8LY8PGzho9xnY0PzZknKafocxMt7GcDJF5P1MWvSZ2NnuP5fjfRpmMp8WLF3/0rxymQZIkfj42Hc4eTiJjRT/hhA9qib7fi1+2nUe35SdCw8mP0L3cF56aKWLDtra1wsJTM2FtbyWayPTnDprWC636iclMh/7YF026NRDVhSAAEJyEwpyDP4jye1Zwx5wDkzk9tdJlEMDEVV+gZlOxxuHEP7/gpVn0Lwr9pFa5biAmrRkjyh/cqAom/TUGIMT3TVIkKIrC7H3fG3HN/Lhfl0YIy/36+jWKqIcR8waI8rfs3QRDZ/UVtQ9XPxJWtlZYeHKm6IVCySgsODkDDi52oglZf26XL9uh21elNN4mdeHFTUv3n5OHI+YfnyYydB1c7DH/+HQorBUm+++z+YPQuHN9URmjvu2IurqVJb5tddXzqeCKaYvF9x3g44K547qAJAnRChSl01eb9WVHI66nX3p1RGVPN9G19Vps9Sv4YHpEG1H+Zt4BmN2QCx4xNIgogoCCorAuvDfcbQSOJIIgMD/kc7gqHETvLT23U2uPuhgcIA5GqefcBs3cOCPdULyXAAErygYjg2ZDRgrUFDLSCp38foWctBUZUHo/qDoug1DZQdx/rT37opZjE10+w6mToyoYGjhNNJY9bRywqml/yElKZGzq22BmSCc0dBeH308ZHI5aQd66+xX3X2U/d8weKa5TlXpB+H7DWBAEIX5uZSQoisTM3d8ayTzN3P0tvIO8YKhvp3++GrSrg1ELxSH+TbuFYuQ8Touu9PhT2Cgw//h0Ef8bRVGYf2I6HN0cRGND/6HY8bM26DFeEGkGOANPLy5MlhobDq72WHhyhkhFwc7RVkepYHpsDJ/TH817CB+SADBy/iCEdqgrul/93OYV6ImZe74V5fep5IVZe78DRRnPbQRB4Nt1XxlJTH1q0G/b/ZNfOUyjTDxPrVu3Nn0yQZhcOtWnEwSBqKiof1zJTxn/lGG8ILcQ57ZcxsXd11CYW4SAmn7o9pU0yeKjS89wYs05jiTTwRqt+zeXJFnMTs3BqXWRuHbkNtTFalQNrSRJssgwDG4dv4+T6ziSTCd3B7Qb1godR7aBrYNpWYmU92k4/tc53D3zEDTNoG6rmugxPkL0JWcIjVqDqH03cXbzJWQkZMHd3xURn7dFm0EtRPxLhoh9Go9jq8/isc4hvFGneug+rhP8qviYzF9cUIwL26/iwo4ryMvIh18Vb3QZ0wHNezY0K2fz/GYMjv15Fq/vv4XCWoGWvZugy5j2ZiVX9CSnV/bfRFF+MYJCOJLMBu1DzPafnuQ0/nki7JxsED44DBGjwo24rfTISMzCybXncfPYPWjUGlRvUhU9x3dGjSZVTeantTRuXHqJMwfvITUxB85udujQswHadq0LaxvTkisfUnJw8EI07jyNBwsWDWsGoH/HeggyI6dRotHi1NNXOPToOTKUhfB1dkT/0NroVLOqkRaeHs+yUrH91UPcS0+EjCDRrkIVDAuuD3970zw0BdpinE25x5FkaosQYOuJHn7N0cStulmSzNjC57iTdQYpxXFQkFao5dQcjdzaw17mbLKMIm02YvJOIFYZBS2rJ8nsDR/b+ibzMyyDmPz7uJt9HpmqZNhS9qjr0hoNXMJhTZne8k4szMWe2PuISnkDLUujoVsAhlZuhJrOpp9bjZZG5P3XAkmmkx16tKyNTk2qw8qMVFDc8wSOJDOKI8ls2LEueoyPgH9VM2OjsAQXd17D+W1RyMvI15FktkeLXo3NBrK8uP0ax/88i1d330BuJUeLno3RbWwHs5Ir+dlKnN10CVH7bqAwrxiBtSug29iOaNixrtmx8eDCE5xcex6xTz/A1tEGbQa2QOfRbc3KEWUmZ3Nj4+g9qFVqBDeqgp7jI1Czmem5mKZp3Dx6D6fWX0DyuzQ4eziiw4jWaD+8lejjyBCJb1Jw4q9zuH8+muPCalMLPcZHIKh2gMn8nwL07yUZ2RwE8Q94ntg8aJmb5TxPJlAm4yk1NVV0zDAMVq5ciRcvXqBfv34ICQnhte0eP36MQ4cOoVatWpg4cSJ8fX3NXPV/A+XyLOUoRznKUY5PCbzxRDT758YTe6v8/WYCZYq28/YWL/vu3LkTL1++xObNm+HuLshWBAQEoF69eujSpQtGjx6NqKgoDBky5F9b4/9B0DSNNw/eozCvCH5VfYwYvE0hIzELCa+SYG1nheBGVSzSHmjUGsTcewd1sRoVa1WAm4+LxTKS3qbwwsBlEa8tLizB6/vvwNAMKtcLhKOrtIMty7KIe56A7JQcuHo7I7C2ZYFOZU4B3kXHgSAJVAutZPZr0bCMNw/fQ5ldAK9AT7Nf4obITs1B3PNEKKxkqNaoitmVMD1oLY2Ye29RUqiCf7BvmYSd0+IzkPQmBTYONqjWsJJFYWd1iRox995Bo9YiqE5AmYSdE14nI/1DFpzcHVC5rmVh56JCFd68TAbLAlWr+8DOwYKDLcvibUImsvMK4enqYHaVyhDZRcWIScuAjCRRx9cb1hZElxmWxbPsFORrShBg74IAe8vPbbY6B8nFKVCQClSyC4SMtCDszGqRXvwKWlYFF0VF2Mst91+2KhXZ6lRYU3bwtalsciXMEMVaDZ5mp0DLMKjh4gkXK8vCsnHxmcjMVMLFxQ6Vgjws9l9BbiHePooFQRCoGlrJ7CqxHizL4l10HPIy8+FV0QP+1Sx/6Oak5SL2WQLkChmCG1WGwlpaPJqmaby+/x7FymL4VfUxK+ViiPQPGUh8nQJre2sEN6pseWyoNHh97y3UKi2CalcwK1NliMTXybwwcJX6QRbbtrigGK8fvAfLsKhSP6hMoufl+N/GR2nbnTp1CuHh4SLDyRAeHh4IDw/HiRMnyo0nCzi39TK2ztnHc54AQP12dTBx9WiTmm2pcelYNXET7p5+yDtYung5YejsfugxrpPRJMCyLA78dhx7lxyFMpvjqSFIAi16NcaEVaNNGlHvHsfhz282iziEvIM88cWioWg9wFjLUKPWYNucfTj21zmUFJQAAGQKGdoPa4Wxv480qRn1OOo51ny3Be8ex/NpQXUCMPb3z0SRc3oUKYuxdvI2XNh+BVo1x2VkbWeFHl93wmcLBplUd7968BY2ztiFlHcCKWStFsGYsHK0kYwNwBlNf36zGdcO3+Gj9Rxc7DBgSk8MmNrTyHhkWRYn157HjvkHkaPjcwIBNIqoj4mrR8MnyFilPvFNClaN34CHkQL3jrufK0bOG4iIUW2N8tM0jT2/HMHB30+gMI/jHCJlJFr3a4bxK0eZ3Kp9de8d/vp+G2LuCezHflW98eWiIWjWLdQov1qlwebVkTh16D7PEyVXyBDRsz6+mNTR5FbfrcexWLEzCnHJ2XxacKAnvh/RFnVNPLd5xSX45VwUTj6LgVbHvWOnUGBEk/qY0LopZCYM86NxT7HsaRSSi/L5tKaeFTG3QSdUdTJ+CWepsrE9bhce5T7hnccdZA7o6dcVHb3amRwbj3MO4n7WbpTQeQA4H6lA++Zo7fUN7OXGZaSVxONE0kYRZ5Sz3AMdvYeirksro/xahsEfT69iW8x9FGo5hnMZQaJnYC38GNoBjgpjA/XJ0wT8+Vck3hiQmQZWdMfXY9uhUUPj57a4sATrp+zAuS2XoNH1n5WtFbqNaY9Ri4aaNP5vHL2LDdN2IOmNsKtQo1k1jF8xCsENjfUoc9Lz8Ne3m3H1wG3eedze2Q79JnfH4Bm9TX5Ynd4Qie3z9gv8ZgTQsENdTFg92uRWe/K7VKyasAn3z0fzc5urjwtG/NQfXcd0MMrPMAz2LTmG/b8dQ0EOx3BOUiTC+jTB+FWjTX5gvH7wDn9+sxkvbr3m03yreOOLxcMQ1qeJUX61SoMts/bgxNrzUOlIdeVWMnQc2QZf/TbC4sfbfx3sP2OnKHd5Mo+P0rZr3749+vTpg3HjxpnN8+eff+LIkSOIjIz8RxX81PFPtu0O/3EKa77fapROUiRsHKyx+s5i0UpJZlIWxjWchrxMpcnol2E/9uMdO/VY891WHF5xyiivPjrvz3uLRaKb75/E45vms4wkQfT4fsNYdB7djj9mGAY/91uGm8fuGfm/kRSJynUDsfzaz6LItoeRTzCzy0IwDCuiFCBIAgRBYMHJGWjUqR6fri5R4/vWP+HNw/dGdSJIAk26NMC8o1NFE/iF7Vew9LPVRkRJej2uP24sEAl75mcpMb7xdKR/yDR53z3HR2DCqtGitF0LDmHrnL1GeUmKhIOrPf66txieBs7WKe/TML7RdBTmF5ksY8zS4ej/Qw9R2rIv/sLZLZeNIpFIioRvZS+svrNI5Kz76t47/ND+Z9AaWhQ9SBDcJWZsn4A2/YWoM1pLY9Y3OxF9L9aI3oEkCdQMqYDFa0dCbrBCdPXBW0xbfgyAeHIlCQIkSWD1zP6oV10Ipy9UqzFw8168z8g2irojAHSpFYxlfcRRnjvf3MdPD8VSJADnZG5DyXG4w+eo7Ch8vOWqczHn2QLkafJF8ix6dPftggEV+ojSbqavx8Ns4/4jQMFW5oKBgWthKxN83dJLErDm7XRoGJVJZvKefl+hsZvgCM2yLCbeOIozH14aBZJRBIGqTh442HEEbGWCcfr48Qf8MG0vNzZYcf8BBBb83BfNmgrRrhq1Bj+0nYdXd96YHBuhHepiwcnpotWbS7uvYdGwlcZjgyQgU8jw+9X5IgNKmVOACU1mIDU23eRz2+XL9vhu3VeitL1LjmLTjF1GeUmKhJ2TLf68t1j0cZEWn4FxDaehILfQZBmfLxiMITPF/bdi3AacXHveKC8pI+EV4IHVdxeJVr/fPHyPb8N+hFatFZeha4fpO75Bu6FhfDJN05jTcwnunY02HhsUF3n82+V5Flem/xvgt+3QDCRM+8KWBQzyoUX5tp0pfBRVgYeHB65duwaVyjRja0lJCa5duwYPD8tLtP9XkZ+txIbpO03+jaEZFCtLsHX2HlH6zvmHkJdl2nACuJd5ekImfxz/MtGk4aQvIzMpGwd+OyFKXz9lu1nDCeCMseLCEv74wYUnuHH0rsnAAYZm8PbRe5zbEsWnsSyLleM3GhlOAMezwjIsVo7bwDMDA5whFHP/rck6sQyL2ycf4N7ZaD5NVazC6m826TIY10mj1mLd5O2i9APLTpg1nABOmDjWgGk7Mzkb2+buM5mXoRkoswuwc/5BUfqWH/egSGnacAKAzbN2Iy9TWGWJufcWZzcbG076MpLfpuLoqrOi9DWTtxsZToDOyGGBP7/bBo1aYCG/GfUKj+68N8mLxTAsnkV/wJXzwioLzTBYuiXSpFg7w7JgGBa/br0oeh72PXiKtxlZJukKWACnnsfg/geBNVupLsEv0aY/umiWRTGtwa9PLovSjyefNms4AcCJ5NNILxFYrHPVSSYNJ65ONIq02XiQJR5/Z1O2mzWcAOB08haoaIGh/3Z6PE6bMJz09xGTm459b6OFclkWf6w6Z2Q4cX/javbHynMi2o6Lu67jxU3TDOAswwUn3D4h6B+qVRpOJ5K7nAgMw0KrobG21AfdkRWnkfo+zexze3pDpEjWJCctF1t/3GMyL0MzKMwvwva5Yo3F7XP3ozDPtOHE/X0fslMFhv630bEmDSeAk5FKi8/A4T/Ec9+a77YaG04A3w6rJ26CukTQP7xz6iHunn5kemzQDF7efoNLu66ZrEM5/vfxUcZTt27dkJycjPHjx+PatWvIy+OWvPPy8nDt2jWMHz8eqamp6N69u4UrmYZarcaaNWvQu3dvtG/fHl999RXu3btn8bwBAwagVatWJn+DB4vDb83l27nTtEHzr0bU3puSRHIMzeDa4Tu84KZGrcGF7VfM6rUB3JfmhW1X+OPzWy5LEugxNIPTGyL5iTozKQsPLjyRJNYsLigR6eed3XzRPFeVDifXC5Pcy9uvkfQmxSyJJcuySI1Nx/MbgpjwqQ2RkgSIJEXizMaL/PHNY/clZWYYmkH05WdIM5CEOL0hUvK+KRmJc5sFMdrIHVcl/SQYmkHkzqtQFXMfGIX5Rbh64JaklAZNM7hoMBmf3XxJ0peNYVhR2ya+SeE0/SQIQvMzlbzwMwCcOfJAkhyUIAmcPnyfP77/7AMycwrNcucxLIt3CZl4Y9C2+x48kdYIIwkceCRI+JxKeAk1Y35s0CyLyKTXyCop1B3TuJpxw6zhBHD0BdcyBRHsV3lnJTieOD28F3mnwbBcPQo0uYhRPpDQwgM0rBpP84QyDrx7LEkOCgC73z7i//3mTRri47NMfogAnAGVkaHE48eCEX96Q6RZ7iKAGxunNwqG6J1TD6HMKTSbn6EZPLv+CsnvhO28UxsuSD5TlIzCmU3C+Lu465pkfkbLIGrvDRQXcGO0pEiFS3uuS44NlmFxcacwNs6VYW47tV6475T3aXh67aXkGC/ILcQtA0PzzKaLklxVBEng5PoLZv/+KYBg/vmvHKbxUT5PgwcPRkJCAs6cOYMff/wRgJi2gGVZdO7c2chgKSsWLVqEqKgo9O/fH/7+/jhz5gymTp2KFStWSOrlTZw4EcXF4pdmamoqNm7ciEaNGhnlb9iwISIiIkRpVauaDv/+VyMtPgOUjITWggGVlZIDe2c7KLMLRF9FpkCQBNI/CC+t9IRMi0zbBbmFUBWrYW1rhfSELMm8ADdRGhodqe/TJQ06luV03fg6GfxbCob50uIyLGq8pbwX/EPSP2SCpEiLelwZCZnwqugBjVqD/CylZF6GZkWreukfMkGSBCTe8dCotMjLVMKzghVy0vIkXw4AR2JZuq0ssdAb6uWlf7Dcf9wzIpSRmpwr+aJjGRZpyblC/qx8s3kNkZqVj2q6wIfUfGlNOJphkZQrXDe5KA8UQUIrwTLOAkgvLoCbtR2KtMVQMdK6ZQCQpRLaR6lJt5hfwxRDwxTDirJHnsZy25L/j73rDosae7snmaH3Dipi7yLYGzYEsYu9917Wvq5rXXt3dXV17b13EbF3sYsFELEh0kF6m5kk3x9hMhNmJoOKq9/+cp6HR5O5yW25N2/ufd9zIEG6TDU2PmalCWr6MQDi1Py5EhLT9ebBplO7JipRcIzTFI34d6q6JkYlFWlsJEQloUR5ZzAMg89xaYJpKQWlMTYkEhIKgcGhkFNIS8yAibkJ0hLTOT9GXSAlJG/eSYpO1jue0hLTQVEUJBIJr3xCefDGho5tSiUYmkHCB2FNvh8O5ZLz19+guEryn8NXGU8kSeK3336Dn58fgoKC8PbtW2RlZcHc3Bzly5dHmzZt4OmpnSdFH8LCwnDlyhWMGTOGM77atGmDwYMHY9OmTdi0aZPOa728vDTO7d69GwDg46PpcOjq6gpfX1+N8/8GrB0s9U5gADh+E1NLU/2THsPAykG1v82S1JEQesMbmhjC0NiAK5M+0BTNS2ftZMUaEQITuLpTs6UOLiqNa9TysHKwFDRuSJKAjZPKb8vK3oK37acvD6mBFMZmRoLCoaSE4NXDyt5Cr8wFSRJcVI6lrbleoTqaZnhta+VgCYmUFHxJWNio/J2s7LXzRKmDoRlePaxtzRAb/VmwLta2qjys9URwKWGjFiRgZWKMvEzdBpSEIGBvpkpvY2QqaHSo0rFlMZEYQ0JIQDHChqaFgcr/xVhiBX2utCQh5eRZzKT6n1sGNMykqufQ3tgMJEGAFqiLetSdlR5pJCWsrdWucbBkxad1kYyTBGycrXnpizLvKJ9DgmAJeJXBCtogkZKw5o0NS8H5QHlfC1v2eVUSzQoagXThuU3/2DC1NOF8vXRx4PHyKDy3OVqBID8Jlsva8ev9iUT8/8Y3ybN4eHjgt99+w9atW3Hw4EFs3boVv/3221cbTgBw48YNSCQSdOqkcpw1MjJC+/btERoaioSEBIGrNXH58mW4uLigZk3NCC4AyM/P1+m79T3RoncTQZue1aSqyUWMGJsawatbA8FlZEpB8xwevfs3E1y5kEhJ+PRvxjlalyjvjEp1ywtuA0gMJPDqpmIl9xnQXHCiJEgCbQar2KBrNa/Gm8y1wcrBkqef12ZwS8Ey0TQD30EtuOMm/vVhYKj7u4AgCZT3KMNFMxIEAZ8BzQW3HykFDe/+qmiqVn2bCk7cpIRE4y71uXBxSzsL1PX1EOw/hmbQso9KAsa7n5fePHwHqdq2nLsbSlVyEdQ/NDYzQkM1mQufDh6ChhNBAL4dPbjjhu5lYW5qpDM9ADjbW6J6eVWgQ1eP6hxbtjZQDINO7irC1vauVQXrQBIE6jmUhrNpgfFLStHAth6PWbwwaNBobKd6bitbtRbUtiMgQSULb5AE+/K1NnRAadPKgtvHBAjUsFY54/uXrSloOJEEge7lVCvp1auVhIO9ML2HhYUx6tQuwx23GdRSsEwMzcBnoIrkuFGnujDSQZQKsGPBrboryqgRQPoOavHFY0Po44WUkGjQvjb3YWFmZYaGHeoIjg2aKjy36RkbUhK+A1twx27VSqFMDVfBrXZDYwM07lyXO/Yd2ELQcCo8t/2UYIrhT4RW/HTadpGRkShVqhTMzPg8GlWrspPrmzdvinyv169fIyoqCq1bt9b6e1BQEHx9feHj44MBAwbg0qV/b//aoZQdq4ukZSwTJBu1NGhBb975frO7w8BQqjUsmCAItB7QDG7VXLlzVRtUROPO2rXOSAkrO9Lz186888OW9iu4n/Zy957Rhcf227RrA1SqU07rxCeRkrArYYsOo33UzkkwYnl/7TcvwPBl/XkyM+1GeMOhlJ1WHwc2os8NTdUMOgsbc/Sb1V3rvYmC1Z/hy/hl6PlrZ5iYG2utB0ESqN++Nqo3VkWbuFYuiTZDWmqdjEmSgMRAgv5z+GUYvLA3SAmp1ceIIIBOY9vweHA8vWvCo1UNrWUiJSTMrc3QbXJ7tXsQGLG0r+B81392N5ioCaS2auuO0uUcQEq0PyPOJW3h01H1MWRkKMXonk010qpjQt9mvDoOqO8BWzMTrf4/JEHAs5QLWlRURT46mlhgeOWGGmkBdrgQAKbVbME737lkexiQBlqFeAkQaGhXH25mqrHhaFwJFSyaQ9sAJEBCShiijj2fZsXXuX/B3bQPDi+HLjwmc++SFeFhV0JrvSUEAXsjM/SvqDJkJRISo0YKv4yHD20OQ7UPA79hreBc1lHn2ChTwxUtezfhzplZmqL/3B7ab04ADBiMWNaP91x3n9oRZham2p9DkkQdH3eeoLVLOSd0GOWjdQ4hSFZGZuB8vkzQwHk9WdkTrWODQLsR3jyZGfdm1VC3jYfWsURKSJhamKDHtI68e4xcMYCrpzb0n9ODF7navGcjlK1ZWufc5ljaHm2HadKL/EwQ5Vm+H77aeFIoFDhy5AhGjhwJPz8/tGypGvSRkZFYs2YNoqOjv/i+KSkpsLPTJNtTnktOLprPDADOGNK2ZVejRg0MHz4cixcvxtSpU0GSJBYuXIhTp04J3jM5ORkRERHcX1RUlGB6IYxaNRC9f+0CacFkqJyw7EvaYnHgLA1NuLI1SmPFlXlwLuvASy+RStBpXBtM3TaGl54gCMw6OIn9cuS0nNhrSlVywZobCzR0r2p718SCUzNgXUA0p0xvaGyAQX/00pj0pAZSLLs4Bw3aqV4CykmzUt0K+PPWQg2yTJ8BzTF12xiYFWxTKPMwszLFpM0j4TeE/wKxsDHH2psLUKV+gT+a2uRXt00trLg8TyNcuO+srhiyqA/3la3Mw9rRCvNPTEddNQFeAHAu44i1NxbAtUpJXnqCJNC6fzPMPTJFw1CatHkkukxoyzl1K393KuOIFZfmakjTVK5bHsuCZsO+lB0vvdRQiu5TO2HMn4N56UmSxIJTv6J5z0aq8hQUoUwNV6y5uUBDGqNh+9qYte8XWBasYCivMzYzwvClfdF9UjteeiNjA6z8ZzA862lqdNXwKI3V24bA1Iy/0tTdxwNTB7WCacF2r7JMFmbGmDemLbwb8EOa7cxMcWBwL1R1Zn2glK1IAGhdpTy29fOHpNAHwXT3lhhXrQkMC8R/ldc4mlhge7PeqOvgyktfwsQFv1edBgfjgrFRcAUJEi0cm2FkuSEa9fNxmYlqVu3UHMfZa6wMS8LfbS1sDPl5lDWvjoFlf4e51IaXXkoYoKVjT7R25htbUpLErpa94V2yIq/OAFDdxhlHfAfAzpj/kdiqZTXMmN4eFgUEpcq2NTU1xMQJvujYgb+qb2ZpijU3/lDJkag9orVb18TKK/M0iCx7/doZw5f1h1HBCqLyGbGyt8TcI1PRoD2fC8zR1R5rby2AW7VSvDIRBIGWfZpg3onpGmNj/Pph6Da5A6QG/LHh6GqPZRfmaGjCVfAsi+UX58KxtD0vvdRAAv+J7fDLxhG89ARBYN7xaWjVz4szuJTXlK5aEmtvLuTRhAAs/9rcY1M5ahZleiNTIwxb0he9f+vCS29obIiVV+bxxLqV7Vu1UWWsvbmQZ2yJ+N/CV/E85efnY+rUqXj58iWsrKwglUqRkpLC6dhlZWWhS5cu6NWrF0aMGCF8s0Lo3bs3XF1dsXLlSt752NhY9O7dG+PHj0fPnj11XK0CTdPo0aMHrK2tsX37dr3p5XI5hg8fjqSkJJw8eRJGRtq3Jnbs2IFdu3ZpnP8WHoyMz5m4H/AE2Rk5KFWpBDy9awiy6jIMg2fXQ/EhNBrGZsZo0L62Xsbp5NjPeHj+KWR5cpSv5YbqTaoILmFTCgqPLoQg7h3LMN6wQ229E0XMmzg8vfISNEWjWqNKWoko1SHLk+H+uSdIiU2FrYs1GrSvzeOD0oa3zz4g7G4ECJKER6saehnDszNycD/gMTJSsuBc1hH1/DwEI9gYhkFY8Gu8efoehsYGqOfnoVO7S4m0pHTcP/cEuVl5cKtWCrVaVBdkY6dpGk+vvEB0RCxMLUzQsEMdndpdSiR+TMKjC88glylQqW55VKlfQbD/FHIFHl54hsSPybCyt0SDdp68FSdt+Pg+Cc8ffwDDMKjp6YYyFTRJPtWRly/H7afvOIbxxh5lYaiHMfxFbDyexyRAShJoXM4NrjbCz22GLA9XYiORKc+Dm7ktmjqV1TC01MEwDF5lvsannBgYSQzhblUT1obCeWQrPiMq6z4UTD7sjMqihIl2XUIlaIZCZOYzfJbFw0RihsqWdWEiER4bH7NScSf+AxQ0DQ/7EqhpK/zcymQK3Lv/FskpmbC1MUPDBhVgbCzMJ/T+RRRe3n4FEAQ8WlbXSrKrjpzMXNwLeIyMlEw4uTmgnp8Hb8W3MBiGQfi914h88h4GRgao26aWXjb99OQM3D/3BDmZuShdpSS7kqpnbIRcC8XH8E8wMTdGww519PorJX1KwcOgEMjz5ajgWRbVGlXSPzaCQpDwIQmWduZo2LGuXjb26IgYPLseBoamUb1JFZRzdxNM/6Oh5HkylNcHyXwDzxORAZnBA5HnSQu+ynjatm0b9u7di1GjRqFPnz7YuXMn9uzZwxMBnjZtGjIyMrBly5YvuvegQYNgY2ODP//8k3f+w4cPGDhwIKZOnYrOnTtrv1gNT548waRJkzB27Fj07t1bb3oAOH36NFavXo0NGzbojOpLTk5GSooq8iYqKgqLFi0SHy4RIkSIEPFTgDOe8ovBeDL6/sbT48ePcenSJTx//hxJSUmwtbVF7dq1MWzYMA0lE4VCgb179yIoKAjJycmwt7dHu3bt0K9fP0il+mPgmjXTVAIAgJEjR6J/f2GXEnV8VbTd1atX4enpyUmvaLPyS5QogcjIyC++t52dHZKSNMM/lQaLLkmYwrh06RJIktTp76QNjo7stkJGhu5wbHt7+yKXoSigKAqPgkJw41gwctJzULJiCbQd7i24ohL/IRFB26/iQ1g0jM2M0KRLAzTuVFfniopcJsftEw9wL+AR8nNlKF+rDNoOayW4ohIVFo3z268i/n0CzK3N0bJPE3h619T51ZibnYdrB27jyRWWJ6pqw8poM7iFzhUVhmEQ8fANLu66js/xqbBxsobPoBao2qCizq/GjM+ZuLT7BkKDI0CSBDxb1USrvk11SiQwDIOnV1/i2oFbyEzNgnMZR7QZ2kpQDT059jOCtl/F22cfYGAkRcMOddG0awOdLMKUgsK9gMe4deIe8rLzUbpKSbQd7q1VmkWJmDdxOL/tCj5FxsHUwgRe3RqifjtPnauNsjwZbhwNxoPzT6GQKVCxdjm0HdZKUMPr7bMPCNpxFUnRybC0s4R3fy+4N6ums22zM3JwZd8tPLsRyq48Na0Kn4HNdWp4MQyD0CdRuHY2BKkpWbB3soSPfx1UrK57tSM1IwcBN0MR9jYeEgmJhjXd0LphZRjraFuaYXDz/QcERrxGRn4e3Kyt0cu9JsrZ2mpNDwDxuWk4G/MQb7PiYSwxQDOH6mjmWA1SUnvbUowcrzOC8TrzHhSMDI5GZVDLxg+WAvp2Sfmf8OTzJaTK4mAsMUMNKy+UM/fQqW+Xq5DjzNtXuBVTsPLk6IKelWrA1lh3dN3rpx9w6cAdpMSlwdrBEq17N0LV+uV19l9WWjYu7r6Ol3degSAIeLSoDu/+zXSuqChXr68euI2MlAw4lnaA39BWgisqn+NTcX77Vbx5+h5SQykatKuNZt0b6tS3oygK9889we0T95GTmQvXSuzcVthVQB1x7xIQuO0KoiNiYGJuDK+uDdGgfW2dc5ssX45bx+7hfuBjyPMVqOBRFn7DWglqd75/EYWgHdeQEJUIC1sLtOrbFB4ta+hs25zMXFzZfwvPrr8ETTOo0bgKfAY1h4WN/ujWH41v9Vsi/iWP8c2bNyMjIwMtWrSAq6srYmNjceLECQQHB2P79u08V56FCxfi+vXraNeuHapUqYLQ0FBs374diYmJmD59epHyKw6aoq+WZ+nWrRvGjGF9bHbu3Indu3fzVp42bdqE48ePf7E8y99//42jR48iICCA5zS+d+9ebN26FUePHoWTk/B2gkwmQ5cuXVCpUiWNFSwhHD9+HOvWrcPff/+NGjVqFOmab5FnyUjJxEy/RXj9+B1IKQlaQXN0BIP+6KXhcAwAJ9cHYtOUXSAIAjRNgyTZ9G7VSmHZxTmwL8F/scS9T8AMn4WIe5fA3pum2UmeACb/M0pDT41hGGybsQ9HVp3hQoGV/9ZsVhULz/ymoVUX+eQdZvotRnpyBut/wAAgWD+puUenoX5bvp+GQq7AisEbce3gbY08mvdohBl7J2ho1T28EIIF3VYhP7eA64pgy2phY46l52ehcr0KvPQ5mbmY23k5nl0P1cij2+QOGLVqoMZkeWnPDawe/jfLdM4wIAra1qmMA1Zcmqsx6X+OT8UM34X48DJa1bYkCYZhMGrlQHSb3EGj/w4uPYkdsw9w/abs7wqeZbE0aBZPKgcAPr6KwQzfhUj+lAJSUhDOTRCQSEjM2DMBLXo14aWnaRobJmzH2U0XNepdt40H5h2fBuNC0XKhdyMwq8MSZKfnqNqEYf2kFp75jecMDLAvrKVTD+He1XBIJCQoiub+9fGvjYkLukJSyMn2xqM3mL3hHBQUVdB9bAi/rZUp1v/WDRVc+f4p6Xl5GHr8JELi4iAhCFAMw/07vmEDTGrSWKP/TkTfw+pwVjaGBgOSIEEzNEqb2mN93eFwMrbm5yFPxMGo35EqiwUBEgzoAv8nBm1cxsPTpi0vPcMwuJq4H7eSjnLpSZCgQcPVpAr6lpkDEwn/hRqWkogB548iOS8HpBoXnqFEgo2tOsHHjf/cUgoKaybswpVDwRr917iDJ37bNlLDkH9y5QXmdVmO/Bz+2DC3NsPic79r+E7mZudhvv8KPLn8QiOPzuP9MPbPIRofSVcP3saKwRtYmgOGAUESoCkGDq52WHFproaocGpiOma2WYi3z6K4Z1w5RoYv7Y9ev2ruHhxddQZbZuzVGBvl3N2w7MJsjY+FT5FxmOGzgON1Y2gaBEGAkJCYtn0sWvfnrzAwDINNk3fh5PpAjXp7tKqBBad+1fgQC78fiVntlyAzNYt93grelkamhvjj5K+o3Vo37+CPhPK9ZJRX75tXnvKNH373laeQkBC4u7vznruQkBD88ssvGDBgAOf+Ex4ejlGjRmHQoEEYNkwll7Vx40YcOXIEO3bsQPnymtqM6mjWrBn8/f0xefLkbyrzVzmMm5iYIC0tTTBNbGwsrKyEfQ20oUWLFqAoCmfOnOHOyWQyBAYGolq1apzhlJCQoNNZ+969e8jKytLqKA5Aa9lzcnJw7NgxWFlZ/Wvbb390W4U3zz4AAEc0qeRg2T3vMC7tvcFLH3z2Ef6etBMMzRRMYqr0n17HYnb7JbwQYYVcgd98FyKhgDiTu4amQVM0Vo/YhGfXQ3l5nN4YhCOr2LZXhgIr/w29E4HlA//ipc/4nIkZPguRmcry+CgND4ZmIMuVY57/Cnx8FcO7ZsfvB3D90B2tedw8dg9bZ/BZ3j9FxrEvh1wZe++C+4MBstOzMaPNQp6sCQCsHLKREzYunMfxtQE4uT6Ql/7FrXCsHLIRlIIukMdQtW1SdApm+C6EXCbn0jMMg9kdliK6oG7q/cHQDDZP3Y3bJ+/z8rh68DZ2zDrA6zflv++eR2F+11U82oD83HzM8FmAz3GpBWnZcjEFMhpL+q3Dqwf81d0jK07j7KaLWuv95NIzrBvN30ZPiUvFzLaLWEZ2RiWRwzAM8nLyMav9Eh45IQBsXhKA+9dfsfcuKL/y38unnmD/31d46SM/JuH3vwIgV1Bs+RlwIfxpmbmYsOQYsnP5BLATzgbgRTzLcq3kfFL+u+HefRx9+ZKXPjg5AivDT4EGA7rgDUcXkGzG5H7G5Mc7QKmRbtIMhcNRs5EmY/NQMoezVzMIivsL77Oe8PJ4nHoRt5KO8tIrWc0/5b7G8ejVvPQZsnz0O38Eqfm5BXkyXPS3jKIw+vJpRHzmt+3epadx5XAwW99C/RccGIIts/iSQHHvEzCn4zKtYyMnPQcz/RYhNSGNd82aEZsRci1Uax6nNwTh2Gq+ZFPYvddYNmA9KDlV8GywzyLAkrT+6rOAR+DLMAzmdV6OD6FswBDvWWeAbb/tw40jd3l53DwWjC2/7tU6NqLCojGn03Le2JDlyzHDZwGSC4SpaYpmy0UzoOQUVgzagNC7Ebw8jq1RjfvC9X5+Iwyrh/E5BFMT0zHTbxGy03JUY6OgjfNzZJjdaRmPif2nBANwg+6r/v6dYnp4eGgY7B4eHrC0tOS9558/fw4A8Pb25qX19vZmP26uXkVR8a00RV9lPFWvXh13795FZqZ24sKEhATcu3cPtWrV0vq7EKpVq4aWLVtiy5Yt2LRpE86cOYNJkyYhPj4eo0eP5tItXrwYAwYM0HqPS5cuwdDQEM2bN9f6+4kTJzB06FBs27YNZ8+exa5duzB48GDExsZiwoQJMDD4/kKPEQ/f4PnNMJ3s3AQBHFhygjdhHFx6QiffEaWg8fZZFJ5eecGdu3v6IWLfJujMgyRJHFp+SnUPisKhZSd1lpmmaASfeYToCJUxdGHndZ1inuxETuOUmqGSnZ6N0xuDBCQoGARsvsgZYwBw+q/zBZOj5jU0xSAnI5fVgCtAzJs43D5xX5AM8NDyUzwOrMMrToHQEq6vrHf8+0SeLM2z66GIfPJeJ9cMSRI4uFTVlgzD4MDi4zq3BmiKRuidVwi/rzKGrh26i+SYzzrrQZIEjq1Rvehk+XIcWXlaa1qAfbFc2X8LSZ9UPnvn/rmE/GyZVj4bhmYglylw5m+VQG9qciYunHgsIK8DnNx9B3k5qpfpofOPNYXw1MqUlpmL87fDuHNhiYm4E/VRkChz4737PA6lPe+ua6UpAACKofE+OxH3k19z595mPUSK7JNOuRUCJIKTVfprNENzhpM2MKDxJusJEvJUE/3xyFCk5uXq1PRjwGDHS5UcSG5WHk5uuqzzhcXQDIL23EK6GmHs6Q1BUMgVOrUJc7PyELhVZczGf0jE9cN3BMfGkZWneR8KR1ee1jnv0BSNpOgU3DgazJ1TPse6xgZBENi/+DhvPB9YIjy3RTx8wzrDF+DWsXusFqWu8ScheGNBIVfg8IpTWtMq63HjWDDi3qt4BM9vu4KczFytnFUMwxppZzYGafz2c+FbDKcfS/SUk5OD3Nxc3iKMXM4+l4aG/K1iY2M2GCYigm8w60Jx0BR9lfHUu3dvZGZmYvLkyXjx4gWogqX4vLw8PH78GNOmTQNFUejVq9fX3B6///47evTogQsXLmD9+vVQKBRYvnw5PDw89F6bnZ2N4OBgNGzYEObm2veka9asCWtrawQEBGDt2rU4cuQIXF1dsWbNmn+Ncfz+uSeC2kwMA3yKiOW++rPSshF+L1KQtE0ileBegGoyvh8onAdN0Xh86RlnRHx4Gc2T+9AGgiTwIPApdxx89qEgySKloHHnlJrRcSMMsjy5zvQAK2ui/DIGgDunH+jVvbpzWpXHw/MhgtE2AJAan4a3ylU/msbD808FZWZICYl759Ta9twTvbpzrx+95VbEkmM+Iyrsk2BbSaQk7qv134PAx4LkoJSCRvAZVfrXj94K6pYB7KT/8Lyq/+6efihIaEhT/P57GvxWL0N1Xo4MYSEqI+Lmk7eg9DBO3376jvv/9Xfv9WrCfUrPQFRqGgAgVyFDSNp7bsVJGyQEiTtJqpfvm8yHICEQdQkaUTnPoaBZIzAlPwbpcmEpDgIkIjNVOoCXo4Q56SiGwQW1NKH33qi2pXVAIafw9Ho4d3z39EO9EiK8saEmoK0L6cmZiHzynr2eYXDv3BPhsUGSuP8FY4NhGLx/8ZFlRge7wvM25IP+ue2sqm3vBz7WSxh8/9xjbry9efoe6UnC0kIE2LlDibtnHuqVvrmt9kH1X0ZUVBSPoudLKIO+FkePHoVcLkerVirXEldXlj7kZaGV52fPngGAVn/pwvhamqLC+CqHcQ8PD0yaNAnr16/HhAkTuPNKByySJDFlypSv3v4yMjLC2LFjMXbsWJ1p1q9fr/W8mZmZXj+revXqadW6+zchz5frZqIsnA6AXI/2EwCAYA0P9Wv1adsxNANKQUEilXB5CWZBErx0+gwhthwKrf8XvubL8pCpvXTk+XJW7oESrruyLDRF65WTYBhGo22L0H2q/itK2xKabauv/xRyfpmKkoeMl4fwy1pZDi6PojyHAOQy1aqeXI8GGQNAplYPGUUV+JcI111GsdfImaKVSaaWjmLkYIrwVU0xCkhhCAVThLYFwUuXTyn05iBXk05SX+0RvEb2hWNDvf/y5TwdUp15qD0j+vQVaZr+trFRhGeQIMB7buX5CjB6JJjYLXgaEomkSPNO4fEnL0rbFmHM/VDQBX/fiEWLFvGOBw8ejKFDh2rPkqa5FSJ9MDQ01PqhGxISgl27dqFly5aoU0fFO9awYUM4Ozvj77//hpGRESpXroywsDBs27YNEokEMpn+Z+nvv//mHbdr1w7Dhw/Hli1b0LZtW500RYXxVcYTAHTp0gUeHh44ffo0wsPDkZGRATMzM1StWhX+/v4oW1aY4+d/HRVqlwMlIAoMsNpMSsZpK3sL2DhbI7Xga00bKAXF41aq4FEW1w/f1ZmeIAi4lHfiomVcK5eAgZFUcKKhFTTKq+VRuW55vHnyTvf2lYRExTqq9OU9yui8tzrU61G5Xnk8uvBM5xe2REqqCDQBlPcsq3d1RGooRemqbGSY1EAK1yol8CkiVvB9XcFDrW09ywqKOgMsIafSydXB1U6vRphCXqj/PMviYVCIzroQJMGLjipT3VWv/iHDMDyCwsr1KyD2bbzu/pOSqFxP5YBZvmoJrel45SIIlK2kcq6v7OaAF5FxOqVKJCSBKmrRidUcHaHQ82I0MTCAq5U1AMBCagJHIysk5qfrTE8zNCpZqMruZFwOL9Kv6EwPAJYGjjAs0LazNXSBlDCEgtE9OdOg4GKsalt3B2c8SYzVuf0oIQjUsHPkjsvWcNWrfwgA5WuqokUr1yuP++fSdPafREqiilr/VaxdTq9BLpFK1AgxCZSp4YoPL6N1XkdKSN7YKF+EsWFhYwb7kmxwi10JW1jaWQjqVyrkFO+5reBRFndPPdBpBBIEgdLVSnERrG7VSkEilQgagjTNaMw7UWHRRR4bPyO+Odqu4NrZs2fDzU0112gjslbi2bNnmDhxYpHuv3fvXt59AXaVa/bs2ShXrhxmzJjB+83IyAjLly/HvHnzMGfOHACsATZ69Gjs3bsXJiZF095Uh4GBAbp27YrVq1cjIiJCJ01RYXzVtl1ISAgiIyNRpkwZTJw4EZs3b8aBAwewdetWTJkyRTScioDGnevCysFSq7wAwE5I7Ue05gwbkiTReZyfzm0cgiBgYmYM734q6Yw2Q1qyy+cCX4H+v6gYp82szNB6QHOdy+GkhIRTGQfU8VE9XB3HtBHcUqMpGl0mqPIoVdGFpTwQyMO9eTWUrqIKee88rq2gQUApaHQco9pu9WhZHSXKOwnm4d23KS/U2P+X9oLvLImEhN9QFfN5i95NYGppors/SAKdxrbhti8MDA3QYZSPzjIRJAFLOwuezEy7EcI0GwzN8PrPxskaXt0b6tQhU8p1VGukir7qNNZPuP8UNLqMV0WdVahWApVqlhJs2/rNK8OxhDV3roevp6DGG80w8G+leqZalS8HRzMznXp4JEGgZ80aMDVUMpwT6FG6saDGmyFpgLYuKhb8GtbekBIG0D04CNSz7aRioZaYwNOmtRobeeHUJCyldqhoofpK7lfFQ7DeFMNgcHVVeufS9qjrrV2OB2Cfwar1yqFcDRXzeefxbQX7j1LQ6DhWFZJdo2kVlK5aUrD/WvRqzIv69J/QTljjjQDajlA58Dbv0QgWNuY6xwZJEug4pg1HyCmRStBxjK/gWDKzNkXznirdQL9hrUAI6UQyDLqqjQ1LOwu07NNEsN6lKrnAvXk17pzeua3Q2Pgvw83NDZUrV+b+hOh6SpcujZkzZxbpr7ARlpCQgKlTp8LMzAzLly+HqakmnUfZsmWxe/du7N69Gxs2bMCJEyfQsWNHpKenc9t6X4qi0BQVxlcZT5MmTcLZs2f1JxShEwaGBph7dCqkhlINvySCJFDBsywGzONrUPWY1gm1mldnJ3S1eUYiJUFKSMw6NJkXamtlb4nf9kwAQRC8PAgCAAE07FAHHUfzfbxGLO8P18olNIw6iZSEkYkh5hyZyouKKFPdFaNXDwIA3sSkvL7zOD807MCXe5i6bQxsnKw0JjJSQsLawRLTdvC3a+v5eXBGgnq5lNePWN6fJ4VCkiTmHJkKYzMjjbYlJSRKVnTByFUDeefbjfBGky71AYLPW6bU25q+azwvVNrY1AizD0+BRELy8yDY/qvRtIpGOHb/uT1QuZ6m8LJESkJqKMWcI1N4YeiOrvaYvGU0QPDbVnl9yz5N0XoAPxx73LqhcHZz0Nq2phYm+P3AJF79qjaoiEF/9OK1p/r/e8/ookFVMH15T5hbauoAkhICdo6WmDC/C++8d4NK6NCcvQevbQvqMW2QN1ydVbw8UpLEhk4dYSSRaPg+kQSBKg72mNKUT9HQy60J6tlV0DCFJAQJCUFioXsfmBuoGNZNJBboVPLXAqU69Xqwg6OcWR3Use3Eu5e3U384GpXWMNJIkJASBuhRegYnJAwA5a1tMb+Rd0E51J7bguv7VHaHXxk+t8zEPwfCVsfYMLcxw/TNw3jna3vXRM9pnbg06ukBYMiiPqhcV7U6wko2TYaJhbGGkU1KSLiUc8LoNYN459sMackZLurPLiklQRAEpm4by6NIMTQ2xOwjUyA1kGid26o0rIS+s7ryzveZ6Y/qjSuz9y80t0mkEsw5PIWnPmDnYoNp28dqmdvYi5t1b4g2ah87ADB69SD2o6pQVBcpJWFibozZh/kSTBVrl8OwJX157an+/26TO/y0VAUcvinSjtG7da4NdnZ2aNu2bZH+1P2S09PTMXXqVMjlcqxatUrQQCMIAmXLloW7uzssLS3x5MkT0DTN2+L7EsTGxgIArK2ti3zNV/E8denSBa1bt8b48eO/9NL/HL6F5wkAosI/4eiqM7h26A5kuTI4utmj0xg/dB7vp8HHA7B77AGbL+L0xiDEvomH1FAKr24N0HN6Z97SuTrC70fiyMrTCD77CJScQumqJdFlQju0G+6t1bEzOyMHp9afx9nNF5ASmwpjMyN492uGHtM6omQF7eSdjy4+w9FVpxFy9SUYhkGluhXQdVJ7tOzdROuedmpCGo6tCcD57VeQ+TkLFjZm8BvaCt2mdNRKcMcwDG4cuYvjawMQ8fANCIJArRbV0WNaJ9Tz89RID7CEe0dXncHlfTeRm5UHWxdrdBjli64T22mVmqEoCkHbr+LkX+cRFRoNiYEEjTrUQY9pnVTaYYXw9tkHHF11BjeP3YM8Xw6X8k7oPNYPHce20UqsmZ+bjzMbL+D030FI+JAEQ2MDtOjVBD2mdUKZ6tq/ml7cCseRVafx8PxTUAoaZWuWRteJ7eE7uIVW0tLM1Cyc+PMczm25hNSEdJhamsB3YAt0n9qRJzysjnsBj3F09RmO3qFqw0roPqUjvLo20Jo+OSEdJ3bdxsUTj5GdmQdLG1O07VEf/oOawMpGs20ZhkHQnXAcCnqC1x8SQZAEGtR0Q792dVG3unbS0nefP2Prw0c4E/4KeQoFXCzM0d/DAwM9PblVJ3UoaAonP93H0Y93EZ2TDCkhQXPH6uhfthmqWJbSmkds7mvcTzmO1xnBoKGArWEp1LXtCA+btpAQml4N+VQu7qcE4NHn88hQpMCAMEJN6+ZobN8F9kbaCUJvx0Rhy4uHuB3zATTDoIa9E4ZWrwP/CtpJS9OSM3Fi40UE7bmFjM9ZMLMyQZv+TdFtXBvYuVhrbdtbx+/h2NoAvLr3GiAIuDerhh5TO2ro1CkR/yERx1afxcU915GbmQcbZ2t0GOmDrpPaayVGpSgKF3Zex8n15/DhZTQkUhL129VGz+mdUaNJFa15vH/5EUdWnsbNo8GQ5cnhXNYRncb6odNYX60yTLI8Gc78fQFn/g5C3LtEGBgZoFmPhug1vTPK1nTTkgPLUXZk5WncP/cYlIKGW3VXdP2lHdoMbamVdDYrLRsn1wXi7D8XkRqfBhNzY7Qe0Bw9pnXUSWx7P/AJjq0+i+cFBLJVGlZCt0kd0Kx7Q72BKT8KyveScaYnSEpY+kkItCQTeRZPvzvPU25uLiZNmoSoqCisW7fui/LKz8/HuHHjkJKSgv3793OrVXl5eUhISICVlRVnFKWlpWkYSDk5ORg2bBiysrJw4sSJIkfbf5XxtHjxYrx79w7btm37aR+efwvfajwpwTAM59xYVFAUBZIki9wHX5vHl6RX8qAI6Vd9ax60kgzvC569L83j32rbn63/lJF3X9Z/tAYppnAeDIhCK3xCYBgGNMMIatpplImhQaLozwjDMCzpJfEFbcVQX5SeKeB50rUdqQ1f3rZf03/i2CgKvqZtfxT+vxlPv//+O27fvo127dqhdu3avN9MTEzg5eXFHc+bNw92dnYoU6YMsrOzERgYiLi4OCxfvpy38vT06VNMnDiR59y+Y8cO3L59G40bN4aTkxNSUlIQGBiIhIQEzJo164ui7b/KYXzUqFEYM2YMVq5cidGjR8PS8usZTEWwyM3KQ25WHqzsLQTFOZWgFBTSkzNgZGqkwfitC9npOZDlyWDlYFmkSUMukyMjJQumliYwMRMWlQXYCSzzcxYoioa1g2WRJj5ZngyZqdkwtzbVKwqszCMjJRMkScLC1rxIeeRm5yEnIxeWduYazOXaQFEUMpIzYWBkoFOepDByMnORn5MPK3tLwTBtJRRyBTJSMmFsZqxXlFSJrLRsKGSKAl85/RO4LF+OzM9ZMLMy1bqKWRjK/mMYBlb2Reu//Nx8ZKXlwMLGTKdMhzpomkZGag4kEhIW1kV7bnPz5cjOk8Ha3AQGRWlbmsbn/BwYSwxgaVi0yJk8OhdyWgZzqaVOmRV1ULQcOVQmjEgTGEr09x/DMEjPy4OCYWBrYlIkA+prxwZBsP5zRem/vJx8ZKfnwMLWXKcEkTpomkZGciakhtIiy5PkZuUhLzsPlnbfb25Tjg1Le4sizW3KsfElc1tWajZomi7y2PgpoCTJ/Jbr/wW8ecNSdgQGBiIwkE9g7OzszDOeKleujMDAQJw5cwZGRkZwd3fH3LlziySvUrNmTbx8+RIBAQHIyMiAsbExqlatihkzZnzxlt9XGU8LFy6Eubk5AgMDcfHiRbi4uMBWi94UQRBfJI/yv4jQuxHYt+gYHl0IARg2wq7tMG/0ndUVlraaXww5mbk4uPQkzv1zkeP0qdWiOvrN7gbPVjW15nE/8AkOLDmBsALGXSsHS3Qe64eev3bSOimnJqRh/6LjCNp5Dfk5+SBIAg071EH/Od1RqY5mdAnDsOSLh1ecwoeXLKuwo5sDuk1sj84T/LROZrFv47Fv4TFcO3gbCjkFqYEEzXs1Rv85PbTq+lEUhTMbL+D4nwFI+MByebhVd0Wv6Z3RekAzrZPZm6fvsW/hMQSfeQiaZmBkYgjfwS3Rf0432Dprbg3K8mQ4svIMTm8MQloiG7lVtWFF9JnZFY061tXats+uh2LfomMIucryjphbm6H9yNbo83tXrRN/Vlo29i86jsBtl1lWbwKo09od/ed0R42mVbXmcfvkfRxcehKvH70FANi62KDL+LboPrWDVmMw6VMK9i88hkt7b0CWJwcpIdGkS30MmNtd6/YHwzAI2nEVR1adwacIdu+/RAVndJ/cAe1H+Wg11D6+isHeBUdw69g9UAoaBkZStOrrhQFze2jdGqQUFE7uvoPTe+4gOZ5t2/JVS6DHyOZo3k47me6Ld3HYGnAPd19+AAPAxMgAXZrWwPD2DWCtRc8wRy7Dppf3sDfiKdJkeQCABo6uGO/eCF4ltG9pv8p4hosJJ/A+mx0bZhILNLH3gbdTZxiSmmMjW5GOO0mHEJJ6CXImDwCBCuZ14eXYByVMKmmkB4Az4a+w5eFDhBdw0LhYWGBwbU8Mrl0bUi1tG/c+AfsXHsOVA7ehkCkgkUrQvGcj9J/THa6VNbcGaZpGwOZLOLbmLOLesSSPrlVKoue0TmgzpKXWsfHueRT2LjiKu6cegKYZGJoYwndgc/Sb011D4glgjY1jq8/i1IbzXMRv5XoV0Pf3rmjcWTvty4tb4di38CieXGaJe82sTNF+BDs2tH2UZKdn48CSkzi35RIXlerpXRP9ZndDrebVNdIDLBfTwSUn8OoB+/K1cbJC53Ft0WN6J63GYEpcKvYvPIaLu68jP1cGkiTQuHM99J/bg+c3qQTDMLi4+zqOrDyNj+EsObBLOUd0ndQBnca2+flXob6VquBfshGPHDmiP1EB+vbty+nqCsHT0xM3b97knStOmqKv2rbTxdytcXOC4Ond/RfxLdt2wWcfYX7XlQDAiyYjJSRKlHfCujuLecK6uVm5mNxsLt6/+KiRnqEZzNgzAd79VBY6AJzdfBHrx24FSRI8LiOCJFCtUSWsuDSXt2KQEpeKCQ1nIiU2VSMPUkJiSeDvGkbajlkHcHDpSZZbST0qhwCadW+EWQcn8SaZqLBoTGw6G3lZebxoFomUhLGZMdbeWsgT76VpGssG/IVrh26zJwqyUPLV9JzWCSNW8Nnmn90IxUy/RSzXi3o9pCRsnazx170lPGFkWb4cv7VZiJe3X/HqoGy38X8NQ+dxfCHJa4fuYGm/dQU6X/y2cqtWCmtvLeQZUJmpWZjYZDZiIuM00gPA3KNTWad1NRxddQZbft2rtf9qe9fEooCZvK/5hKgkTGg4E+kpmTxiQ4mUhMRAipWX5/L8txiGwcaJO3B6QxDUqZWUbes3tCWmbB3DewFHPnmHKc3nQpYn12hbcyszrLu7mGcAUxSNheP34sG1cN5HsDKPAb/4oO84vtzC3ZcfMGnDaTBgePUmSQIutpbYPbM3bCxUbZsjl6H3xYN4+TmBF+Gm1JNb0bgdelTgP7f3Uq7icPQWTqeOKxcIuJqWx7gKc3gGVLYiDbveTUW6PKlQehIECPRym4dy5vwth3V372J98D1e27LXAD4VKmBDxw687chPr2PxS6NZyMnM4Y0NsiBgY82NBTzfRoZhsHLIRlzac4NHc6DMz39iO4xdO4RXppd3XuFXnwWg5BSv/yRSElb2lvjr3hI4llYZwHKZHLPaL0XItZdax8bo1YM0dBxvHb+Hhb3WsBqchZ5118ol8OftRTwDKjs9G5O85uBjeIzm3MYwmHVwMpr3aMTL4+T6QPw9aafGvEOQBNybV8OSwFk8AyoxOhm/NPodqYnpvLFBSkhIDCRYfmEOanrxP2A2T92N42sD+NxYBe3cun8z/Lp7/E+5CsVt26V6QEJ9vYAxJclCnk3Id9+2+/+IrzKbb9y4UaS//7rh9C3Iz83H8oF/gaFpjTB8mqIR+zYBu+Yc4p0/uPSkhuGkTM8wDNaM2MSTNUmO/YwNE7azaQqFGjM0g7Dg1zixjr9EumX6Hg3DSZkHpaCwtP96HldKxMM3nAyJRjgzA9w8GoybatINALB6xGbkZuZphAFTChq5WXlYNWQj7/ydkw9w7eBtpaaF6vYFk9mRVWcQdk8lvUFRFJb1X6/xcgDY8OLP8WnYPHU37/yZjUEahhOgare/J+5AYrSKVTc7PRurhv3Nvty1tFVU2CccWHyCd37PvCMahpMyPU3TWD7oL+Rm53HnY97EYcuMvbxycHWnGTy5/IInvQEAGyZsR3pypgYjNKWgochXYNmAv3iM4s+uh+L0BlZigtHStkE7ruFB4BPe+eWDNmgYTgDbtllp2Rr6eVdPP8H9q+EauwfKPPauv4QPr1UaYTK5ArO2BYJmNMlLaZpB/OcM/HXiNu/8lrAHGoYToNKT+/1eEFLyVBxbmfI0HI1mx0ZhiRYGDKJz3uJ64jl+PRJ2aRhOyutp0Dj9aRUoWkUOGJ6YhPXB9wrqWqjuAC6+eYMzr17xzq8ZuRnZGTkaY4NW0MjPkWHl4I08bqN7AY9Zw0l5U+X9C/5/cl0gnt9USd/QNM2ODZlCo/8oBY305AxsnLiTd/7cP5cRcvWFzrHxz7Q9PFmT3KxcrBi8Aeo6ddw1FI3oiFjs/YMvdbNv4XENw0mZXmkg5mTmcufjPyRi05RdbF21jI3n18MQsPki7/ymybs0DCdlHgqZAkv7r+PUMgDWyDy+NoC9J29wsP9c3ncTd08/hIj/Tfzka47/Xdw8dg/Z6Tk6t6NpisbF3de5lymloBCw+aIg35E8X4HLe1XLlEHbhUUSGZrBmb9VOnMZKZm4ceSuzjwYmkFqfBrun1O9TAP+uSQoAUNKSJxW00Z7//IjwoNf68yDpmi8fvwOb0Lec+dO/x0kKMUgkZK8ifJRUAirCaeDm4amaNw6fh+piSpSxVMbzguTBxIEzm9TGSpX9t9mGYgF+u/clkscA3h+bj7O77iqu/8YIDczDzeOqAzNwC2X9WwLMDi98Tx3lPQpBffOPdbdtjSNuHcJPDHos5su6OSFAtj+U9e2C7/3GlGh0YL9F3LtJWLexKny2Bcs+HUukZAIPKwSUb729C0ycvJ1jg2KZhB4/xWycllRT5phsDfiqTCnEs3g+FuV7uODzzd06toBrAF1O/kiNzbyqCyEpl8XuIZBDpWB15mqehx8/lxQZoYkCOx9GsIdR0fE4MXNcMG2ffc8itu+BVijX9/YOLtZ1X9Pr7xAQlSSzrHBSv48QkqcSqbp1MbzENq/IUiCZ8RfO3gHeTn5OgksaYrG+e1XOHZ7uUyOwG2XBcdGfm4+rh5QGcznt10RfKYYMDitpjv3OT4Vd0490Ckzw9AMkqJT8OTSc+5cwOaLeue2M3+L2nb/q/gi4+nly5eYOHEi2rRpAz8/P0yZMgVhYWH6LxShgajQaEgNhB0b83NlSIpmRVwzUjL16paRUhJRBUrmAEuDoM9ZMCk6hZvEYt7oZppWQiIlObV0gPWd0EeS+eHlR+74Y9gnwftrS/dBy2qbOigFjXcFOnUAEBX2SfCFoixXTCT7glfIFZwflS4wNMO2J5dHtKDRAbAO+qkJrIGWHPMZ+TnCCt5SAwmv/z6EfdLDFg7ORwkAoiNi9c51BEEgKlRVj3fPowR1y2iKxvsXqv6LKmr/havEoz++TRTWP6RovI9QrTy9i0uBVE//yRUU4lJYQrsMWR5vVUkbCAKITFMJIsfnxQiSagJApiINeTS72pEmSwClRwaGhARJ+aq2epWUJChuTDMM3qSoyqTeZkJQH3/vXxZhbDxX67/QT4J6iQC7yhL9Kob7f2xknGD/sSutavNO2CdI9Tj252blcQba57g01v9PAFKpRGNuE9JkBAPEvonnVpI+vY7Ty6xOkiTv+S7K3KY+Nn5K0My3/4nQiiIbT2/fvsXkyZMREhKCvLw85Obm4vHjx5g0aRLev3+v/wYieDA2M9arp8amY30ujIoQLQVGlR5giRwJPQ6NpIQlaFTPSwg0zcDEXBWdYmpholfHSj3Sqyh5sOlUeRib64mGIQBTNd8iYzNjvROlelmUPg9CICUEv23NjIv0Uaa8xrgIET00zfDyMDE3AikRblxDE5W/WlHalmEYXnuaFCHSTz19UepRuCxGJsJRXARJwES93kYGRRsbBc7yxhKpXr9WAgRMpapyGJFG0OcNS4CAAcFeY0AWISILDAzV0pkZGugtl7Eap8xXjY0i9Icpr/+MijQ2lGOcIAgY6ImiJCVkobFhpFc7j01nzKXXB4Yp/Bwa6XXWNjCScmmKNLcxNK89TfTNO0VMI+K/iSIbT/v374dMJsOAAQNw6tQpnDp1CoMGDUJ+fj4OHDjwPcv4n0QT//qCX4wESaC8Rxk4urIsq6YWJvBoqVu6AWC39tTlPZp2bSCo5SSRkmjcqS5P/8mlnHaiOCUYhuFF13h1ayhoQ7ByDyo26Fota+idcIxMjeDpXYM7bt6jsWC9CRBo1l3lTNqwo/6QUyc3B04XjiRJNPWvL7hETyloNPVXEUY28a8v2LakhEDNZlW5cG47FxtUqlNOpxwPwH7JNlUjpWzq3wC0gLixREry6l25bnnYOFnpTK+8pkF7lVNzs+6NBFciSAmJFj0bc8d129SCgZFwkK6FjRmqqxEnevm5C3IVMTQDrzaq/m7hUV5wC44ggHIutihVICFiLDVAsxJlBbfIFAyNNm6qaLia1vVAQ6D/QKKqpSekJGvc2BqWgJ1hSQgZXAxoVLJQjT+/ipWEJX8IAu0rq5XJqyrMrIRD8w2NDVDXV8Vq3aKnnrFBEGjWQ9V/DTrU0bsqa1fCBhVqq5zSvbo2EBwbNEXDq2vheUd4bqvasCJsHNn+s7K3RLXGlQXHBqWgeGOjSZcGgvOnRErCq5uKxLK8RxnYl9KtxwawbaU+dzTr3khwa5CUkGiuNjZ+SvwAhvH/FRTZeHr+/Dlq1qyJ4cOHw8bGBjY2Nhg6dCjc3d0REhLyHYv430TZGqXRqFNdnRMZQzMYMJcvz9JvdjdBcc4aXlVRvbEqIqJum1oo71FGax4EwS6c9JrRRXUPktTIk3cNSaB1/2a8UPTWA5rBvoSt1jxIkoChsQE6j1dFqRmbGqHXr1000qqjx9SOPJmZzuPawMjUUOuXJikhYeNkBZ+BKpkSR1d7+A5uIWgU9J/bg3e/ntM7AyC0rqJJpKwmnLrRUbVBRdRqWV1n/9E0g36zuvHODZjXU+eKCikhUb+dJy9cuol/fZSq5KL1xUWQBAiSRPepHdXKKUH/OQL9RxBoP8qHe2kBQLvh3rC0NdfefwWSLu1H+XDnLGzM4f9LO8HVxj4zu/KinLoMasLJ3GjLw6mkDZqp0RWUcbaFd+2KOrmQGAYY2ZH/YhtXsxEYRrtpIyEIeNqXQCMnVQRnRfMacDUpB1LrFEiAAYPWTp1VZwgCXo59oWu5kQCJapZesDVSiQ93qloFJSwstBp1JEHAQCLBIE8VO76hsSF6/+av9f4FmaDrpA48dvwOY3xhYq4plQOwbWvlYIk2Q1pw5+xcbNBuhLfw2JjTg0cv0mMaq/Gn7RqJlIRrlZJo1ElF5VGxdjnUbVNLcG4r/Jz2n9Ndp8FMSkh4tq7Jk5lp3Kku3KqV0rp1riTQ7TFNJa8jkUj0zm1+Q1vxaBraDGkJa0dLHW3LrkR3HNNG5z1/CjD4RuPpR1fg50WRjafU1FRUr67JtVGtWjWkpqZquUKEPszc9wvq+LIvDYlUAomBBARJQGIgwS9/j9AIW/doWQO/7Z0AQ2MDVtPJQMIRMlZrXBl/nJzO1w6TSLD0/CyU9yjDywMEYGRihHlHp6FKfT6xmM/A5hi5YgBICfuyk0hV+lReXRtg8j+jeOlNLUyw8up8zqBi07NlMrcxx7ILc+BcxpF3TZ/f/dFtUntOs00ilXATVOfxfhqafo6lHbD84lxY2Jpr5OHgaoeVV+dryK388vcILrRZqY9FkgRICYlhS/vBbwhf96pSnfKYf2I6uz1KgNe2ZWu6YdmFObwXCkEQmH98Omp6VeH3H0HAwMgAv+4ajzo+tXh5NOxQB5O3jIZUrZ+VeXh618Ssg5N56Q0MDbD80ly4Fogkq9fbxNwYC8/8xqN0AICOY3wxcF5PEAShatuC/vPu74Uxawbz0lvaWWDl1fmcJA73jACwdrDEistzNeRyhi7ui7YFosWkVK3/CFYLT92gA4BSZR2wcNtQmBWsOLL9wZapRGk7LNs9AkbG/K29P4a0QVN3dvVDQpKQkCRIgoCEJPBr75bwqcvnVKrv5Ir1zTrCqGALT0qQkBaQXdayc8H2Vt14Y4MkSIws/xtKmZZjjyEBiQIRZ8IAg8pMQlkzfmh2davm8HEeAbKAmkD9mooW9dGh5EReehMDA+zr2QOuVqyxKiVJjtfJwsgIu7p1RRkbftv2+rUzq1WnZWx0GOWLwQt78dLbl7DF8ktzYWVvUdC2qmfEvqQtVl2dp8EXN/bPIWjVp6laX0i48T54QW+0H8kXpC5fqwwWnJ7BbmkVGhtu1Vyx4tIcDfLL2YenwKNldVWZCp55qaEUU7eNQf22fEmlem08MG37WEgNpRpzm3vzaph3dCovvUQqwbKLc1C2QNJIfW4zNjPC/JO/ashVtR3WCkMW9eHmAfW5rUWvJpiwga9xvrpMAABYuUlEQVQbaG5thpVX58OhYMVKvW0t7Syx4tJc7jcR/3soMs9T8+bNMWTIEAwePJh3fufOndi9e/f/LC1BccizRDx8g5tHg5GdkYtSlVzQekAznqp5YWSmZuHKvlv4EBoNYzMjNO3agBXV1PmlzuDZ9VAEn3kEWZ4M5WqVgXc/L0Fm65S4VFzacwPx7xJgYWuOFr2baCWRU4JSULh/7gmeXH4OmqJRrXFlNOveUJB1Ou5dAi7vvYmU2M+wdbGBd38vndp5AMvFdOvYPYTejQBJEvD0romGHeoIMnq/fxGFqwfvIDMlE85lHdF6YHOtJIBK5GTm4uqB23gb8h6GxoZo0KEOPFvVEGzb8Huvcev4feRm5cGtWil49/fSSnCqRHpyBi7vvYnoiFiYWhijWY9GGkasOmiaxpPLL3D/3GMoZApUrFMeLfs0EWRGToxOxuW9N5EYlQQrB0u06tsUbtV0K44r5ArcPf0Qz66HgmHYLaSmXesLMrJ/eh2Ly/tuIi0hHfal7NB6QDMNQ1kd+Xly3Ax8hojnnyCRkqjjVQl1mlYS3NILj0rApUevkZWbj1KO1ujQsBpsBVinM2T5OPUuFBFpSTCRGsDXtSLqOZYS7L+32eF4mf4IcloGF5PSqGPTFCYS3XlkKVLxIu0qUmVxMJaYo5qlF5xNNMljlaBoGjfef8CtqA+gaAa1XJzRvlIlnr9TYcS9LxgbMZ9h7WSF1gOaayWPVUIuk+PW8ft4efsVCIL90GrcuZ7g2PgQGo2rB24hIyULTm4O8BnYjMd9Vhi5Wbm4dvAOIp+8g4GRARq0rw1P75o6fY8YhsGrB29w61gwcjLzULpKSbQe0IzHXVcYGZ8zcXnvTXwMj4GJuTG8ujdE1QYVdfYfTdMIufoS9wIeQ54vRwXPsmjVtylv5bowkmNScGnPTSR8SISFnQVa9W2q8RGiDkpBIfjsI4RcfQmaZlCjaRU07dqgSIzsPwocz1NSDUjkRVNJ0AbKIBt5Di9FnictEI2nb0RxaduJECFChAgRxQHOeEqo/u3Gk1Oo+H7Tgi+SZ7l48SJCQ0N552Ji2JDW6dOna6QnCAIrVqz4huL9byDuXQJun7iP7PQclKzkAq9uDQW1yGT5ctw5+QBRYdEwNjNGky71tMo2qOP9iyjcC3iC/Nx8lPcoi0Yd6wjqTOVm5eLG0XuIf5cAcxszNOvRiHNe1wblCsyTyy9AUzSqNqqEOj7ughExGSmZuH74Lj7HpcLG2RotejWGlb1unUSapvH0yguE3X0NomDlqVqjSoJOnUmfUnDzaDAyP2fBuawjmvVoJLjippArcC/gMd6GfICBkQEadqjDOZbrwqfXsbh98gHysvNQumopNPWvL7jilp+bj1vH7+PT61iYWpigadcGKFHeWTCPyCfv8OD804KVp3Jo0K624KpCdno2bhwJRuLHZFjaW6B5z8Ya22/qYBgGL26FsxxQDFDDqwo8WupecQOA1MR03DhyF2kJ6bAraYsWvRoL6p1RFIVHF54h4sEbSKQS1G1TC5XrVRCsd3xMKu5cDkNWZi5KlLaDV+vqMDbV3bYyBYWrr97idUIyTAykaFW1PMo7CG+tfMyJw4OU58in5ShjVgL1bd1hQOoeGzI6DxEZt5Ami4ORxAxVLL1gaaB7xY1hGLyIjkfw649Q0DTcSzujcSU3QaHjjM+ZuHEkmFt5at6zMc9XTVseT6+8QOidCKBg5alG0yqC/Zcc+xk3jwYjIzkTjm4OaN6zkaCWnHJ1OfLJO0gNpWjQvrbG1lhhxLyJw52TD5CTmQvXyiXh1a2B4NiQ5clw+8R9fHwVAxNzE9bvT2DFDQDePvuA++eecCtP+lajszNycPNoMBI+JMHSzgLNejQUXHFjGAahd14h5FooGJpB9SaV4dGqxs8vzSLiu+KLVp6++OaiPIsgZPlyrBu9BRf3XAdJECAkJCg5BVNLE0zZOkZDjgAAHgY9xdL+65H5OQsSAwkYmmW49ureENN3jtPYyslOz8bivuvw8PxTzq+BklOwdrTC7MOTtWpGXdx9HevHbUN+bj4kUgkb1cKw/jRj/xyiMTElx37GfP+ViHj4BqSUBAE2Oq1EeSfMP/mrxpI4wzA4vPwUds87DEpBg5SSoBU0JFIS/ef0QN9ZXTUm/aiwaMzzX4mYyDhIpBJWRZ2iUbFOOfxx8lcN3wOKovDP1D04tYElkSQlJCgFBSMTI4xfPxR+Q1tp1Pvl7XAs7LkGn+PTeHnU8a2F2Ycma+hx5eXkY9WQjbhxNJjXtuY2ZvhtzwQ0aK8Z9Xf75H2sGvo3stNzVP1H02jdvxkm/zNK48WSkZKJBT1X49m1UDYPggCloGBf0hZzj01D1Qaa231nN13A5qm7IcuXc/1HEAS6T+6AYcv6aUz68R8SMa/LCrx7HsX5gFAKGqWrlsQfp2ZovLwYhsHueYdxaNlJ0DQDUsL2n9RQgmFL+mlIdQCszuD8riuREJXEa9vqjStj3vFpsHGy5qVXyCn8tfgsLpx6zI4NkgCloGFiaoiJczujRVt3jTzuvo3C1KOBSMvJg5QkQTMMaIaBd5XyWN7ND2ZG/LbNUeRhzevdePj5BevFRBCgGBpWBuaYWnkIallrjufQ9Ku4GPcX5HQeSEjAgAYDoJZ1W7R2GQMJwTe6kjOyMXH3WTz7GAcJSQAgQNE0SthYYv3gTqhSQlMH8OiqM9gx+yAoOcWODYoGSZLo+3tXDJjXQ2NsREfEYJ7/CkS/iuX1X3mPMvjj5K8aWoMURWHbjP04/ifLnq0cG4bGhhizZjA6qAUIKBF27zUWdF+FlNhUXv95etfE7MOTNbapZXkyrB6+CVcP3OaNDTNrU/y6c7xWPbzgs4+wfNBfyE7L4c1tLXo3wbTtYzR0ODNTs7Co91o8ufScNzZsXWww9+hUXvCMEoFbL+PvSTuRnydTzW0Aukxoi1GrBmrocCZ+TMI8/5V48/Q9r21LVXLBH6dmoHQV4Y/WHwVu5Sm+6revPDmHiytPWlBk4yk+Pl5/Ii1wdhb+ov7/jm8xnlYM3oDL+25qRtARbPj9sotzUNtbpcf16kEkJjWdw0kWqIOUkKjf1hMLz/zGnWMYBlNbzkPonQiNsF6SJCAxlGLjg2U84+bOqQec3l5hEATQeXxbjFs3lDuXn5uP0Z7TEfcuQSM8mZSQMLMyxdYXa3irHqf+Oo+NE3fobJfCWlmpCWkYUXMKMlOzNeohkZJwcnPAP89W81br/pnGalLperrnHp0KLzVah6jwTxhbZwbkMrlGf5ASElUbVsSaGwt4hsf8ris50WF1sM7aBNbcWMDTkXt2PRTTW//B9l3hLicJtOzdBDP3qZyOKYrCLw1/x5uQD5r9J2G1zjY/Xclbtbqy/xaWDVivvdIA+v7eFUMW9eGOszNyMNJ9KpJjP2uQZZJSEtYOVtj6YjXv5XhgyQnsnH1QZx6Tt4xGu+EqrbrEj0kYWWsacrPytNajdNWS+PvRcp5/1Z9/nMKFk481+6/Abli0cSDqNlEZjqGxCei95RAohta4hiQINC5fGlsG+HOGB8MwmPdyA16kvy4wf9SzICAhSKysNR3lzEtx599mPsDx6Hk6ak3Aw7otfEtM4M7IFAp0X7sfUcmpoAo/UwQBc2NDnJgyAM7WqrYN+OcS1o3hy9uoY9jSfuitFiGbnpyBETWnsJI8WsaGfSk7bHm2mrfaun3mfhxacUpnJNXvByahZW8VvcinyDiM9pwOeb6mJA8pIVGxdjmsu7uIZ3gs7rMWN44Ga4wlggAIksSqq/N5OnIvb4djasv5YGgt/UcSaNK1AeYeUTmN0zSNSU1nI+LhW61zm4GxITY9Xs5bkb9x5C4W9V6rvdIE0HNaZ4xY3p87lZudh5HuU5EUnax1brO0s8DWF6sF/VN/FDjjKa4qJHJh+gshUAY5yHMRjSdtKPK6o7Oz81f9idCO2LfxuLTnhnbqAYadZPbMP8w7vX/RcTAMo5WAjqZo3At4jNePVdINz66H6pR7oGkGtILC4RWnVNkyDHbOPijgXAuc+fsCPseroiuvH76LT6/jtPK60BSN7PQcnFWT95DlyzXqVRh7FxzlWM8BIGDzJa2GE8B+Bca+TWC17wqQmpiOk+sDdRpOBAHsmH2Q145HVpwGpVBo7Q+aohF6JwIhV19y594++8DKPWhJz/YRsG/hMd753fMPs+9+bV1OM7h64DaiI1Qs0/fPPcHrx++09x9FQ5Ynw7E1AapzNI0dAkYNABxdfQZZaSqm+ku7byApOkUryzitoJGakIbz21QyP7lZuTiw5IRGWnXsmnuIx4F1cv15rYaTsh4fXkbjzskH3Ln4mFQEaTOcAHZsgMCejXxNv39uPgADRus1NMPg9psoPP+k+gB8lfkOz9IjNAwnNgt2xerYJ7422q3E3QKs5AxC0s4jU65iqr/04g3eJX7WMJyUZcrOk+Hg3RDunEKuwK65hzTSquPA4uM8/cNzWy4jLSlD59hIiErClX0qyaaMlEwcWxsgGIK+s9DYOLbqDBQyTcMJYPsv4uEbPLrwjDsXFRaN64fvah1Lytvu+eMI7/zeBUd5v/PyoBncOnaPx6z++OIzhN+L1Dm3KWRyHF11Ri1fBjtmHdBN08UAJ/4MQHpyBnfqyr5biP+QqHNuS0/OwLktl3Xc8CcBUwQGcaE/kedJJ8RN2x+EG0eCBcnqaJpB6J0ITsIgNysX9wOf6CGGk+DG4bvc8fXDdwX3/ikFjRuH73IyB9ERsYgK+yTIDszQDG6fUL3orh28LcgZQ1M0LqtN3s+uh+qVmclOz8HTKyodssv7bwoTihIEruy/xR3fPfUAVBFkTZSTMcMwuHbojiCxn0RK4tqhO9zxjSN39RIHPrwQgux0tq6piemsISvA7kxKSJ623Y0jd/WQotK8ekc+eY/EKGGZGXm+AsFnHnHHVw7cAiPwJmVohvfyfRgUoldmJjU+DaF3I1R57L8l2H8kyW/bO5fDdHI8AWx/vQ6NQUJsGgAgX67AlfC3Wo0UJaQkicCXqjLdSnoCicD0R4NGcHII5DQryZImi0Ni/jvBtiIARGSojPjAp68E60ExDM4+DueOX95+hfSkDJ3pAVbW5PFFlaFyZf8tQcZwoiCNEnfPPIJCJiwzE/cuAW9DPnDHVw/e1js2rh9WHxt65jaKjZDLSMkEwG6/KX0lBfNQe0au6xl/lILG1QO3ubns3fMoxL5NEDQaFXKKJ/R79eAtQQkfhmZ4WqIi/rcgGk8/CFlp2YKMukpkp7OaXblZefplFQhVevbabDBC+k9gJwx5vpwrkz6QEpKXLvNzlt5yZWeolakIeQCF6qHnGoZhkJmaxR1npeUUyZlTmYdCruDaQBdoiuHVIystB3p1aRggJzOPl5cQSJLgpcvSsdqmjrwslSZYUdqWKJRH5ucsvUR46v2dlaa/HgC/vjkZwtfQNM3vv8xcvfprAJCdxbZtjlwuyEgOsKtJWWqrmdmKXL38fzRoyGj2ucijitC2IJFPq+qanpOnt1zqZSrK+AP4bZuVliWQkv1QUP9YyS7ivKMsC8MwyM3KE0xLKehCZSri3FbwXOjTtQPYD6TCc4I+Hc78XBn3YVjUua3w2NDn1aL8OPppITKMfzeIxtMPQsmKLlAIyHsAgNRQCvuSLCeRpZ0FTCyEZU1oikaJCqqt0hLlnfW+4K0drTgnZZeyjnpfWpSCQkk1B2LXKiUFvwAJkkBJ9TJVKNpWrnq6khVdBCdjJcux+rX6jA6CIOBclo2QMjA0gK1AJBpQUA8136KSRcjD2MwIVg5s9KBdCRu9siaUolD/VXAWbFsAcFLjVXIpLyytA7Bfy+p5uFYpIbhKQEpIlKqsYs0uWdT+UyuLS3knwcdQIiXhWkmVR4nSdnpfjKSEhIMz62tiaWwEC2Nh7TKGAUrbWqvKZOIAfVajudQUJhL2vlYGjiD0TJc0KFgbqsZGWUfbAidx7SAAlLZXlamobauerlQlPf0nJeFaRa3/KroUSTdQ2X8EQcDRTXeUrTIPdb+7EhWc9fafobEBFyRg42QFIxPdEXgAKx5deG7TNzYcXO04PyyXck76pAw15k/XysJzGykhUVLtuf0pIRpP3w2i8fSD0KJXY43oEXVIpCRa9WnKOXpKDaRoO9RbeKIkCfgMasEd+w1rJag8TkpIdBzty/k42ThZo1FH3ZIxIFjdMnUphnYjWgtOlAzN8CQMKtYuh3LubjqNIZIk4FatFC+EvcNoX8EJn1LQ6DBSFSHUsENtWNlb6HxhkxJW302dLLPTmDZ6def8hqki9FoPaCZI7khKSPgNacUR6ZmYGcO7XzOtchJKGBgboFUflaNu+5E+ejXC1NvWpayToP4hQRCwK2GDOmraaB1G+ggagTRF86KvajarCpdyTjqNbKVzvTohZ8fRwhIWlIJGO7X+82pdHSamhjpfdqSERDPf6rCwZMeGhCTRs25NQW07APD3rMb939tJjyYjCPg5NwVZwFJuIrVEJcsmggaUIWmKShaq/uveoKbgViIDoFcjVV+UrenG6h/q6j+SQMmKLjzdwI6jfYX7T0GjvVrb1vPzgI2ztU6/RlJCoo6POxxLqyL0Oo5uI7w1r6DRboSKldy7nxekhrrdBUgJCZ+BLbgAD0NjQ/gOaiFoqEikEnj39+KO2w731js2OqmNDUdXe9Rt4yE4NqwdrXjM5+1HCs9tNEWj42hfnb+L+G9DNJ5+EEwtTDDx7xEAoDExkVISVg5WGLKoN+98v9nd4FzGQeMFrJwIR68ezOOCcSnrhMELCu5RaO5TRjl1m8IPKx+1aiDMrEw1JhmCZEO5p2wbw2PWrelVFW3VIqsKX+PpXRPe/VSTHkEQmLxlFKRGBhp5kBISEkMppmwdzZvcW/Vpirq+tXRO4L6DW6BWCxXlgoGhAaZuHwto0eMiJSTMLE0xavUg3vmuk9qhTI3SOifXgfN68tjPrewtMfbPIVydCufh4GqHfnP42naDF/aGrbONxktCWcYJG4bzZGbKVHdFr187FyTil0cZ5dRpLH/yHr9hGKs4X7htSTYCcOr2sbyoqPrtaqNFr8ZaDU2CINC4cz008a+vdh8SU7ePgURCau0/Q2MD/FLwXCvhN6wVajStqrNtu0xoy9MtMy6gI1CWoXAeVtamGDqRX+8RXvXgamutYUApj6b7esHRUsVB5WBkg4FlOvPScHmARAkTR/iX4suUtHAcBhOJhYYBxfrFEPBzmQgDUvVBVMvNhWcc8fIgCNQtVwpd6vKpQib9MwoGusaGVIKp28bw2sSre0M06FBHuzFEAK36smNHCYlUgmnbx4IgCY2PBVJCwsTcGGPVomkBtn8qeJTV7L+Cy/v+3pUXsm9hY47xfw1nkxTuPykJuxI2GPRHT975AfN7wr6knc65bfz6obyIT9fKJdFvNn98qdejnLsbOk9oyzs/du1gmFho6gCSJDtPTNs+hsd9V7u1O1r3b6bViCdIAvXbeWqlk/mpIK48fTcUmapAhHZ8K8P4vYDH2D3vMN48fQ+Andxa9GqM4cv6aSVuS0tKx47fD+DyvpuQ57OOn27VSmHAvJ46B/KlPTewb9ExxL5ho42MTAzhO7glhi7uo8FdBLAOo9tm7sPtEw+4r9qqDSti8MI+POoEJWiaxok/z+Ho6rP4XODgbmZlik5j26D/3B5aZQzehLzH9pkH8OhiCLd7UsfHHUOX9EWlOppSF7J8OQ4sOo7TG4M4/wVbF2t0n9wR3aZ00OrjFHLtJXbOPoiw4NcA2Em1ced6GLG8v1ZSyuz0bOycfQhBO69xTtElyjuhz+/dNLTwlLh1/B52zz+CqALnc6mhFN79vDBsaT+tpIbJsZ+xfeZ+XD90Bwo5u21bvpYbBv7RC407aXLfMAyDwK2XcXDZSSR8YJ3BTcyN0XaYNwYv7KVVhuLjqxhsn7kfwWcecT4bNb2qYujiPqjRtKpGeoqicGTFGZxYdw5piekA2G3iLhPaos9Mf61kquH3I7Hj9wMIucZGIBIE+zIZtrSfVqmL/Nx87Jl3BAFbLnE+Lg6udug5vTM6j/PT+vJ/dCcSuzdcRmRYLABAIiHh5VsdQyf6wtHFWiN9ak4u/rx8B6dCwiAr2BIva2+DcS0aor17FY30AHA98SEOR59HbG4iAMCQNEArxwbo79YRFgaaYyNdloAbiTsQkXEbDNix4WxcCV6OA1HWXJPXi2EY7L8Tgh3XHiExg/VPMjc2RK9G7hjj0wjGWtr23fMobP99Px6cf8qNDU/vmhi2pK9WUlGFXIEDi0/g1IbzrA8b2O34bpM7oMe0jhrcRQDw/GYYds4+iJe3XwFgjYHGneph+LJ+KKVlKyonMxe75hzC+e1XkJfNjg3nso7o85s/2g731tp/d049wO55h/H+xUcA7Nho2bsJhi3tp5Ww9XN8Knb8fgBXDtzmnNrL1iyNgfN7oql/A61tG7TjKg4sOYH492z/GZsZwW8oq2GnjQz3U2Qctv+2D3dOP+R8Nas3qYwhi/po5byjKArHVgfg+NqzSE1gx4aFjRk6j2+LvrO6CsoX/UhwVAUfK0CSr5sUWB8oo1zklX4jUhVogWg8fSOKS54l/kMicjJy4VjaXqtBUxjZGTlI+JAEYzMjdhtFz5YFwzCIeRMPeZ4MzmUdBbWflMhIyUTSpxRY2JoLsosrQVEUPr2OA03RKFnRpUjaT5/jU5GakA4bJyvYOgv7HQGsERX7Jh4ESaBURRfBaEIlEqOTkfk5Cw6l7AR1tZTIzc5D/LsEGBgbomQF5yK1bfz7RORm5cGpjIMgS7MSWWnZSPyYDBMLY7iU1e+rRNM0YiLjoJAp4FLeWZCBXon05Awkx3yGlb2FIIOyEgq5AjGRcWAYoGRF5yK9GFLiUpGWmA5bFxtBBmwlZHkyxLyJh0QqQcmKzlpf7IWREJuG7Kw8ODhbcVt1QsjOlyEmLQPGBlK42lgVrf/ykpFPy+BkbM/5OQkhl8pEpjwZxhIzQXZxJSiaRlRyGiiaRmk7axgJsPsrkZqQhs/xabB2tBJkh1dCLpMjJjIeBMH6QhVlbCR9SkHm5yzYlbARZPdXIi8nH3Fv42FgZIASFZz1BmYwDIP4D4nIzcyDk5u9hoC3NmSnZyMhKhkm5sZwLuuot/9omkbsm3jI8+VwLuckqPmohHJsWNpZFEncl1JQ+BQZB4Zmijw2fiRE4+n746c0nmQyGbZv346LFy8iMzMT5cuXx/Dhw1GvnuaXuTp27NiBXbt2aZw3NDTE5cuafBwBAQE4dOgQ4uPj4eDggO7du6NbN+1LwbogatuJECFChIifCZzxFFX+240nt7fi+00Lvkjb7t/C0qVLcf36dfTo0QOlSpXC+fPn8euvv2LdunVwd9fuQ6COqVOnwsRE9cBo+zo6ffo0Vq9ejebNm6NXr154/vw51q1bh7y8PPTr169Y6yOEpE8pOL3hPK4euI3sjByUqlQCHce0Qev+Xlq3SyiKwo0jwTizMQgfQqNhZGqE5j0awf+XdmxEiRZER8Tg5LpA3D55H7I8Vv+p8zg/NO3aQOtXnSxfjou7riPgn4uIe5cAc2sz+Axojs7j/TRkNJR4/fgtTvx5Dg+DQkDTNGo0qQL/ie21bvMB7MpZ4JbLCNx2BZ/jU2HjZI22w7zRYVRrnV+nIdde4sS6c3h5KxwESaJum1roOrG9Tn201MR0nNkYhEt7biAzldW26zDSB22GtNSqr8UwDO6ceoBTG87jzdP3MDA0QFP/+vCf2F6nDEP8h0ScWh+Ia4fvIj8nH6WrlkLncX5o0bux1lUVSkHhyv5bOLPpAj5FxMLE3Bit+jRF5wltda7uvX/5ESfXnWM5euQKVK5bHl0mtENDHb4ueTn5CNpxFee2XGK17ews0GZwS3Qc46tzdSEsOAIn1p3Dk8svAAao1aIauk7qwGOBVkdmahYCNl9C0M6rSEtMh31JO7Qf0Rpth7fSuar5MOgpTq4PRPj9SEgkJBq0rwP/ie106qMlx37G6Q1BuLL/Jqv7WMEZHce0gc/A5lrHBk0zuHH7FU6eeYK375NgZChFC68q6NqlDkqV0L5y8yEzBXvePETQpzDk0wpUsXJC/wr10KZkVa0cTRQjR3j6JTxPPYt0eQwMSTNUtfJBLZvOMJNqX8F4/TYBR888xr0CwtPqVUqge6c6qO+pvd45mbkI3MqOjZTYz7B2tELboa3QYbSvzlXpZzdCcXJdIJ7fCAUIArV93NFtUget8j0Au/1/dtNFXNx9HRkpmXByc0D7kT7wG9pSayALwzAIPvsIp/46j9eP30JqIEWTzvXQdVJ7XnCAOhI/JuHk+vO4fvgOcrPy4Fq5BDqN9UOrvk21ropRFIVrB+/g9MYgRL+KgbGZEVr0agL/X9ppSMwoERX+CSf/PIc7px9CLpOjYu1y8J/QDo061dU+t+XJELTjGgK2XETChyRY2JrDd2ALdBrXRidT+KsHkTjx5zk8vvQcDE2jZrNq6DqxPc/P8qfFt/ot/XxrKz8NfrqVp7CwMIwePRpjxoxBnz6sjER+fj4GDx4Ma2trbNq0See1ypWnM2fOwNraWme6/Px8dO/eHdWqVcPy5cu58wsXLsTt27dx7NgxWFjo394Bvm3l6c3T95jmPR+5mSr2ZYIkwNAM6vi4Y8GZ33hbXxRFYUmfP3Hz2D2QJMFFoJFSEgaGBlgWNEvDp+XRxWeY23kZaIrmIkdICauX5Te0JaZs5Tug5mbnYabfIoTejQABgvOZISUkLGzNsebGAg1D4tKeG1g5ZCNICaHKo0CvbuD8nhgwtwcvfWpiOqY0m4OYN/E8jiiCJOBSzglrby7Q2MLbv/g4ds05BImU5PKQSEnQFIMpW0draNV9iozDZK85yEhRyVYQBOtCUrVBRSy/OIf3kmcYBn+O/geBW69w7aPMgyBJ/HHyV14kDsAaHDN8F0KWp2JfVvZLE//6mHN4Cu8lIZfJMd9/JR6cf8r1s7JtTcyNseLyXA1/rzunHmBhzzUAGI3+8/+lHcasHczrv+yMHExrOR9vQt4XVAxcuWycrbH21kKNbcKzmy5g/bhtvLZV9t+oVQPRfUpHXvqkTymY7DUHidHJqv4rkBRyq1YKq2/8oaF1tn3mfhxafkqjbRkGmLnvF7To1YSX/v2LKExtMQ/ZGbkaY8OjZQ0sPjeTZwBTFI0lKwNw5Xo4f2yQBKRSCVYs6gEPd74vVnDie4y4fRAUQ4NSPucgQINB59I1sbxeZ54BpaDzcSp6JmJyn7MVLmhcAiSMSDN0d1sLO6MyvDwu3QjD4jWBIEiAolRlomkGA3o2xAi1CDKA3Sqf3GwOol/FsoScyuYlCTi5OWDtrYW8KFEAOLLyNLbO2KcxNiiKxqRNI3nRdgCrbjC52VykJabzxgbARsOuuDKPt/XMMAw2/rIDpzcGaY4NgsDcY9PQqGNdXh4RD99geus/kJ8j0+i/Bh3qYP7xaTwDWCFXYEGP1Qg+84jffwUyRMsvzdUwBO+fe4z5XVeCYTTHRscxvpiwYThvbORk5uLX1gvw+tGbgnqBu8bKwRJrby7gBYUArBbe2tH/QCIp1LYKGsOW9EXv3/zxM4JbefpQ7ttXnsq8E1eetOCni7a7ceMGJBIJOnXqxJ0zMjJC+/btERoaioSEhCLdJzs7WyfB2ZMnT5Ceno4uXbrwzvv7+yM3NxfBwcFarytOUBSFef4reIYTAO5l9OTKCxwsJINx+q8g3Dx+DwB4ofu0gpXqmOu/gidrkp2ejT+6rYRCTvFCbpX5Be24hgu7rvPy2DX7EMLvRQIMeO1HUzQyP2dhQfdVvPMxb+KwauhG3gSmLBMA7Jl/BE+vqtjCAeDPUf8g9m2CBrkmQ7P+EauHb+adf34zDLvmsLIV6nlQClbjb83IzTxZE4ZhsKD7Kp7hxJ4HwAARD99i+8wDvDwu77uJwK1XeO2jzIOSU1jQYxWPyFGWL8fczisgy5Xx0iv75e6pBzjx5zleHoeXn8bDCyFcXblrKBq5WXmY12UFT9YkNSENi/v8CYrS3n8n1wfiVsHzoMTmKbvx7nkU+9JVa16aZpCamI4lff7kpX/3PArrx2/j6sqlL/j/P9P2IPx+JO+a5YP+QnJMCr//Cp6Xj69isGH8dl76++ce49DyU7yyK/OjKRrLBv6FxOhktbLSmOe/kmc4qbfZsxuh2LuAL31zNjAEV66Hc3VVr7dcTmH2HyeQyyPJlGHc3aOQ0yrDCQAn13L64wscef+El8e95D2IzVVK9KiuYUAjn85GwKd5YBhVeeMT07FkbSBohuEMJ/Xy7T1yD/cfv+flsW7MFnx6Haehf8jQDJKik7Fy8AZe+rDgCGydsY9rTyUoBSvmvW7MVp6sCQAs6r2WZzgBqgWKNyEfsGX6Xl7664fv4vTGILbshceGgsKiXmt4siYKuQJzOy9Hfk6+1v57EPgER1ed5eVxbE0A7p19zGsfZX75OTLM67IccpmKyJYVzF4DSqF9bJzddJEn2QQA22bsQ+STdxqLMTRFIyM5A4t6reXNbVHhn/Dn6C0Ao6VtAWz//QBe3nmFnxqiPMt3w09nPEVGRqJUqVIwM+MvT1etyq6ovHnzRu89evXqhbZt28LPzw8LFy7E58+fNfIAgCpV+BE4lStXBkmSeP369bdUoUh4EPgUiR+TdXK0MDSDM39fgELORp0wDIPj687p5PVjaAaZKVk8eY9Le24iP0emkwGcIAmc+FOljZabnYfAbZd1lommaESFfcKLWypJiYDNlwSJOCVSEifXB3LHCVFJuHvmoe48FDQenH+CuHcqI/nk+kC9RJwBmy9xx6F3I/D+xUfBegTtuIqcTBWz8fG1ATqpEBiGgSxXjku7b3Dnbh+/h/TkDJ38UwwDnFgfyPFsUQoKpzac19kXNEUjOeYzgs+qpFPOb7/K9r+OPidJAifWqQy0jM+ZuLxPt5QNraDx6sEbLrITAM5sDBLkq5JISZzeeJ47jgr/hGfXQnXy39AUjRtHg3n6hyfWnRPkJ2NoBoFqGmGPLz5D3LsEwbFxdtMF7kOBYRgcPflQ52PIMAyysvNx9brquT378QWyFPk65VYIADsj73MvUwWdjxdpZ7kIO408QCNNHoPonKfcuTNBzwS5pCQkgWMFBgPAblPeOnFfZ70pBY0nl1/g0+tY7tzJv4THBikhcEZNWzLi4RtE6tBLBNj+u7TnOo+R+8SfATo50BgGkMsUCNpxjTt359RDfI5PA03pGBs0g5N/BYKi2A8FiqJw6q9AnR+7NE0jNSEdd0+ppFMu7LwGeb5c57udJAkcV/t4yU7PRtCua4Jt++bpe7x6oHq/nP37AkiJ8Nx2asN5nb//FGAYMAz91X+i8aQbP53xlJKSAjs7Td8B5bnk5GSN35SwsLBA165dMW3aNCxYsADt27fH1atXMX78eGRnqyaDlJQUSCQS2Njwt4YMDAxgaWmJlJQUnXkkJycjIiKC+4uKivrSKgIAwoJfQ2IgHA2TkZLJheCmJ2fo1S2TGEgQFqzS7wq//1qQ3I6hGbx/8RGyAmmSj2GfuDBkXSAlJBf6DwAv77wSJOmjFDQXDg2wk7deXQwGvEks9M4rYbI6BY3nN8O44/B7kXrlIfJzZfjw8mNBGSm8DfkgLDNDAGH31Nr2XqTe/kv+lILP8WkAgMSPyXp1yyQGEoSrtW34vdeCZaJpBq/UVoXePYvSq1tGEODpzr24FS7YtpSCxoubKqMj/F6kzrRcuSgakY/fccdhOgRc1dO/vKt6RsLvReqNFMtOz0FMAfVGVnY+YmLTBOd5iYREaLjK6AhJiREk1WQAvM9MQbaCNdBSZZ8go4VlZghIEJeraqvn4THC5K40g5evVCumrx+91S/BBH4fvLwtPDYoBY0Xt1RjIyxYeE4AWP3Dd8/ZeY1hGLx+9FawHgzDIJw3NvTPbanxaUj+xH7Ufo5LQ0psqmB6iYGE99yG338tOI/QNIPIx2+5j5f3Lz5CnicswUSQBG/8vbhdlLERpvP3nwLfsuqk/BOhFT+dw3h+fj4MDDTDQA0NDbnfdaFHD75vTYsWLVC1alUsXLgQJ0+eRP/+/bl7SKXaq25oaCiYx5kzZ7RG9H0pJBKySFa98iUi9OWuLf2XXKM0NIqUngFvpUKfRMLXlkn9vkW5Rqo2WUskpF77jFcuosAfSsh2Ir62Hl/QfwxAquWh9CkRcktUv29R8mCYQvUoSv8VatuiQL0eRdE5kxZq26K4YirrISSBwkuv3lYES2ypz5KXFDCME0RR6s1wjORFLZd6MEtR25Y/NvTTEWg8t0VoW/VniSAJwZcoQRD85/YL61HkeadwPfR0H0EQnM9T0cef+tz2ZW0r4n8LP93Kk5GREeRyzS8EmUzG/f4l8PHxga2tLR4/Vi2PGxkZQaHQ/oUuk8kE8+jUqRO2bt3K/c2ePfuLyqNEHd9aevWfHN0c4FSGjTKxsDFHOXc3Qc4TSk6hto8qGrF2a3dhNXsJiZpeVTnHzbI1S8PSXthRnqZpXh712ngKfslKpCTP0ZrNT3jCkUhJ1GymktKo39ZTeGuCJFHPT5VHbR93vV/wFjZmKOvuxuYnkaBWC92yJgArDOzprda2Pu6g5Lq1CQmCgFt1V1gXaNs5lrbXq69FKSjU4fVfLZ3bSgDbf7Vbq9JXqlter/4he19VBGT9trX1aqPVV2vbWi2r6+XdMTQ2QLWGKufeen4ewtuuBIE6vh6q8vkIP7cAqxVYsiJLdGpqaoTKlZy1RscpQVE06ni6ccdNnMqBYgTGBgh42JaEiZT9kLM1LA1Tia3O9AC7dVfaVEWU2aB2WcG2kkgINKitirir1riyXv1DUkLCXS3Kq0FbT0EDmJTwx0YdH3e9tpOppQkqFpSLIAh4tnbXu+1ap3XRxwYIVmPPrsDx3dbZGqUqlxDUP6QUhee2WoJjnJSQ8PSuybV/Bc+yMLMS5l9jGIY3nur7eQrWm53bagve84dDZBj/bvjpjCc7Ozut22bKc/b2+skaC8PR0REZGaotEzs7O1AUhdRU/lKxXC5HRkaG1m1DJezt7VG5cmXuz83NTWdaIdRoWgUVPMsKvlR6TuvEfZkSBIFev3bW+UXOinM6oUF71WBu3qMRbF1sdE4ANEWj5/TO3LHUQIrukzvq1hSTkqjVohrK1yrDnWs7vBUMjQ11GlA0zcB/Yjvu2MreEr5DWurWRiNJ+AxsziNc9P+lnc4xTBAEDIykaDdSJaVRprorPFvXFNCxArpO6sCLZOw5vZPOFzYpIWHjZIWWvRtz5+q2qYVSlVx05sEwDHpN78xN3gRBsG2tox4SKSspoR7+3HpAM1jYmOv0u6ApGj2mqgIrjE2N0HlcW0HdskYd6/LY1TuO8S1Y4dJeLgIEOo/3444dXe3RvFdjQf21DqN8eXQTXSd10On/QpAETCyM0WZIC+5c1QYVUaV+BT1jozOPCqJPjwagdY0NkoCToyWaNlIZdD4lq8DFxFLn1h0NBsMrq/qbJCSoY9tDa1qA3bJzMakOJxNVRFI7n5owMTbQadTRNIMenVXGloWNOdoNby2oG9iydxNetF3nCW3Z4apDXkdqIEHH0apou1KVSqB+O91GAUEQ8J/QjkdX0GOq8NiwtLNAKzUJJk/vmnCr7qq7/xig16/8sdHr1y66/ZekrJSU+odFyz5NYO1gKTi39ZimGhuGxoboOrG9oN5lXT8PXiRx+1E+kBpKtfdHwakuhSRgfjowNEB/w5/AB8b/On4646lChQr49OkTz0cJYCkMlL9/CRiGQXx8PI+6oGJFdhJ99YofKfHq1SvQNM39/j1BEAQWnJ4BpzIsO7FygConnM7j/NBpLF9QtVVfL/Sb1Y2XjiAIgABsnW2wOHAW74ViaGyIZRdmw8LWnEunfu2I5f3RsANfUqLnr51YPSf1PArKVrpKScw6NIWX3tbZBosDZsKokAFFFmif/bZnggaPz9i1g+HZqgaXTv1f9+bVMG79MF76sjXdMHPfL5BISY3tBENjAyw485tG+PasA5NQtgbLP0MWatuWfZqiz+/8EON6fp4YtWogm15t0icIAubWZlgaNJv3QpFIJFgSOAt2JWwKtv2UebDt33tGF7Qe0IyXR/uRrdFtUnteWZRt5ljaAQvPzOAZPqYWJlgaNBumlqa888otiwkbhmtwzQz6oyeadq3Py0PZZhVrl8X0XeN46Z3LOGL+iV819NRICQmpgQRzjkyBa2U+NcXkf0ahasHKUuH+q9fWE8OW8XnSqjWshClbRxfo6/H7z9jMGEsCZ/GoDQiCwLwT0zkjr/DYaD+yNbr8wn9ptfCqgiEDmrLpJMqXMvvI21ibYuXinrytQUNSgu1efWFjZArlBh6g2qabXL0FfEvyA0o8bbuhuhWbLwHlvdgrbQxLon3Jebz01pamWDGvG4yMpPz+IwmQBIHffmmLqhX5ofEjVw5A3TYevDZV/lu9cWVM3MTXDXSrWgqzDk6GRCrh9x9JwMDYAPNP/soT+QWAGXsmcB9AymuUbduse0MMmMc3Emt718S49UMBQnNsmFmaYtmF2TxWb5Iksejsb7AvYO5WjQ322u5TOmpQi7QZ3IL7kOPNbQAcStphUcBM3haniZkxlgbNhpkVf2xIpOzYGLN2MOr41OLl0W92N44So/DYKFuzNGbu/YWX3qGUHRacKhgbheY2iVSCmfsnoUx17RxXIv77+H/B8ySTyTBo0CBYWVlh82Y2jD0hIQF5eXm8lZ+0tDQNfqeTJ09i7dq1GD9+PHr2ZMUo8/Pz0a1bN9SoUQPLli3j0i5atAg3b97EsWPHYGmpX6oA+HaG8fzcfFw/fBfXD99BVloO3KqWRLsRrVGtke57RT55h4B/LuHd8yiYWhjDq1sjePdrqpOcMDs9G5f23MSdUw+QnytDxdpl0WG0r1YNMoA1OJ/fDMP5bVfwKTIOVvYW8O7rhabdGuqUXElNSEPgtit4fPEZKAWFml5V0X6Uj07pEYqi8CgoBEE7ryHpUwocStrCd3BL1G/nqVOyI/5DIs79cwkvboUXqL/XQtvhrXTKushlctw+8QBX9t9EWlIGSlZwRtth3qjVQvfW04fQaARsvojXj9/ByMQQjTrVhe+gFjrJCXOz83DtwG3cOBaMnIxclK1ZGu1H+vCEbgsj/H4kzm25hKiwTzCzMkWLno3RoncTnZIrGZ8zcXHXdQSffQR5vgJV6ldAh9G+Ook7GYbB0ysvcH7HFcS9S4StkzW8+zdDky71tJJLAmykV+CWy3h69QUYhkGt5tXRfpSPTuJOSkEh+OwjXNpzAylxqXBys4ffkFao41tLp2RHzJs4BGy+hLDgCEgMJGjQrg78hrbUSdwpy5PhxtFgXDt4G5mpWXCtzI6N6o0r6+y/yLcJOBsYgjdvE2FiYoBmTSrDp1U1mOpo2yx5Pk5FPcel2FfIVchRzdoZvcrVRlVrTe1DgG3b2NyXeJl2DmmyTzCSWKKKZStUsGgGKalJvAoAaek5OHf5Be49egcFRaNm1ZLo7FcLJXVIrtA0jUcXniFo51UkfkyGnYsN2gxuiQbta+v0sUn8mISAfy7h+Y0wECSB2t7uaDeytU5ZF4VcgTsnH+DyvptIS0qHSzkn+A31hmerGjrb9uOrGJzddAERD9/C0NgAjTrWhe/gFrCwMdeaPi8nH9cO3saNo8HITs9BmequaD+yNarU1/1xGvHwDc5tuYT3L6NhammC5j0ao2WfJjolVzJTs3Bp9w3cPfMQsjw5Ktctjw5jfOFWtZTW9AzDIOTaS5zffgWxbxNg7WCJ1v2boYl/fZ2SKylxqTi/7QqeXH4OmqLh3rwa2o/00Unc+TOA43mKKAUy98tcXdRBm+Qjr/InkedJC3464wkA5s2bh5s3b6Jnz54oWbIkgoKCEB4ejrVr18LDwwMA8MsvvyAkJAQ3b97krvPx8UGrVq1Qrlw5GBoa4sWLF7hy5QoqVKiAjRs3wthYNQCVRlWLFi1Qv359PHv2DBcuXMCIESMwYMCAIpdVlGcRIUKECBE/E5TvJaPwEt9sPOVXjRXfb1rw00XbAcDvv/8OJycnXLhwAVlZWShXrhyWL1/OGU664OPjg5cvX+LGjRuQyWRwcnJCnz59MHDgQJ7hBLCEmFKpFIcPH8adO3fg6OiI8ePHa0TsiRAhQoQIESJEqOOnNJ6MjIwwduxYjB07Vmea9evXa5z79ddfvyifjh07omPHjvoTihAhQoQIEf/fIGrbfTf8lMaTCBEiRIgQIeIboZRn+ZbrRWjFTxdtJ0KECBEiRIgQ8TNDXHkSIUKECBEi/otgmG/jahJXnnRCNJ5EiBAhQoSI/yAYmimSXqLQ9f8GQkJCcOjQIURGRiI9PR3m5uaoUKECBg0ahJo1a2qkf/HiBTZv3ozXr1/DzMwMLVu2xIgRI2BqKswir0RAQAAOHTqE+Ph4ODg4oHv37ujWrdsXlVk0nkSIECFChIj/JL6VJfzfYRj/9OkTSJJE586dYWtri8zMTFy6dAkTJkzA8uXL0aBBAy5tZGQkJk+eDDc3N4wfPx6JiYk4fPgwPn36hJUrV+rN6/Tp01i9ejWaN2+OXr164fnz51i3bh3y8vLQr18/vdcrIRpPIkSIECFChIgfhg4dOqBDhw68c/7+/ujduzeOHj3KM562bNkCCwsLrF+/HmZmLHmxi4sLVqxYgQcPHqB+/fo688nPz8e2bdvQqFEjLFy4EAAbdU/TNPbs2YNOnTrBwkJY31UJ0WFchAgRIkSI+A+CoVVbd1/39+PKbmxsDCsrK2RlZXHnsrOz8ejRI/j6+nKGEwC0adMGJiYmuHbtmuA9nzx5gvT0dHTp0oV33t/fH7m5uQgODi5y+UTjSYQIESJEiPgvgqG//e9fRHZ2NtLS0hAVFYUtW7bg/fv3qFNHpb/67t07UBSlwXZuYGCAihUrIjIyUvD+yt+rVOHrVlauXBkkSeL169dFLqu4bfeNyM/PBwBERUX94JKIECFChIj/L3Bzc9NQvihuMKaKb/JaYkwVADTfb3Z2drC31657+S2YN28eHjx4AIA1iDp16oSBAwdyv6ekpHD5F4adnR2ePXsmeP+UlBRIJBLY2PA1Hw0MDGBpacndvygQjadvRHx8PABWVFiECBEiRIgoCr6nXpy1tTWMjY2RVznjm+8llUo13m+DBw/G0KFDtaanaRpyubxI9zY0NOQJUY8aNQq9evVCYmIigoKCoFAoQFEU97tyscLAQFPE2dDQEDKZTDC//Px8SKXazR5DQ0Pu/kWBaDx9I+rXr4/Zs2fDxcUFhobaVdWLgqioKCxatAizZ8+Gm5tbMZbw58T/Wn2B/706i/X9b0Os77fhe7aZk5MT9u7di7S0tG++F03TIEm+h4+2lR8lnj17hokTJxbp3nv37uW1Q8WKFbn/+/r6Yvjw4Vi6dCnn3G1kxIocazPOZDKZ3newkZERFAqF1t9kMhl3/6JANJ6+EdbW1vD19S22+7m5uf1PqVf/r9UX+N+rs1jf/zbE+v6ccHJygpOT07+eb+nSpTFz5swipRUywgwMDNCkSRPs378f+fn5MDIy4tJr215LSUnRu5VoZ2cHiqKQmprK27qTy+XIyMgQLE9hiMaTCBEiRIgQIaJYYGdnh7Zt2xbLvfLz88EwDHJycmBkZISyZctCIpEgIiICrVq14tLJ5XJERkaiZcuWgvdTrmy9evUKjRo14s6/evUKNE3zVr70QYy2EyFChAgRIkT8MKSmpmqcy8zMxI0bN+Do6MitEpmbm6Nu3bq4ePEicnJyuLQXLlxAbm4uz3jKy8tDVFQUb+uydu3asLS0xOnTp3l5nT59GsbGxjyDSh/ElaefBHZ2dhg8ePAXLRv+f8b/Wn2B/706i/X9b0Osr4jiwvTp0+Hg4IBq1arBxsYGCQkJCAwMREpKCubPn89LO3z4cIwbNw4TJkxAp06dOIbxevXq8cg0w8PDMXHiRJ5zu5GREYYNG4a1a9di7ty5qF+/Pp49e4aLFy9ixIgRsLS0LHKZCYYRlf9EiBAhQoQIET8GJ06cwNWrVxEVFYWsrCxYWFigWrVq6NOnD2rVqqWR/vnz55y2nampKVq2bIlRo0bxtO2ePn2qYTwpcfbsWRw+fBhxcXFwdHSEv78/evTowYv80wfReBIhQoQIESJEiPgCiD5PIkSIECFChAgRXwDReBIhQoQIESJEiPgCiMaTCBEiRIgQIULEF0CMtvsOUDqqacOmTZtQvXp17vjFixec45uZmRlatmyJESNG8BzfACA6Ohrbt2/HixcvkJGRAScnJ7Ru3Rq9e/f+7vpI+vA96hsREYGtW7fi5cuXYBgG1atXx5gxY76Ih+N7oaj1ffDgAa5evYrw8HBERUXB0dERR44c0XodTdM4dOgQTp06hc+fP6NUqVLo378/Wrdu/d3qUVR8j/ru2bMHYWFhCA8PR2pqqqDcw7+N4q5vVFQUAgMD8fDhQ8TExMDExASVKlXC0KFDNQRKfwSKu77JycnYtGkTXr16heTkZEgkEpQqVQr+/v7w8/P7Iqfc74Hv8Tyr4+LFi1i0aBFMTExw4cKFYi27iJ8HovH0HdGtWzdUrVqVd65kyZLc/yMjIzF58mS4ublh/PjxXMjlp0+fsHLlSi5dQkICRo0aBXNzc/j7+8PS0hKhoaHYsWMHIiIisHTp0n+tTkIorvpGRERg3LhxcHR0xODBg8EwDE6ePIlffvkF//zzD0qXLv2v1UkI+up7+fJlXL16FZUqVdIb3rx161bs378fHTt2RJUqVXD79m0sWLAABEHA29v7u5T/S1Gc9d22bRtsbW1RsWJFTgj0Z0Nx1TcgIADnzp1D8+bN0aVLF2RnZ+PMmTMYM2YMVq5cibp16363OnwJiqu+6enpSEpKQosWLeDo6AiFQoFHjx5h6dKliI6OxsiRI79bHb4Exfk8K5GTk4PNmzfDxMSkWMsq4icEI6LY8eTJE8bLy4u5du2aYLpp06YxXbp0YbKysrhzZ8+eZby8vJj79+9z5/bs2cN4eXkx7969412/aNEixsvLi8nIyCjW8n8piru+06dPZ9q1a8ekpaVx55KSkhhfX19m1qxZxV7+L0VR65uUlMTI5XKGYRjm119/ZXr06KE1XWJiItOyZUtmzZo13Dmapplx48YxXbt2ZRQKRbGV/WtQ3PVlGIaJjY1lGIZhUlNTGS8vL2b79u3FVt5vRXHX99WrV0x2djbvXFpaGtOxY0dm7NixxVLmb8H36F9tmDFjBuPr6/uffJ6V2LRpE9OvXz9mwYIFjK+vb3EUV8RPCtHn6TsjJydHqxBhdnY2Hj16BF9fX5iZmXHn27RpAxMTE1y7do2XFgBPiwdgSdtIktSpEv0jUBz1ff78OerWrQsrKyvunL29PTw8PBAcHMxjlv3R0FVfgC1zUfrm9u3bUCgU8Pf3584RBIEuXbogKSkJoaGhxVbeb0Vx1BcAXFxcirNY3w3FUd/KlStrbEtbWVnB3d0dUVFRxVLO4kJx9a82ODs7Iy8vT+f9fwSKs77R0dE4evQoxo0bB4lEUlxFFPGT4ud56/4HsXTpUuTm5kIikcDd3R1jxozhfBzevXsHiqI0BCYNDAxQsWJFREZGcuc8PT1x4MABLF++HEOHDoWlpSVevnyJ06dPo1u3bj/NEnFx1Vcul2tVxzY2NoZcLsf79+95flQ/CkL1/RJERkbCxMREQ2VduaUQGRkJd3f3Yinzt6C46vv/Bd+7vp8/f+Z9IPxoFHd98/PzkZubi9zcXISEhOD8+fOoXr36FynXf08Ud33/+usveHp6olGjRryPQRH/TYjG03eAVCpF8+bN0bBhQ1hZWeHDhw84fPgwxo8fj7///huVKlXiVKG17aXb2dnh2bNn3HGDBg0wbNgw7Nu3D3fu3OHODxgwACNGjPj+FdKD4q6vq6srwsLCQFEU9wUnl8sRFhYGAEhKSvoXaqUbRanvlyAlJQU2NjYajrTKtkpOTi62sn8Niru+Pzv+jfo+e/YMoaGhGDhwYDGU+Nvwvep79OhRbNmyhTuuU6cOfvvtt+Iq9lfje9Q3ODgYDx8+xM6dO79DiUX8jBCNp++AmjVrombNmtxx06ZN0aJFCwwZMgRbtmzBqlWrkJ+fD4BdeSkMQ0NDyGQy3jkXFxfUqlULzZs3h6WlJYKDg7Fv3z7Y2tqiW7du37dCelDc9fX398fq1auxfPly9O3bFzRNY8+ePZwBVrht/m0Upb5fgvz8fJ3tovz9R6K46/uz43vXNzU1FQsWLICLiwv69OnzrcX9Znyv+rZu3RpVqlRBWloa7t69i9TU1B8+doHir69cLsdff/2Fzp07o0yZMsVcWhE/K0Tj6V9CqVKl0LRpU9y8eRMURXFL13K5XCOtTCbjbVtduXIFK1euxP79++Ho6AgAaN68ORiGwT///IPWrVv/VMv/wLfVt3PnzkhMTMTBgwcRFBQEAKhSpQr69OmDvXv3/jTblOooXN8v8XkwMjLS2S7K3382fEt9/z+iuOqbm5uLGTNmIDc3FytXrtTwhfpZUBz1dXZ2hrOzMwDWkFq5ciUmT56M/fv3/3TP9LfU98iRI0hPT/9pqDZE/DsQHcb/RTg6OkIulyMvL4/bklGupqgjJSUF9vb23PHJkydRsWJFznBSokmTJsjLy+P5C/1M+Nr6AsCIESNw+vRpbNiwATt37sSWLVvAFMgwurq6fv/CfwXU6/slsLOzw+fPn7n6KaFsq8Jt87Pga+v7/xXfWl+5XI7Zs2fj3bt3WLJkCcqVK1fMJSxeFHf/Nm/eHImJibwt+p8JX1PfrKws7NmzBx06dEB2djbi4uIQFxeH3NxcMAyDuLg4pKamfsdSi/hREI2nfxGxsbEwNDSEiYkJypYtC4lEgoiICF4auVyOyMhIVKhQgTuXmpoKmqY17qeMEqEo6vsW/CvxtfVVwsLCAu7u7ihfvjwA4NGjR3BwcPhpeJ4KQ72+X4IKFSogLy9PI/JK6eOlrW1+Bnxtff+/4lvqS9M0Fi9ejCdPnmDOnDnw8PAo/gIWM4q7f5Xbz1lZWcVyv+LG19Q3MzMTubm5OHjwIHr16sX93bhxA3l5eejVqxePw07Efwei8fQdkJaWpnHuzZs3uHPnDurVqweSJGFubo66devi4sWLvND7CxcuIDc3Fy1btuTOubq6IjIyEtHR0bx7XrlyBSRJcsbFj0Jx11cbrly5glevXqFHjx4gyR/72Balvl+Cpk2bQiqV4uTJk9w5hmFw+vRpODg4oEaNGt9a5G9Ccdf3Z8f3qO+ff/6Jq1evYvLkyWjevHkxlLL4UNz11XY/ADh37hwIgvjhAQbFWV8bGxssXrxY48/T0xOGhoZYvHgx+vfvX4ylF/GzQPR5+g6YN28ejIyMUKNGDdjY2ODDhw84e/YsjI2NMWrUKC7d8OHDMW7cOEyYMAGdOnXiGLfr1auHBg0acOl69+6N+/fvY/z48ejatSssLS1x9+5d3L9/Hx06dPjh2zrFXd+QkBDs3r0b9erVg6WlJcLCwnD+/Hk0aNAA3bt3/xFV5KGo9X379i1u374NAIiJiUFWVhZ2794NgF1NatKkCQB2u6BHjx44ePAgFAoFqlatilu3buH58+eYM2fOD/cnKu76AqzRHB8fz61GPHv2jEvbpk0bzlfmR6C463vkyBGcOnUK1atXh7GxMS5evMjLz8vL64eu3hV3fffs2YOXL1+ifv36cHJyQkZGBm7cuIFXr16hW7duKFWq1L9fSTUUZ32NjY3h5eWlkcetW7fw6tUrrb+J+G+AYAo7Woj4Zhw7dgyXLl1CTEwMsrOzYW1tjTp16mDw4MEaE8fz5885rTdTU1O0bNkSo0aN0nAkDQsLw86dOxEZGYmMjAy4uLjAz88Pffr0+eEkmcVd35iYGKxZswavX79Gbm4unJ2d4efnh169emmNSvu3UdT6nj9/Xqd0jp+fH37//XfumKZpHDhwAGfOnEFKSgpKlSqFfv36wdfX97vXRx++R31/+eUXhISEaE27bt06eHp6FmsdvgTFXd8lS5ZwgQ/acPjw4R9KGlrc9X348CGOHz+O169fIy0tDYaGhihfvjw6dOjwU2jbfY/nuTCWLFmCGzduiNp2/2GIxpMIESJEiBAhQsQX4L/lrCBChAgRIkSIEPGdIRpPIkSIECFChAgRXwDReBIhQoQIESJEiPgCiMaTCBEiRIgQIULEF0A0nkSIECFChAgRIr4AovEkQoQIESJEiBDxBRCNJxEiRIgQIUKEiC+AaDyJECFChAgRIkR8AUTjSYSIr0RcXByaNWuGJUuW8M7/8ssvaNas2Q8q1ZehZ8+e6Nmz548uxn8SDMNg+PDhmDJlCu/8z/Z8jB8/nidLIkKECP0QjScRPz2URor6X6tWrdCtWzcsWLAAb9++/dFFLFYsWbIEzZo1Q1xc3I8uiohvQFBQEF6/fo1hw4Z997wWLFiAZs2a4fLly4LpsrOz4ePjg3bt2nG6gkOGDEF4eDiuXLny3cspQsR/BaLxJOL/DUqWLInBgwdj8ODB6NatG5ydnXH58mWMGjUKL168+NHF4zBr1izs3bv3RxdDxA8ETdPYuXMn3N3dUb169e+eX/v27QEAgYGBgukuX76M/Px8eHt7w8jICABQp04dVKpUCTt27ICo1iVCRNEgGk8i/t+gZMmSGDp0KIYOHYpx48Zh48aNGDBgAGQyGbZu3fqji8fByckJbm5uP7oYIn4g7t+/j/j4ePj5+f0r+dWuXRsuLi548uQJEhISdKZTGldKY0sJX19fREdH48mTJ9+1nCJE/Fcg/dEFECHiW9CtWzfs3bsXr1694s41a9YMHh4emDNnDrZs2YKHDx8iNTUVf/75Jzw9PQEAISEhOHToEEJDQ5GTkwNHR0e0atUKAwYMgLGxMS8PiqJw6NAhBAQEICkpCQ4ODmjfvj1atWqltUy//PILQkJCcPPmTY3fbt26hZMnT+L169fIy8uDra0t3N3d0bdvX5QrVw49e/ZEfHw8AKBXr17cdR4eHli/fj13HBsbi71793J1s7CwQP369TF06FA4OztrzXfv3r149+4dzMzM0KRJE4wZM+YLWpp/r+PHj+P169eQyWQoWbIk/Pz80LNnT0gkEi6dUpV+5syZsLOzw86dO/HmzRsYGRmhUaNGGD9+PKysrDTu//btW+zduxchISHIyMiAnZ0dmjRpgiFDhvDSx8XFoVevXvDz80Pfvn2xdetWPHv2DBkZGTh8+DBcXFyQl5eHnTt34vLly0hPT0fJkiXRvXt3lCpVChMnTsTgwYMxdOhQZGVloWvXrnB2dsaePXs0ykTTNHr37o2srCycPHmSW7XRhcDAQBAEgebNmxe5Xa9cuYIlS5agdOnSWLlyJezt7QEU7VklCALt2rXD9u3bERgYiCFDhmjc//379wgPD0f58uVRpUoV3m8tWrTAhg0bcP78edSpU6fIZRYh4n8VovEk4j8BgiB4x+np6RgzZgwsLS3RqlUryGQymJqaAgBOnTqFtWvXwtzcHI0bN4aNjQ0iIiKwd+9ePH36FOvWrYOBgQF3r5UrVyIwMBAuLi7o0qULZDIZDh8+jJcvX35RGTds2IAjR47A0tISTZs2hY2NDRITE/Ho0SNUqlQJ5cqVQ/fu3REUFIQ3b96ge/fuMDc3BwC4uLhw9wkLC8O0adOQm5uLxo0bo1SpUoiPj8elS5dw//59bNq0CSVKlODSBwUFYcmSJTAzM0ObNm1gbm6Ou3fvYvLkyZDL5by66sM///yD/fv3w8HBAc2aNYO5uTmeP3+OTZs2ITw8HAsWLNC45vbt27h37x4aN26MGjVq4NmzZ7hw4QJiY2OxceNGjbTz588HQRBo2rQpHB0d8eHDB5w4cQIPHjzAP//8AwsLC941MTExGDNmDMqVKwc/Pz9kZGTAwMAAFEVhxowZePr0KcqVK4fWrVsjMzMTGzduhIeHB+8e5ubmaNWqFQIDA/HixQvUrFmT9/ujR48QHx8Pf39/vYYTwzB4+vQpXF1dNcqqC8ePH8f69evh7u6OpUuXcv3+Jc+qn58fdu7cifPnz2Pw4MEaY0LXqhMAODo6wtHREY8fPy5SeUWI+F+HaDyJ+H+NU6dOAYDGl/T79+/Rrl07TJ8+nbca8uHDB6xbtw7ly5fH2rVreSsZ+/btw5YtW3D8+HH07t0bAPD06VMEBgaiQoUK2LhxI0xMTAAAAwYMwNChQ4tczrt37+LIkSMoV64c1q1bx8tXoVAgIyMDABv99ubNG7x58wY9evTgGU3KtPPnzwdN0/jnn39QqVIl7rfnz59j4sSJWL9+PZYtWwaAdRBet24dTExMsGXLFri6ugIARowYgcmTJyMlJUXrSpU2PHz4EPv370f9+vWxcOFCri0YhsGaNWtw+vRpXL9+HS1atNCo+/r16zmDhKIoTJkyBU+fPkVoaCjnE5Seno7FixfDysoKGzdu5JXrypUr+OOPP7B9+3ZMmjSJd/8XL15wK0jqCAgIwNOnT9GgQQMsW7aMew569uyJ4cOHa9SvU6dOCAwMREBAgIbxFBAQAADo2LGj3naKiopCRkYGGjRooDctAGzduhV79+6Fl5cX5s6dyxlnX/qsOjk5oV69erh//z6ePHnCW0FSKBS4dOkSDA0N4evrq7UclStXxq1btxAbG8szvkWIEKEJ0edJxP8bxMTEYMeOHdixYwf+/vtvjB8/Hrt27YKhoSFGjBjBS2tgYIDRo0fzDCcAOH36NCiKwsSJEzW2jPr27Qtra2te1NGFCxcAAIMGDeKMBQBwcHBA9+7di1z2kydPAmC39ArnK5VKYWtrW6T73L17F/Hx8ejTpw/PcAIAd3d3NGnSBPfu3UN2djYAdostOzsb7dq14wwnZZ6F20wfTpw4AQCYPn06ry0IgsCoUaNAEITWiK3WrVvzjBGJRML5Aqlvt164cAHZ2dkYOXKkhkHn7e2NSpUqab2/ra0tBgwYoHH+0qVLAFhDUf05KFOmDNq0aaORvlq1aqhYsSKuX7/OtR8ApKWl4c6dO6hSpQoqVKigcV1hJCYmAgBsbGwE01EUheXLl2Pv3r3o2LEjFixYwFvV+tJnFVCtKp07d453Pjg4GJ8/f0aTJk1gaWmptTzKZzApKUlvHUWI+F+HuPIk4v8NYmJisGvXLgDsy9/GxgatW7dGv379UL58eV5aFxcXWFtba9wjLCwMAPDgwQOtWxRSqRQfP37kjt+8eQMAqFWrlkZabed04dWrVzA0NNTYLvpShIaGAgA+fvyIHTt2aPz++fNn0DSN6OhoVKlShSu/u7u7Rtrq1atrGJdCCAsLg4mJicaLWQkjIyNe2ylRuXJljXMODg4AgKysLO6csm5hYWGIifm/9u42pKn2jwP4d5rm3DR7kNkDITrMpaGZTQ1HqZhNltoL0YpIMoQKjMRZGBVEUGqpFfQmk4zAh7TAJ3zsgWIWZDlJyCxySGKY1dxS26b//wvvc27XNrfjfXPf3Pn7vGvnnJ3reC7Yt991net8sjjGYDBAq9Xi+/fvZvdWLBZbHXp8//49+Hy+RcgEgE2bNqGhocHi86SkJFy5cgUdHR1ITk4GMDvsaTQaHao6AWCriPaG7M6cOYNnz57hwIEDVoMs174KANHR0fDy8sLTp0+h1+vZ4T/mnlkbsmMwoUqr1c7bbkIIhSfyHyKVSnH58mWH9rX1v37mh83RpQR+/PgBJycnqxOb7VUW5tLr9fD29oaT018r9up0OgB/VlVsmZqaAgC2gmKtrc7Ozlavy5bx8XFMT0+zAdaayclJi88EAoHVcwOz1RcGc21Mlc4W5toYtu7DxMQEG9J+ZavSFx8fjxs3bqCxsZENT01NTeDz+YiLi5u3XQymemQwGObdT61Ww9XVFZGRkVa3c+2rwGyg2rlzJ2pqatDR0YGUlBSMjY3hxYsXEIlECA8Pt3kss+7Trw9MEEIsUXgiv6VfJ8symB/ylpYWdgL5fAQCAWZmZqDVai0qWd++fXO4PUKhkK0K/ZUAxbT50qVL2LZtm939meu11tbp6WlotVqbAcPad/F4PKsVm78Dc223b9+Gn5+fw8fZutfu7u42qyhfv361eUx8fDzq6+sxMDCAqakpaDQaKBQKh/oLALafMOHHlpKSEuTk5ECpVKKoqMhinhXXvspQKBSoqalBU1MTUlJS0NbWhunpacjl8nn7HtNeLoGakMWK5jyRRWXjxo0A/hwisoeZ46JWqy22WfvMFolEAoPBgJ6eHrv7Mj9wMzMzFtsW2v7e3l6LbX19fWaVH3skEgm0Wi2GhoYcPoYLrtdmj1gsxuTkJAYGBiy2zfekZFJSEgCgoaGBnSiuUCgcPq+vry+cnJysDmHOFRAQgNLSUri4uECpVFos9LrQv4evry+CgoLQ39+PDx8+sMsmJCYmznvc0NAQlixZQmuUEeIACk9kUUlJSYGzszOuXr1qdTFBnU6Hd+/esf9mnkyqqKgwG5IaHR1FbW2tw+fds2cPAODatWsWFQmTyWRWCWHmnjATj+eKjo6GSCRCdXW11SBmMpnMglJ0dDQEAgGam5vNQo/JZEJZWZnD7QfATpAvKCiwWtEZGxvD4OAgp++cKzExEe7u7rh58yY+fvxosX1qaopTkIiPjwcAlJWVmQVRjUaDlpYWm8cFBAQgMDAQHR0dePz4Mfz9/dkg4wgPDw/4+/ujv7/fagCeSywWswEqNzfX7N5x7atzMXObiouLodFosGXLlnmfqjQajRgYGMCGDRto2I4QB9CwHVlU/Pz8kJOTg+LiYuzfvx+RkZFYu3YtJiYmMDw8DLVajV27diE3NxfA7MrNiYmJaG5uRkZGBmQyGYxGIx4+fIigoCCoVCqHzhsVFYX09HRUVVVh3759kMlkWL58OUZHR/Hq1SukpaWxL+gNCwtDVVUVioqKsH37dri5ucHHxwcJCQlwdXXF+fPnkZeXh+zsbISFhcHPzw88Hg8jIyPo7e3FsmXLcPfuXQCzw4XZ2dm4ePEisrKyEBsby67ztHTpUqxcudLhv11ERAQOHjyIiooK7N27FxERERCJRBgfH8enT5/Q29uLzMxM+Pr6crspf/Dy8sK5c+dw9uxZHDp0CFKpFOvXr4fRaMTIyAh6enoQHBzs8Lw3uVyO1tZWdHV1ITMzExEREdDpdOjs7ER4eDhUKpXNYazk5GQUFBQA4FZ1YshkMpSXl6Ovr89iOO5X/v7+KC0txYkTJ6BUKlFYWIiQkBDOfXWu2NhYXL9+na1mzTdRHJitTBoMBshkMs7XSshiROGJLDq7d++GWCxGTU0N1Go1VCoVBAIBRCIRUlNTLV6poVQqsW7dOjQ2NuLBgwfw9vZGWloaYmJiHA5PAHD06FEEBQXh/v37ePLkCQwGA1asWIGwsDBs3bqV3S8yMhJHjhxBQ0MDqqurYTKZEBoayj5eL5FIUF5ejsrKSjx//hxv3ryBi4sLVq1aBZlMZjGxWS6XQygU4s6dO2htbTVbYZzrS2szMzMREhKC2tpadHd3Q6/Xw9PTE6tXr0ZGRgZb7VmoqKgo3Lp1C5WVleju7sbLly/h5uYGb29vyOVym2sUWePs7IzCwkKUl5ejs7MTtbW1WLNmDY4dOwYPDw+oVCqbc4ni4uJQUlICHo/H6ZwMhUKBiooKtLe32w1PgHmAysvLQ0FBAUJDQzn3VYa7uztiYmLQ3NwMT09Pu6Gora0NLi4udof2CCGzeP+jN0ESQhYZZmHKwsJCq0+7vX37FllZWUhISMDp06cXdI4LFy6gq6sL9+7d4zTh+5+m0+mQmpqKHTt24NSpU/92cwj5T6A5T4SQ39aXL18sPhscHERdXR2EQiH7rsNfVVZWAgC7XMFCHD58GD9//kRdXd2Cv+OfUF1djZmZGc5VSEIWMxq2I4T8toqLizEyMgKJRAKhUIjh4WGoVCqYTCacPHnSbEXvz58/o729HYODg3j06BGkUimCg4MXfG4fHx/k5+dzWtLi3+Dp6Yn8/HyHl6wghNCwHSHkN9bW1ob6+npoNBro9Xrw+XwEBgYiPT0dUqnUbN/Xr1/j+PHj4PP52Lx5M5RKJacJ9YSQxYPCEyGEEEIIBzTniRBCCCGEAwpPhBBCCCEcUHgihBBCCOGAwhMhhBBCCAcUngghhBBCOKDwRAghhBDCAYUnQgghhBAOKDwRQgghhHBA4YkQQgghhIP/A0+dK+VstBkAAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHRCAYAAACW3ZisAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddZwV1fvH3zP3bnewS3d3d3d3ioEKKipgggJKimBhYYGAiIE00t3dtTS7LLHddWNmfn/cvTHc2AX0K/q7n9drxTn3OXNqnjPPnHOezyMoiqLghhtuuOGGG2648R+B+E9XwA033HDDDTfccOOvhNu4ccMNN9xwww03/lNwGzduuOGGG2644cZ/Cm7jxg033HDDDTfc+E/Bbdy44YYbbrjhhhv/KbiNGzfccMMNN9xw4z8Ft3HjhhtuuOGGG278p+A2btxwww033HDDjf8U3MaNG2644YYbbrjxn4LbuHHjP4e2bdsiCMID5REEgbZt2/49FfofYvHixQiCwOLFi//pqrjxL4f7WXLj3wy3cePG347du3cXaDxER0cjCAJly5b9n9XLDesLzPbPy8uLMmXKMHz4cM6cOeMw39SpUxEEgalTpz5S+eYyRVHk+vXrTuXatWtnkf0nXrYPYzA/Ki5dusSYMWOoWbMmQUFBeHp6Urx4cXr06MGPP/6ITqf7n9bHDTf+TdD+0xVww43HAVFRUfj6+v7T1fjHUKdOHfr27QtARkYGBw4c4Ndff2XlypXs2LGDFi1a/G1la7VajEYjP/74I7NmzbL7/erVq+zevdsi9/8B06dPZ9q0aciyTLNmzXjmmWfw9/cnPj6e3bt3M3LkSL799luOHz/+T1fVDTceS7iNGzfcAKpWrfpPV+EfRd26de1WYV566SW+//57Jk+ezK5du/62siMjIylWrBiLFi1i+vTpaLXqaWnBggUA9OrVi9WrV/9t9XhcMGvWLKZMmUKpUqVYvnw5TZo0sZNZv349n3766T9QOzfc+HfAvS3lxmMN8/bH7t27WbFiBY0bN8bX15fQ0FCGDh3KnTt3nObV6XRMnjyZcuXK4eXlRYUKFZg2bRp6vd5O1tG22cOUbd6+MBqNzJo1i0qVKuHl5UWpUqWYMGGCw7LBtAUxYsQISpUqhaenJ5GRkTzxxBNcvnzZofy1a9cYNGgQISEh+Pn50bx5czZs2OCiJx8czz//PADHjh37S+/rCKNGjSIuLo7169er0g0GA4sXL6Z58+ZUr17daf6rV6/y9NNPU6JECcv2zdNPP83Vq1ftZB9kXM3bpXv27AFQbd/d/7zcvn2bV199lfLly+Pl5UVYWBi9e/d+oP6Ljo5m6tSpeHh4sHHjRoeGDUDPnj3ZvHmzKm3x4sUMGDCA8uXL4+PjQ2BgIC1atGDp0qUO72F+VvV6PdOnT6dKlSp4eXkxYsSIAut54sQJBgwYQEREhGUb8+WXX+bevXuFbqsbbvydcK/cuPGvwDfffMO6devo3bs3bdq04ciRIyxbtowzZ85w+vRpvLy87PIMHjyYY8eOMXDgQDw8PFi7di1Tp07l+PHjrFu3rtBnKB6m7CeeeIJ9+/bRrVs3AgMD2bhxIx999BEJCQksWrRIJbt582b69++PwWCgV69eVKxYkdu3b7Nq1So2bNjArl27qF+/vkX+6tWrNGvWjOTkZLp160bdunW5du0affv2pVu3bg/YswXDw8PjL7/n/Rg2bBhvvPEGCxYssGyPAaxbt46EhATmzJnDtWvXHOY9duwYHTt2JDMzk969e1O9enUuXbrE0qVLWbt2Ldu3b6dRo0Z2+QozrsHBwUyZMoXFixcTExPDlClTLPltz4edPHmSzp07k5KSQpcuXejfvz9JSUmsWbOGli1bsnr1arp3715gPyxatAiDwcDQoUOpWbOmS9n7n7vRo0dTo0YNWrduTbFixUhOTmbjxo089dRTXL58mRkzZji8z4ABAzh27BjdunWjb9++REREuCx3/fr1DBgwAEVRGDhwIGXKlOHEiRN8++23rF27lv3791OuXLkC2+qGG38rFDfc+Juxa9cuBVDatGnjVObmzZsKoJQpU0aVPmXKFAVQAgIClLNnz6p+GzZsmAIoy5YtU6W3adNGAZRKlSopKSkplvTc3FyladOmCqAsWbJElcdR/R6l7Pr16yvJycmW9KysLKVChQqKKIrKvXv3LOkpKSlKcHCwEhYWply4cEF1r3Pnzil+fn5KvXr1VOmdOnVSAOXzzz9Xpa9Zs0YBFEBZtGiRUhgsWrRIAZRnnnnG7reRI0cqgNKzZ0+738x9M2XKlEKV4wyAUqJECUVRFOX5559XNBqNEhsba/m9S5cuSmBgoJKdna1MmjTJrm2yLCtVq1ZVAGXp0qWqe//+++8KoFSpUkWRJMmu7g8zro5gMBiUChUqKF5eXsru3btVv925c0cpXry4UrRoUSUvL6/A/mjfvr0CKPPnzy9Q9n5cu3bNLk2n0ynt27dXtFqtcvv2bdVv5jbVqlVLSUxMtMtrfjZs+zszM1MJDQ1VRFFU9u7dq5KfPXu2AiidOnV64Lq74cZfDfe2lBv/CowdO5ZatWqp0kaNGgXA0aNHHeZ57733CAkJsVx7e3vz4YcfArBw4cK/tew5c+YQGhpqufbz82P48OHIsqw6BLpkyRLS0tKYNm2a3bZLzZo1GTVqFKdOneLixYuAaetj27ZtlCtXjldffVUl36dPH9q0aVPodtni9OnTTJ06lalTp/LGG2/QqFEjFixYQPHixf9nZztGjRqFJEmWsYmJiWHbtm0MHz7c6WHvgwcPcunSJZo1a8bw4cNVvw0ZMoSWLVty+fJl9u/fb5f3YcbVETZs2MD169cZM2aMXf8XL16c8ePHExcXx44dOwq8l3lbp2TJkoUu34wKFSrYpXl6evLKK69gNBqdlj9jxgzCw8MLVcbatWtJSUlhyJAhtGrVSvXbm2++SdmyZdm2bRu3bt164Pq74cZfCfe2lBv/CjRs2NAurVSpUgCkpqY6zOPoRd+yZUs0Gg2nTp36W8subJ5Dhw4BcObMGYdu1VeuXAFM3lzVq1e31NvcjvvRtm1by/mQB8GZM2fs3L5Lly7Nvn37KF269APf72HQpEkTatWqxcKFC5k8eTILFixAlmWLweEIJ0+eBKB9+/YOf2/fvj379+/n1KlTtG7dWvXbw4yrI5jHMCYmxuEYms/9REVFFWpr6mFx69Yt5syZw44dO7h16xa5ubmq352dT2vcuHGhy3DV31qtltatWxMdHc2pU6f+Z8+NG244gtu4ceNvhyiaFghlWXYqY/7NLHs/goOD7dLMXjWSJDnMExkZ6TBPeHg4CQkJLuv8qGUXNk9ycjIA8+fPd1mHrKwsANLT0wHHbQMoWrSoy/s4wzPPPMPixYtRFIWEhAR+/PFHJk+eTK9evTh06ND/zE1+1KhRjB07lk2bNrFo0SIaNGhAvXr1nMqb+6NYsWIOfzenp6Wl2f32MOPqCOYxXL58uUs58xi6QrFixYiKinJ5UN4Rbty4QePGjUlNTaVVq1Z07tyZoKAgNBoN0dHR/PTTT055cR7kmXmU/nbDjf8l3NtSbvztCAoKAqwvAUdISkoCHL9wHhbx8fF2aUajkaSkJAIDA/+ych4F5r45c+YMiqI4/XvmmWdU8o7aBhAXF/dI9REEgcjISCZOnMibb77J2bNnmTx58iPd80Hw1FNP4ePjw0svvcSdO3d44YUXXMqb+8NZu83bPGa5vwPme69du9blGNoeRnaGli1bAhRqC8sWn332GcnJyfz444/s3r2bL7/8khkzZjB16lS6dOniMu+DkBM+Dv3thhuFgdu4ceNvh9nF9MqVK04NHPPSfp06df6ych1tz+zfvx9JklyuBvwv0bRpUwD27dtXKHlzvc3tuB+7d+/+y+r2/vvvU6RIEb7++mtu3rz5l93XFYKDgxk4cCC3b9/Gz8+PYcOGuZQ394ezdpv5eWy9zR4G5i1AR33+oGPoCs8++yweHh6sXLnScs7KGWxXYsyeZAMGDLCTe5htSmdw1d9Go9HSB4/a32648ahwGzdu/O3w9vZm6NChGI1G3n77bRRFUf1++/ZtPv74Y4BCcWwUFjNmzFCdncjLy+Pdd98FTC+RxwHPPvsswcHBTJs2zeEhVlmWVS+SkiVL0qlTJ27evMnXX3+tkl27du1f+iILCAhgwoQJGAyGRw6z8CCYOXMmq1evZsuWLQQEBLiUbdGiBVWqVGH//v2sWLFC9duKFSvYt28flStXtqyIPCzCwsIAHB6U7dOnDxUqVGDevHls3LjRYf5Dhw6Rk5NTYDlly5Zl6tSp6PV6evTo4ZSBePPmzSq3f7Nb+v1Gx5YtWywkiH8F+vbtS2hoKL/99huHDx9W/fb5559z8+ZNOnbs6D5v48Y/DveZGzf+J/j00085duwYixYt4tChQ3Tq1InAwEBiYmJYu3YtmZmZTJgw4aG9fRyhWrVq1KhRQ8Vzc/36dXr06MFTTz31l5XzKAgLC2PFihX069ePpk2b0qFDB2rUqIEgCMTGxnLo0CGSk5PJy8uz5Jk3bx7NmjXjtddeY+vWrdSpU4dr166xevVqevXqxZ9//vmX1e/ll1/mk08+YenSpbzzzjtUq1ZN9fuaNWuIjo52mLdz58488cQTD1xm6dKlC/1yFASBn376iU6dOjFkyBD69OlD1apVuXz5MmvWrCEgIIAlS5Y4PctVWHTo0IHly5fTv39/unfvjo+PD2XKlOGpp57Cw8ODVatW0aVLF3r06EHz5s2pW7cuvr6+xMbGcuzYMW7cuMG9e/cKdXZp4sSJGI1Gpk2bRqNGjWjevDkNGza0hF/Yu3cvV69eVR2Ifvnll1m0aBGDBg1i4MCBFC9enPPnz7N582YGDx7MsmXLHqn9Zvj7+7Nw4UIGDRpEmzZtGDRoEKVLl+bEiRNs3bqVokWL8v333/8lZbnhxqPAbdy48T9BWFgYR44c4csvv2T16tUsXryY3NxcwsLCaNOmDaNHj/7LPUn++OMPZsyYwS+//MLdu3cpUaIEU6dO5Z133vmfB0F0hQ4dOnD27Fk++eQTtmzZwr59+ywsu+3bt7fbaqhUqRKHDx/mnXfeYfv27ezevZvatWuzZs0aEhMT/1LjxsfHh4kTJzJ27FgmT57MypUrVb878rIyIzg4+KGMmwdFkyZNOHbsGDNnzmT79u38+eefhIeHM2zYMN577z2qVKnyyGWMHDmSmJgYfv/9dz766COMRiNt2rSxGMm1a9fmzJkzfPbZZ6xfv55FixYhiiLFihWjXr16TJs2rdDu1mDaEhw0aBDffPMNu3btYtGiReTl5REWFkbdunWZMGECTz75pEW+du3a7Nq1i8mTJ7NhwwaMRiN16tRh1apVBAcH/2XGDZhWqg4cOMCsWbPYsmUL6enpFC1alJdeeon33nuP4sWL/2VlueHGw0JQ7t8jcMMNN9xwww033PgXw33mxg033HDDDTfc+E/BvS3lhhtuuOGGG278JcjJyeH333/n4sWLREVFkZmZybvvvlvouHeZmZl899137N27F51OR7Vq1Xj55ZcfeHvZvXLjhhtuuOGGG278JUhPT7cEmq1YseID5ZVlmQkTJrB9+3b69+/PSy+9RGpqKuPGjSM2NvaB7uU2btxwww033HDDjb8EYWFhrF69muXLlzN69OgHyrt7927Onz/Pu+++y7PPPkv//v358ssvEUWRRYsWPdC93MaNG2644YYbbrjxl8DT09PCC/Wg2LNnD6Ghoao4cMHBwbRr1479+/ej1+sLfS+3ceOGG2644YYbbvzjuHLlCpUqVbLjpapWrRp5eXkPtDXlPlD8iMjLyyMmJoYyZcrg7e39T1fHDTfccMMNN4iPj/9LApjKsmxnbISFhT0Qb1NhkZKS4jAEj3klKDk5mQoVKhTqXm7j5hERExPDqFGjmD9//l9CFuaGG2644YYbj4L4+HieenIAebpH35zRarUYjUZV2ogRI3juuece+d73Q6fT4enpaZduTnMW2d4R3MaNG2644YYbbvyHkJaWRp5OZNKYNMqUMBacwQli7mj54KtgJk+eTJkyZSzpD3umpiB4eXk5PFdjTvPy8ir0vdzGjRtuuOGGG278B1GqhIGK5Q0PnV/GFMCgTJky/5OdidDQUJKTk+3SzWkPYlS5jRs33HDDDTfc+A9CVmQkRX6k/P9LVKpUibNnz9qd84mKisLb25tSpUoV+l5ubyk33HDDDTfc+A9CRnnkv78LSUlJxMTEqM7ztGnThpSUFPbu3WtJS0tLY9euXTRv3tzheRxncK/cuOGGG2644YYbfxlWrlxJVlaWZTvpwIEDJCQkADBgwAD8/f354Ycf2Lx5M8uWLaNYsWIAtG3blhUrVvDhhx8SHR1NUFAQa9asQZblBz7A7DZu3HDDDTfccOM/CAUFmYffWlIecuVm2bJlxMXFWa737t1rWY3p3Lkz/v7+DvNpNBo++ugjvvnmG1auXIlOp6Nq1aq8++67lC5d+oHq4DZu3HDDDTfccOM/CAkFSXn4rSXpIY2bP/74o0CZiRMnMnHiRLv0gIAAJkyYwIQJEx6qbDPcZ27ccMMNN9xww43/FNwrN2644YYbbrjxH4TyiIeCH3Zb6nGA27hxww033HDDjf8gJJSH3loy5/+34rEzbqKioti8eTOnTp0iLi6OwMBAatSowciRIwv0cd+0aRMffvihw99Wr15tRwC0f/9+Fi1aRExMDMHBwXTv3p2nn34arfax6xY33HDDDTfccKOQeOze4r/++ivnzp2jXbt2VKhQgeTkZFavXs3IkSP59ttvKV++fIH3eP755y2uZWbcfzr78OHDTJo0ibp16zJu3Dhu3LjBkiVLSE1N5c033/xL2+QKibeTWfv1Jnb+up/sjBxKVi5Or9Fd6PhkK7Qe9sMjSRJ7/jjEunmbib4Qi5evF20GNaPf2O4UKx/psIzYy3dY/cVG9q8+gj7PQMV65ejzSlda9m+CIAh28nqdga2Ld7P++63cuxGPf7AfnZ5qQ59XuxISGeywjCsnrrPq8w0c23waWZap2aIq/cb1oH6HWg7lszNy2PjDdjYu2EFKXCohkcF0e74DPV/siF+Qn8M8Z47eYPUvhzh/MgZRFGjQvCJ9hzejSs2SDuWTs3L47dBp1p68SEaujhIhgQxuUpt+DWrg5aBvFUVh+93LLL1+lIvp9/AUtXQqXpWnKzahfIDjIHEp+gQOJm3kTNoBDLKOCO+SNAvrSp3gFoiCxkEZRpKy1xKf+TN5hhuIoh/hfr2JDHgGL21xh2XIhsvosxci6baBYkD0qI2H37NovDo4HD9FyYWcFSi5v4N0D8RgBJ8B4DsMQQx1WIZed5zsrPnodfsBBU+vZvj5v4CnVxPH8lIG19JXcjPzT/KMKfhqIygf1JfygX3xEH0d5jmZepE/7+7mcuZNNGhoGFqDXsXbUd7f8fjFZ2fx07lTrLlykQydjrJBwTxVsx79q1THQ2Pft7KssOvwFVZsPsW1W4l4e3rQrmllBnevR8miIQ7LuH31Hmu+3MjeFYfQ5xkoX6cMfV7pRqsBTeyCBQIY9Aa2LdnL+u+2cOdaHH5BvnR8sjV9Xu1GWDHHZVw7dZNVX2zg6MaTSJJM9WaV6Te2Bw072wcIBMjJzGXjfJNuJN9NITgiiG7PtafnS53xD3aiG3susPqLjZzdcwEEgfqdajPgtZ5Ua1LJoXxaYjp/fruVrT/tJiM5k8gyRejxQie6PtcOLx97intFUTj053HWfLWJKyeuo/XQ0qJPI/q/1oMy1R1/dCbcSmT1l5vYvewAuVl5lKpSnN4vd6X9Ey3RaO3HT5Ikdv12gLXzNhN76Q7efl60HdKCfmO7E1mmiMMyYqJus/rzDRxYewyD3kCl+uXpN6Y7zXo3dDy35enZvHAX63/YSnx0IgGh/nR+ui29X+lCcJEgh2VcOnqVVZ9v4MS2syiyTK3W1ek/rgd12tZwKP844f/ztpSgKI9wlPpvwLlz56hatSoeHh6WtNjYWJ599lnatGnDe++95zSveeXmhx9+oGrVqi7LMa/Q/PDDD5aVmvnz57N06VKWLFmiiqPhCpcvX37owJnXTt3krQ5Tyc3MQ5ZM7nqCKKDICg061Wb6unfw9LL2gyRJzBr2OXtXHEYUBWTZNHSiVsTD04PZmydRs2U1VRnHt57h/T6zkSUZyWgqQ9SIyJJM1+fa8cb80apJIDc7j3e7zuTCwcsICJgfD1EjEhDqz2d7plO6aglVGduW7OHjZ+chagRrGVoR2Sjz9NTBPPX+IJV8akI6b7R+jzvX4lBk6+MniALFykcyd+90Qu97Gf02fzc/fb0DjUZEyu8rjUZElmVem9KXLv0aqORjklJ56rs/SM3JRc5vgwAoQO1SRVnw/AD8vKyEUIqi8P6pDSyPPokoCJY8GkFEFATmNR1M66LqF0VM9mV+vDkdo2ywuFsKCCgo1AhszBNl3kRjY+DIip4rCS+Snrcb01l+s4umBo3gS7XIX/DzUhuDxrwt6FJfzq+5ZJEHCa3vs3gGTlGNnyJnoaQ8CcYoc0r+vyKI4QihvyFo1S+jnKyfyEh/13Jf2zICAqfgF/CiWt4Yz47bo8gxxtnc31SHQM9ytC/xA14a9YtiSfRaVt7ehoho6SsREVB4o8oIWhVRj9+l5ESGrFlGpl5nN37NSpRiUY8BeNussEqyzPSvNrHtwCWVbmhEAY1Gw9xJ/al330v41M5zTOr5IZJRQr5PNzo+2Zq3F7+iMnB0uTomdp/F2T0XLXpqzuMX5Mtne6ZTtoa6jJ2/7mP2018hioKd/j0xsT/Pzhymks9IzuT11u8Re+mu6cWS372CKBBZpghz980gvLjaQP3j47XMn7AUjVa0lKHRmvTktW9foMcLnVTyd6/H8Xrr90lLSLfOO/mPUKX65floxxT8Aq0GqqIozBu7kLXzNlvqbi5DEATeX/EWzXo1VJVx+dg13u44DV2O3m5ua9KzAVNXvqX6eDMajEwf9CmH1h1Xz20aES8fT+Zse9/OUDuy4QRT+3+Moih2fdtrdGfGfD1SpRs5mbmM7zidK8ev5bcLS56gIoHM3TudEhXVH8Ub529n7kvfm+Yd2741yjw/6wmGvtOPxxHm99LsWbGUL1f4YJP348ZNL96ZWOpfGRj6sfOWqlWrlsqwAShVqhRly5YlJiam0PfJyclBkiSHv0VHRxMdHU2vXr1UW1D9+vVDURR27979UHV/EEiSxJR+H6kMG8AyYZ7ccY7fZq1S5Vn71Wb2rjwMYFF+ANkoo8/T836/j9DnWYOOZadnM23AxxgNkkUxAUt5mxfuYsvi3aoyFk/+najDV0EBW7tXlmQyU7KYPvATVfqda/f45Ll5qgnGXCeAJVP/4NTOc6oyPn/xe+5ej1cZNua2x0Un8OnI71Tp505E89PXO/L7zVqGJMkoCnw+bS2x0YnW+ygKr/2ynrRcq2ED1tfw+dvxfL7lgKqMdbHnWB590lR3mzySImOUJcYeWU66PteSbpQNLImeg0HWq3gkzF86FzKOciBpvaqMe+nfkZ63x9xDNr9ISEo2lxNfQFGsbJ2KlIgu9VVMBoekkgcw5ixCytuoKkPJmAXGS/mtte1fGeRklPTXVfIGw0Uy0s3umPZlZGZMQ68/qcpzJH4KucaE++5vKi9TH83JxI9U8sdTzrPy9rb8Wtg8I8jIKMy98hOJulRruqLwwqY1ZNkYNuYSAI7cvc2Xxw+pyliz7SzbDlwy5bd5riRZwWCUmPDRWnLzrDF2crNymdr/Y4x6o+VZBatubF+6l43zd6jKWDJ1Oef3mYxG22dXlmSy03OY2v9jZNl6r/iYRD4a8TWKrDjUv19nreLY5lOqMr4Y/QO3r9wz6ZhN9yqyQmJsEh+P+Folf/HQZeZPWGpqq00ZklEGBb4YPZ/oC7GqPDOHzlUZNmB60SsKXDsdzQ9v/6yS373sIGvnbVbV3VyGZJSYOeQz0pMyLOlGg5H3+8xBl6NzOLcd3XiS5Z/8qSpjxWfrOfznCVMZ9/WtLkfPlL5zMOit45eRnMn0wZ8hGR3PbX9+u5Vdv+1XlbFgwlKunrxhaattnoykDGYOmaua22KibvP5Sz+A4qBvgR8n/sr5/GfOjccPj51x4wiKopCamkpQkONlw/sxbtw4unbtSufOnXnnnXeIjVUr95UrVwDsLNHw8HCKFCnC1atX/5qKu8DRjadIuJWkUn5bKLLCum+2YDSYXnaKorDyiw04WyVUZIXM5Cz2/GGd9Lct2YsuR29nRJghiAKrPre+gHOz89i4YLvTOsmSTMzF25zbF2VJW//dNutnnwNotCKrv7S+gONjEjm47pjzMowyRzed5N6NeEvaml8OodE4f1QFUWDj8mOW61Mxd7kSl4TkpN2yorDq+HmydVZDcPHVw4g4bocC6CQja26dsaSdTz9MtpThctn2QNJGS2wWRTESl/kTTgcQGYMUR2qu9YVqyF0GGF3kETFkL7TWU06DvLXglLRLAsNZFMNFS0pO1mJcTwMacrIWWa4y9DdJyD2BguMPBwWZ2Kzt5BqTLGnr7uzKX6VxDEVR2BpnNTb3xkZzKyPdKT+HrCgsPX+aPKNVN5ZtOOH0MVQUhawcHdsPWl9EO37ZT05mrnPdEGDl5+stLztdro71329VvXhVdZJk7ly9x+md5y1p67/fhpMmAKYVA1vdSLqbwr5VR5zqhmSUObn9HLev3LWkrf5qIxqt874VNQLrvtliub587BpXT9xwqePbluwmKy3bkrbq8/WIohPdUMCgN7J54S5L2oE1x0iJS0OWHDdekRVWf7XR8vEpSRJrvtqIs00EWZZJjU/n4Bqrjm9ZtAuDzuC0f0VRYOXnGyzX2enZbF68y2XfXjt1k0tHr1nS/vxmC6LG9dy25utNTn9/HKBgmg0e9u+x2tZ5QPwrjJtt27aRmJhI+/btXcp5eXnRrVs3Xn/9dT744AOGDRvGyZMnefnll4mPt74sXUUYDQsLcxiV1IykpCQuX75s+XuQ1SRbXDx0BY2H/b6zLTKSM4m7aaKsTk/KICEm0aW8xkPDxUOXLddRR64gOJmUwDTJ3Dx3C73O9EV06+Jt8rJdL2GKGpGLh65Yrs8fuOR0wgDTpHF+v/WlcvnYtYI1RkE1yVw4HaNasbkfsiRz9ni05fpsbByiC4MLIM9g5Gqc6QVslGWi0uNc7k0LCJxOvm25vpVzBRHX45duSCbLmAaAzngXo5ziUl5AS5bOukoi60/h3FABkJENNl/+hktAQRGABbBZidHrD4MTQ8UEKV/GhKS8cy5kTVCQSdXZjHnmTZcsqTIKURnXLden4u6iFVxPTRl6HTHpptWerBwdt+PSXBoSGo3IeRujIOrIFUQXBrOiwO3Ld8nNygPg9pV75GTkOpUH08vOVjcuFKAbsiRz4aBVX68cv+7U2LJF1GHrx9f5/ZdUqwr3QzLKnNtnNWYvHnI9JwAYdEZunDXNa4qicOX4dadGnVkm6rDNvHO44LktNS6NpNsmfUi5l0by3VSX8hoPjaqvoo5ccTmPyLLC1RPXLStpN8/dwpDnWjcEUSDKZvzO7Y8quG/3XnT6++MAs7fUo/z9W/HYHSi+HzExMcydO5caNWrQtWtXl7Lt27dXGUCtWrWicePGjBkzhp9//pm33noLAL3e9MXuKAiXp6cnOTk5TstYt24dixcvfoiWqKHRiLicjc1y+QfvXE3EjuQfJI/5q6xQ8gqqVRRXX42PUifb+zo62Hk/tLZlCEKhVFKTf19BsJ7nKIy8KU8h+zb/zE1h5QWVSmoouGY2LxEHB5jtoYBgLUMoxBRgKyMUYNA5khML0Xbbs0kaUSzUQUbzeBTm+bCVN+dx/YrPl8t/Xgvz3CrKfc96YXTD5mC0q9VJVR5b3XBwsNpe/j79K8S8Y9teQRTAhXEjCAKi9uHbUeh55/52FKAagiBYztwUtgzbMXN06Pl+FEbmn4SsgJMFtELn/7fisV65SU5OZsKECfj5+TFjxgzVRFBY1K5dm+rVq3PixAlLmtmoMRs5ttDr9Xh52XsLmNG7d2/mz59v+Zs8efID1wmgQec6Lr8KACLKFCGyrMlLICDEn/K1yzj0ADBDMkjU71Tbcl2/Y22XX46iRqRWq2qWg33lapUmMDzAZZ1kWVaV0ahLPZdfghqtSONu9SzXpvJcj6NGK1KrdXXLdeOWlV1OmKIo0LCl9bBh80qlnS5xmxHo40WVYiYPKI0g0ji8LBoXfSuj0KyI1VOvkn8dZJcrHgKRXqXw0wQC4KkpgZe2NLh4pSoYCfRpabnWeLWkIMPGJJMPj5ogOPamUcGzueV/vbzbg0uDRZMvY0KkTwNctQFAFLwI87YejK4XUt3ltpSAQL1g60H4liXLFEgZH+nrT7kg06FzPx9PqlWIdLlaJ0kyDWtbnQQadKrtUv9EUaBa00p4+5rmgtJVSxBSNNhlnWTpwXWjYVerx1T15lXw8HJtbIoakdo2XjpNutVzaUSJGpFGXa3616BT7QJtG99AHyrVLweYDIR6HWu7XuWSFRp0tJl3OtVGMrjQDQFKVCpGWP7B6NCiwZSsUtzV7jaS8f65rY7LVS5RI1KvQy3LfFmxXjn8ghx78VnaoSjUt2lH4671XLbbNLfVd3lPN/45PLbGTVZWFuPHjycrK4tPPvmE8HDHrriFQUREBBkZ1gNv5u0oR9tPycnJDrerzAgPD6dKlSqWv8J6Vd2Pmi2rUrFeOZcrH4Pf6m35KhUEgSHj+zh9aYtakeIVImnSw6psbQY1I7RYiFMFlSWZwW/3sVxrPbQMfL2X03eXqBWp07Y6FeqUtaR1G9keT29Pp5O4LCv0G9fdch0UHkjnZ9s5lRdFkU5PtyEkwnq+qs/wpk7bLQgCHp5aug+wemtUjAynacXSaJyUIQBPt6iPp81h8pGVmzt9oYqCQLiXHz1KWV8qlQPqEO5ZzMVLW6F1RB/L5CoIAsUCX8S5saLBx6MqgV5NLSlan/4gBONcTSU8/F6wtkvwAd8ncW58aMCrPYLWGoDOx+8ZrCtEjiDg6/es5crXoyil/TshOK2TQMXA/nhqrNQLfYq3c7oSIyDgo/GiQ6S13fUii1E3oqhLY/OFeo1UKzHD+zRWHT62hUYUKFokkNYNK1jSWvRrTJFSYc51Q1ZUuqHRahj0Zm+n9dFoRWo0r0IVmzK6PtcObz8vp+dVZElhwGs9LdcBIf50H9nRuW5oRNoNbaHyluozpptp5BxkEQQBrYeGXi9ZvaVKVi5O4+7OX9qCINBvTHeVO/igN3s7/UgSNSKBYQG0H97KklavQy3K1CjlfG5TYMh4tW4MGd/X+fkZrUjpaiVoYGPctBvWguAigS7ntkFvWcfL09uT/uN6ODWgRI1Iw651VZ6gPV7shNZT63g88pP6junm+IaPCR7lvI3579+Kx9K40el0loPAs2fPpmzZso90v7t37xIcHGy5rlTJ9JV/+fJllVxSUhKJiYmW3/9OCILA9LUTiCwbYbrOVyDzhNDnla70frmLKk/7J1oxfNIAlZyQv6cSWjSEDzZOUq1ueXp7MnvLZAJC/S1ytnlHzXmSpj3VLriDx/em45Ot1WXk16101RJM+v0NlXxo0RA+WP8uXvcZOKJGRNSIvLNkDBXrllPleXnuCOq1r2mRs/23dpvqvPLl8yr5cpWKMuHDQWg0oupFIYgCnl5apn45nLCIQFWeT4Z2p2KkySA2f9GbjZ0edavyQrvGKvlWRSsyoZbpJaCx2UYRgEAPbxa0GI63xurFJwoani03mQCPEBtJLOdw2hbpR/3gNqoyIvyHUTTA3DaNKp+XtgRVIhaoVuYE0R/v0J9BCED99jIZI56BM9B4NVOVIfiPBa/O95WR3x5tdYSgOSp5rbYUIWELAU/U04EIeBAc+j1aj4qqPA0jJlpWZsxGjnkbqphvc2qHv6qSrxJYjlcrPoGAoDIGBQS8NZ68X+NlAjysK06CIPB9t76UCQo21cQ8fvn/PlG9Ns/WVn8xt29amZGDTStS5nEW8v+Cg3yZO2mAauvSw9ODDzdPJqhIIAjWM/HmZ37EjKG07Kfm+Bnweg+6jeygkjM/8yUqFeP9FWp+rKDwQGZtmIiXr5e9bogCby18mSqN1H37wsdP0bBLXYuc7b81mldh3LejVPJlqpVk0m+vo9FqVC96URTw8PZg6urxRJRWc8RMWDLG8oFizmNuT+uBTXlqipq6oX6HWrzy5XMgqLdtBEHAL9CX2Vsm4+PnbVO2yMw/3yG8ZJhFzraMgW/0outz6vOTXUa0tRiTqrkNKFIijJnr31VtP/r4efPh5sn4BfmqdEajNW1XjZ47ggad6mCL4ZMH0HZIC1UZ5vaXq1Wad38eq5IvUjKM6WvG4+HloZp3RI2IRqvh3V9es3P9f9wgIyA9wp9cqM3bxxOPHc+NJElMnjyZw4cPM2vWLJo1a+ZQLikpiezsbEqUKGFx505LS1MZMQCHDh1iwoQJDBgwgHHjxlnSn3zySTw9PZk/f77FIFiwYAE///wzP/30U6ENqkfhuQGTF8buZQfZvewAWWk5lKlWgu6jOlK9mfN7XT15g/Xfb+PG2Rh8A7xpNaAZHYa3xMffx6F8dno225bs5cCao+hy9VSqX46eL3WmXE3HIeQVReHs3otsWrCD21fvERQeQIcnWtFyQFMV744tUuPT2LhgBye2nkEyStRqVY0eL3aiWDnHxIKSJHF882k2L9pF4u1kipQIpfOIdjTuXs/p9mPcnVQ2rjhmIfGr36wiXfs3INTJVpreKLH9wjXWn44iJSuX0mHBDGhUk8blSzrd3ruakcDvN05wPu0e3hotHYpVoW/pOgR6ejuU18t5nE7dx7n0Q+RJuRT1Lk2TsE6U9K3oUB4gS3eK+MzfyDVcRSsGEOrXkzDfXmhEx+OnyGkYc5Zj1G0HRYfoUQ8Pv+GIWsdlKIoC+oMouStAijXx2/j0Aa+OCILj8ZOkOHKyl9qQ+DXH1/dJNNoSDuVlxcjd7H1EZ24g15iEr7Yo5QN7U9S3qdPzRfdyE9kct49LGTfRCCYSv46RzQj08Hcon2c0svH6ZdZevUR6Xh4VQkIZVr02DYoWdzp+V6ITWLvtLFeiE/Dx9qBtk0p0aVUdPx/783VgIpPc/vNeDqw5Ql62jop1y9HjxU6q1UlbKIrC+f2X2LhgO7ev3CUgNID2w1rSemBTPL0dl5GWmM7mhbs4uukkkkGiRvMq9HypM8UrFHUoL8syx7ecYfOinSTcSiKsWAhdRrSjSY/6Ts94JNxKZP332ywcPPU71Kb7Cx2dEgsaDUYOrD7K9qV7SUtMp1j5SLo+14F67Ws67dtbl+7w57dbuHzsOp7eHjTr1ZDOI9oSEOJk/HJ07PptP3uWHyI7PYeyNUrR44WOVG3s/OPx8rFrbPhhGzfPx+Ib6EObQc1pN6yFyniyRWZqFtt+2sPBdcfQ5xmo0rACPUd3pkw1x8SQiqJwetd5Nv24g7vX4wkuEkjHJ1vTol9jPDwd60byvVQ2LdjBye1nkSWZ2m2q0+OFTk6JBR8HmN9L738QS5lH4LmJuenF9En/Tp6bx864+fLLL1mxYgXNmzd36B3VubPpq3TWrFls3ryZZcuWWdiIhw0bRuXKlalSpQp+fn5cuXKFjRs3EhYWxg8//EBoqHU59+DBg7z77rvUq1ePDh06cOPGDVavXk2PHj14++23C13fRzVu3HDDDTfccOOvhPm9NHnmoxs3Myf/O42bx85b6to1kwvwwYMHOXjwoN3vZuPGEdq3b8/hw4c5duwYeXl5hIWF0atXL0aMGKEybACaN2/OzJkzWbx4MV988QVBQUE8+eSTjBgx4i9tT2Ggz9NzZvcFstNN4Rcq1itXYJ7oC7HEXIjF28+L2m1rOP2yMSM7I4ezey6iz9VTvk4ZSlVx/EVuhtkF9N6NeAJC/andprrTLxsz0pMyOLcvClmSqdq4ot1y+P2QZZObeMq9VEKKBlOrVbUCPV8Sb6dw+cQNBFGgRrNKBIcHupQ3SBInLt8mPSePEmFB1Cgb6fJQNsCNjBSiUhLw1GhoGlmaAE/nB8wBdJKOy5lR6GUdRb2LU9K34KXqTN0lsg030Yp+hHg3QSO6LkOW05F0h1EwoPGoiUZb1qW8oihgOIUi3QMxBMGzMYLgWt0lKQGd/hig4OXZEI3G8cqCpU6KRELuGXKlFPy0ERTxrlmgV1hcXjJXM2PRCCI1gyoQ6OH6ALTOaOTI7dtk6HSUCQ6mZkREgeMXHZPEzZgkvLy01K1dGl8nqzZm5GblcnrXBfS5esrWKu30q98MRVG4cuIG967H4RfsR912NQrUjYzkTM7ti0IySlRpVLHAr35Zlrl48DJJd1IIiQymZquqBTpUJN1JNrmJCwI1W1RxGirFDKPByNm9UWQkZRBRpgjVmlQqsG/vXLvHtVPReHhqqd2mutNwEGbocnWc2X2R3MxcSlUtQfnaBZ9RvHE2xhR+wd+buu1qOAwHYYvs9GzO7LmIQWekQt2ylKxUzKW8oihcOnqN+OgEAsMCqN2musNQN7ZITUjnwoFLKLJC1SaVKFLS+bnMxwkyID3C1tK/+czNY2fcfPnll4WSmzhxIhMnTlSljRo1ilGjRjnJYY9WrVrRqlWrggX/JiiKwsq56/ll5koVaVaFumV5Y/5LVG5QwS5PzMVYPh31nYqPwcffm8Fv9+GJSf3tjAPJKLH4/WWs/mIDulyrd1jtNtV568eXHcajOn/gEp+/9AMxNsymQeEBjJgxjJ4vdrKTz8vR8c1ri9i6eDeS0eQlIQgCzfo05PXvX3QYs+Xg2mPMe22RirunSKkwRs99llb97eMZpSdn8uVrP3Hwz1OWw8UarUiHYc15ec5wvP3sJ8DV+8/x9ZoDpGZZ+UnKFQ1l0vAO1K9k/wKLzUxj/KGNHIq7ZUnz0mgZUbUBb9drg/a+vpUVmc1xG9h8bz15cp61DL/yPF32eUr42JeRqYviQtJkMvVWfgytGEC54JcoE/is3ctFUfTkZnyIPvtnwPoFpvVqjW/wx4gam3hU6emwdi3ykIrIGe+DFG35SVihIAychlj0Sbs6yXIWqWnvkpO7GivnjYiPTy9Cg+cgivbjdzNzO8cSvyRXspL1+WuL0yTiTUr62W8lJ+vS+fzKMo6m2LRb0NCtWDNeqNAHT1FtHCiKwpLTp/n80EHSddZ2Vw0P58NOnahT1P4Fdut2Mh/N3cz5i3csad7eHgzp34hnhrewO9grSRI/T13Oirnr0eVYy6jVqhpvLBjt8CV58fAVPn/xe26esz4jAaH+PDNtCL1f7mI3frpcHd+9uYTNP+7AaPYgEqBpjwa8Mf8lhwbI4fUnmDduoYXjCiC8ZBgvffoMbQbZ921GSiZfjJ7PvpWHLR5EGq1I+ydaMebr5x1uV29ZvIsF7/xCWkK6Ja1kleKM+2YUddvVtJNPuJXIpyO/5eR2K8+Rh7cHfV7uyvMfPmFnHCiKwh8fr+PXWavIybBSa1RuUJ43Fox2uO1342wMn436zsSFlQ/fQB+GvdOPIRP62vWt0WBk4cRfWTtvM3obDpt6HWrx5oLRDg3IM7sv8MXLPxB7ycp5FBwRxPOznrA7BwQmw/frMQvZ8ctei3edIAq06t+Ecd+9QGCoa+9SN/45PHbbUv82PMq21M/Tl7Nk6h926aJGxMPLg68OfUC5WtYvnXs34hndcLxdyAYz+o/rwei5I1Rpnzz/DVsX77LzRDB7OXx7Yg7hJaxfIVFHrvJGm/eRjJJDV8vRn42g/2s9LNeSJPFul5mc2X3BjuhL1IiUqFiUr4/OxjfAOsEeXHuMKf3zKfpts+TPXe8vf0tl4ORm5TGuw0xuX42za7eoEajRtBKz172tOo+wbPdp5vy+i/shCCa+k/lvDqJOeathkJCbRY/1i0jJy7HzmhKAvuVrMLdlL1X6itjf2Rpvz1AqIuIpejGp+lQiva2rH1n6axy9OxhJ0eHom6hc8GgqhlgPNSqKQk7qSxjyNmHvZaVBECMJKLIJURNqMmy6doXDh5EmhqOMCbbkEb5KRTMrBaWBF8qf3yEWG2FThp6ExH7oDWewJ/PT4OFRjYgi6xAF6/jdyNjKvvipdvU3H+HtWPwTSvhZvZ+yjDm8euJT4vNS7cj8BAQahlZles1RKj6cb48e5eMDavp8MB0u9hA1rBw6lOoREZb0uPh0XhjzE1nZOoeEc3171uO1V9SG+eejf2DDD9vsulbUiPgH+/HtiTmq1cerJ28wruVkJL3RYRmj5jyp8rCSZZlJPT7kxLYzdrokakWKlo3gm2OzVYFij2w8yXu9ZgOKQ++hSb+9ZjkUCybjaWyzSURfiHWgGyJVm1Ti011TVcbHhh+2mcIK3AdBFBBFgY+2T6G2DRVDakI6LzcYT0p8mipUBZg+YloPasak315TGR8LJ/3Kbx+utivDHCvq66OzVZ5JsZfv8Erjd1SxqGwxZHwfRs62GuaKovDhk1+y+/cDdp6UokYkJDKIb098pDIez++P4q3205Bl2eHcNvabUfR6ybozIBkl3mo/lYuHrjjs29LVSvDV4Q8tdAGPE8zvpQkzb1O6nD3lSWFx66YncyaX/FduSz2W3lL/H5CakM4vM1c4/E2WZAw6A4ve+12VvnTGCvKyHBs2AKu+3KAKW3D9TDRbFtkbNuYyMpIz+ePjdar0+RN+RpYcKz+YJq1smy+xIxtOcmrneYeTvSzJ3L5yj00LrCEFZFlm3mv5dP73Z8m//ua1Raq4YFt/2U/s5XsO2y1LCucOXOHwptOWtJw8PV+s2uew/opicvP9fMVeVfoPF444NGzM1Vp94wLnkuMsaUm6RIeGDZhiJullHevvrlWlX0v9AlnR42yx92ba9+iM1q91SX8MQ95GHLuPSyhyHLrsH02Xa9fCYROTsGZWEsJXJvZXs2EDIJzQoayYgqJYVylycv9EbziJY5ZiCYPhPDk51hhnsmLkaNLnDutvji91NPFz1QvnzzsHiM9LcchSrKBwLCWKU6lW1t3U3FzmHrLfkjaVr2CUJT7arzZ8fll2mOwcx4YNwJr1p7h120r9EHMxlg3f2xs2YI4Vlc3vs9eo0udPWIpkkJyWsfj938lMzbJcn9h6huNbTjvUJdkoc+9GPOu/325JUxSFb8YtzP9/h0XwzeuLLaujAFt/2sONczFOdMO0tbV/1RFLWl6Ojh/G/2wnCya+GllW+P6tJar0VXPXm8IpOOAFUhSFPX8cJOqIdfwSbyfz+5w1DsuQJRldrp4lU5ap0pdM+wN9rmPDBuCPj9eRaDN+l49dY9dv+x1SRMiSKVzDis/Usd2+e3OJU8MGYP74n8nNtq7A7l99lPP7HbNMy5JM9IVYtv202+G9HhcoioD8CH+K8u/1lnIbN/8Qdv223yWluSzJHP7zBBnJmYDpXM7O3/YXQDwmsm3JHsv11sW7XfLoyJLM5oU7LRNEfEwi5/ZGuST+0+XpVZPllkW7XBN8obDRxrg5v/+SaSvKWdMVSLqdzLm91vhVm3/a65KxVtSIbPnZaszsPH2NPL3RqbysKJy5cY/YxDRTkYrCsqtnXRLHaQSRldetS/JHkg+6JKaTkTmeegSdZDIkDFIGiTk7ncZkMuNetjUejj53Oa53jmX0Ob+Z/vfpp1FmWl2RNbNS0FS9aTFsAKSJoSiDPFB0Oy1p2dm/4XoaEMnO/tVydTfnCDopzYW8QobhFsk24Rc2xR1yGdpCRGRbnPWZWn/lMpLs/BmUFIV9MdEkZpu2co1GiS3bzyO5oGLViAJbt1+wXG/9aY9L3ZCMMlt/sm6zJt1N4dSOcy51w6iX2LvcGttty+ICdENW2LjAatxEHblqCijr4jlMjUvj5A7rc7jpxx0ILs5UiKLA5oXW8T7853GXYSQU2XTWLvaydWtv4487XLZbo9Ww1SYA745f9rk8uyNLMvtWHbF8JOVm5bJvxWGXc5sgCmz/2fpBUpi5bdOP1nnn9pW7XD52zSXxX25WHofWHbdcb1640+X4CaCa29x4vOA2bv4hJN9NLZCmXFEUUvP3xLPSsjG6eGGDaQJIvmt9maXEpRYYqyY3K89yFif5nuv4LmCii7eNA5N4O9nlxIcCyfds6lSIMgBVGcn30lzHkZFkEu9Yy0hKz3ZK4GeLpHTTy9Egy2QaXHsUyIpMfI71qzzdkO7ypQIgKRLZkimPXk6hoON5AqJq5UaW4jEFznQORbaeeVHe6oc00XpwXki3iWQ8MRRlTAgggGSzOiTdK6Becr6MCTlG53HXbJFjEzgzVZ/pUlZGJlGfZrlOzM5WEfQ5ggIk5YdJyc7Ro3fFiAsgCCSlWMcvJS61QKZeXa7eElsqNS7NtTCmrSaVbsQWoBtAis19H0o37qa4NIZkWSExNtlGPrVQoQjMZSiKQkaS6/GTjJKdjjsjLrTUS5It901PyiyQrV10MLcVlCczJcuyAlyYuU3UqMcv6Y7r8VMUSLKZdx5HPArHjfnv3wq3cfMPIaxYiMtgkGDazzYz9foH+xUYtkCRFUJteC1CIoMRCnhJePt54ZXvTRJaAL08mM7Y2JYRXiK0wMnSlmujIAp7M0KLWeVCiwa5ZPwXNaKKtTU8yM9pRHBVvQJNZx08RBF/D9ceNaIgEuFjPRsR6BFUYPwjUdDgl8/U6ymGUJC6Kch4aa1nPERNBK5DI4Aghtn8fxGUMSEoQepylCAx37AxlYLGWobJI8pVvQSV15SPpnBeIr5aq1yIh+tDlyIi4Z7BlutwXz+XKzdWOROdvp+vJ54F6AYohIVa+VhCI4Nd0v0DePp44uNv8kIMibQ/VH0/ZKOs1o2SzhmQrfWw3rcw+gcQZqMbYcVCXLZDFAXCS1p1I7RYSIEGl1kOTHNQYJjr8dNoRcKKWtsdWjTY5ao05J/5y+enCgwLKLCfZAdzW0Fx7QJC/CweZoXpW1mSVX0bXjzUtZEmQFhxxzxCjwtMJH7iQ//9m0n83MbNP4S2Q5u7VBxRI9KkR33LxOLp7UnboS0KXIrt+FRry3XnZ9qq9ucdldH12faWJeSiZSOo2bKqy4nG08uDVv2t7L5dRrRzOVkKgkDX5zpYrmu2rEqRUmEujZWw4iHUbmM90Nj16dYuVUyWZLo8aY2x1K5uRbxcuHaKgkCtckUpHRFsqePgirVd0v1LisyACtZ4SU3DmruMdC0i0jCkEV4a02FDD00QRXzbFRh4sqiflY7f02cgriN2a/D0HWq91FZCmKdVrdiAaQVH+Cr/i1TwR/CyeoX4+Q3F9cqNgp/fMMtVcb/GeDnwnrIpjQCPkoR5WWNFdS3W1OUql4xMp6KNLNc9q1RxuXKjEQRalS5DET+TsanVaujUvgYajavYUgqdO1jDZ3R8uo3LL3+NVqTTU20sh9TDS4RRt11N17GGPDS0HmQ9SN35mbaudUMU6Pa8VTeqNqlEsfIRLo2V4Igg6nWwPoddn+vg0sSWZYUuz1rHu1nvhhaDzVmdKtUvpzrs2/W59i7bLRllOj3T1nLdfnirAuM+tejbGL9Ak3HqG+BDqwFNXMbIUmSFjk9aPVs7PdPW9Ra9RlR5P5WqUoLKDcq7jPXl7edFsz7W57DLs+0KNNJsx+9xhMyjnblxGzduPDBCi4Yw9J1+Dn8TRVO8pBEzhqrSn3xvIN5+3k4nmj6vdqVERav7asV65ej4ZGuH+9+iRiQgxJ/B4/uo0kfNeRJRFJxOAiNmDFN5dzTt1YDabao7NNREjUjxikXpPso6AWg0GkbPzY9V5ERvRs99VsXp0fnJlpSsVMxhu0WNSPWmFWnWwxoc0M/bkzF9W9jJgslbShQEXhvQWpX+Yo0mBHv5ODRwBKB32WrUDrf2bbhXETpGdrGTBbO3lCc9i/dVpVcMGYsg3B/mwIpyQaPw1lo9gDSeTdB6d3Eir0EQi+DlZw1VIcyZg2amNaSI7QqOZlYKwlepiAETEATry83XpzceHnVxvEKkwUNbDV+fAdYUwYNGRcY6kAXzgDYuovac6VW8JRFeIaqwFtYcAg1CqlI/xOqJEerjw9imTe1kwTR2WlHkrZYtVelPDm2Kj4+n0w+GXt3qUKaUdTWpXM3SdH2+vUNDQtSI+Ab6MuxdtX6OnD0cjVZ0WsbTUwarXIMbda1LvQ61nOpG0bIR9LTxzhFFMV83BKe68dKnz6g8nzqPaEvZGqWc6ka1ppVoNcDqeejt66XyOrKF2VvqxU+eUaUPfKMnwRFBDj+sBFGg1YAmVG9W2ZIWUSpcFdfp/jp5envwzLTBqvSnpgzGy9vT6dw28I2eKs+1ak0q0WZQM6dzW3CRQAa8ofZufPHTZ1zObc9/OFzFF9ayv6ldzvq2TLWSdB7R1uG93Pjn4TZu/kE8M20Io+Y8iW+gmoeidPWSfLJrqh0XRImKxZi7bwYV66rTvXy9ePK9gbz8+bN2Zby18GUGvdkLD281j0i1ppX44uBMOzKq6s2qMGfb+5SoqCZwCwjx49WvnmfgGz1V6RqNhpnr36XjU23Uk58AjbrVY+7e6ZYvNDNa9W/C+8vfUm0lgWnFZvKyN+y4PHwDfPh40wQad66tmvRFjUi7wU35YOUbdrT0T3Soz8Qn2hN0H7lhqSLBzBvXn3oV1SSGkb4BrOr2FPWLqNM9RQ3PV2/Epy3V7QYYWHIovYr3xfM+Ar6SvqUZX3USRb3VPCn+npVpVOxn/D3U9PMawY+KIW9QIWScKl0QBPxC5uHp+zSgHj+tZxMCwlcjavIDyi5ZAu++a/ldmlwO6VI51RkczawUxBUG1X0EwYuI8GX4+PRCPR0I+Hh3pUiRlYiievwqBHajVeQUvDXq8fPTRtC+2BxK+jVXpQd4+DK33jjqBt/fbpGuRZswpcZzKjdwgFcaN2FSmzYEeKn7tnxIKL8MHEStSDU/U7Giwcz79EmqVFI/t16eWp4c0tTODRzgtW9fYMj4vnjepxtVGlfkiwMz7XhSqjSqyEfbp1CicnFVun+wH6PnjmDoO31V6aIoMn3tBDo/287u+azfsTZz982wI8Fr1qshU1e9baeXocVCePeXcXSwCVAJJmPl013TaNa7oepFL2pE2g5pzoebJ9sRDPZ+uQuvf/+i3XZTsXIRzNo4iTo2UcfBtAX0xYGZ1GxZTZWu9dTS55WuvPvLODsjY+Ts4Tw7c5jdKlG5mqX4bM90ylRXE12WqVaSz/ZOp1wtdUgYH39vRkwfysg5aoNMEAQm/DyGvmO72UVSr9myKp8fmGkXeqJ26+rM2jSZYuUiVOmBYQG89t0L9H1VHQRT66Hlw82TaTe0hcrAEQSBpr0a8OnuaQWSp/7TcMeWcuOh8VeEX9Dl6ji14zw5GTmUqFzctHxawIGA62ei8xmKvanXoabTuFJmZKdnc2rnefR5BsrXLlNgwDdFUYg6fIV7NxIICPWnbvuaTuNKmZEan8bZfG+rqk0qOo0rZYYkSZzbG0Xy3VRCiwVTu031AllY42KSuHzcxFBcs3ll1ZkFRzAYJY5ejiU9K5cS4UHULl+swL69mpbExdQEvDQamhUtQ5CTuFJm5El5XMq8iE7SUcynOKV9XbOwKopCpv6ihaE41Lup07hSZshyKkbdIVD0aDxrodHeR/Bow3PDhx+iTBgPhpMo0h34dCPiez9A06aweTMEOe4zo3QPvc7EUOzp2RCtk7hSljopRuJyT5FnTMFXG0GkT50CGYrv5CZaGIprBVUk2NNxXCIzdEYjB27dIlOvo2xwMLUjixbMMH0zkZsxiXh5eVC/Tml8C+Ahyc7I4fTO8+hy9ZSrVdppzDUzzAy3Zobieu1rOo0rZUZaYjpn91xEMspUaVTBaVwpM2RZ5tzeqHyG4iDqtK3hNK6UGQm3Erl46AqCIFCjZVW7j4f7YdAbOL3rApnJmUSUKUKN5lUK7Ntbl+5w7dRNPLw8qNuuhtO4UmbkZudxeud5C0NxpfrlXcqDiU/IzFBcr0OtAg2IzNQsTu+6gEFnoGI99ZaaIyiKwoWDl4mPTiQwzDS3FcQwnXwvlfP7L6HIMtWaVn6s40qB9b308vRESpQ1FJzBCe5Ee/DN+0X+lTw3D2Xc5OXlcf78ec6dO0diYiLp6el4eXkRHBxM+fLlqVu3LiVLuqYw/6/AHVvKjccG+QzFPP20/W9LlkCfPk4NGzfccOO/A7dx84DhF86fP8/atWvZs2cPer3eqQuiIAiUKVOG3r1707VrV/z8XMcf+f8Mvc7A3uWH2L3sIFlpWZSuWpIeL3SkSiPnUaVvnI1h/ffbuHkuBh9/b1r2b0r7J1o6ZcrMycxl+897ObjuGLocHZXql6fHi51cRs69cPAymxbs4M61ewSGmSIft+zfxGkMlvSkDDb9uJMT284gG2VqtKhCzxc7OY0vJcsyJ7aeYcviXSTdTiGsRCidn2lLo651ncaXSohNYuMP2zm3PwpRI9KgY226Pt/eYXgHMPGf7D16ja17LpKemUuJoiH06liL2tVKOP1CvZ6awq/nz3AuIR4vrZZO5SrQr2p1p/GldJKefYknOJB0ilwpjzJ+xelStCXl/Z0b9yl5UVzPWE2G/gYeoj+l/DtR2r+j0/hSspxOds4f5OZtR1F0eHnWw8/vaTy098UgCwoy8d0oCrL+MIacZShSLIIYhnZwfzRefk4XmY1SIhnZv5CTHxXcx7MZQf5PonUSX0pWJG5lH+Fy+laypWQCtJFUDepGSd/6Tvv2bm4Ka28f4XxaDFpRQ9OwKvQo0ZBAD1+H8nqjkS2XrrH+wmXSc/MoHxbCkPq1qFPCeeygm9cT2Lj6BNevxuHt40mLtlVp36UWPk7iS+Vm5bLjl/0cWH2EvBxrVHBXK5sXD19h4/z8qOAh/rQb1pJWA5o4/frPSM5ky6JdHNtyGskgUb1ZZXq82ImiZSMcysuyzMnt59i6eBcJsUmEFguh89NtadStrtOVzaQ7yWz4YTtn95qigtdrX4vuIzs4jS8lGSUOrjvOjl/2kpaQTrFykXR9vj21W1d3On63r95j/XdbuXL8Oh5eWpr2bEjnZ9qozuDZQperY/eyg+xbcZjsjBzKVCtJjxc7uVy9uXbqJuu/30bMRVNU8FYDmtFuaHOn8aWyM3LY9tMeDq8/jj7PQOUG5en5UmdK3rd1aIaiKJzbF8WmH3dw70Y8QUUC6fBEK5r3aeR0bktNSGfzjzs5ucMUFbxWq2r0eKHTvyK+lIKA/AinT5T/+rbUzZs3+eabbzh27BiiKFK3bl1q1qxJlSpVCAkJITAwEJ1OR2ZmJrdu3eLixYucPHmS+Ph4AgMDeeaZZ+jbty9a7WMXyuqR8SgrN0l3knm7wzRuX7mHIAoosoJGKyIZZfqP68FLnz1jN9H8PG05S6b9YZEz54soHc7HO6bYLXfHXIzl7Q7TSE1IR8DEzSBqRWSjzIufPM3A+w7dybLM3Be+Y/PCXZYyRFFElmUq1CnDnG3vE3RfsMpz+6KY1GMWeTk6i5eEqBERRIF3loxR0cWDiZBwSr+POb7lNKJGRJZky7/1O9Zi+toJdpPZnuWH+PDJL0wsqpI1xouXjycz1r1jFw8nPTOX16ct58qNBERRQJYVNKKAJCt0a1eDd17uYscztOjMSWbs24UoCEiKVa1DfXxY2mcQVcPVhlp8XhKTz31Jgi4FAQEFBQ0iEjKDS3XlidI9VOOnKApnkr/kctpSBDT5hH4iIOPvUYp2Jb7FV6veytPrz5KYNBRZSTPfBdPhX5mQ4Nn4+6lXaRTFiC5tHFLe+nw5axmiRz28Q5cgiOrxy87bzb2k51CwZU8WEdBSNOwH/H3UwWoNci7rb7/DvdyzCIgoyJb2lPVvQZfiU9AI6hf9prsnmHVhOYCF0E9AwFfrxWf1nqNmsHorLzErm2eWruBaUgqiICAr1vEb3qAO73dtZ6cbvy3ex6LvdqHRiEiSjCCYnvfwIgF8NO9pSpZWv4xiL9/h7Q7TSL6Xaho/xap/z384nKET+qrkZVnmq1d/ZP13W210w/Rsla1Zio+2vW9nTFw4eJmJ3T8gNytPpRsAby96hY5Pqg+263UGZgz6lMPrT1j01KwbddrWYMaf79ht0xxYc5SZQ+ciS7JKNzy9PZi+ZgL1O9ZWyWemZvFu1w+4fOya5d7m9rQb1pIJP71qtwX257db+OrVHxFEwVSGYBq/gFB/5mx7j4p11YZ2wq1E3u4wjbvX4+3mtiHj+/D8h8PtdGPhpN/4ffZqu7mtaLkIPtk51W4r6MbZGMZ3nE56ckb+TUx9K8syr375PH1e6aqSlySJj0fMY8cv+6zjl9/+yg3KM3vre3bbbCd3nOP9PnPQ5+lV4yeKAhN/e91hHLzHAeb30gvTkyle1jVXlivcjdbyw/th/8qVm0KZdM899xyxsbGMGTOGVatW8dlnn/Hcc8/RokULqlevTsmSJalQoQJ169ald+/evPPOO/zxxx988cUXNG7cmHnz5vHrr78WXND/IyiKwvt9P+JufrgEs+KY3RtXfbGB9d9vU+XZvewAS6b9oZIz50u6k8LE7rNUYQv0OgPvdJlJelImKFZKdzON+vdvLeHIxpOqMv74eB2bF+5SlSHnc47cvBDLB0PnquRTE9KZ1GMWOhvDBkzu2ZJB4sMnv+T6mWhVnm/f+IkT285Y5Gz/Pb3zPPPGLVLJ3zx/iw+Hf45klFSutYqsoMvVM7nXbDuSrmlzN3A9OjG//vl9m//vpl0X+GX1UZX83lvRTN+3CwUsTMVK/l9aXh5Pr1tJntG6vCsrMtMvfEuSLi1fNr+MfOPgj9jN7Ek8ji1uZKzlctrSfHnzOJnksw132Xf3DdVqqCxnk5g8DFnJsKmNqRRQSE17hzydlREXwJD1OVLeBhs5axmy4Sy6tLfU8sbb3Et6FoX7413JKBi4lzwKveGGKs/uuM+Iyz2f3w5Z1Z7orIMcTpyvkr+YHssHF5Yjo6iYihUUco063ji1kAyDNaSHoii8uuJPbiabxlRW1OP3y4kz/HzstKqM/buiWPRd/nOb/4yYuzIlJYuJr/2ich02Goy82/UDUuPT83VDrX8/vvsLB9ceU5Wx+ouNrP9uq0rO/GzFXrrD9EGfquQzkjPtDBvAYoR8NOJrrpy4rsqzYMJSi06a9dT8zJ/bF8VXryxQycdevsOMwZ9hNBjtdEOfa+C9PnNUYQsAPnrma66evKG6t7k9u3/fzy8zV6rkT+86z5evLDCtCJrLyO+zrLRs3ukyUxW2QFEUJveaTXx+UNz757ZlH61liw2jMcD2n/fy++zVKjlzvsTYJCb1/NAyD4EpjMSEzjNM4S5sVEOWZFDg6zE/qpicAX79YBU7f92nKsPcnmuno5n9lDpoc9KdZN7vPVtl2JjzGI0SHwydS0zUbdx4PFEo4+bNN99k6dKlDBgwgODg4ELfvG7durz33nssWbKEmjXtI83+f8aFg5e5euKGw3gtAAjwx8drVQr9+5w1Tt0YZUnmztV7HLOJsbRvxWGS7qQ45doQNSLLP7HGljIajKz47E+ndZaNMqd2nufmuRhL2qYFO8hzEdNHEARWf7nRcp2RnGkK+eBEXpYVti7eTVqiNVrx2q/yYzg5yKLICoY8vSp+1c3YJI6ejnZJ5Lfsz+MYbFhtfzh5zCnPjaQoJOZks+GaNRL76bRL3M6Nd8p1IyCw8vZWy0tTURSiUn9yWh8FiTT9FRLzrMZmTu4KZDkF51w3IplZ31vvoeRiyF6EczpnCUm3FdlojWidnr0EBaOTPAogk5692JKSZUjkWuYOi1HjKM/5tHXoJWuU+2Ux+xCd9K2MQo4xj413T1jSzt6N59Ttey7DYSw4dFxF9PfH0oMudEMh7m4ah/Zbx+/AmmPExyQ61w1RYNnH1thgklHiDxtduR+SUeb8/ksqY2XLol12hs39Zaz6whpuIystm/Xfb3OuG5LMjl/2qQz5NV/lB1V1pBuKglFvNMXQysftq/c4vP6E03YriunDSp9nDba4/NN1Tvm1ZEkmPTGDXb8dsKSZ5ohbTnloBAGWfbRGpRu/z1ntlN9HMsrEXIjl9M7zlrTdvx8gLSG90HObPk/Pqs83OGWlliWZoxtPqcJObPhhOwa90fF4KKb/rP16s+MbPiaQFRHpEf5k5d/rUF2omvfs2fORtpRKlSpF/fr1Hzr/fxHHt5x27f2gQNzNBOLzVx8yU7O4fjraJTmWxkPD8S2nLdcntp1xSb4lSzJndl/AaDAtW0afjyU9McNlvUWNyPGtZy3XxzafclknyShxZIP1hX1uX1SBYSQko8TZPRct14c3nHBJ2CXLCkc2WF+Ox87EFOj1kZ6Zx7VoUxgCSZY5ePuWy5epKAjsuxVtuT6VGuWQt8UMBYVbOfdIN5go/3OM8WQbXX/lCWiIyzlsuc7L24NLtkMk8vJ2Wa5kwzlQslzIm2om6axxuLJzd+CaKFAiO9f6cryTc6pAZmZJ0RGXZ43jdCj5MpLigsYeOJJk5ec5cCPGJaEiQFxmFtEpaQDkZOu4dOGOa93QiJw4YjU8Tmw941L/ZFnh4sHL5OWYwnLEXr5bYHgEUSNywkY3jhaoG6YXqhkXDl7GoHN9+FOWZM7ssr7kj2w86Vo3JJnDNrpxctvZApmZs9NzuHryJmAyPE5sO1tg3KfjW09brgvqW0WB25fvWsIppMSlcSvqjstwGBqthmObbcrYdsYlCaosyZzcftZiQF07HU1WWrZTeTB9iJ3YZjN+m065JGGUjDKH1x93+vvjAJl8Ir+H/vv3otBm2Y4dOzAYHv7UtRtqSEbZ9XvLIiep/i2s/IPksWzbFLYMg9U4MRYU0+ch62Q7mRYUQ+b+epjPWxRYhqzefiqwDJuVAtPLuuBCJEXKL6Mw+94CimJth6I4W1FRlWD9X6VwZdjGq1IoWKdt6y4XEPjTImfTDtmFYWOG0UbeKMsFGqeAZeWmIBZZi7ztMyWZtvYKgnXbpuB2C8J9z/r/QjcepoxC9K3RRscLCtegKAryfWUUSv+Mj9C3RqnA2GCKLFuMG7kwfSugWkm37QNnKOyYufG/R6GNm+nTp9O/f3+++OILrl279nfW6f8FqjWtVODEFBDqT2RZ0yG6wLAAIkqHu5SXDBJVm1iJ0qo2ruTyy1EQBMrUKGXhryldrQReBXCCyJKJ58GMGs2ruFwdErUiNZpbD6JVblihUEZdlUZWHpcaLaq4DDshakVqtqxqua5euViBLzxPTy3l8hlrtaJItfAiiC4qpigKdSOtXjqVA8paDBdnCPUMIsTTdHjXV1sULzHYpbyCkVBv6/atl1d9CorY7elR13rlUY2CHSAVRE/rKqqPZxNcx6/S4O1pDbcR6V3VhawJAiJFvG2ekaDSLvtWRFAdKK5ToqjKkHQEfy9PyoQGA+Dn70WxEiEunytJkqlaw8p/UrVxJdex3QQoUamYhYSuZOVi+AS45luRjLJK/wrUDY1IdRtdKig8gBlVGls9KWu0rOpSNzRakZotrGNWranrOQFM5Hzla5vGQxAEKjeo4HKVRBAEqja2trtak0oFfvQERwQRXsLEwxNWPKTAmHNGg6Sad6o2ruRyvAVRoGK98hbPy7I1S9uR/d0PRVao2sTatzVbPFjfPo6QHyGulCm21H98WwqgQ4cO6HQ6Vq1axciRI3nhhRdYu3YtWVkFLYO74QhNutd3GVhPEAV6j+5icS8VRZF+Y7s7/SISRQH/ED/aDrGyw3Z6ug1ePp5Ov4IVRaH/uB6Wax9/H7o97zyOjKgRKVW1uCruU8+XOuPqE0o2yvQb291yXbRsBE16NHAaR0bUiDTsUlfl9dX31W4uV28USaHXaGsohNpVS1CuVJjTyOCiKNCjfU38bAy55+rUVx12tYUAeGm0DKxmZW5tHl6XAK2f05hJAgK9ire1MO+KgpaKwYNxNiMLiHhrwinhZ/We8fN9ApOx4mwWlwnwH2W9hxiCxqcfzo0VDaJHbTQe1thEwf7PUNC2VLC/lfk61KscxXxqO42RJSBSPqA1fjaBMweVbuG0b8H0cuxTwup10rJ8GUoEBTrdmhIFgWH1a+OVv1UuCAL9hzZxuhAjCAK+fl6062I1HDsMb4WPv4/zFSIFBrxm9Xbz8vGix6hOTmkKRI1I8QqR1O9o7dvuL3R02mYwfSj0tdGN8BJhtOjb2Kn+abQiddvXVJHUFaQbkiTT+2WrblRpVJGK9cq51L9OT7VWeQ31H9fd+ceCYGLy7WITx6l530aERAY57StBEOj7ajfL1pVGo6HfmO5ODTtRFAgqEkhL25h2z7bDw1PrVDUUWaH/a9a5zT/Yj05Pt3U5t5WvXUZlQPUa3cWlASwZZfqO6e7098cB7jM3hcD777/P6tWref3116lcuTKXL19m7ty59O/fn5kzZ3Lq1KmCb+KGBRqthmmr38bbz0tN7Z2v4HXa1uCJyQNUefqN7W4J7GY7EYhaEQ8vD6atHq9yofYP9uO95W+i8dCovkDMX2Edn2pN1+faqcp47oNhVGlUAUFQr16LGhH/YD+mrHhL9UIoWakYr//wEoIgqMvIb9PwyQPsXFHf+OFFipaNsJvMBFEgskwR3lr4siq9bruaPD1lsOq+pj4UQYBx345STfiCIDDz7d4E+HvbfXEKQOXykYy2CTAKMKBqDQZWNRkvtodfNYKARhT5umtPgr2tLMKeogcTq72Ap+iBaKNGZmOnYWgNehe3TvgA1UJGEOnTxCJpzaNBI3jTstgniIL161KjiSAsdB4mNbU1Jkz/7+c7Ah8fdQwfr8D3ELSV8+9v23YRQQzDK/hrtbxnTYoEz1Dd1/b/w4Im4ePVUJWnY7GJ+GnDEOymD4Fgz1K0jnhNldoivBrDyrQ218JagiAiIjCpxmCK+lip8jWiyLxBvfDz8lQZOOb/a1CqOGNaq0N09OzfkNYdTEa37XOl0YhoPUSmzBms4rrxDfBhyoo30Xo61o12Q1vQ40V1yIZnpg+hevPKJjfo+3TDL9CHqaveVr3Qi5WL5K2FLzvVjSHj+9Cku/os4rhvR1GiYlGHuhFeIozxi19VpddsUZXnPnjCdF/tfboBjPlqJOVqWVfFBEFg0u+vE3R/JG7B9Fu5WqV58RM1vUC7YS0tfXG//mk0Gib99hohEVauKQ9PD6auHo+Xr6eqTuY2NexSh8Hj1c/toLd60ahbPZWcuTxPH0+mrR6v4hEKCg9k0u+vo9FoHPZt91Ed7EJVvPDxU1SoU9Y0f903foFhAbz3xxuqua1sjVKMnTcKBByWMWLGUGq1UoekeNwg5/PcPPzff5znxhFu3rzJhg0b2LZtG2lpaQiCQLFixejevTtdu3alSJHHm576r8KjMhQn3Epk9Zeb2PnrPnKy8ihZqRi9XupM5xFtHZJKSZLEzl/3s3beZmIu3sbbx5M2g5vTb1x3VdBMW8RcjGX1FxvZt+oIBp2B8nXK0vfVrrQZ3Nzhl6s+T8+mH3ey/vutxN1MwD/Yj45PtaHPq12dUrpHHbnKys/Xc2LLaWRJoUaLKvQb14NGXeo6lM9Oz+bP77axacF2UuLSCIkMptvzHej5UienlO7Ht55h9ZcbOL//EoIo0LBzHfqP60H1Zo77PTk1m5WbTrF51wUysvIoFhFIn8516NWxFl4OQkkoisLG61f46cwpLiYl4KnR0Ll8RZ6t04AqYY63BO/lJrL+7h72JZ1AJ+ko5VuM7sVa0SaiERrBfnVDVoxEZ27gWvoKMvUxaEUfSvt3pXLwEPw8HBOP6Q0XyMycT17eFhQMeHrUwd//eXy8uzkcP0XOwZj7G4bsX1HkOwhCKFrfgXj4Po2gcdyOXN0RUjN/IFe3HwAfr6YE+7+Ar7fjAKR5UjrnU9cSlb6JXCkNP2041YN7UiO4F56iPSmfoigcTLrE8lsHuJB+C40g0jy8KoPLtKRqoGPCw7iMTH4+dpo156LI1ukpHRLEEw3q0L9uDTwdkNnJssKuredZt+IY0TcS8PTS0rp9dfoNaWLHcWPGrUt3WP3FBvatPII+zxR+oc8rXWk7tIXDlQe9zsCWhTv58/ut3LuegF+QDx2fbE3fMd0IL+G4jMvHr7P6iw0c2XgS2ShTrWkl+o3rYWfYmJGdkcOG77exYf52Uu6lElQkkG7Pd6DX6M6qwJy2OLXzHKs+32Ai8RME6nWoxYDXezrdNkmNT2PtvM1s/Wk3mSnZRJQOp8cLHek+qqNDMlBFUdi/+ihrvtrI1RM38PDS0qx3I/qP62HZwrof927Gs+bLTez6fT+52TpKVSlO79Fd6PR0G4cHjiWjxPale1n3zRZuXbqDt68X7Ya2oN/Y7hQr7ziUy81zMaz6YiMH1x7FoDNSsX45+o3pTsv+TRzqRl6Ojk0LdrD++20k3EokIMSfzs+0pc+rXZ0SHl44eJlVn6/nxPazKLJC7dbV6Te2u91H2+ME83vpyalZRJZ9+GPB8dEiS6f6/yt5bh45tpTRaOTAgQNs3LiRo0ePIssm0rdGjRrRo0cP2rRp81fV9bGEO/yCG2644YYbjxPM76UnpmQT8QjGTUK0yK/T/P6V77dHpgzWarW0adOGNm3akJyczJYtW9i4cSNHjhzh2LFj7Nq1q+CbuEHi7WSy03MoUirMLoq2I+Rm5ZJwKwlvP28iSocX6F2iKApx0Qnoc/VElo1wGqrBFllp2STdScE/xK/AIHxgWlW6dyMBWZIpVj6iwGB0YAoomJaQQXBEoNMwCrYw6A3E3UxAEEWKlY8oMNAmQHJSJpnpuYQVCSAg0HWASoA8g5E7ael4ajWUDA4qXN/mpZEn6Yn0DsZXW3Df6qUcMo2JeIo+BHg4puG/vwy9FIOiGPDUlkIUCo5GLMupSFICohiCRlOYMozojLcABS9taQSh4PHLNqaRY0zHTxuCrzawQHm9ZOROTioaUaSkb4hdNHBHiEvPJCtPR2RQAAHeBfdtXo6O+DupePt4ElEi5G/Rjez0bBJvp+Af7Ot0xcYWsixz70Y8klGmaLmIAoPQgimkSWp8OkFFAlXbPs5gNBi5dyPetIpeIbJQupESl0pGchZhxUMKDIIJppAKcdGJeHhqKVY+slBebQmxSeRm5lKkVDi+AQXrX05mLomxSfj4ezsN32ILRVGIu5mAXmegaNkiTkM12CIzNYvku6kEhPrbRQ93BPPcpsgyxcpHOg3V8LjBdDD40fL/W/GXjlBmZiapqamWQ8bugOMF49jmUyx+fxlXjps4OLSeWtoPa8mzHwxzaFCkJ2Ww+L3f2frTbvR5JjfecrVK89SUwU6pwHf+uo+lM1cQe+kuAN5+XnR9rj0jpg9xGBcmLjqBhZN+Ze/yQ5bDijVbVmXE9KHUaVvDTl6WZdZ+vZnln64jMdbEhhoQ6k+fV7ryxKT+Do2cG2djWDjpVxMbqwII0LhbPZ6dOcyOyh1MRs3vH65hzdebyEjOBCC8RCiD3uxN37HdHG4hnD0Zw+LvdnH+tIm0TqMRadW+Gs++3N7kXXMfsnR6vtxzkOWnzpOjN/Vt2dBgRrdqQt/a1e3kAfYmXGT+te1czbwHgKeopXvx+rxYqRMhDiJeZxtTOJi4kEsZ25HzXbcjvCvTNPwZyvnbj5+iKKRmLyMx4yv0kok8URT8CfV/ksjANxAdbAEZjTfITP8QXd5mzIeFPT1b4B84Ac/7zs+YypBIyJxPfMYCjLKJ+0crhhER8DyRgS8hCPbTxL3cK+xJWMLNbBOHkYBAxYAmtI0YQbiXfVTtPMnA91d280f0MTKNJjbb4j7BPFexFYPKNHT4kjx4NYavth3kbGxcfp1EutepwrguLSgaZL89k5mew8+fbmLL8qMW3ShTuSjDx3amVY+6dvJgYv1eOmMFMRdNHERevl50fbYdI2YMxT/YXjcSYpNYOPFXdi87aHEDrtasMiOmD6V+h1p28oqi8Oe3W1n20RoSbiUBprNwvV/uwvDJAxxGE4++EMuPE3/hyPqTpjlUgIad6vDcrCccxmUyGowsm7OW1V9uMLGRY/JAGvB6Lwa83sOhbpw/cIlFk3+z8EmJGpGW/Rvz3AdPONzezs3KZcnU5WyYv43czPzxq1iUJyb2p/MzbR2O3+H1J/hpyjKunTJx5nh4aekwvDXPfTDM4RZQakI6iyb/xvaf92DQmXSjYr1yPDVlEM17N7KTB9j6025+nbWKO1dN+ucT4E33kR15ZtpgfPztDam71+NYOOlX9q08YnFxr92mOs/OGErNlvbnZ2RZZtXnG1jx2Z8k3zXxHAWFB9B3THeGvtP3X2Pk/H/EI29L5eTksGPHDjZu3EhUVBSKouDt7U2bNm3o0aMHderU+avq+ljiUbaldvyyj9lPf4kgCCr3TFErEhoZzFdHPlQZOBkpmYxtNol7N+JV3BOCYIqLM+brkSrPCDCxGv/47i+WODuWMjQiZWuUYu6+GaqvqXs34xnTZCKZaVkqzgdRFFCAqSvfpnkf60SjKApfvrLAQktvC0EUaNCxNjPXv6vaY798/Dpvtnkfg15NGS9qRLSeWj7ZOZVqNi61klHi/b5zOLbptEODuevz7Xkj/1CzGUf2X2HKW8sANQ+KRiPi6+/FV4uep3hJa9/m6A0M/+kPLsUnWuj+wXTuUAFea9uc0a3Uxsea2KPMvrjaElfKUoYgUtQ7mB+bvkywp/UFmW1MZVn0K2QZk+5j+DWV0rnYeKoFqeM4xaV/RGLGlzY1sfQWPp51KV9kGaJoHT+j4SrJib1QlGzUXlAiIBISthQvb+thakVRiE5+jdScNdi7GwkE+3SlXPi3CDYrLLHZ5/nt1kRkRVa1Q0BEK3rydNlPifC2GqgG2ciLh5dwMjlG5TVlbtFT5Zvxdo1uqpK3nLvCm79tQEBQjYdGFAj18+X3V4apDJysjFze6P8Fd6KT7tMN03P/4vt96fus+hD5is/+5Pu3llj0x9JTGpFSVYrzxYGZKuM/4VYirzZ5l4zkTJWHkigKKAq898cbtBrQVFXGvHEL81mE7+tZUaBO2xrM2jhRZfxfO32T11u9hz7PYKcbGq3IR9unqM7RSJLE9IGfcmjdcYe60fGp1oxf/KpKN45tOc17vT5EUdQcNhqtiE+AD18dmqUKPJmXo+OtdlO5evKGmvMmfwCffG8gz0wboip386JdfPr8N5b4UJZ2aEWKlAjjqyMfqlaj0hLTGdN0Igm37hu//PxvzH+Jbs93UJXx8/TlLJn6h51qiBqRinXL8ume6apVuNtX7zG26USyM3PUc5tGRBBgxrp3aNS1niVdURQ+HfktWxbZ7z4IokCT7vWZuvrtQq2Q/a9hfi8NnpJHkTIP/4pPjBH4Y5r3v3Jb6qHXnE6fPs0HH3xAv379+PTTT7l48SJVqlThzTffZPXq1UycOPE/b9g8CnKzcvn8pe9NzOn3uVnKRpmU+DQWT/5Nlf7rB6vsDBuwrpB98/oiVdiC+JhEFk78NV9GXb4syUSfv8XKz9ar0r9/awmZqVl2YSFkWQFF4ZPnv8GgtxK/XThwyaFhA6Z2Hd96hh2/7FOlz33hOzvDxlwno87AZ6O+VU3Uu5cd5OjGU05XAjf/uFPFaGw0SnwyY52JXOy+vpUkmeysPL6bq67zkqOn7AwbsM6ZX+w+yK18RlyAdH02n0aty5e5rwxFJi4vjYXXd6rSDycucmDYWEvZGfcFOpuwBXmGK/mGjW1NzJDJ1Z8iOftnVWpG+mQHho1JHmTSU19XEQVm5O0mNWe1g/ubykzL3URarpViXlEUNtydi6xIdu1QkDHKejbf+0qVvvrWKY4nR9u5g5uvfr5xiItpdy3puXoD763cCgp24yHJCinZOXy2ab8qffl3O7gTbR9OwZx9/gdrSUmwsm8n3k5m/vifLW2yhSzJxF6+yx8fq8MtzH9nKen3GTZg0g0F04tQl6uzpF86etWhYQMm3Ti98zzbftqjSv/8xR/sDBtznSSDxKcj1bqxf9VRDq495lQ3tv+8V8W6KxklPnnuG2RJsStDMsrkZOQyb+xCVfq6eZu5cuK6PZlffpFLZ6xQhS3ISsvmq1fmW9qpaodRJvF2MkumLFOl/zxtuZ1hY5v/q1cXmOJI5eP2lbsmw8amHpYyJJmrp27a9f23ry8iOyPHfm6TZGRZ4eNn56lI+U7tPO/QsDHX6/D6E+xdftjh748LHoXjxvz3b8UD1TwxMZElS5YwbNgwXnvtNbZu3YqnpycDBgxg0aJFfP/99/Tu3Rtf34LPjPx/x+5lBy3U7o4gG2V2/LqfnMxcwLT0vOnHHS7ZQmVJVk2Wm37c4ZIUTJYV/vxui2ViTE1I5+DaYy7jzmSmZHFonZVyfMP87S6JrgRR4M9vt1iur526yfXT0U7LkGWF6POxlm06gD+/2+qSREyjFdnwgzVEwJH9V0lPzXERR0bhyP4rJOcv4QP8evyM3YvUFqIgsOK0lfZ+873TGF0w70qKzJ93jqOXTcvrBjmXqIxtLmIygVHRcSXDOpmmZP2Ka4I9SMlcYs1vjEWv24dz3hoZWb6XL2NCUtYvBZShISlzqeUqNuc8qYZ7TkMwKMjcyb1Esi7WkrYs+qhLh1KNILIixvpMbTt/lWydwXmELFlhy7krZOSatkckSWbjr4eQJRdfqApsW2ENlrp18W5cscDJksz677dZYrtlpGSyb8Vh57HgFFPYggM2AVk3/FAI3bD5MIi+EMvlY9dc6sbty3e5cNAaquLP77YUSKJpqxvHt5wm5V6qU2NIlmSObztDQmyStYxvt7ok/hO1IhvnW2O77fx1v2VbyVkZ25bssRiC+jw9Wxbvdjm3GfWS6iNp0487XbZbkRXVvJN4O9llOAVFVkiNT+foJiulycYftrkmDxUF1n/v+MPOjX8ehd4wfPvttzl+/DhyPjV6gwYN6NGjB61atcLDo+DDcW6ocfvKPbRajUsmT6PeSNKdFEpXLUFGciY5Gbku7ylqRMveM2D6/wJ2HVPj09Hn6fHy8eLejfgC2Us1Wg23r1jLuHXxtmuCPVnhtk2dbl+561TWFneu3qNKIxNb6O3Ld1wyDktGmVs20Xnv3EpGFAWXeRQF4u6kEhYegF6SiM90TUYpK4ollhHArewkNIKA0UX/5kp60vTZRHgHkWVMRlJchzoQ0ZJmsH4B64w3cE2wp6CXrEEwJeNNl/c3QcBovI4XbQHIM1wtoAyJPKPV0EzR33Eha0WK/i5hXqUAuJWd7DLQgaTI3MxKtFxHJ6WhFUWXLMVGWeZeWiaBPt5kZ+SSle5aNwRR4E609YV9++rdApmyM5Izyc3MxS/Ij/joxALDgGg8NNy5Gme5vhVVsG7ceUjdMG9NxV664/qDxyhz65J1zG5fuVegbqDA3WtxRJQKtxy2dgXZKHPnmrodGq3ocm7T5epJiUujWLlIUuPT0bn40APTB8ydK7Zz290Cw0Ik3EpCkiQ0Gg13r8cVGG3j/vkzpoDxk2WF2EuF04d/CrIi4MrmL0z+fysKbdwcPXqUyMhIunXrRvfu3YmMdMw74Ebh4BfkW6iYOL753j0+/t72xy7uh2KVB/AL9EUQRZCdTzIaDw0e+Z4bfkEFr7jJsqyS8w/xt9tXt2uDzZmewpQB4GvjMeYX5Gs5KOkIgiDgb+Pp4evvXajD7L5+pv14D1HEU6NBLznvJ1EU8PeyHv7013oXGJlIAHw1pjI8RfvDqfdDQVZxxGjEAEyrKi7qJVjlRbFgbyVQVHIasWAvHFM9TPDSFNwOAC+bdvhpvdC5CJYqIhDgYfX+CvD2dLmKZoZ//mFcb1/Pgl/YgK+/9fyFX6BvgZ4+ZgI5KKRuSLJK/wIKoRs+j6wbfqTcS3MuLIB/kFqXCjPvmOsiCALefl7kZTs3PkSNqJ53gnwLNX7meaGgsBZg2jq07R/fIF9Ereh8JQ3w9PG0HKYu/PhZ5QJC/O3OKt4PRw4ZjxPMATAfPv+/F4Xelvrkk09YtmwZzz777N9q2ERFRTF37lyefvppOnfuzMCBA5kyZQqxsbEF5j1x4gSzZ8/miSeeoFOnTgwZMoQ5c+aQlJRkJzt27Fhat25t9/fWW2/9Hc2yQ+tBzVx+eQiiQLVmlS0Hin38fWjcrZ7LpVjJKNFmiJV0rfXg5i4Du2m0Im0GNbNMAKWrlqB0tRIug94JgkCLflYa9HZDW7hestaIKqbQOm1rOPRCsYVvoC/1Olip8ts/0cr1EjQK7Ye1tFw3b13FZNS5QIlSoZStYHKPFgSBbtUrOw3XAKatkO7VrQfqOhSt5TLStYhA47BK+Oe/tP20IRT3qemA1de2HTKVAqy8UEE+vXC9qqIh2Lef5UrrURtR45gI0ApPvLytzLuhvn1wvYQhEmpTRnm/BmgFew8fW/hqginpa/Uu61Gytsso3zIKXUtYPY061azk0jgVBYHqxSMoEWIyzDy9PGjSsUYBuiHTpqf1sGibQuhGi76NLYd9i5WPpHztMq4NIgVaDbAeOm9bCN3oaKMbNVtWJTDcMUmfGd5+XjTsYj3L2OGJVgXGo2r/hLWMZr0bovVwvdVZtFwEFeqWtVy3G9rC5faMLMm0HWwz7wxq5tLoEDUiddrWICjcZGQHhgZQt33NgsdvsJWVus2g5i7L0GhF2g1tYRmv8rXLOCUCtObR0LyP1Zuw3dAWLj9gRFGwY0F24/FBoY2bRo0aOVTs6Oho9uzZw5YtWxzkenD8+uuv7NmzhwYNGjB27Fh69erFmTNnGDlyJDdu3HCZ97vvvuPUqVO0atWKcePG0aFDB3bt2sXIkSNJTk62ky9SpAiTJ09W/Q0bNuwvaUdBKFmpGO2faOl4YspfoTGHHDBj+OSBdmERzBA1Io271aNKQ2vAyXrta1KjhePgfYIoIGpEhozva00TBEZMH+r0S0UQBHq82EnlwdV2aAuKV4h0OPmZael7v9LVkubp7cmT7w10XIC5nZP6q7gqeo3ujF+Qr8N2aLQikWWK0O4Jq3ETGu5P74ENXRppI15qp3qeRzVvaAoH4CCTRhCoU6IozctbXZwrBxanVZFqDgNCmlOeraAOv9Ak/GmnZ1UERCoFtCXUxo060Kcj3h7VcXwmRkQQPAkPsIktJYgEBE5weH9zKX7+LyDaBPAM8x+EhybSSRkatGIo4f5WnfDS+NIsfLADWStaFRmOaMPOPLxcM7w1ng77SiOIlPcvQseiVmOoZGgQfRtUdzp+iqLwaid1+IWhr3TK1w37TKIoULdFJarWszLp1mxZlTptHRtEgiAgCALD3u2nShsxY6hTo0sQBLo+107Fy9J6YFNKVi7mMI6TqBHx8femz6tW3fDw9LDT+fsx7N3++PhZVzp6vNiRwPtDKZjL0IoUKRlGR5tQI0HhgaZ4Vi5045lpQ1Tu44Pe6o3WQ+twrhI1IpXql6dRt7qWtHI1S9NyQBPH5+QE0/g99f4gVfJT7w+yuL3blSEKtOjbWBVGomGXOlRpVMFxu0UBjVbDoLd626SJjJgx1GmbBQH6jumm4trq+FRrIksXcTp+AaH+diE6Hje4Y0s9BKKionjuuecYMWIEU6ZM4cMPP7T8dvr0aTp16sT+/ftd3MExBg8ezPLlyxk3bhw9e/bkmWee4auvvkKSJH755ReXeV955RV+++03Ro8eTc+ePXnhhReYPXs2KSkprFq1yk7e39+fzp07q/4aNGjwwHV+WLy5YDQd8r+qRI1o+aLy8fPm3V/G0bCz2tusetPKTF01Ht/8JVaNh8ai3E17NmDystdV8oIgMPPPdy2rIKJGRJNfRmBoALM2TrKjTm81oClvzH/JtBwvgNZchmAKBPjy3BEqeW9fLz7ZNc0y8Wi01jKKlArjk13T7Ph6+r/WgxHTh6LRahBEAa2H6V+NVuSp9wepJiWA0KIhfLp7GpFliuSXYY0nU6ZGKT7bPU014QO8OK4zPQeYDBwx/94I4OmlZdy7PWjTSc3XUykinB+H9yfYx3QfrShaVhsalSnJD8P62Rk+02sPpU2k6aUsIqDNd5f21Xozu96T1A0pq5Iv7Vef7sXfwyPfdVtEa1nJqRTQhs7F3lbJC4KWckV+w9fT/DWpwbyTrBXDKVfkd7w81LwnPr6DCAiaAXhielN4YHYD9/Ubif99xo9GDKRy5HK8PcxGsdZShpe2NJUjl6PVqMevRfhQmoUNRkBEMDmAk+8ITruI56gf2kMlX9w3mB+bPUsRb9OqhFYQ0eT3VfWgYsxvNgJPjXqH/P2+HelbvzoCppUabf7L1sdDy4eDu9KmqrrdlWuXYuqC5/HL3x7RaEVETX4so7ZVmfztsyrDRxAEpq1+mwb5OmarG/4hfsxc/64dp0yzXg0Zv/hVvHy97HSjy7PtGDNvpEre09uTj3dOpVK9cpY6mcsIKx7Cxzum2JHU9X65C8/PesKiE+Z/RY3IExP7qwwugOAiQXy6expFy0Xkl2HVjdJVS/Dp7ml2pKAjZw83BaoUBGsZgoCHl5ZXv3qejk+qXeZLVSnB7K3vEVzEtNKi8dBYXvg1W1Tlw82T7Nyh31kyhlYDm1n61jK3+fvw3rI37PiyareuzvvL37RsVWlt5raWA5rwztKxKnmNRsOsjZOo1drETSPa9G1geCCzt7xHmWrqsB7th7Vk7LyReHh7IAimdouiyZDt/UpXRn30pErex9+HT3ZNtdxHoxUtlBZFyxbh093TCkWu+E/CvC31KH//VjwUz83Nmzd56aWXEEWRnj17cuvWLY4cOcLu3bsBk2U+aNAg6taty+TJk/+Sio4caZo4FixY8MB5e/bsSd26dZk5c6YlbezYsaSnp/Pjjz+i1+sf2sPrrwi/cOfaPfatOEx2Ri4lKxej9aBmdi9rW+jz9OxbeYToC7F4+3nRsl9jylQv5bKMa6dvcvjPE+jz9FSoU5bmfRu5ZBDOzshhz7KD3LsRT0CoP60HNaNoWecst4qicH7/JU5uP4ssyVRvXoWGXeq45IBIS0xn9+8HSb6bQmixENoObeFyspBlmeNbznDx4GUE0RQ/p1arai63ChLi0tmz/QIZ6bkULR5M20418PN30beSxI7L17kUl4inVkO7SuWpXsw1u+/NrAT2JFwg16inrH8E7SJr4q1x3rcGOZermftI1cfiKfpQMaA1IZ6O4yuZkaM7TWbeThTFgI9nLQJ9OrlkEJblNPJy1yEZbyOKYXj79kajcRx7DEzjl6U7SGbeYUDB36sxAd4tVfw29yPLkMLFjL3kGFMJ8AinWmAblyzFRlliX8JVzqfdRiOItIioRO3gki7H71ZyGlvPXyUrT0fpsGC61KqMn5fzbTG9zsjBLWeJvhyHl48HzTrVpGwV5+0GU3yig2uPo8vVUa5WGVr0a+ySQTgnM5c9fxzk7vV4/IP9aD2oKcXKOd/yUBSFqMNXOL7lDJJRomqTSjTuXs+lbqQnZbDr9wMk30khJDKYtkObE1rUOZOuLMuc2HaWC/svgWAKNlunbQ3XuhGbxJ4/DpGRnElkmSK0HdLc5Zax0WDk0LrjXD15Aw8vDxp3r69aKXaE2Mt32L/qKDmZuZSuWoJWA5u6ZIDW5erYu+Iwt6Lu4OPvTcv+TVRBcR3hyonrHNlwEoPOQMV65Wjep5FLcr2stGx2LztIfHQCgWEBtBnSnIhSjmOugWn8zu69yOmd51FkhRotq9KgU22nUc8fB5jfS90mQ2iZhzdQUmIUNs3kX8lz81DGzXvvvcfRo0f58ccfKVmyJIsWLeKnn36yGDcAU6ZM4fr16yxdutT5jQoJRVEYOHAgZcuW5dNPP32gvDk5OfTq1YuuXbvy9tvWL+OxY8dy/vx5BEHAYDAQGhpKz549GTFiBFpt4Vkn3bGl3HDDDTfceJzgNm4eMvzC6dOnadOmDSVLOv/ajIyM5OjRo05/fxBs27aNxMREnnvuuQfOu3z5cgwGA+3bq88/FC9enHr16lG+fHny8vLYvXs3S5YsITY2lmnTpjm9X1JSkur8TkxMzAPX6X5cO32TPX8cIjs9h1JVitPhyVZOo/+CaVVl5y/78lduTF83VRtXdPqVZl5VObTuGLpcPRXqlqPdsBYuV4dSE9LZsXQvd6/HExjqT9uhLShbw/nqkCRJHN9yhpPbrCs3Lfs3drk6FB+TyPale0m+m0pYsRA6PNnK5eqQQW/g4JpjnD9wCVEUqd+xFg271nX5BXzr8j12rzxKRmoWRUuH02FIM0IinK8u5OgMbDl1mUt3TCs3bWqUp0GFEi6/gM+m3GXLnShyjHoqBhahd+maKu8fuzKMWZxK3Uei7g5eGh9qBTWjpK89rb4ZiqKQmneExJw9KBgI9KxJpF9XNKLzMgxSPOnZKzFIt9GIYQT59sXLw/lXtqwYScrZQ2reERQgxLshRXzbIbpYHUrSxXEydT9ZxnSCPEJpENKaYE/ncZZ0kpHNsZc4nXIHrSDSulgFWkSWc3jOyYwrtxPZeuIKmbk6SkcE06NxNYId0OqbkZOZy85f93PzfCzevp606NuYak0rudSNCwcvc2jtMfJydJSvXYZ2w1q6jIGUnpTB9p/3cudaHAEhfrQd0lx1HuR+yLLMia1nOLH1DFJ+VPCWA5q6XB1KiE1i+897SbqTQmjRYDoMb+XyQKzRYOTg2mOc2xeFIAjUbV+TJj3qu9SN2Mt32PnrftKTMilatggdn2rtcnUoL0fHnj8OcvXEDbSeWpr2bFDg6tCVE9fZt+IwOZm5lKpago5Ptna5OpSVls2OX/ZxK+o2Pv7etBrYzOXqkKIonN1zkcPrT5hWbuqXp+2Q5i5Xh1LiUtn+817iohMJDPOn/ROtXK4OSZLE0Y2nOL3zPLIsU7NlNVr0db069LjARMT38MaNhMK/1WfqoVZuOnbsyIABAxg9ejSAw5WbuXPnsnnz5kc+aBwTE8NLL71E2bJl+frrrx+I6vr06dO8/vrrtG7d2qXBYsbHH3/Mn3/+ybfffkuNGvYxlAAWLlzI4sWL7dIfxrLNzc5j1rDPObz+BBqtiCAISJKMRqthzNcj6T6yg12e3csO8Mlz36DL06PValAUk5dUnXY1mLrybbuJIzUhnSl95hB15KrpjItgYvD18fdh4i/jaNrT/ozRqs838MP4n5FlGY1GRFEUJKNM26EteHvRK3aT8t3rcUzsPos7V+9Z9r0lg0RwRBDT105QhVIA04S0YMJSln/6J4IoWNxlZVlmwLgevPDJ03ZLvpePXeO93rNJjU9XlVG8QiQfbJiooosHMOiNzB2zmJ3LjyBqRETR1LeiIPDclAEMeFUd5gBg/8WbjF+ykew8PVpRRAEkWaZGqUi+eqEPYQHqvs005DHm0AoOJtxEI5iOy0qKjKeoZVbDnvQqbR9r6HjKLlbd/gFJkSznbWQkqgbUZ3iZ1/DSqF+qecZ4Tse/RKb+EkL+t4iCEa0YQO2ILwjzUR+sVRSFpMwvSUz/FBNvgAbT5CQR5DuU4qGz7bazsvTXOBX/EnnGO6oyvDSR1Iv8jgCvqip5WZFZc2cRB5O3IiKCJfyEQoeIfnQpOtjuhXcs8Raj968gVZ9rOZtkVGQqBoazsPVQSviptyPz9EYmLd7EztPX0OSfi5BkGY0oMn5QWwa1tmc/37fqCB89M4+8XJ1KN2q2rMq01W8TGKqO9ZWRnMn7feZw4eBllW54+3rxzs9jadG3sV0Za+dt5rs3Fpv01EY3Wg9syvifXrUL2njvZjyTe37Irag7quc2KDyQqavfVoVSMI/fwkm/sWzOGtNZm3wXd1mW6fNKV0bPHWE3B147dZPJvT4k+W6qqoyi5SL4YMNEuxe30WBk7gvfs/Wn3ap5RxAEnp0xlKHvqM/1AJzYdoYZQz4jOy0HrYe1byvWK8fM9e/aBZ/Mycxl5pDPOLb5tLUMo4yHl5Zx375A52fa2pWxfeleE3u5zmg605NfRoPOdXjvjzfszg6lxKUyuddsrp64YR0/g4RfkC+Tfn+dRl3q2pWx7KO1LJr8K4qsIGpEZEVBNsp0fKo1b8x/ye5jLPbyHSb1+JB7N+JVfRtaLIQZ6yZQuYHrbbl/CuaVm06TNIQ8wspNaozCtg+kf+XKzUNtGhYpUqRAz6UrV65QvHhBbqmukZyczIQJE/Dz82PGjBkPZNjExMQwefJkypcvz4QJrjxIrBgyxBQf5fjx405levfuzfz58y1/j3KmaM5TX3F0o4kRUzLKGA0Siqxg1BuZ+8J3HFx3TCV/Zs8FZj3xBbo8PSgmRTa7s57bG8XU/h+pvDlkWWZS91lcPnE9vwzJRKylQF5WLlP7f8xlGyZgMMW7+vaNxUjG/LoYJAuR1Z4/DvLF6B9U8rlZubzVfir3bsSbyjBISPnkXRlJmUzoPJ2EW4mqPL99uJo/PskPj5BPKy9LMiiw8vMN/DJzpUo+8XYy4ztNJz0pw66MuOhE3mo/leyMHFWeeeN/ZddK08qhLFn7VpJk5r+/nG2/HVTJR91OYNyCdeTk6QETSZyUTyJ36U4Co79dbbkG00tozKEVHEmMNtVJkTEqpgADOtnIW0fXcChBTaoXlXGSP2K/wagYUVCQkZDzXb0vZ57m11tfquRlxcCJuOfI0l81lYkRBWN+/bI4FfeS5Tcz0rKXkpj+ESYXchkwYHYnT89ZRlzaDJW8QUrjxL0R5Bnj7MrQSYkcjxuBTlJTKWyO+52DySZmVhkZGVMoBgWF7Qmr2Je0USUfnZnCiD2/ka43MQob8/sK4GZmMsN3LUUnqXlwpvy8hd1n8p9bWcEoySgKGCWZWb/vZPspdbvPH7jEjCFz0eXa68bFQ1d4v49aNxRFYXLPD4k6YrqPSjdydEwf9CkXD19RlbFn+SG+HvOjVU9tdGP/qiN8Nuo7lXxejo63O0yzkFiqdCMlk3e7zrTojRkrPv2T32evtuiG0UY31s7bzM9Tl6vkk++l8naHaaTGp9uVkXAribfaTVGFLQD45vXFbFuyJ7/dVt2QJZkfJ/7KxgU7VPI3z8UwuddsctLNbOnWvr15LoYJnWfYudXPHDrXEvbBUoaioM8z8PFz8zi25bRK/sS2M8x55iv0eQaTwWhTxqkd55g55DOVvGSUmNB5BjfORFuuzaSBOZm5vN9nDjfOqlfVNy/cyYJ3liIZTeEWjAbJ4k6+45d9fPPaIpV8dno2b7WbSnxMol3fpiWkM77jdJLupuDG44mHMm6aN2/OsWPHnBoBO3fu5OLFi7Rq9fAcAFlZWYwfP56srCw++eQTwsOdH/i6H/Hx8bz55pv4+fkxZ86cQh8WjogwbYlkZjonjAsPD6dKlSqWvzJlnC9Hu0LMxVgOrDlqoXe/H4IosHT6ClXaLzNXmtwxHay1yZLMmd0XibKZkE9sPWMKdueAD8I0zyssm7PGJk1hydRldrKW32WFbT/tURkr25fuI/F2skPOHlmW0eXoWfu1NTZRXo6OZR+tsZO1xR8fryU3O89yvW7eZvKydQ7p9WVJJvmeaZnZjMQ7KWxZut8lx8gvH/2p6vvFO46hOHHUlmSFy3cT2R8VbUk7m3qXgwk3kVy4Bn8TpY6ptT1uOYKTJWIFmaiM49zLtU7IiTk7yDHcQHHIdaMAEjHpi60pipHE9M8cyFrzpGb9hFGybqveyVyJXk7BMZ+OjFHO5HaG9ZnIlbLZm7jRgawV2+NXYZStxsriK0cxyJJdbCkASVGIzU5jwy1rbLCY+FS2nrjilAhOEOD7DYdUxspvH66xC4BpaYUkc+HgZc7ujbKkndp5nqgjVx1zTeXf4vfZq61J+brhbAdGlhV2/rbfxISbj92/HyA+OtGx/skKep2B1V9a+1Kfp+fXWfZenbb1WvHZnypDfv13W8nJzHWsf5JMWkJGfqgJE1LiUtnwwzaXPEI/T1+OZENo+ccn61Bk2WEeySgTcyGWQ39a3wXXTt3kmItQB6IgsHSGem5bOmMFopPD67JkciS4csL6IXZ4/Qmiz8c6ZBBWZAVFlvnjk7XWe8gyS6b94aTFpjwb5+8g+V6qJW3L4t2kxqc77dvcrDzWf/t4h1+QEB4xttS/11vqoYybp556irCwMMaPH89HH33E5cumWCerV69m5syZzJgxg6JFizJ4sGvOBmfQ6XS88847xMbGMnv2bMqWLVvovOnp6bz55psYDIYHNoru3jXRnwcHBz9gjR8c+1cdLTA2ytWTN0i8bXoR5WTmcmrHOZfEfxqthr0rrIHc9q08oorGfT8ko8yBNUctE1nMxdvcvR7vVB4AAQ6utU5k+1YccvrCBtMksOv3A5brM7svFBhGIi9bx6kd5yzXu/846JrwENOqkhlHtpwtkGo9LiaJ6Ism6nRFUdh+9hqSC2NIIwpsP2NdLdh655LFndkRZEXhSGIM6XpTWzMMqcTmXnPKcwMgInIu/YjlOj57K65UVEEiPttqOObqz2KUXVPlg5Gs3O02ZWzGdWfJxGdbAxBezjiDsYAwEjlSFtE5lyzXG2KjnBqBYBq/TbFWw2PXmWsuz+EoCly7m8ydZNNqhS5Xz7HNzl+mYNKN/ausfbt/lWvdkCWZw+tPoNeZ2nrnWhy3ou64ZKsVBYEDa6yrrXtXHHId280os3uZ9bk9v/8SWWnZTuXB1NYTW89YrncvO+Cy3YqisNtGNw6vP+mS/A4g6XYy105FW673rTjsMgyBqBHZt9I675j61oVuyAoXD162BPnNSM7k/P5LTj/0wOSGvW+lzfitPlIg6d/e5YctBtn109EkxtpznanrJXPYxkjbu/yQSyPQNLc9ON3J/xIKJq6ah/1T/r8EzjQjODiYr776iqpVq7JhwwYOHTI9BJ9//jnbtm2jatWqfP755/j7+xd8s/sgSRJTp07lwoULTJs2jZo1azqUS0pKIiYmBqPR+oWYm5vL+PHjSUpK4qOPPqJUKccHYLOzs9Hr9ao0RVFYssQUhLBRo0YPXO8HRW5WrstgkFY50wpGQbFXABAgL8u64pGbnYfiYsKA/C2bfGr8XJu8ziCKgkouOyO3wFAHtqsweYUo43653EzXxpCiQI7N12xulq5A1lazHJi2OowFxKmRFYVcnfWlnmPUF+qbJtdoyqOXC9FuQVDJSXIOBR3mkxSrvKy4fjHmF6KSM8quY2qZZKzyusK0A9BJ1uc1x+jaGFKALKNVH3N0hkLpRk6e6b66XH1BIdQARfXc5mXnFfjcKrKCIX+bsjDPraARVXI5GbkFxmrLs9GNwujf/XKFyZNjoz95WXmF0g1zO0xbSXqXsuZVDNs6FRTawixn+68rCIKgnhOy8lwaQwAGncEiU7i5TVTJ5RQw7xT2vm78M3jo497Fixfnm2++4erVq1y8eJGMjAx8fX2pXr061apVe+gKzZs3jwMHDtC8eXMyMzPZulW97Ne5s+kg6A8//MDmzZtZtmwZxYqZeCxmzJhBVFQU3bt3JyYmRuXJ5OPjY9kmu3LlCtOmTaNjx46UKFECnU7Hvn37OHfuHL169fqfHJwqU72Uy8ByAJ7eHhQpZfI+CQwLwD/Yz+WXnWyUKW1DXFW6aol8OmPnE2x4iVA882P0mJmGXX2lSUaZ0tWsBxTL1SrN9dM3neYRNaKKTMs2ryvYtqNszVKc23fJ6ReqRitSzoaMsHSVogUG1RM1IsXLm7YhPbQaioUEcC/VRfwqBMpFWsnsKgSEuwy/AOCv9SLU23QIOcgjFA/BC4PiIhK8IhHhZe0fP88KJOfud7ItZaqVr4e13V7a8hQmAJmnh/WAt79nZXKNsU7LENDg72mVj/Qu3PhFeFvP21UIDCMqNd7hthSYWIorB1nJ7MoVDS3Q2PTQiBQPM3m9+Qf7ElQkkPTEDKfysqyonr3SVUsUaNwERwRZYj8VLReB1sN1oFvJINnpxqWjV53qhiAKKvlSBfC5WOpuqxs1SjndOoF83ahlZb0uXb1kgQaXIAiUqFzM8v/FKxTljovAk6JGVB1aLl2tBEYXoS3AFCvPfAg5pGgwPgHe5GY6NxSMRonS1dVz2yFRdK7nAhQrF2E5p1miUrEC43zJknzfvFPaZfBTUSNStmZph789LjBtSz2Kt9T/s22pvXut5xsqVapEnz59eOqppxgwYIDKsPnqq68e+N7Xrl0D4ODBg8ycOdPurzB5N27caJfPti6RkZHUqVOHvXv3Mm/ePBYuXIher+fNN9/8n8WWajWwqSnYnJNnR9SIdHq6rcVdW6PV0PPFTi6XYrWeGjo+bWUX7fZ8e6eyYJpce7/c1fKVFRQeSKuBTZ0uKQuiQEhkkMrDqueLnVxHzpVkVfiFcrXKULVxRaftEDUiFeuVo2I+qytAr9FdXRorklGm54tW76eGHWoSGhnk9AtV1Ig071FX5RI+rFVdl1+bCgr9m1lXEXuXroWn6PzbQBQEhpSvj6domlw9RC8ahbbN9y5yDE/Rm7rB1hg9JQIGoRSwclMqcLjl/z3+j73vDqsa675eSS69d6QJgoodC6iAig3F3nvXsdcZHevM2Ms4dsc21rH33guIvYtiwQYISO/1liTfH+GWcHNzUd/3G+f3unx4JIeTnOQk+2TnnL3XkrjCzLg5hKUUAICEAeUOMyN1G26WfUScJ27py91SLb9Q0bQKHI1cdWpkkSBRyaw6HIzUxHkDferrdGwALhi7r7da96mFnw8sTI10DqsUSSDM3xfmpZlJJEmi42hx2yApkpehEzokRHR2iCQJdBrbRpW1Z25thuZ9gwWp+AHOCbCwNUdgF/Wsb/uR4rbBMiw6jVXbhoevK2oG+4rahmdNd/gG+KjKOo3VbxsdNWyjXqtacPSwF7WNhh3q8VjFO41rK770zDBo90Mr1XbzvsFc1pjI2NZmaHPVR5WhkQHaDW8pev+MjA3RQkNiJWxES9GZG4Ig0HlcmGrbroINAjv56xzbSJKAvZsd6ofWVpV1HB2qd2zrOKaNzr9/C2BZ4uuWpf7FquBf5NwsWLAAUVFRonXWrVuHo0ePitYRwtq1axEZGanzR4lZs2YhMjJSNWsDAIcOHdK536FD6mAyFxcXzJs3D4cOHcKVK1dw6dIl/PXXX+jcuXO5plP/EzA2NcK0HeNAkqSWUZMUCWdPBwxZ0JtX3mdmV1Ss7qZdn+Qo4CdvGsXjx7F3tcPY1UNL6xBl9iHgG+CDbpPb8cpHLR8EGydrrUGcpEhQFImfd03gxSr4BlRGr1K5hLJdRxBAcLcAnuAdAPy4dQyMzYwE2zAyNcTU7WN55U26N0TTno217o1ys/vk9qgRqJ5toyQUft48vJSCX7sNa3sLjFpYpm+b+KGOZwWtWA/l9rQuzVDBRu0MWRoaY1GDDpw8QJlRnCIIeFvYY4xvMK+8tXNv2Bo5aTk4ShmDXu5jYUipuWvMDDzhYzNFVYsPEjbGDeFmwdfoqWCzCBRpDW0HhwIBA7jareWxDtsaN4KrhbIvNNvgfq9g1hn2JiHqUoJAH4+xkBAGWtdBgoQRZYIebj/wyrt61kbzCj5aV6DcnlAjGL7Wag4XIwMJFg5uC7I0FZp3FSQBJxsLTOzC79teUzuhUu2KArbB7T9x/XCVfADASXpMWD+CV0e9D+dg9/ipI698xNL+sHexFXymSIrEjN0TeanEPnW9VHIJ2s8ugUYd6msJL07ePAomFsZaL2GSImFobIBpO8bxjtWoY+kxdHRu53FtUbuZWreLJElM/3sCT95ACUpCwtLOAuPW8PnEOowORe1m1bUcIuX2D0sHwMXbWVVuamGCadvHctIcAn3l6uOMQXPL6Ob90oPT4RKoTxAEftw6hpcKXsHLCaOWD+Kdh+Z51Qz2RcexfMdjzKohsLS3FBx3SAmFGX9P4GXk1gz2RZcJpQ6SQP827xOEoC7//RCG7/gyfBHPzeDBg5Geno7169ejUiVt8rH169fj8OHDaNKkid7Zln87vpah+PmNV9iz4DAeX+ECaE3MjdFmaHMM/LUnLO20ifwK84qwb+FRnP3rCgpzuTiTWk2qod/s7lpaVErcOf0Q+xYdxev73MyWpZ0FOo4ORZ+ZXQXJrjKTs7Fn/mFc/vs6l1pLAA3b1cOAX3rAN6CyVn2WZXFpVwQOLT+Jj6+4IF17Nzt0m9Qe3Sa1EwzcTHybjD3zDyPi4G3QChqUhETTHo0x8LeecK+qPT1P0zROrD2Po6vPqAID3aq6oPe0zmgztLmgU/r2aTz2/H4a9y8+A8uyMDQ2QMvejTHg546wq2CtVb9EpsD2q/dx8GYUckpjIWq4O2FE6wC0qO2jVR8AbqfGYsOrG7ifwS2BmkuM0LtSPYytFixI5FekyMeV1KO4n3VVFV/jbV4TrZx6wNtcmFsptfACYnO2IF/GBd0aknZwt+wHT+sRIAUUuuWKJKTlrkRe0TGwkAEgYWESCgfLH2FsqN0Gy7JIyj+EuNztKFZ8BAAYS1xR0Woo3C36CkowpJQk4FLKETzPvQ8WDCiCgp91EEKdesDOSJtsTs7Q2BZzDzvfPEB6CRfnU8XKAaN9A9HZUziu7un7T9hy7i7uvooHC8DYUILOjWtiZLuGsLXQzoAsLijBvsXHcGbzFdXybY3Aqug3qysCwupq1QeAe2cfYe/iY3h1h8sytLAxQ/tRoeg3u5sgyWV2Wi52zzuMS7siuDg4AvBv44cBv/ZE9UZVBPv26t4bOLDsBOJfJADgdKW6TmyP7lPaCxLBfXqfgt3zDyPiwC0o5DRIikSTHo0w8NeeWnpJADdzcnL9BRxZdQZppWnLrpUroNfUTggb0VLQNt49icXu+Ydx5/RDsAwLA2MDtOrfBAN/6wUHN20iRlmJDAd/P4mTf15QLf9VrueFvjO7oUn3RoJ9GxXxAnsWHMHT8GgAgImFMdoNb4n+v/SAhY12PGZBTiH2LjyKc1uvqJIO6oTUQP853VG3hTZnFMAFFu9bfAxvH3HUJFYOlug8ti16T++smhnSREZSJnbPO4zLeyIhL5GDIDknc+CvPbW0xADu/p3fdg2H/ziJxDdcSr9jRQd0n9wence3/Sx6kv+fUL6XAmeZwMrjy88x9yON24uL/5U8N1/k3KSlpWHs2LFgWRYbNmyAk5N6MNuwYQMOHjyI4OBgzJ8//5u9+f8p/KfkFwpyClFcUAIrB0tR5lIlFHIFslNzYWxmJDhQCCEvMx+yEhlsnKxFM0WUkJXIkJOeBzMrUy0CLSGwLIuctFzQNANbZ+tyaa8UF5YgP6sAFrbmoozJSjAMg+zUXJAkAWtHq3LNtBXmFaMorxhW9hYwNC5H39IMMvOLYGRAwdpMN1OtJnJlxShWyGFrbKZaihJtg5GjQJEHI8oYJpRuxlZNyOgsMKwcRpQ9CEJ/GwxTDJrJAklagSL1PyMsy0JGZwBgYUg5lKtvpXQJiukCmEosYEjqZoVVgmYYZEgLQREk7IxMy9VGfrEURSUy2JibwLAcrLAKuQI5aXkwNDHUIu7TBaVtWDtalYt5ViaVIzc9D6YWxjCz0n//WJZFTnoeaAVdbtsoKZIiLzMfFjZmMBFhZVZCaRsEAdg4WZerb4vyi1GYWwRLO3MtAkIh0Aoa2ak5MDAygJW9bqZvTSjHNmtHS1HGciXkMjly0vI+a2zLzciDXCr/r49tDMPCxsnqm9aVAtTvpcYzzWD5Fc5N3kcad5YUftb7TSaTYdu2bbh06RLy8/Ph7e2NESNGlCtR5+HDh9i9ezc+fPgAmqbh5uaG7t27o02bz1/++yLnBgDi4uIwfvx4WFtb488//4SVlZXKsQkMDMSCBQs+S6Pp34r/pLYUy7KftSz2ufX/f7ShfJz+L7TxvW//3W18v3//7ja+xXP63Db+KSjfSwEzzGHp8eXv4byPCtxfWvBZ77d58+YhIiICPXv2hJubG86fP4/Xr19jzZo1qF27ts79bt68idmzZ6NGjRpo2ZKbcQwPD0dUVBTGjx//2dQyX3zVnp6eWLZsGX788UdMmzYNtWvXxuHDh9G4ceP/GcfmP4GEmCQcWXEa4QduoaSwBM6VnNBpTBt0HBMq+CUll8lx7q+rOPnneSTGfIKhsSGa9GiEnj9xMQdCiHn4HodXnMKdkw8glyngWcMdXSa0Q5uhIYIza8UFxTi5/gJOb7qEtI8ZMLMyRcv+TdDjp4461Y8fX32OIytP4/GVZ2AZtjSepwOa9mgkOBjkpOfi2OqzOL/tKnLS8mDlYImwYS3QbXJ72DhZa9VnWRY3j93DsTVn8fLOG04VvEUt9PixA+q3Fl6OS4lLw9GVZ3B593UU5hbBwd0OHUaFosuEMEHtIJphcC7iBQ5feIL3H9MhoSg0aeCNfh0boLqPsLJ0TFY6/nr2AGc/xKBEoYCXlQ0G1aiHftXqwFCgb2WMHJdTInEh5TpSStJhRBoiyL4BOrm0hqups0ALQGrxc0Rn70dCwR0wUMDOqDKq2/SEj0UbwSUjOZ2Hj3m7kZR/CFI6DRLSEi7mXVDRagiMJcLXkVh4By+z9yOl+AkAFo4mdVDdug88zIWJOLNlOTiXfAUR6bdQoCiElYElWjo2QVvnlrAw0P7aZlkWp96/wo7ox3iWkQKKINDUzQsja/ujYQVhyobElGzsP/0IF2+8RHGJHM6OlugW6ofubfxgLDC7qZArcH7bNZxcfx4fXyfBwMgATbo1RI+fOsLHz0ugBeDt4w84vOIUbp14ALlUDo9qbugyPgxhw1sIzgAUF5bg1J8XcXrjRaR9TIeJhQla9uNsQzPuRBNRES9wZOVpPLz4FAzNoKq/D7pOao+Q3oGCtpGbkYfja87h3NYryE7NhaW9BdoObYHuU9rr1H66deI+jq4+gxe3YkAQ3HJOjx87wr+t8HJc2sd0HFl5Bpf/vo6CnELYu9miw8hQdJnQVnAmimEYXP77Ok6sO4/3UXGQGFBo2L4+ek7tJLgcB3BEpYdXnMb1Q7chLZLCxccZnca2RYfRoYKz0zKpHGc3X8bJDRfw6W0yDE2MENKrMXr81Emnrt2re29x+I9TuHvmIRRyGpVqV0SXCe0QOriZ4OxKYV4RTqw7jzObLyEjMQtmVqZoPagZevzYEU4VHQRaAB5eisKRFafwNOIFpwoeWBXdJrdHUJeAf4Wj8/8TL1++xNWrVzFmzBj07cslIrRp0wZDhgzBxo0bsXHjRp37Hjt2DHZ2dli9ejUMDbklxU6dOmHgwIE4f/78Zzs3Xzxzo8SdO3cwe/ZsMAyDhg0bYtGiRf9Tjs3XzNxE33yFGW0WQiFXqKPyCS7t2LehD5Zd/pW3VCOXyTGnwxI8ufocpQTDAKDSbpl/crrWYHbj6F0s7LMKBAFVG0om16CuAfjl0I88B6cgpxA/NvsVcS8SeGmTlISEkakR/rg2V2tt+vjac9gweQen1VKauaH8vevEdhizaghvEEhLyMCkoDnISs7mZXqQFAkbJyusubWIN9CwLIst03bjyMrTKq0dzTZG/TEIPX7kB3++j4rDTyG/oaSwhJfxwKXfumFV5HzelDfNMPh19RmE33sLglAyOHMBrCwLzJvUHi0b8+/vjcQ4DLtwFAzLqkjqlFfZyMUdO8N6wIhS24KUlmHBy7V4k/+BR+ZHggRFUphTbQKqW/Fjmt7mnceNlMUgQGpkNXHp3t4WbdDUeTbPwZHRWXjwqR+KFAnQ5MghQEFCmqNBhT0wN+THDz3L2oUnmZtL2yh9Rkp/r207BHXtRvLqp5Sk4bfoZShQFILRaIMEATsjW8yrMR02htaqcpZlMevmZex/HQWSIFTMw1Tp74uCQ9GvGt9BjX7zCRMXHIFcruCRKxIEgapejlg/txdMNWIqFHIFfu28DA8uPuV6R8M2AAJzj03T0lG7feoB5vf4A0AZ2wCLhu3rY+7RqbwlqsK8IkxtPhfvo+K0bMPQ2BDLr/6Gqv78vj298SLWjtvKt43SZ7jjmFBMWD+CZxsZn7IwKXA2MpKytGzDyt4Ca24t0hLQ3DZrHw4sPS5of8OX9Eef6V149WOjP+LHZr9yzMYatkGSBFwrV8CqGwt4S04Mw2DpwHUI33+Tl05NSUgwDIvpuyZoBUY/DY/GrPaLwShorbGtZrAvllyYzft4k5XIMDNsEZ6XskgrX0vKpICFZ2ahXkt+3M21/TexdOBaTjdOef9Kzy+kdyBm7p3Ec3DyMvMxpekvSIz5pBpDAICUkDAxN8aq6/O1BFAPLT+Jv6bvEezbXtM644dlA/AtQvle8p9hAYuvmLnJ/6jAg6X55X6/bdy4EYcOHcKZM2dgZqZ2kvfs2YMtW7bg8OHDvDAWTYwePRrFxcXYtWuXVjkAbNq0SWg3nSjXwuGFCxd0/uTm5sLf3x8WFhYICgrClStXeH//DmEo5ArM77kCMqmcn27IcoYd8+A99szj68gcWXEGT65FcwO3hktKKxjQNIMFvVfxCPPyMvOxZMBaMAzDa0M5cNw6cR9nNl3mtbF1xl7Ev0zU4oOgFQxKCqVY0GslLwUz/mUCNkzhNFk0B2Pl78fXnsP9c495x1o5YqOWY6PcJyctF8uH/skrf3gpCkdWnubqaJyXcv/NU/9G7HM1pxHLsljQayWKC0q0UjlZhkXC6yRsmbabV376WjTCS3WGNN19mmHBsizmrz+PrFwNokCFHGOvnOI0qDQ1i0p/7n1KxOao+7w2jiae03JsAE6fScEosCJmC+QasgWF8jTcTFkKLhFdM127lHU1/yLe5fOFaWMyF6NYkYiy5H8saCiYAjxP+4nH75Je8hJPMjeX1tF4Rkp/f5a1EylFT3jH+vPdNi3HhrsOFpnSbGyL3csrPx/7Bvtfc9mVmpIKNMv1xOyblxCfp6a9V9AMZq04DVkZxwbg7u2buDRs0WC9BoDja8/j4cWoUvtRl9MKBgxNY1GfVTzZgoKcQizutxo0LWAbLHD/7COc+pPftzvnHMCHZ/GCtiEtlmFejz94sgWJb5Oxbvw27ro1baN0/9MbL+HWCf4zsmrUZi3HRrl/XmY+lg3i02s8DY9WyUQI2d+2mXt5sgUsy2JRn1UoyivWYipmGBZJ71Kw8cedvPJLu64jfD/HxKt57bSCAcuwWD7sT55sgaxEhvk9V0AhUwiObdG3XmP/YrW0BQAcWHoC0TdegWVZ3vOp1KVa0GsFpMVqjqislGwsH7Ke04vTvH+l5xdx8DYu7gjntbFp6i4kvknmjSEAxw9WnF+CBb1X8tp+9zQWf03fw+tPzd8PLT+Jx1ee4VsGzZJf/fM5ePv2Ldzc3HiODQAVRYySrkUIfn5+iI2NxdatW5GYmIikpCTs2rULMTExqlmgz0G5znzJkiVYunSp1o+y/O7du8jLy8PKlStVZcr/v0MYt08+QHZqrk5SKYZmcGbLFRU7KMMwOLH+vM76LMOiOL8Y4fvUdOAXd0ZAIVeIcrqdWKfWtinMK8KlvyN08mYwNIPkD6k8aYTTGy/p5Rc5sU5N35/0LhmPLj/T2QatYBAV8QIJMUnqc1x/XpTOnZKQOK2h8fI0PBpJb5NFr+PKnkieoOCh84916gaxABQ0jbMR0aqy0+9fI18m1dm1DFjsevFEJbYpZxS4lBKpU36BBYs8RQHuZ6kdiZjc0xAn5CPwMlut0SOjM5FaeEEnbw0LGgXyN8iVqmkcYnKOgtDJi8PN+LzOVbcRX5iAdwWxWo6NEgwYPM5+hkypWlBwx4vHonIKJEFg3yv1Od1+/AEZ2QVaLyFVGwyLU1efo6SUMZplWZxYd04nKR/LAiXFUlzdo9b6uvz3dciK5Tq7lwVwXOOYxYUlOL/9mugzlZ6QiYcXnqrKzmy6JMoGTFIkT3ctNT4d9889FrWNF7djEBv9UVX2ubbx4tZrxL9MFL2OiAO3VSK1AHBi7VnR62BpBuc1xDZvHL2H/KwC0bHq1MaL3NgELkj51IYLOu83y7AoyC7kScuc33YNtJgkC0nwdLvyMvMRvu+m6HUnvP6E5zfUMiCnNlzU27cn//zf+ICPj49HTEyM6icjI0OwXmZmJuzstLPtlGW69gO4LOzmzZtj9+7d6NevH/r27Yu9e/di/vz5aNas2Wefc7nmq2bMmPHZB/4Ocbx99AGUAaVSmRVCUV4RUuPT4V7VFbkZ+cjS+DoSAmVA4c2jD2hXSjPy9vF7cb5aFkh8kwxZiQyGxoZIeJ0EeYk4VT4pIfH20QdVnMvrB+9EtWoYmkHMA/WXo6ZmjRjePo5VpYTH3H+nlzVZU8H53eNY3jSyEBQyBT6+SkKNwKpQKGjEJYrrzgAEYjQUnF9kpEJCklCIEIllFhchvbgQzmYWyJRlo5AWp3OnCArvCz4iyJ7LKsiUxugh8WORJVXrXRXI3ooS8imvI0/2AtbGfgCA9JIXekn8MkrUopYfCuN11lXvwyK+KBF2RhwRXHRGqk4RTICbwYlKVwtOvolNBUWRoi+vEqkcSak58PZwQEFOIdI+6h40AYCiSLzVmMF4++QDt4QhIMZaehFIiU1DUX4xzCxNkfQ2Wa8ECiXh7K9he275K+bBO9FnkKEZvHmoPqf3T+P0aqIB3NjhVcqM+/qefttQKp8DwJtHH/Qy9dIKGnEvElCnWQ2wLIsPzz+KM/uW6uCpz++9Xjbn/KwCZCRlwdnTEZmfspCboZsdHAAkBhTePHyP1gO5l9y7J7H8KboyYBkWsc8/gqZpUBSF+JeJehnhSZLA20cfULspxwtUnnFHs2+/RbAgwHwFER9butBeltJlyJAhGDZsmFZ9qVQKAwPteCplDI1UqtuGDAwM4O7ujpCQEDRt2hQ0TeP06dNYuHAhVq5ciRo1hKkydKFczk1YWJj+St/xWZAYSkSNUwmD0sA7A8Ny3CoWMDBS15MYSrgvLpGBiSCgCpyUlKMNlmF59cqTti7ROKdyXQfU1132d10wNFHHX0gMJXqp9bnjcudCkiQvFkQIBAEYGKhnOAxIqlwvImVQsaQcqdssWBhosB6ThAH0ySmQhLo+QejvJ05KT12PEuDJ0W5DXV9ClO/+adYzIEmIuXUEACONuC+JhCrf/fuM5xYg+M+UgaRcwaCS0ntenueWZVnt51b89vHOvXzXUdY29O+jSX9gUN5xR+NcKIqEgtHtGJAkoTXulCeSUzW2lcO+WZY/1ijHNp3OKUrjdUpjbso1trGf37flOfd/EkpV8K/ZHwDmzJmDihXV8UhCszMAYGRkBLlc+wNZqeVoZKSbbmD16tV4+fIltm7dqrpvLVq0wKBBg7B27Vps3rz5s879207W/z+Mhu3riX4VgADcqlRQBdaaW5uhqr+PKGU8raBVX40A0LBdfb1qvvVa1VY5N161PGBbQTgbQwmWYRHQrp5qu1GH+qJT1pSERFBnNb9B7WbVYaCHa0ZiKEGdEDWramCnBqLTwwRJILBjA9W2f1hdvfo51o5W8K7jCYAbnBv6eYISU3BmWDTWkIRo7lEJChFtKRIEato7wdaY49CwM7SBq4lwNo2qDZZBPRt10KS7WWOIvRkJUHA3C1RtWxnVgoTUxz1CwN5UHfzpbt5Ep5QCV5uEh5la0qOWVTVRCQkAMCaNUMXCW7XdqqI3KD2OREsPdf3Gdb10LlFw5wRUcLCEW2nmkImZsahsAcDZhuZzG9CuHmgR/SOSIlEnpIYq6NXd11Wl86YLDM2gYTt1QH+jDvVFZQsoCYXGndTPbc1gXxiZiDublIRC3ZZq0sOgzv7iy8IkgcZlbUO0BY7ks3J9LmmAIAgEtKunV+W7YTuNcad9fdG+JUgCnjXdYetsDYCzxUq1K4qOI7SCRkB7jfsXVheMHscmoF09lQPrU9cTVvbapKiaYMHCv62fartxR3/xZcUyY9v/ZVSsWBFVq1ZV/djb2wvWs7OzQ2am9iy4skzXfnK5HGfPnkXjxo15QeASiQQNGzZETEyMoNMkhnI5N6mpqfor6UF6evpXH+P/Eqr6+6BGkK9OrRqwQJ8ZXXlfl31ndtU56FMSTnemXiv1yzGoiz+cvRx1DkwMw6DXz13Ux6Ao9P65s85zJikSDdvX44nktR3WAqaWJiAp7UGAILjBUUVhDs5J6zQ6VOdXM0ESaD+yFU9GosuEMBAkKRgTQ5IETMyN0VZDR8utcgUE6hn0e//cmZfqO6CTv1bwqhIUScDJ3gIhGuzMgS4eqGbnoPOlzYDFOL+G6usiCHRzaytYF+AypqqYe6GKudqBqmTRCiaUnU7ngwWDmjZ91McgDFHRaqjONgASzmbteOngVay6gCKMdLRBgCQkqGrdTVVibWiFpg6NRV/abZ1bwJhSf6ENr9Wg9GjaoAgC1kYm6FpZPeVc1csJ9Wu663Q2WQADuzbkOfp9pncRFY9093WBf5ifqqxRh/pwrVxBp/0xNIPeGllGJEmi74yugnWB0g+F1rV52Tahg0NgbmMm+BwSpYK23Sa1V5WZWphwz7qIbbQd3gLWDlaqsk7j2oIyoARfwgRJwMjUiKf75OzpiKY9GonaRs+fOvLI9npO7aTTkSApEvautjyJlZrBvqjq761z3GEZFn1ndlNdJ0EQ6Duzq84PEkpConI9L9VyEQA069kYDm52Oq+DoVmVLAwAGBgaoOdU8bEtuGtDXiZaux9awtjMSLhvCQIURfJ0875FcNpSX/7zudpSPj4+SExMRGEhX+D55cuXqr8LITc3FzRN8wLylaBpGgzD6FWBL4tyOTf9+vXDypUr8enTp886uEKhwJUrVzBo0CCcPXv2s/b9vw6CIDD32FTV2rnSSJWD7YBfevCE/gAgqEsARv0xCCA06pf+X6GSExafm833eg0kWHbpF9i7cl+cypcBSZEgSQJTNo3SSq/sOrEduk/mBlzl4KT837dhZczYPZFX39LOAssu/sJxYxBqgiuC5JYBfj0yFRWr8zkqhi/tj6Y9Ggm2EdjZn7tGDbhXdcXcY9NgYGzIDTTKdgjA1MoUSy/+whvwAeDnXeNVelNl2+g8vi26T+nAq1+3ujtmjQ7l6Rkpg2DtbMyxdk5PHjsuQRDY2bYHvKxseHUpgnvtzwhoirBK/NTJpg4N0dudS1lXzn4o/3c3rYBpvqN5LzYJaYy2bqthTCln00r7FiQIUGjm/AscTfjSBV5WI+Fq3rO0HsX739a4IarZz+PVN5M4oJXrCkhIk9Ljq38khBFauvwBCwMX3j5DvfrCz7qm4HUE2zdED/dOvPo17JywvmVHSEhK1U/Kq7Q2MsGe9j1hYcifrl44pSOqeHGq7cr7oXR2BnUJQOcyz23D9vUxbs0wECShYRtcfaeKDlhyfg6P8oCSUFh6cQ6cPBx4dUmKBEESmLB+BPzb+PHa6DA6FL2mdS7dn29/VepXwuz9k3n1za3N8PvlXznKgTK2QRlQmHPwRy1uqqEL+yKkT5DqHDXbati+HsauGsKr7+LtjAUnp8NQyDYsTLD4/GyV+rYSP20di1pNqvGOrWyrw6jW6FXmA6dmkC+m7RzHW+ZRvvBtnKyw7PKvPKkDJS2FUuW87Fg1ZEEftOjL1wYL6R2E4Yv7cfXK9K1bFRcsOD2TZxuGxoZYdvkX1UwzoTm2USSmbh+LmsHVNJtAz6kd0alUb6rsmFAz2BfTdozj1bdxssbSC3NUAsfKfiVIAoYmBph3/Ge4VRbmjfpWwID86p/PQUhICGiaxqlTp1RlMpkM586dQ/Xq1VVp4KmpqYiPV8fv2djYwNzcHDdu3ODN0BQVFeHWrVvw8PAQXdISQrl4bg4dOoTdu3cjPz8ftWrVQkhICKpXr47KlStrcdqkpaXh5cuXePjwIa5fv478/Hz4+/tj0qRJcHPT1kX5t+NrGYppBY175x4j8vAdFOYWwa2KC8JGtOTNjpRF8odUnPvrCuJeJMDY3BjBXRsiqIu/Ttp4mVSOG0fu4s7pB5AVy1GpTkW0+6EVHN2FpwgBIPZ5PM5tvYrkD6mwtLNA8z5BqB9aRyfteFF+Ma7uicTjq89BK2jUCPRFm6EhWk6HEizL4tXdN7i0MwIZn7JgV8EGrQeHoEZgVZ1frrkZebi4Ixwv78SAIEnUbVELrQY2FSTkA7iZqcdXnuPa/hvIy8hHBS8ntB3eQrUcJYTUjDycvvYcb+LSYWRIIbCeN1o0qgIjHWv2cobGlbh3OB/7FoVyGSrb2KGPb214Wule3ksqTsHV1Fv4VJwKE8oYje3qob5tLVA64nIUjBSx+VeRUHgbNKuAvXFVVLXqCFOJ7vuXJ32BT/nHUKz4BEPKFs7mHWBrLEyoCAAyugDv888hpegJWLBwMqkDH8v2MKKEl7lYlsWr/De4mX4POfJc2BnaopljILzNPHW2kV5UiEMxz/E0PRkSkkQzNy908vaFqYHwUgzNMLj7JBZXbsegoEgKN2cbdGpZC14C2kdKJMem4vzWq4iLToCRmRGCOvsjqGuATtp/mVSOm8fu4c6pB5AWyeBVywNhI1rC2dNRZxtxLxJwfutVfHqfAnMbM4T0DkKDNnV0Ss0UFxTj2r6beHQ5Cgo5jWoNq6Dt8BawcdRtG6/vv8PFHeHISMqEjZM1QgeHoGawr86+zcvMx8WdEXhx6xVAEPALqYnWg5rqlIZgGAZPr0Xj6j7ONpwqOqDtsBbw0Vh6LYuMpEyc33oNbx9/gIGxARq2q4dmvRrrlG2gFTTunH6IG0fvoiivGB6+rgj7oZWoQ5D4Nhnnt17Fx1eJMLEwRpPujdG4Y32dY5u0WIrIw3dx9+wjyEvk8KnrhXY/tFR90Anh3dNYXNh2DSlxabC0t0DLfk1Qt2UtnWNbYV4RruyOxNPwaLAMgxpB1dBmSIig9t+3AuV7qcbP9jBz//K4oMIEOV78nvFZ77fffvsNkZGR6NWrF1xdXXHhwgW8evUKq1atgp+fHwBg4sSJePr0KU8M+++//8bWrVtRuXJltGnTBgzD4OzZs4iPj8ecOXMQGhqqo0VhlJvELz8/H4cOHcLZs2eRmZkJgiBAEATMzc1hbm4OmUyG/Px8VeAQQRDw9/dH7969Ub9+fT1H//fiPym/8B3f8R3f8R3f8bVQvpeqTbOHqbv+pAFdKEqQ4dXyz3NupFKpSluqoKAAlSpVwogRIxAQEKCqI+TcAMDly5dx5MgRJCQkQC6Xw9vbG3369EFISMhnn3u5qQstLCwwfPhwDBkyBPfu3cOjR48QHR2N9PR0pKenw9DQEPb29qhUqRL8/PwQHBwMZ2fxAMrv4FCQU4j75x6jMK8YblUqoE5IDVFhNpZl8eLWa8RGJ8DE3Bj+bf30ithlp+bgwYWnkJXI4e3nCd8AH9FsEZqm8eRqNJLfp8DC1hwB7erpnCFRIiUuDU+vRYOhGVRrXEW15KYLMqkcDy88ReanLNhWsIF/WF292VdxLxLw8nYMCJKAX/OaWmytZVFcUIz7554gLzMfzpWcUK9VLVExV5ZlEfPyE97FpMDQUIIGjbxhay8u3pddVIzI93Eoksng42CHBu6uon3LsAweZ8UivjADZhIjBDpUhaWBeN/myjPxPj8KClYOVxMfuJp6i9ZnWAUSCx8iX54CE4k13M0awYAUFybNlH5CfOELsGDhYVYdDkbiM61SWo67ma+RJSuAo5EVGtpVhUSPaOirtHREfUqGhKIQWNEdLpbiz21hQQnu332PgoISuLrawq++p2hQPcuyeHnnDWKff4SRqSH82/rpnD1UIjstFw8vPIW0WIZKtT1QrVEVvbbx9Fo0Pr1Phbm1GQLa1dUrvpgan44npbOa1RpV0SmVooRcJsfDi1HISMyEjbM1AsLqCqpcayL+VSJe3HwNgiRQJ6SGTjkIJYoLSzjbyMiDk6cj6reuDX2ikzEP3+Ptow8wMJKgfmgd2LvYitbPzy7A/XNPUJTPzdzUblZdtG9ZlsWzyJf4+CoJphYm8A/z48XfCSEzORuPLkVBViJH5XpeqNLAW/z+KWg8vvIMKbFpsLS3REC7unpFez+9T0GUUn4h2FdQnf1bhDJ25mv2/1wYGRlh7NixGDt2rM46a9euFSxv3bo1Wrdu/dltCuGzeZkpikJgYCACAwP1V/4OUTAMg12/HsThlad5/DJOng6Ytn0c6oRo5/XHPHiHpYPWITFGHf8kMaDQcWwbjPx9oNb0rUwqx58Tt+PCjms8PhqvWh6YuWeiFt04ANw//wSrRm5CRpKaiM3I1Aj9Z3dHnxldtAaOgpxC/DFsA26dvM9L7qnZpBpm7pkouPx1aVcENv20C/lZaiI9cxszjFo+CG2HtdCqn56YiaUD1uJZpJpzBQSX0TBtx1gt9WCWZXFo+SnsWXAYJYVqbgU7FxtM3jRKi4ofAOLep2Hpr8fx4a06gJ4kCYR2qIPx09rBsExqqIJh8Me1G9j98CnkGsGsFW2ssbxzW/i5ak+/P8mKxfznR5FUrO5bA5JCf89gjKrcGlQZrSgZI8XJxE2IyuETALqYeKOX+2Q4GGsvX37Ij8TN1JUoptW8SAaECRrYD0ctmx5a969QkYfjiavwroDPJF3JrA66uk2BhYH2EtuJxDvY+PY8Cmk1I7aVgRkmV+2E1s51tep/zMnBj6fP42myms+GANDOtwoWtWkNcyP+i5thWOzdeQMH9tyBTKZmbXZ0ssRPMzugXgPt5ZO3jz9g6cC1+PhKTQBJSSi0H9UKo1cM1lqaksvk2DhlJ879dYWXVVixhjtm7J4gqEf16HIUVozYiPQEdUaIkYkh+szoiv5zumv3bV4RVv6wETeO3OOlt1dvXAUz904SXP66uvcGNkzegbzMfFUquZmVKX5YNgDtR2oP/JnJ2Vg6cC2eXovmlTdsXw8/7xyvtXzCsiyOrjqDv+ceQnGB+v7ZOFtj0oYfENQlAGXx8XUSlvRfw/HLlIIgCbQe2AwT/hwBY1P+0hRN09gxez+OrTkLuVR9/yp4O+HnHeO04mEA4MXtGPw+ZD0+vVM/IxJDCbpObIfhi/tpOV7SYinWjtuKK7sjecHk3n6emLl3kqADcvvUA6wZ8xePM8zY3BiDfu2JHj911Lp/eVn5WD7kT9w984hXXqd5DczYPVGvc/dPg2FJMJ/JMlx2/38rvlpb6n8dX7MstXnq3ypZAU2QJAFSQmFV5Hz4amToxL9MwLiAmZBL5VqZIQRBIHRICKZuU3vLLMtifs8VuHXivlYmAkmRMLEwxsZHv/PEMJ+GR2N66AKwDCvINTJobi8M/LWnalshV2By8C94+/iD1jmREhL2LrbY9GQ5z/m4uvcGlg4U9twBYNqOcbxg6oKcQoyuNw0ZiZlaqe0kRcK7jifW3F7Ie3ntX3Ic22fv0zq2Mihw6YU5qNdKrVCbmpyDMQO2oKhQqpWRRhAEGjWpjLnLe/MGvzlnL+Pw02it1FqSIGBAkTgytB+qOqodu1e5SRhxbxNohgEjkJDb2yMQP1VXBzqzLIudsfPxvuC5FpkfCRLGlDkmVFkJSwP1APux4C7OJ82ArhTyxg7jUNtWLUAnZ6T46/00pEsTBNuwNnTGKO+VMKLUM0snEu/ij9fHBI8PAAtrDUSIkzrgN7OoCB137EFmURFPqgLg+qqeSwXs7dsTlMZs5bbN4Tiw+7bWsQmCC/hesX4gatRSv7wSYpIwzn8GpMUyQdto0S9YKxh+cb/ViDh0W9A2jEwNseHh77z4kOibrzC1xVwwDCuY2dN/dncMWaDOXqMVNH4M+Q2v770VtA1bJ2tserKcN+t6/dBtLOyzSuvYSkzZMhrtRrRUbRflF2NM/Z+RGpcmaBueNdyx7u5i3qzP4T9OYcvPfPkRACrtp0VnZ/I06tITMzG67jQU5BRqXwdJoH5oHSw6O4tnG+snbMPJDRe0HkOSJEAZSrD29iKe8/g+Kg4TG8+CQqYQsD+g/ahQTNrwg6qMZVnM6bQUD84/Ebx/Zlam2PRkOe/D6uGlKMwKWwSAFeThGbF0AC9bVCaVY2LjWYh9/lHruikJCUcPB2x8/LveWbt/Asr3UuWfnL56WertitR/ZdjFv9ct+5cjIykTR1efEfwbw7BgaAY7fznAK9+94AjkMm3HBuCM/eKOcMS/SlSVxTx4h5vH7gkOxAzNoKSgBAeXneSVb52xV0vfRRP7Fh9DXpaaTfTW8fs6mVgZBYP0xEyc3azWr6IVtPDAqoG/pu9RUbMDwLm/riDtY4YgZw9DM3j7+ANuHL2nKivIKcTu+YcEj628rq0z+PpHh/fcQVGRtmOj3OdO5Bu8fK7u27isbBwScGwATj9JQTNYf+Mur3zz28ugWWHHBgAOfbyDlOIc1faHgud4VxAlyFLMgEExXYBb6WrnmGVZ3En/U6uuJh5kbIOcUVPqPc+JRJo0XmcbWbJPeJpzTVUmpeXY9O68Vl1NrH97BowGB9DuR0+RIeDYAFxfPUz6hOsf4lRlWZkFOLT3juCxlc/m9s183aB9i49BVqLt2Cj3ubr3Bk9/7N2TWIQfuKXTNmTFMpVmkxLbZu3jnH4dKcsHlp1ATnquavvumUd4eTtGp21kpeTg1Aa1fhXDMNg87W/BYyuxdcYeyGXqWd4L268h+X2qTtv48CweEQfVTmJRfjF2/XZQ+OCll7Xl5908+z+y4rSgY8OdM4sHF57yZlSTY1MFHRtlfVpOa53D33MPQSGnddgfcGbzJSRrMIQ/v/EK988+1nn/CnOLcGQF3za2lPatrs/5v+ce5OmPXT90G++fxgleN61gkBKbhgvbrmn97VsCA6KUyO/LfhgRyodvHd+dm38I4Qe0v0o1wdAMHl15phospcVS3Dx6V1TqgJKQuLZXrZ9zZXek6Bo6rWBwZfd1FX9A8odUxDx4J0qAp5ArcPOYWuzv8u7r4vFBDIsLGgJ2zyJf6pWRyEnLRVTEC9X2xZ0RoudEkgQu/x2h2r55/D7kGksZQuf09vEHJL7hlvZYlsXlM1HipGAUiavn1Zpap6JfixLT0SyLyzHvUFgaYJ8rK8KdjDfiLMgALiZHqbaf5FwXJcxjweBxtnpwzZK+R47sI8SI/xRsCeIL1M8e57iID2BPs9W6Qfcz36BAIS4jkVKSjZd5CartI9EvRK+bIgiceKF+OV6/9kqU4ZZhWDx7+hEZpZT9cpkcEQduiRJWUhISVzS0pa7siRQlpqMVDK7tu6Eio0tLyED0zdei5IIMzSDysNqhvbLnuiifDEMzuLhTbRsvb8fwlruEkJ9VgMeX1WKNF3eGi7I5EySBSxq2cefUQ0iLZTrrsyyLuOgExL9UO/KXdunWmwNK+3a3OjD02r6bomMCQzO4d/YxCnI4LpTCvCLcOf1QtA2SJHFVY2y7quf+MTSDS7siVNsfXyUi9vlH0b6Slchx++QD1fblv6+Lx3eB1RLn/NbAsPgqnhs9XKjfNL47N/8QctJyQYkMfAAAFirNlcLcInFGYwAgCOSkqb8cczPywOohPpIWyyArjffJ1thXFyiK4rWRnZKjl1xJ82s2Nz1PpKbGPml5Gr+LnxfDsMhKzuG1ITa4lj2uQsGgWGTA59pgkJOtJqbKKirWS9/PsCzySrh4n1x5kV5mWJIgkC1Tt1GoyNUpUKlEMV2g8XuOnhYAgODF4hQqcqBPR4KrwyFHXqC7ogZyZOp6OcUlIjU5RzC9UP3FnJtTKEgKWRa52dw+xfklenWDgDLPYUaeXokAuVShikkpz3NLSkjes5qVnCP6wubOQz0LmlNO28j+DNtgGRbZGraRk5Yr+sIue1yWZVVOiC7QCkbLxvW1wTKsKt5OTGRTCZLUHtv0jYeFuUUqUrjy9C1JkbxxJzs1R9SZBVu+MfM7/hl8d27+ITi424kKAwKcsSkpys1tzPXKFrAMCweNNWYHNztR+nCAC1RUUr47iPCHKEEraB4NvZOno+jXKUGAt+7tIMKtowleGxXtRR0JkiLh7KUOzHRwt9P7UgEA+9LrlUhIWFiKZyuRJAkHR3VsRAVLc9HZCIDTlbIx4Y5ra2iuFSxcFjTLwslYndljZWAPUkSxGwAsJOpgX3MD3dwsarAwl6hjrKwMHPXILxCwMnRQbTsaW5ejDcDRSF3PyUI824wiCLhqZE05OFrqtQ2CAOxKs9jMrExhZCpO8MWy/Oe7PM+6ibkxTCy4LBo7Fxt9E1wCtuEgOrsAAnBwVcdLldc2HDXacPRw0Ks87uSpvn8O7nbiL2yNegAXr2RTOgbpAiUh4eDGt3F994+SULAutScrB0uVhpcuMDQLRw/Nsc1evG9Lj6vMjCzP/WZohte3zvrGNpKAU8Xy3bN/CixIVVDxl/yw/2IX4d975v9ytOgbLDpzQ1IkgroEqAJxDY0M0HpAU91yDeCcm9DBamn4NkOb69WWajeipcpxcHCz48isRM7L2MwIwd3UsgJth7UQdSRYgJfhUb1xFbh4O+mmmCcIOHk6oGawr6osbEQrXqZQWTA0g7Dh6iDLwM7+qpeSEJS6QcpMFYIg0K5rPXHdLppBm45+qu3ONbWzPTRBEQQ61vSFcWn2mrmBMVo41RB1cEiCQFuXOqrt+rYtwYgodhMg4W+nJrayNvSAg7GvqLNiRFrCw7yRaruebWtR5XEWLOrbtFGfk40P7Ax1p+YSIFDJzBmVLdSsxn1q1xL1C2iWRc/aaqblZi2qq0QxhUCSBBoGVoa1DUdQR0kotBkSImobDMPwgtRDB4eIL4NQJNoOa6F6Odo62yAgrK6obRgaG6JpT7UMQdthLUXtjwDBs40q9SvB3Vc3jQBBcA55nebqLMr2P7QSV+ymGYSNUMsvNOpQH+bWwsR+ANe31QOrwtVHHUjdbkRLPbpdDMI05E9a9g8WtSVKQiKkdyBMzDnH38TMGCF9gvQ6gi0HqDXOQoeE6B3bOmj0rYu3s179MTMrU57Wl96xjWHR7of/TNryfwtMadzM1/z8W/HdufmHYGlngWGL+wv+jaRIGJsZYejCPrzy/r/0gIWNuU4D7TuzKxw91F9pFau7o/N4Ye0TUkLCtoINek7jU62PXD4QBoYSnW2MXjGYxwnRoE0dNOooLJ5JUiS8a1dEm6HNVWUEQWDCnz+AIAmtQVyZyTRh/QjeslLo4GaoXLeSsEYPScA/rC4CNAQLjU2NMHb1MOHrpkhIDCVaEg89+jeGvaOlToezQ/f6qFRZPePhbGmBscENBetSBAFLYyOMb9KIVz66cihMKEOQOhyc0ZVbw8ZQPcvhZuKDujYhwtcBEjaGjmhs145XHuQ4sVSeQbiNIKeJoDRUvqtZNoanWS3B+gRIuJv4oqaVWmhTQlL40bdr6d/L1idAEgSm+Hbma6L51Ya3na1gjBIBIKxqZQS4q1PazS2MMXJcS626APfyNTIywIjRzXnlfWd1g5W9pc4XZK+pnXm8L25VXNDjx47CbVAkrB2teNpSAJdNY2hsoNM2Rv4+kJc5U7dFTQR1DRB0VkiKRMUabmj3g/o6CYLAhPXDQVKElj1xx+D+rsnT1KJ/E1RrVFmnbdRrVQuBndUvbENjQ4xbq8M2SmUhxqwczCvvNrk9nCo6CF83AbQd1hyV61VSFdk622DQ3N7CbVAkTC1MMHge/++D5vaCqaWpzr4d+GtPnoxE5XqVuL4TePeSEhIO7nboNrk9r3z0yiGgDCidbYxbM4yXVdaoY300CK2jc2yr6u+NVgOaaP3tO74NfHdu/kH0/KkjpmwZraXEXTPYF2tvL4J7VT6HiaO7PdbdWcylMGvYm5W9BcasGsJLQ1Vi7OqhGLaoH+9rjSAINGxXD+vuLNKigPfx88KqGwtQNYAvcOboYY8Zuydq8WyQJIlfD/+E7pM78JYGKAmFlgOa4I/weVocGA1C62DJ+dnwqM7nofCo5opFZ2ehoYZ6MwAYmRhh+dVf0WpgU970tZGJIbpNbIe5x6Zpxdi0Hdocs/ZN5k3JA9zX8crr83mDMQBYWZtizbZhaNikMk+g08zcCINHhWD8NL4TAQATmjTCnNAQ2Jnyl7Qaebrj0JC+cLXiE9S5m9lhe6PRqGfjySu3MzTHjOqdMbhSM145J7Y5Ds0de8GIVLdBgER1q4YY5bMYJhL+ko+TSQ109FgDO6PKvHJLAxe0dlmAypb8+0cRFPpX/AX+tmGQaDg9FCFBXZtWGOA5FxKSvxzazLEmltUZAjdT/pS8t7kzVtf7AXVt+ASD5kaG2N+vF9r5VuE5OKYGBhjZ0B8rO2iLRXbp4Y+pszrA3oE/S1SjlhvWbBqMil78+2rvYou1txehfmgdnm1Y2llg5PJBGLFU+0Ni5PKBGLF0ACxs1X1IEAQCwupi3Z1FWppMXjU9sPrmQlRrxO9bezc7/LxzPDqXEVEkCAJzDkxBz6mdYGymaRvczMXK6/NVsxdK1G1RC0sv/gLPGnw9NtcqFbDg9AwEduKrUBsaGWDpxV/QZkgIJBoSIYbGBug8ti0WnJqhRVrZakBT/HLoR95SLgD41KuEFRF8+gkAsLS1wJpbCxHUJYD3oje1NMGgX3th8uZRKIu+M7ti4p8jYOPEH19qN6uONbcXaZFvVvBywtrbi7S4vawdrTB+3XD0n9Ndq42JG37A4Lm9YarhUBIkgcBO/lh7e5EWv0/VBt5YGTFPy/advRwx58AUtB7Etz+KojDvxM/oMj4MhhohARJDCUIHh+D3K7/pJVb8p8GwBOiv+PkaAsB/Gl/Ec3PhwgW9dUiShKmpKTw8PODhIc5U+2/Gf0J+gaZpvLr7FkV5xXCt7MybEtaFlLg0fHyVBGMzI1RvXEWn9ooSMqkcr+68gaxEBs+aHuVag/74OgnJH1JhYWsO3wAfvUG6RfnFeH3/HWgFjSr1K+llTWZZFu+j4pD5KRt2FWzg7adbl0iJvMx8vHn0ASRJoGqAj16OCYZhEPPgPcdQ7OVYLmbRjLQ8xL5Pg6GhBNVqummR95WFnKbxNCkZRTI5Ktnbwt1anBEXABKLMvGxMANmEmPUsHLTy+wrZ6RIKHoDBSuHs7Enj9tGF7KksSiQp8KYsuKWq/T0bQldiKTit2BZFi4mPjCViDPDsiyLmPwkZMvy4WhsDW9z/c9tZmERXqSlQUKS8KtQAaY6NJ+UoGkGr19+QmFBCVzcbOHmrv+60z6mI/5lIoxMjVCtUWWdulJKyGVyvLzzBrJiGSrWcBfVXFMi8c2nUoZiU1QN8BFlvQY4puxX9zjb8KnrpVNXSgmWZRH7/CPSEzNh62wNn7pe+m0jKx9vHn4AQQC+AT46daWUYBgGbx6+R15mAZwq2msJ3Aoh41MWYp/Fw8DIANUaVdapK6UEraDx6u4bFOWXwL2qi15GcYBLJU94/QmmFsao1qiKXtZkabEUr+6+hVwqh1ftiuUi1ot/mYCUuHRY2VugSgNvvWNbYV4RYu6/A8OwqFK/0jetKwWo30suk91h5CbOviwGaWIJPq1O+Ffy3HyRc9OsWTO9hqYJDw8PTJo06f+kxtR3banv+I7v+I7v+Jbw3bn5AvkFAJgxYwYiIyNx+/Zt+Pv7o1atWrCxsUF2djaeP3+OBw8eICgoCHXq1MGbN29w7do1TJ8+HevWrUO1auKBmP9rKMwtxKVd1xF+4BYKsgvgUd0NHUaFon7r2oIOpFJ75czmS/jwNB4mFsZo2qMx2g5voVODJTstF+f+uoJbJ+5DWihFFX9vdBzTBtUbVRGszzAM7p97grN/XUbSm2RY2lmg5YCmaDWgidY0uhIpcWk4s+kSHlx4CppmULtJNXQc20anvpRCrkDkkbu4sP0aMhIzYedqi7ZDW6Bpz0Y6v7TjXiTg9MaLeBb5EiRJokEbP3QY3ZrHsKyJ4sISXNt7A1f2RCI3PQ8ulSug3YiWaNShvs4vtdf33+H0lqt48+gDDI0NEdipPsKGhqiy1soir6gEJ+68wMXHMSgqkcPHxR69mtRGg8puOu/frZQ47Hv7BG9yMmBhaISOFauhh3dtWBoKD0JZ0hxcSr2F+1nPIGcUqGrhhbAKTeFtLty3DMvgee5D3Mm4hkxZOiwklvC3a4r6NkEwJIWn0VNK0nA59Tqe57wEwKKGlS9aO4XAxURYn0hKK3A24QWOxz1DWkkBKphaopdXXYS6+kKio29jPqXjwK2neBKXDAlFomk1L/RqXBvO1sLPbVFBCa4euofwYw+Qn1MINx8ntBvYBA1a6NYnir75Cqc2XsL7J7EwNjdGk+6NEDa8hc5ZxJz0XJzfeg03jt2FtFAK77pe6DS2DWoG+QrWZxgGDy48xdktl5EY8wkWtuZo2b+pqDp92sd0nNl8GffPPYZCwaBmkC86jW2jU1+K45K6hwvbryHtYwZsXWzQZkhzNOsVqFN77ePrJJzecBFPI6JBEATqt66DjmNCdepLlRRJcW3fTVzZfR05abmo4O2EdiNaoVHH+jpnoWIevsfpDRfw6v47GBhKENQ5AO1GttJavlOiIKcQF3eEI+LQbRTlFqFiDXd0GB2Kui1q6rSNp+HROLPpEuKiE2BiaYKQXoFoM7S5lryKElkp2Ti75Qpun3oAWYkcVf290XlsW1T19xGsT9M07p15jLNbryD5XQqsHK3QekBTtOjfRGv5XInkD6k4vfEiHl1+BoZhUKdZDXQc2+ZfoS/1T2hLfSv4opmbGzduYN68efj9999Rr149rb8/efIEP//8M3777TcEBwfj6dOnmDJlCoKCgrBw4cL/yIl/K/iamZtP71PwU/O5yEzK4rKBWC4YjlEwaDWwKabtGMd7CbMsiw2Td+DEuvOgJKQqW4AgCVjammP5tblazkTMw/eYHjofRXnFqqwK5b5l6eIBbmBd2GcVbh2/D5IiwdAMCILLenKp5IQVEfNg78pf0rp37jHmdV8OWsGosgsoCQmaZjB540itOJ2i/GLMbLsQL++8AUkSYBhW9X/VAB8su/SL1nLT+W1XsWrkZpAUobpukiJBkgR+PTIVjTs24NXPTM7GTyG/IeldMggQYFlWdT2NOzXAL4d+1HKi9iw6ht0Lj/P6liQJGJsZY8mZn+FbJg7pQ0omRqw5jOyCYhVnCkUSoBkWvZrUxsxeLXiDOMOymHn3HA69fwaKIFSMvQQARxNz7G/dH16W/Cn1l7nvMP/ln5AzchWzMQUSNBgMrNgZ3dxCefUVjBx/ffgDr/OfgQQJBgx3/WDhbOyG8T5zYGHAXxK5l/kI6979BZaFildHSR44xmcogu35gdM5smIMur4Hr3JSQYIAA1b1f4CDB7YG94WJhN+3e288wdKTEar+AZQyFRTWDeuExlX4L/rUj5n4udsqpCn1zVio7l9I1waYun4IL/ibZVn89fNuHF5xWss2zK3NsPzqb/Cu48lr492TWExrNQ+FuUVattH7584YvqQ/7/7RChpLBqzF9UO3tWzDqaIDVkbM4wX0Axzl/29dlnHsu2VsY/za4VpxOsWFJZjdbjGe33ilZRuV61XC71d+1cp2uvz3dSwf9idIkm8bBEFgzsEpCO7Kv3/ZqTn4qflcJLxOAkESYBm1bfiH1cXcY9O0nCilnAnfNjiZisXnZ2s5g4lvPuGn5nORnZKjIs5T7hs2oiUmbxqpNbatGfsXzm6+zL9/BAFrR0v8ET4PHr78GMSXd2Iwo+1CSItk/L5VMBgyv49WnI5cJse8Hitw78wjjfvHjQ3uVV3wR/hc2DrzHbXbJx9gQa8VKtZ4ZRsMw+KnrWPQZgg/sP1bgfK95DSpIgy/YuZGlliC1DXx/8qZmy8KKN69ezeaN28u6NgAQN26dRESEoK//+borv38/BAQEIDnz58L1tfEq1evsGrVKgwaNAihoaHo0aMHfvvtNyQkJOjdFwDy8/OxfPlydOzYEaGhoZg0aRJiYmIE6968eRPDhw9Hq1at0KNHD2zfvh0KhW5m2/8kWJbFr52XISs5mzP+0pejkoH4yp5IHFt9lrfPxZ0ROLGOo77XTINkGRb52YWY3X4xT7agpEiKWWGLUJxfzEsXVe67d9FR3DjKlwjYu/Aobp/gWDqVxsyyAFhO2Xh+z5W8+hlJmZjX/Q9OE0YjbZJWMAALrB6zBa/vv+Xts278Vry+/45ro/S8lP+/ffQBa8b8xav/5tF7rBq5GSzL8q6boRkoFDTm91yBtI/pvH0W9l6JlNhUgFVLLijP7+7pR9g97zCv/u3Tj7B74XFe/yjPq6SwBHO6/METGVTQDMZtOIHcwhIeGZzyxX3oxjMcu80XMtwV8xCH3nPssppSBCyAjJJCjIg4zOPOKVQUYeGrjZBpODYAQJc6ILvjT+JJtoaQKIDTnw4gJp+zM6WjokyjTyv5hD3xG3j1k4tTse7dX6WyEBrXXfpvw7vtSChK4u0z88FpvMlNK63H8v5/mJ6AJVGXefUfvk/E0pMRvP4BOGdPRiswcccpZOarSfxYlsX8oZuQkZzDdY7SNkrv3/UTD3F0A7+Nq3tv4HAp3X5Z2yjMLcKsdot5sgWyEhlmtVvEc/o19z34+0mEH7jFa+PAshOIPHybdy5K28hIzMTcbst5DLjZqTn4revvkEuFbWP9hG2IvvWa18bGKTvx4jY3XpW1jfdRcVjxw0Ze/Q/P4rF82J9gGW3boGkaC/us4skWAMDifmuQ9C5Z1T+a1/Pw4lPsKiP7cu/cY5VOG982GJQUSTGnwxKebAFN05jdYQly0nJ5/aHc9/zWqzi98RKvjTObLqlkWnj3j2WRm5GPOR2WqAj5AO4DaVb7xZAWSrX7FsDOXw9oiV3u+vUg7p97zLte5fl9ep+CRX1X8+qnxKVhQa8VPMdU2QbLsFgxfCPePY3Ft4yvYyf+dwcUf5FzExcXB0dHccIwR0dHxMXFqbY9PT1RUKCf3XTfvn24fv066tevj4kTJ6Jjx46IiorCiBEj8OHDB9F9GYbB9OnTceXKFXTr1g2jR49GdnY2Jk2apOUc3b17F7Nnz4a5uTkmTZqEJk2a4O+//8aaNWv0nuN/Ak/DoxH/MlE3jwILHF11RmXQLMvi8B8noSvUiaEZpCdk8ujDIw7cQl5mvk5ZAZIkcHjFKdW2TCrHiXXndVKU0woGr+6+QczD96qys1uugFbQOtleKYrEsTVqJy07NQfX9t/Ued0MzeD6odvI+KRWzT6x7rxufgqW2+eMhn7Vu6exiL75WicPBsuyOPnnRUiL1WrhR1af08mKy5Q6j+EaGj03XsQiOSuP97LWBAHg76sP1Y4Vy+Kvl/cE6wKcs/MhLws3ktWD5bW0eyihS3Ry/JAgceqTWhqhhC7GrcwrOuszYPA6/xlSS9TOypXU66JMvQQIXExRU8wnFGbj6qc3gjpRXBssjsRFIUemlmjYfeMxKB28JywLyBQ0jt9XO4Iv7r3HhxdJOp8RlgWOb77GYyU+suKUTjI7hmaQlZzN0x+LPHIX2am5OtsgSAKH/1DbhkKuwLE1Z3X2Fa1g8PZxLF7eeaMqO7f1KuRSuU57oiQk7wMmNyMPl0WkDhiawa1j93mO/Il153RzyrCc83J6o1q/Ku5FAp6GR+uUcWEZFqc2XUJxodqRP7LytE77YxkWhXlFuPz3dVXZw4tR+PQuRffYRgCHV5xSMZuzLIvDK0/rJElkaAbJH1Lx4PxTVdnVPZEozC3SSUhIUiRvbCspkuLUhos6OYFoBYNn11/y9MfObLokSnhIUqTqY/M7vj18kXNjYmKCqKgo0TpRUVEwMVGvQRcXF8PUVL96aq9evXD48GFMmjQJHTp0wODBg7Fu3TrQNI29e/eK7hsREYHo6GjMnDkTQ4cORbdu3bB27VqQJIkdO3bw6m7YsAHe3t5YsWIFOnbsiEmTJqF///44deoU4uPjdbTwn8PTa9F6swAykrKQEst9IednFeDjqyTRFxFlQOFpuFqT6WlEtLi2DcNyWQalX7Rx0R/1Uq2TFImocPWL6PGVZ6JEV7SC4WnhRN+KEdXHArjB7MVN9Rfto8tRKo0fXfUfabQRFf5CLzNzUV4RPjz7yJ0jzeDlnTei2lIkRSDq+ivV9oM3CTpjSwBusiE+LUc1I/GpMBfJRfk66wOAhCBxN1X97EXnvhGpzTkr0bnqWbHEoljIGXEZCQB4m6+e7XmW+1JU4oEBg2e56voP0j/qlZGQMzSiMtUO1L23CTqdQIBz/O69+6jajrr1RvS5BYCcjHwkfeBsozCvCO+j4kXJ7CgJxXtuo8KjRUnjWIbFuyexqpd8wusk5GWI3z+SIvG0jG2InROtYPDkqvq5fXX3rV4ZCS7mTv0cPrr8TJTMrqxtPA2P1p81V1CC909i1e1dfylq4wQInhZcVHg0KDHGYRZIjUtHRumSY2ZyNpLfp4qqgFAGFJ5eU8/8P414IXodDM3g+Y1XKgfq/dM43syr4HWQBG/8fHRZ39hG49El8ffgPw0WxFcyFP+PzdwEBwcjOjoaK1euRE5ODu9vOTk5WLlyJaKjoxEcHKwqf/fuHVxcXKAPtWrVgoEBf73X3d0dnp6eep2O69evw9bWFk2bqpksra2t0bx5c9y8eROyUhHDuLg4xMXFoWPHjpBI1DHVXbt2BcuyiIiI0HueX4vyhjopq5U7NEqz3mdGU31RE+XYh1en3NetsWxTrjZY3u/lMUlW3bl622DZMm2A1UvHr9lGeW8Fv2/FeJk1zkP1eznbACv4e3lOqvxtCLdXjiYAltU5Qym402fa0mfsoqpYrvoEyl74Z57Tl9hGefr288eEz43E/Fx75VX8ovv3eSf4/6Vvv0F8X5b6TIwcORIeHh44efIkevTogcGDB2Py5MkYPHgwevTogZMnT8Ld3R0jR44EAGRmZkIqlaJ16y+jqmZZFtnZ2bCyshKt9+bNG1SuXFkrE6ZatWooKSlRLU29ecN9EZcNkLK3t4eDgwPevuXHiPw3UKtJNdHZCIAjsKpQSrRlaWcBFx9n0RcqLadRs4k6G61mcDVRUUuCJFC5XiVVYK1nDTeY6tFYYmgGtZqogwfrNKsu+pVNSUgeXXy1RpX1zqoQBEcBr2ojpLroVzZJkajbXE3fXzPYV69+jom5MbxqeZSeI4Wq/t7iCsAsi5pB6nOqW8kVCtGvWcDVzhL2llzwp4upJRxNxDWWFCwDf0d1BkZ1Kx8QIjecBIlqFmrCPDdTTx4Rny54m6vvXw3LqqLK4yRI1LBS169vp58LRUKQqGWr5ryp7+Wqc1kK4AKL61fSuO6G3npFES1szOBSibMNU0tTeFRzFXWIaAWNWjzb8BWXRiAJeNZ0V2UHulV1EZUtALh4uZoatlG7HLZRu1l11bZvgI+ohAR3YuAF7/o1ryluGxISfpq20cRX7wvZyMQQ3n6eXHMEgeqNq+idSasVrO7bWk2qgdYzA2XvZqfSdrOtYMPTjRICLadRq6nG/QvyFXXUSJJAtUZVVO8C7zoV9euPMSzvGfELqaH3/vm1qKnz79/xz+KLnBsrKyts3rwZAwcOhJ2dHeLi4vDkyRPExcXBzs4OAwcOxObNm1XOiJ2dHbZt24YePXp80UlevnwZ6enpaNGihWi9rKws2Nlpk9MpyzIzM3n/66qr/LsQMjIyEBMTo/r50iWs+qF14OLtpNN4CIJA14ntVEtXBEGgx5QOOg2apEjYOFmhSXd1ZkTL/sEwszTV+dJmGRbdp3RQbRuZGKHj6FCdzgclIeHt54lqGink7Ue15urreLHQCgbdJqrZfe1d7dC0RyOd101SJAK7+POI1LpOaCf+IiKADqPVWUNV/X1QpYG3zkGfIDlNH00Zie4Tw3Q6RARJwMTcGC37qWcim9fxhoOVme6+BTCgeT3V1DlFkhjq66/TVaEIAu5mVghxUTsrLRwbwYCU6HRwGDDo6KK2CRPKFI3sQnTWJ0HC28wXLibqjLpQ5+biul1gEOqszgjxtLBFU2dvQSkFgHNUOnnUhJ2R2hEY2LSeaGyShCLRo5H6JeEXXBXuPuK20WlYMxiUMvISBIEeP3bUOQFAkiQs7SzQrJda9ymkTxAsbM1FbUNTnsHQyACdx7fVaRucnII7ajdVOyvtR7birkHMNiapJQJsnKzRvHeQqG00bFePR4TXZUKYuEglC3Qco7YNHz8v1AisqtM2SJJA2PCWvLT27lM66I5NIggYmRoidEiIqqxh+3pw9LDX7RgQQLdJ7VWOB0mS6D65g85+IikS9m52vIzI0MEhMDYz0h1nxbDceFkKE3MTtP+hlejY5tuwMo+9uMOYNoJ1laAVDLqMDxOt80/ju7bUF8DExAQjRozAwYMHcf78eRw5cgTnz5/HwYMHMWLEiHLF15QH8fHxWLVqFWrUqIG2bYV1kpSQSqUwNNTm8VCWSaVcAKlyeUpXXWU9IZw6dQo//PCD6udLU9tJksT8k9NhYWvOMzjlgBDYxR+9f+7M26f9qNYqnSbNgYOkSJiYG2PhmZm89GYTcxMsODUDBsaG/PqlA1vXie3QQuOFDQCD5vVGvZa1tNogSAI2zjb47chU3lq3s6cjZu2dBIoieV+dysFz1B+DUDOYz200aeNIeNV0BwiojqXUlapYzQ0/bhnNq1+9cVWMWTWEd1zl7yRFYsbuibwBnyAI/Hr4J9hWsOH3benvfiE1tHS7mnYPQPdJYVptkBQJQyMDzDvyI8w0ZrUMKArrRneBmZEhSI3+UM5QtA+oht5N/Xht/FAtAO08uK9uTeeABAErQ2P81bwnKI1ZR0sDc8z0HQUJQfFmV5S/93RriwC72rw2Orn0g5cZ53zynRwCNob2GOQ5gVff1aQCRnsP4XShBNoY4TUAXmZ8eoFl/h1R0dwWnNqR+hoAoIa1M+bU5b8UGlepiIlhQbz+Uf5OUSRWDGwPB0u+BMKvu0bDyq6sbXC/B7SuiT6T+S+VtsNaoN3IVqX1+PfPyMwQC8/M5FHlG5saYeHpGTAyNeLVV977jmNCeUKbANB/Tnf4t/XTaoMgCVg7WmHe8Wk827B3tcOcA1NAUZTWcwsAw5f0582qAMCE9cNVKevKay+VlYJblQqYun0sr36V+t6YuH4EQGjbBkESmLZjnJaMy6z9k2HvZqeyOUBtGzWCfTG8jFRFcNeG6DOjK+/clX1gYGSAecd/5vHQUBIKC07NgJkV/8NK2WchvQLRbTJfzqTzhLZo3ieYV0/5u5mlCRaensGLUTS3NsO8Ez/DwMhA8P71mtaZJ/ALAMMW91U5n6rzKh2D7F3t8MvBKbz6bpUrYPqu8SApUvD+jVs7TEuq4lsD+5VLUuy/eFnqi3hu/n8hMzMT48aNg0KhwKZNm2BvLz512aZNGzRv3hwzZszgld+5cwfTp0/HH3/8gYCAAOzfvx8bN27E4cOH4eTEJ4AbOXIkKIrCxo38lEslMjIyeDM78fHxWLhw4RfzAOSk5+LcX1dxde8NFOYVwcPXFR1HhyKoa4Ag0RzLsrh/7jFObbiI98/iOUXd3oHoMDpUJ5lW2sd0nN54CZFH70JWIkOV+t7oNLYN6rUSJgqkFTSuH76Ds1suI+ltMixtLdB6UDO0Hd5CJ5lW/KtEnFx/AQ8uPAGtoFG7aXV0Hh+Gag2FjV9aLMXVPTdwbusVZCRlwc7FFmHDW6LVwKY6ybRiHrzDifXn8SziJQiKQEDbuug8vq1O2viCnEJc2H4Nl/6OQF5GPly8ndF+ZGs069VYp1zFk/AXOLXpMt48ioWhsQGCOjdAx5Gt4FRR+NnLyCvEkZvPcOFRDIpKZPBxsUfvpnXQtGYlwb5lWBaXE95gz9vHeFtK4tfJswb6VvaDvbHwskdKSQYuJEfiXlYU5IwCVSw80a5CCGpaCfetglHgcfZt3M68ikxpOiwMLBFg2wyN7JrBmBL+6PhYlIiLKeF4lvMCLICaVr5o49xCy7FRolAhw/G4ZzgS+xTpJQWoYGqF3pXqopNHTRhROvo2Ngn7bj3F09hPoCgSzWt4o09gHVR0EH5u87IKcGHvbVw9cg+FuUVw83ZC+8FNEdjeT1DglGVZPLjwFKc2XuRI/MyM0KxnIDqMbq3FzaREemImTm+8iMgjdyEtksKnnhc6jWmDBm38hG2DpnHjyF2c2XwZiW+SYWFjhlYDmyFshG4SzYSYJJzacBF3zzwCraBRM8gXXSaEoXpj4fFCViLD1b03cG7rVaQnZMC2gg3ChrVAq0HNeLONmnjz6D1Orr+Ap9eiAZKAf2gddJ4QppNEszC3EBd3RODirnDkpnPSJO1HtkLzPkE6bSMq4gVOrD+P1/ffwtDIAEFdAtBxbBudJJrZqTk4u+UKru2/iaL8YnjWcEfH0aFo3KmB4NjGMAzunn6EUxsvIu5FAkwtTNC8TxA6jGoNGydrwTZS4tJwesNF3Dx+DzKpHFX9fdBlfJiW06iEQq5AxMHbOPvXFSS/T4GVvSVCB4eg7bDmOuUqYqM/4tSfF/Dg4lOwNIs6zWug8/gwVG3gLVj/W4CS58ZqvA8kruKhBmJQJBUjd/27fyXPzVc7N8XFxSgoKNAZ21HWeSgvCgoKMGnSJKSmpmL9+vXw9PTUu0/fvn3h5uaG5cuX88rPnDmD33//HTt27IC3tzcuXbqEhQsXYtOmTahevTqvbvfu3VGtWrVyz8h8l1/4ju/4ju/4jm8JyveSxTgfSFy/fBVFkVSE/D//nc7NF8kvAJzDcPDgQVFyPYIgEB4ervPvuiCVSjFjxgwkJCRg5cqV5XJsAKBy5cp49oyjyNb8Mnj16hWMjY3h7u6uqgdwD4Cmc5ORkYH09HR06tTps8/5a8CyLOKiP6IwtwgVvJ11zsBoIjstF0lvk2FsZoRKtSvqFX6jFTQ+PIuHtFgGD1/Xcgm/pSdmIjUuDeY25qhYXVhOQBMyqRwfouLA0Aw8a3ropKPXxKf3KchKzoaNs3W5BEOLC4oRG50AkiRQqXZFvaq8LMvi46tE5GcVwLGiQ7lEEfOy8pHw+hMMjCTwruOpN2WfYVi8j01DSYkcri42sLURDzwFgPSCQnzMyYGZoSGqOtjr7Vs5QyMmNwVyloa3hQMsDfT3bUpxFtKlObAyMIO7qWM5hDPleJufApYFKls4wUSiX/H4Q3YWMouL4GxuAXdL8YB/ACgokiI2MRMURaJyRQcY6OlblmUR9yIBhTmFcK7kVC5RxJz0XCS+SYaxqRG8anvoFbWkaRofojjbcK/qolfwFeDIK1Ni02BmbQbPGu7lso3YZ/GgFTQq1nDXK/gKcLT/mZ+yYO1kDbfK5bCNwhLEPv8IgiBQqbaHXlFLlmWREPMJeRl5cPSw12JXFkJ+NkdJITGUwLtORb2CvQzDIC46AUX5xXDxdtJiABZCdmoOkt6lqIL+yzO2vY+Kg1yqgLuvi84ZNE2kfUxH2scMWNhZwMPXVf/9K5Hhw7N4MAwLL41A828d7FdmPP2bl6W+yLk5ceIEVq1aBYqiUKdOHTg4OOgdQMoLmqYxd+5cvHjxAosXL0bNmsLTixkZGSgsLISrq6sqnbtZs2aIiIhAZGQkQkJCAHCp6eHh4QgMDFTF2Hh5ecHDwwOnT59Gp06dVOd+4sQJEASBZs2a/UeupTyIOHgLO345gE/vUgBwDmHDDvUwdtVQQQXdjKRMbJyyEzeP31cF+Tl62GPgrz3Rdph2wDVHWHcB+5ccR1ZyNgBuTTykTyBGrxgMawftF1L8q0RsmrITDy9HqQKYPaq5YviS/gjs5K9Vn1bQ2LfoGI6tOaviyTEyMUTbYS0wfGl/wan0F7djsHna33ilQXrmG+AjGKMDcCRc22buxfmtVyEt5mKmzKxM0XViOwz4pYegA3L3zCNsnbkX8S/UDni9VrUwZtVQeNbQXsrKzcjD5ql/I3z/TRXfiI2zNfpM74KuE9sJDoDnLz/Hjr23kJqWB4ALqA0OrIwJI1vA0UH7JZmYm4sFVyNw7f17VRivh7UVJgcFolN17etmWAa73t/Btre3kC3jOHMMCAod3Wtjao1QWBlqD7Lv8pPw59uTeJqjJlusZF4Bo7w7IMBOWzNJziiw6e01HIq/h0IFF29mQhmih4c/xlZpBSNKOwPrTuJHLL51HdHpaaqyBhVcMSc4BHWctPWMCouk+HNfJM5GvoCstG8tzY3Rt30DDOoUIBjYe+PoXWyfvQ+Jbzg2XRBAQLt6GLNyiODLPjM5G5t+2onII3dVXEr2bnYYMKc72v3QSuv+sSyLM5suYd/iYyrOFUpCommPxhizaojgUkjim0/YMGUnHlx4orINt6ouGL64n5bMAcCNZweWnMDRVaeRn83ZhqGxAdoMaY4RywYIfgC8uvcWm6fuwotbamb1Kg28MXL5QNRpVkOrvrRYih1zDuDslssoKeTun6mlCTqPa4tBc3sJOiD3zz/B1hl7EPtczS/k16ImxqwcIqh5lZeVjy3TduPq3htQyDgWdGtHK/T+uTO6T+kgaBtX9kRi128HVVxdBEkgsJM/xqwaAqeK2o5U2sd0bJiyE7dPPlDxAzl5OmDw3N5oPUh7TGZZFsfXnMOBZceRnZoLAJAYUGjeLxijVwwWdHJin8dj44+78OSqmjPHs6Y7RiwdgIbttBn3FXIF9sw/guPrzqOolIXZyNQI7X9ohWGL++p1IL/jn8MXLUv1798f+fn5+PPPP1WzIf8prF27FkeOHEFgYKBgdlRoKBf5v3jxYly4cAEHDx5EhQrcQEfTNMaPH48PHz6gb9++sLKywokTJ5CamootW7bAw0O9/nz79m3MnDkTdevWRcuWLfHhwwccP34c7du3x7Rp08p9vl+zLHV640WsHbdVix+DpEiYW5th/f0lvPXsrJRsjPOfgazUHEEivGGL+qHvzK68sm0z9+LAshNadUkJCeeKDlh3bwlvEIh/lYiJjWehpAytuVKDZfrfE9BqgJpHiGVZLOm/BhEHb2llq5AUCd8AHyy/NpenVfMs8iWmt54PhmZ4GUoESYAkSSy9OIe3Zi6XyfFzq/mlRHv86yYIAsHdAvDLoZ94A2zEwVtY1G+1SldK85yMTAyx5vYiXjxCQU4hJjSaiU/vUwUzQ3r+1BEjlw/ile0/cg+btl/XqkuRBKytTbFlzSDYa8yQJeXmoevuvcgtKRFk+P21ZXMMqleXV7Yw6iz2xz3QqksRBLzM7bGvyQiYGagH2Lf5iZjwaD3kjIIn2aAMLp5fazCCHWqpymmWwY8P9+Jm+hutrCkSBBrYVcJ6/0GQkGrn8Xp8LIadOQ6wLI/+jyQISEgSB7r2Ql1nNadViVSO0fMO4G18umBGWvtmNTB7VBve/Tu/7SpW/rBJ0DbMLE2w7t4S3kxfdlouxgfMQManLEHbGDS3Fwb+2pNXtuu3g9iz4IhWXUrCZef8eX8pbxYn8c0njG80E8X5JWVsg+Ngmbp9LE9riGVZ/D54Pa7sjdTKciQpEj51vbDy+jzeC/LF7RhMbTEXjIIWsA0CC8/MQoPQOqpyhVyBmW0XIer6Cy3CQIIg0LhTA/x2dCpv9uPG0btY0Gul6hw1z8nAyABrbi3k6XAV5hVhYuNZSHyTLGgbXSaEYdyaYbyyY2vOYuOUnVp1SYrLXPvzwVLeLGp6YibGBcxAXkaeYGbkqD8G8bLXAGDTjztxtIxEjbIN18oVsO7OIl4czYdn8ZgUNBuyErn22AYWcw78iGY91Rl1DMNgfs8VuH3igVb6PEkSqBHsi2WXftEp9PtPQvleMh1bBZTLly9L0Z+KULThzb9yWeqLsqVSU1PRvHnz/7hjA3BkfwDnfCxcuFDrRwwUReH3339HixYtcPToUWzcuBFWVlZYvXo1z7EBgMDAQCxcuBD5+flYs2YNIiMjMWDAAEyZMkXH0f+zKMgpxMafdnEbZQY+hmZQmFuIHXP288r3Ljyq07EBgJ2/7OfJFiS++STo2AAcJ0dKXDoO/3GaV75l2t9ajg2gHgTXjd/Kky14ci0a4Qe0HRvldby8+waXd0XwjrN69BbQZRwbgEu/ZRgGq0dv4Q0mV/fcQPTN14IDK8uyuHH0Hh5qMIXKSmQqfaqygxJDM5AWy7BZ2felOLLytE7HBgAOrziN+FeJqu3MrAL8tTNSsC7NsMjJKcKufbd55atu3tLp2ADAkojryClWyxa8ykkWdGyAUrmG/Azsi73PK1/35oSWYwNwRHosWKx4fQQKRs1BEpn6GjfSYwTTwRmwuJ/5HpeT1ay7NMNgZvhlsGUcG4ALllYwDH65fpVXfvLac7yJS9OZan/2+gs8f/tJtV2UX4w/J25Xnji/DZpBYV4xts7gs5UfXHocGUnCjg0A7J53mCdbkBybij0LtR0bgEvxTU/IxMEytvPX9D1ajg2gJpdbP2EbT7Yg+uZrXNmj7dgor+Pto/c4v+2axnFYrB37F+gyjg1Qahs0i9WjN/PiG8MP3MLT8GhBJmSWZXH75APcO/tYVSaXybFmDGdfQrYhl8qxYfIOXvmJteeRGPNJp22cWHceH56pKTFyM/Lw18+7BesyNIO8rHz8/dtBXvnueYd0OjYAsHXGXuSk56q2Y6M/Cjo2yjaS3iTj2JpzvPKNU3ZqOTYAVNp+a8Zs4emPPbjwFLeO3xfkBWIYFs8jXyF8/y2tv31L+J4K/pmwtbUVJYf7GqxduxaRkZE6f5SYNWsWIiMjVbM2SlhYWGD69Ok4ffo0Ll26hLVr18LXV3sqHgCaNGmCbdu24cqVKzh69ChGjBjBYyz+byL8wC0opLpFOmkFg8jDd1GYy01ly2VyXNwZIS5dQBC4vEs9k3Bh+zVRgi+GZnB2y2WV8WZ8ysL9809EKceL8opx64T6hXtu6xXRNggQPN2n1/ffIeF1kk5aepZhkfQ2mafRc2bzJVHiP1JC4vxW9Qv1zqmH3PKYjjlJJSV9WkKGRhuXRa+blJC4uF39Irp07YUosSrNsLhw9QWkpVP4BTIZzryO0enYAJwY56lXatmJI/GPQREi9w8sDsY9VG0nFWXgeW6slmOjiRx5AR5kqZc7jiY8UKVxC4EEgWMJ6vt9JykByQX5OltgWBYv0tPwOkPtSBy/EqXzXgDcTNcpDWr964duQ1qiW0aCoRncPvkAeZmcHAKtoHFu21VxiQCSwMWdEartizvCRWM5GJrBua1XVdpu2Wm5uHPqoWgbJYVS3DiiFqLVZxssoBKLBDiJgA/PdMtIsCyL1Lh0PNeQXzi7+bIo+SRJkTi39Ypq+/65J8gVkZFgaE5jKTlWLbZ5erO4xhIlIXF+m9r+ru65Icq9wygYXN13U+UISouluLInUlxGgmFwdc8N1faFbXrGNobBmc1qcc6UuDROU0vkvPKzCnD3jNoRPPfXFVESP4IkcHbLZZ1//xbwv5wK/kXOTdu2bXHv3j0Ua3xlfsfnISU2TdQ4AW7QzvjExcnkZxVAWqSbfwfgjC1FY1BKjU8X1bZRHbc0hiXtY4ZeenZKQqnW0AEg+V2K6KDEsixvoEyNS9NZVxO8Nj6kiV4Ho2CQ9DZZvW9cul5GVQBIi+dewHKZHLnpeaJ1WZpFisa5p6Tmib5UAEAmUyA3l1unzygshELPBwFFkkjMVZ9HUlE2aFZ8n5Ridf2UkiyRmhwIEPhUrKYySCzMEnWGGLBIKNKYDczL1VlXEwn56nopGXmijxXNsEhKzVFtp8al6w/iphmkJ3LXUZhbhOJ8PbpBBHj3LzU+XaQ2tI6bkZipl9mXMuDbxic9tgEWSNE4j5Ry2kaypm3Epoo6HgzN4NPbFHUbsWl6n1uAuwcAZ7+ZSeLPFa1g+LYRlyaYqq8JhUyBnNI4mezUXMhFPvQAToBXU908NT5NL4t1VnKOyjktz/0mKZJ//96LiH+C+xD79D5V59+/45/FFzk3gwYNgq+vL3788Uc8ffoURUVF+nf6Dh4s7Sz0SgQAgKUtxytjKsI0rALL8rKgLGzMQejJNDAwMoChsYHqnPSBoRlePUsHS71yCpoxPRa24hIEqn3szDV+Fz8vgiRgpRG8a2FrLjooqeqVHldiIIGRiXhmEEmRvOuwtDDW+7IjCMDMjIunsDQS5ifRBMOysDZR17M2NNXJBKyEhUa8jYWB/rV1FiwsNepZG5qKTjwTAGw06xuXL0vERqOehR7ae5IkYG2hbqPc96/0WTI2N9b7oQAQ/OfQxlxvhgxlQMG49P6V57ktaxvWDlZ6nWwLjcy6/4ptEASsHNW2Ue5xp/S4BEHolWShJCR/3LE1198GAZhZc/fcwsZMr04bw2iPbfruuYm5sSpZxLLc909dz8q+HGNbOcbMfxLftaU+E61atUJkZCRevnyJyZMno127dggJCdH6ad68uf6D/Y8ipHeg6NIeSZGoE1JDlbFhbGqExp39RQdLWsHwGIdb9G8iql9FSUi06Besmp53q1wB3n6e4ktAFIngbgGq7Vb9m4rOqpAkwct0qBNSg+eICMHC1pyn2dJ6UDPRc2IZFq0HqtsI7hoAiYgqMUFwukEevq6q7VYDmooOlrSCRnONvm0ZUk1U6ZoiCQQG+MCs9MVua2qCQA8PUWeFZVl08FUH7bV3qyW6jEURBDq5q4NLK5u7wsVEmKxOCSPSAIH26oybDq519WoptndTBzk38/CEuYG4I+hsZo66Turl4rCmNUQdc4Zh0UYjQ66pRlCnEAiS0x5TBqQaGhmgSY9Geu8fzzb6Beu1jZBegapMI2dPR/gG+Ig+hwRBoEmPRuo2+jcRX+qkSIQOClFt1wzyha0eGggzK1NeQHHooBBx22BZtBqgto3GnRrAwFh3ACxBcNlfSt01AGg1oKmo5hWtYNCir4Y0Sd9gvdfdINRP5WyaWZkhIKyu6NjG0Aya9w1St9GviejMDSUheYkPnjU9SvXHdPeVgZEEgZ3V2aCtBoiPbQRJaLFYf2tg2a9zcL5dil/9+CLnpnbt2qhTpw78/PxQp04dnT+1a9fWf7D/UThVdECHUa0FjY0gCBAEMGR+b145l/JMCg5mBEkgpHcgvGqp0zhrBFZFgzZ+goOGMjOiz/QuvPLhi/txS1M6xoCeP3XkpY836dGI46IQaIOSkLBytOJp20gMJBi2qJ/wwUsxdGFfXgZCh1GtYetsLfjyoiQkKlZ34+kGWdpZoPfPXbTqAtx1sWAxYkl/Xt/3nNYJhmVkKpQgKRL1WtXi6QZ5etijVUh1QbFGgiBAkCQG9wvklU8ODuT+Jnxa6FW7FjysrVVlQY7eqGfrwZN3UF03QcBMYoTB3urrJggCo7w7aNXVxADPVjCTqGeH2rv6wcPUTjC2hyJIOJtYo7NbfVWZiYEBJjcM1KqriemBTXkyEr3a1oWlmbGgeCZJEvCt5ITg+mq2Vwc3O3QZH6ajb7n/hy7gy2f0m9UdlIQSdKJIkkBQ1wCeblBVfx807thAuD5FQmIg0co8HFr63Aq+HwlOzkSToyqoiz986nrptA0LW3N0GtdGo4zCiCX9tepqYsj8Pjxup7ARLWHvaqvTNtyruvCcOnNrM/Sd0VWrrhIsCy3b6PFTR5iYGeu0jdrNqqNuS3UGnlvlCggdEiI8tpVmfQ2a24tXPui3XiBJQufY1npQM56MRN0WNeHXvKbOczIyNULPqWq+MoIgMHxJf1EdtT7Tu/IY2Jv3DYK7r6ugY0dJSI5VfYS43uF3/HP4Iudm7dq1WLNmTbl+vkM3xq8dji4TwriBiVBrqlg5WGLeielafC8+fl5YcmEO7EqJzEiKLH2REmgzpDmm7RzPq08QBH498hP3JVyqoaJsw9HDHn9cmwu3Ki68ffzb1sWcg1NURq6sLzGg0GdGVwxd1JdX39DIAL9f+VWl/K1M5wYAzxruWBU5X4tLp92Ilhi/brhqyl/ZhpGpEcasGoKOGiKYAOesrIpcoHLcNAfBmk2qcanmZcj8Bs3rhf6zu0NiKOH1rYW1GWbvm4yG7evz6rv6VMAf4XPh7Omg7ttSQdDgbgGYe2ya1mA9Y0oY2ofWVjmjyhelnY0Zli/ogaqV+Xwv9VxdsKVbF9iV6q5RpY4OSRDoX9cPc1vxB0qSILGxUT+EOCm1otQaTu6mttgZNAQupta8fZo61sbMan1hRnEOjFIjyoCQYKhXW/Sv2JJX30RiiL8aDUdta/fS+oSqjWqWLtjaaAQsDPhLasPq1MOMwKYqmQXlbJSZgQEWN2+NLlX5z629jTk2/tYbHsrntrS/AKBh7YpYPbM7JGVeUqNWDEL3KR242BuN+2dpZ4F5x3/Wotf3qumBZZd/VSlNq2yDINCifxPM3DORV58gCMw+MBnN+wWr6inbcHCzw+9XftWS9ajXshbmHp0Gi9IZB6UoJiWh0OunTvjh9wG8+hIDCZZd+gX1WnEvfk3bcPd1xarI+Vqkdq0HNcOkjSNhYm6sbgMcb9TI5YPQeTxfX8/c2gyrIhfA28+Lq69hG9UbV8Xya3O15EwG/NIDg37rBQMjvm2YWZtixu6JCOoSwKtfwcsJKyLmqXi3lH0LcDNBC07N0ArOnrJ5FDqMbq2qq2zD2tEKC8/M1JJlqervg0XnZqtmqjX3a/dDK0zZMopXnyAIzDvxM4K6BmiNbc5ejlgRPk+LJyywkz9m7pmkUndX3j+JoQQDfumBgb/xqQKMTIzwx7XfVCrsSscMACrV8cTK6/PKRRj4T+J/eVnqm9aW+jfgPyG/kJ2ag1snHqAorwhuVVwQ0K6uKPMnTdN4eDEK8S8SYGxmjMadGsDBTXw5Ijk2FffOPoa8RI5KdSqibstaotkiMqkcd08/RPKHNFjYmiOoi79e5tbY6I94cuU5aJpBjcAqqNaoiug0cHEBl3mV+SkbthWsEdQlQJTVmGVZvLr3Fi9vx4AkSdRtWZM3UyWEvMx83DpxH3mZBXD2ckTjTg14nDtlwTAMnoa/wPsnsTAwNtBSYRZCekY+bt17h+JiGTw97BFQ30s0oFLBMIj4EIvYrCyYGRqitY8PHMzFWY3jCzJxI/Ut5CyN6lYuCLD3FO1bKS3HrYxopJZkw9rAHE0casFcD6vx69xPeJgVC7BAPVtPVLd2Fa2fL5Pi0vt3SC8uRAUzC4RW8oGJge6+ZVkWUTFJePkuBRRFomHtivDUofmkRHZaLm6fuI/C3CK4+DijUYf6em3j8eVniItOgJGpERp1qKeXeTc1Ph13zzyCrFgGz1oeqN+6tqhtyGVy3D3zGMnvU2BubYbALv6CZJiaiH+ZgEeXn4FWMKjWqDJqBFYVt43CEtw+8QAZSVmwcbJCUNcAvazGr++/RfTN1yAIAn4tavK4aoSQn12AW8fvIy8zH04VHTjbEGH8ZlkWT8Oj8e5xLAyMDOAf5qeXVTzjUxbunHqI4vxiuPu6IiCsrmiwOK2g8eDCU3x8lQgTc2M07uyvl5X60/sU3D/3BHKpHN51vVC3RU3RvpWVyHDn1EOkxKXD0s4cQV0D9Dop76PiEBX+AgzDoGawL6r6++iN2fonoXwvESNrgKignzFdF9jkQrBbXvwreW6+Ozdfie/aUt/xHd/xHd/xLeG7c1NO+YWlS5cC4BSzbW1tVdvlQVmF7u/gQ/k1FHn4DgrziuBW2QVthzUX/drMTM7GxR3hiH+ZAGNTIwR1bYgGbero/NqkFTTunX2MO6cfQlYig3cdT4QOCRH92vz0PgUXd4QjOTYV5tbmaNE3CDWCfHV+rchKZIg8chePrz4DQzOo3qgqWg5oIvq1+eFZPC7tikBWSjZsnazRenCI6NdmUX4xru69gZd3YkCQBOq2671mxwABAABJREFUqIVmPRvr/NpkWRYv77zBtX03kJ9dAGdPR7QZ2lz0azM3Iw+XdkbgfVQcDAwlaNSxARp1qK/za5NhGDyJjMHNc1EoKZLCo7IzQns3gp2z7r5Nyc7HiTvRiE/PgZmRAVrXrYKAKrr1ieQ0jctx7xAeHws5TaOmoxN6VK0hmrn0IS8Thz88w6fCXNgamaKLZ03Utqugs41ihRynP7zG3eQEsCyLAGc3dPauBlOR4OEXiak4/eQVMguK4GRlji71a8DHSfdMTEFeMa6ejUJMdBIoikT9QB8EtawGAx0zMSzL4lnkS1w/eBsFuYVw8XZG2PCWgtT9SmSn5uDijnDERn+EkYkRgrr4o0FbP53yMDRN4/65J7h98gFkJTJ41aqINkObw8ZR9/1Ljk3Fxe3h+PQhBeZWZgjpE4RaTarptg2pHDeP3cOjy1GgFTR8Ayqj9cCmOlWoAW4W9PKuCGR8yoKNozVaD2oGn7peOusXFxTj2r6biL7FzdzUCamBkN6BOuUBlLOg4ftuIjczD04eDmgztLnWMrUm8jLzcWlXBN49iYXEQIKG7euhcacGOmfSGIbBk6vPcePoPRQXFMOtigvaDmshOsuckZSJC9vDkRCTBBMzYwR3b4R6rXTPMtMKGrdPPcT9s48glyng7eeFNkNCRLOYEt8m4+KOcKTGp8HS1gIt+gWLzjJLi6W4fugOnkZwZIk1An3Rsn/wv0JfigUB9quI+L7d2Sl9KNfMTbNmzUAQBHbv3g13d/dyay8RBIGIiIivPcdvGl8zc5OfXYBfOy9D9M3XoCQUWIYBSmUOflg6gBcQp8TZLZexbvxWLoq/NFaAVtDwqeuFxedmaenhpCVkYEabhUh4nQRKQoJluYGNokhM2zEOLfo14dVnWRZ/zz2EPQuPqAYUguAyIuqH1sFvR37SMurY5/GY0XYRspKzVW0wDAMTcxPMPTYN9TSCDQFuQFo9ZouKiItlWBAkAVrBoPWgZvhp6xgtZyIq4gV+7bIMRfnFqvNiaAY2TlZYcmGOllNUXFiChb1W4v75J6pzUu7Tb1Y3DFnQR2swizh4C8sGrwetoFVxNLSCgVuVClh68Retl2pOZj5+HbgJb58lqK5D2WFjFnRHh0H8vgWAPeGPsfK4moySIAjQDIM6XhWwdlQXWJXR4YrPzcHA04fxMS9XFdvCsCwMKQprW3dAm0r82AWWZbHkyTVsfX0PFEGUxoYToFkGrd2qYG1QF1WsjBLP0lMw+OIRZJUUq9qgWRZWhkbY3qY7Gjjxl6dkChqzD1/EuagYUCSXUUEQHF9Nn0a1MbtTC61A3Qc332Dh1IOQSeVcvxMEGJqBg7MVFm8cBHcvft8W5hXhty6/IyriBe/+sQyLoQv7agX7AsCFHeEcgy/NqOJoaAUNr1oeXKxamUykjE9ZmNFmIeJfJPBsg6RI/LhltGAmzN6FR7HztwMatsG14deiJuYd/1lrWTX+ZQJmtF2EjMRMdRsMCyNTQ/x6ZCr82/jx6tM0jfXjt+HM5suq+srnsEW/YEzbMU7LmXh+4xV+6bwUhblFPNuwcrDE4nOzUEUjWBvgXtaL+qzGndMPuXGHZQGC44vqNbUTRiwboGUbN47dw9IBayCXKXi24eLthKUXf9Faus3LzMfs9ovx+v473tgGlsXolUPQdWI7rb49sf48J9nAAoB6TKjq74NFZ2dqLYunxKVhRpuFSHqbzLt/EgMJZuyegKY9+Fl3LMti+6x9OLDshCo+R3n/GnaojzkHpmjFJ717EouZYYuQk5ar2odhGJhZmmL+yem8JINvCcr3EvNDLeArZm6QXAjyr+f/ypmbcjk3KSkcCZS9vT0kEolquzxwdtYW0fu/hK9xbqa3WYCn13SzZs7aNxnN+6jTH++ff4LZ7RcL1iUpEt5+nvjz/lLVwEQraPxQ+yckvUsWZDYmCAIrr8/jBS6f3XIZq0dv0dlGUJcA/Hr4J1VZQU4hhlSZiPzsAm3dJ5KAxFCCLVEreEKH22fvw4GlxwXTDAmCQM+fOuKH3weqypI/pGJErR8hl8q1UjNJioSZlSl2vlnLWzdf1G81Ig/f0dm3E9aPQKex6kyVl3diMLnJL4Kpn5SEhLOXE7ZGr1S9WFiWxY+dV+FN1EedbczdORINW6kDXy8/eYNp24Up4ymSQD1vV/w1UR3UWKJQoOX+7UgpyNdKCVcGIp/sMQA1HdQvlq2v7mHxE778gRIkCHSvVAvLGqkzqtKLCtH88FYUKuRgyurngICxRIKrPYbBxVz9Yll0Mhz77z7VmSY6vnVjjGmpTomOe5eG8X02gKYZAf0xAtY25th2aiJMNF4sszssxsOLUTr79ued43kUA4+vPMP0NgsESSgpCQnPGu7Y8Oh31cufpmmMrjsNCa+ThFOKCWD5ld94gcsXd4bjj2EbBM+HpEg0bFcP809OV5UV5RdjSJUJyM3IF9REowwobHqyHBWruanK/557CLsXHBa8DoIg0GViGMauGqoqS/uYjmHVp0BeItPiliEpEqaWJtjxeg1vlvb3IetxZU+kzjTnMSuHoNvk9qrtmAfvMDFwNkddUWYXSkLCwd0e21+tVmU4siyLn0J+w4vbMTrv329Hp/KERm+ffIDfuv4uWJekSFRrWBmrbixQjW1ymRzDq09B6sd07bGNAEiSxJpbC+EboHb+T6w7jz8nbRdugyTQvG8wZuxWB57nZuRhaNWJKMwr1roOkiRgYGSArS9WwdnTUfCY/yS+OzflzJZydnaGs7OzSppAuV2en+8QxrsnsXh8+ZlO4ycIAnsXHuERxe1fckwnFwSnVfMBUREvVGV3zzxCwusknZINBEXg4O8n1cdgGOxddFTnOTM0gxtH7+LTe7Vze2lXBPIytQdvoFQPR0Hj5LrzqrKi/GIcW3NO54uRZVmcWH9eJTsBACfXn4dCrhAcjBmaQUFOIS5pUOsnx6Yi4uAtUa6N/UuOqdhLAeDg7yd1crHQpQzId06ppQ5e3P+A14/jdN8/ksCBdWr6d5ZlseXCPeE0YnCzHg/eJuLFR3Xfnnsfg6T8PEGuG2XJX0/V5ySjaWx8eVurrhIMWByNfY7UIjX9/v6YZ4KOjbK+lFZgz6soVVl2YTEO3Xsmyn+xM/IRSuRqxtkTe2+XflULnBPNIisjH+Hn1PILsdEfcf+ciAwIAexddJRvG0uPiyxdMHgfFY/HV9RtPLwYhbjoBJ1cKSRJ4sDS4+rzZBjs1aFFxV0HgzunH/L0x67uiUR2Wq5OTTSWYXBirVr/qLiwBEdWntbJEs6yLE5vvIS8LPX9O/nnRcilckHSPE6jrggXNPSr0hMzcWW3bscG4PpSoXH/Dq84xT23ArvQCgYpsWm4cfSequzVvbd4fuOVqG3sKzPO7F10VCdfD0MzeHE7Bq/uqiVZbh2/j+QPqcJjW+ls16HlpzTOk8a+JccEjw9wXEvX9t3k6Y9d2B6OgtwiwetgGBZymQKnN1zUecxvAZzdEV/x809fwZfji1LBv+PrcefUQ1FiLJZlEf8ykZNEAFCYW6hTPFIJSkLh9kkNHaBTD8X1VxQM7p17rCIzi4tOQHpCps76ADcw3T39SLV964SwsJwStIJB5FG13k5UxAu9MhKyEjmeXFOLNd44dk9UU4tlWNw8rh5c7519DGE2GTUykrLwISoeAPfiunvmkSgpGEmRuH1K3bd3Lz0X1w1iWLx+FIe8bM5JS8stxNtPGaKDBUUSiHj2QbV9Je69IMeNEjTL4mLsW9X286xkZEvFJVEYlkVE8nvV9oW4N4KOjWYb5+PUWlS33sbrlZEokMrwJC5Jvc/VV6JaQwQB3A5X6yXdPf1InNmXBZLeJiPpHecIlhRJRWdAAV22oTtrh6EZPL7yDLJSjavEN8lI/iAuj0BSpJZtiD2FtILhOQXRN1+juEBcRkIhU+Dx5Weq7ZvH7uqVCLhxjG8bYlwvAJCTlou3j2O5/UvFN/XZxp1T5R93WIbF28exyErhpGWy03Lx5uF7UYdL6/6dfqiX0PTOKbWa97snschOydFZv/TMeCKjN4/fE5d9oflj27eI/+VU8K9SiczMzMSbN2+Qn5+vk223bdu2guX/65AWS0EShJayclkoB1dZiVxPTQAEv55UYKq6LFiGBa2gQUkolcaUGEiS4NXT56gAgFzjnGTlaAMocx3l2KekUH0esmIZCJIAS4tfu7INhmb00v2zLMs7J+53/Yav3Eeq8SWsCwRBQKpQ1ytRKEQdD4ALNlbVp/U/IwTAa6NYoX+fEo365bkOAJBqsP/KZOL7sCwXdKvat1jKfcXrJhAGAMhVtlG+Z0quUU9WItMrn8GygFymgKGxYbmeW4IgeOdSUiTV++Url/73bUOzjqxYBqI0rk+0DY19FHruH0MzfNsobUMflPvIy3H/CIJ/HdJimV7xZoWcBsMwoKjyjW0ESfL7thxjW3mO+4/iK8Uvif8150YqlWL58uW4evWqTiNhWRYEQXx3bnTA288LCrn46G1sbgxHD45i3tLeAlYOlqICj7SChncdNe+Ld+2KuH5I9zIFCI5WXplt5F7VBRJDiehgRisYVNJoo3K9Snj3JFb39D5Fwruup2pbc18xVKqtrudT1wtPrj7X6YBQEhJV6qvZZyvV8dTrrFASCu5VucwQiYEErpUr4NO7FJ3PMwGgkganjld1V1H6fgCwtDGDjQMXB+RsbQ4zY0MUigzkCppBVVd1YG01Owdc/xirU4KBAFDZ1l61XdnKASQIUSFMFoCvjTpGoJa9M+LzcnUKdFIEgRp26pieqhXsBetpnZdG1lSlKk54Ha1bCZ6kSHj7qmOyvOt4gtZjG0YmhnD24q7D3NoMdi42yCwVmRUCQzPw0nimKtWuiCt7InXWBwB7NztVgLCLjzMMjA14jnpZ0Aqa99xWrlcJr++9FbUNTXvQlDwQQ1n7y0l7orMNSkKicj11lpW3n6deMV2SIuFRnYsDIggCHtXd8PFlkk7bICmSd92V6lTUO7aZWZnCzoUL8LatYANzGzMUZBfqrK+Q07ykAe/anqIq7QTBESUqs+Q8qrmCkpDiyuNlnpEq9Svh46sknXZOUvy+/Y5vC1+0LLV582ZcvnwZrq6uGDx4MKZOnYrp06fzfmbMmIHp06frP9j/KIK6BsDC1lznOjNJkQgb1kKVyklRFDqPbatbR4bgGDVb9Fdn6LQZ1kKUTI4AgS7jw1Tb5tZmaNkvWOd0L0kScHC3Q4M2am2bDqND9Q4YncepHVz3qq6o3ay67jYoEtUDq8KzhpodtvO4tqLOCq1g0HGMOji4XqtacPJ0AEnp6FsJiZA+gbx00S4TwiAmiU6QBNoOVzMIh3SpDxMzI50xNCRJoP2gYNXSh6GBBN0Da+lcZiIIwMLECK381AGQfWvUFl1AYAEMqVVXte1oYo7W7lV06ldRBAFvSzv4O6j7dmA1P1HlcZplMbi6uo2abs6o5uKouw2SQFCVinC1VQewdurTSHx6n2HQroda06dxpwawdrTSGQNFUiRCB4eosvZIkkTncWGitmFgJOEFIIcODhHXHyOJUgkI7pimFiYIHRQiahu2ztZo1EHNfN1hVOvPsg0Xb2cu7VnENqo08IaPn/qF2mlcW9E2ytpG7WbV4Vq5gs42KAmJJt0b8lLhu4xvJ76UxbIIG6Fmvm7WKxBmVqY6Z29IikT7ka1VAcgSAwk6jArVGTNFEARMLEwQopFcoWmLgqcE8MY2awcrNO3RWGcoAEmRqODtBL/mat21jmPaiH7AMDSDTmO/7Y93Bl+5LPUvTgX/IucmPDwcnp6e2L59O4YOHYoOHTogLCxM8Oc7hGFoZIA5B6aAklBa69MkxWV3DC6jLdXr506o3riK1iBOSUiQJIkZuyfweGVsHK3w49YxPGpyACq68nqtamnRuf/w+0BUqOSkNfiREk6Lavb+KTzOEO86niqtKM19lOfYdlhzLTr3n7aOgYWtuXYbFAlzazNM2zGOV96oQ320G9mKd1xALXcweF5vnm4QSZKYvX8KDIwMBfvWuaIDRv0xmFfeYVRr+LetW5qmzK8PApiyZTQvldjEzAg/rxsEgiS1roMgCVTxq4he41vzykeFNUIVVwctB4ciCVAkiWVD28FII83XzcIK85twLw1NZ4Io/Wnj5YOevnwZgnkN2sDJxELL+aAIAsaUAVYHdua9dPyd3TCuDpe1onleSgmGYTXqI9iVP9u2tHcbmBkZamlFUSQBWzNT/NatFa+8WduaCAkrlSDQ7NvS/Uf+2BbunuoZIYmBhLMNQ4ng/XP3dcWwxXx9su5T2qNmsK+WbShp/H/eNYGnG2RpZ4FpO8ZzlPoC9692s+roOomfrjxscV9Bx4CSkKAMJZhz8EdeHE/F6u4YWZr1x7ON0k5oNaCplkjolC2jYWVvIWh/ZpYm+HkXX2KlQWgdlQ0L2Ub/Od1RvVEVXtuz9k2CkYmwbdi72WHs6qG88rDhLdC4QwNVer1mfQCYtHGkSsQU4ER+Z+2bDJIitdogSAI+fp4Y8Et3Xnm/2d3gU89LeGyjSMzeN4mXpu3gZofJm0by5CO4BrhnrGH7+mj3A/85HLNqCBzd7QXvn6ExN7ZpOlhV/X0w8Fcue1HT0VaeY8cxoQgIq4tvGcpA/q/5+bfiixiKW7dujS5dumDcuHH6K/8fx9cyFL97GouDv5/AjSN3QSsYWDtaodOYNuj+YwdBKQJpsRTH15zDyT8vICMpCyRJoFHHBugzo6uWXosSzyJf4sCyE3h44QlYFnDydEDXCe3QaVwbnkClEvnZBTj8xymc2XwZ+VkFkBhQCOkThD4zuvLSVjVx++QDHPrjJF7c4oJPPWu6o/vkDmgztLngF1xGUiYOLjuJCzuuoaRQCiNTI7QZEoLe07vwBkolWJbFpV0ROLrqDGKffwQAVG9cBT2nduKllGri4+skHFx2Atf234RCpoCFjRnaj2yNntM6CdKtK+QKnNpwESfWnUPyhzQQBFA/1A99pndBnZAaAi0AMU/jcejPy7h78TkYhoWtkxU6DmmCLiNCYGyiTYBXJJVhT/hjHIyMQmZ+ESiSQMs6lTGstT983YVTSm8kxGHTk/u4nfgRLABPKxsMq10P/WrUgUTgazezpBB/vbqH/e+eIF8uhRFJobNXTYyu3hieFsJU9mc/xGDz8/uISueCdGvYOuKH2v7o4i1MTpeUlYtt1x/i5OOXKJErYGZkgO7+tTCsaX04WJpr1WcYBheOPcbxvXeQEMtlpNSq74meQ4IR0KSKVn2A4086sOwErh++A1pOw8reAh3HtEGPnzoKkkPKpHKcWHsOJ9afR3pCJgiSQMP29dBnelfUCBS2zeibr3Dw95O4d+4xWIaFo4c9uowPQ+cJYYIyHYW5hTj8x2mc3nQJeZn5oAwohPQKRO/pXeBVU3hZ6d7ZRzi4/CSeR3JB0xWru6HbpPZoO7yF4GxFxqcsHPr9JC5sv4bighIYmRgidDBnG0IEhizL4sqeSBxdeRrvS4PkfRv6oOdPnbS4XpRIfJuMg8tO4OreG5BL5TCzNkX7H1qj17ROgjIrtILG6Y2XcHztWXx6nwqCAOq2rIXe07tq8Vgp8ebRexxYegK3TtznOKmcrdF5bFt0m9IeJmX4nAAuRunoqjM4teEispKzQVIkAjv7o8+MrqjawFugBeDJtec4uOwEHl/hMvgqeDtxY9vYNoIB43mZ+Ti0/CTObrmCgpxCGBgZoEVfbmzTRWB449g9HP7jJF7d5YL3vetURPcpHdFqYNNvVoJB+V4qGeoH1lnbHssLIqUAxjue/itTwb/IuRk+fDi8vLwwZ86c/8Y5/avwn5JfoBU0ZFI5jE2NymUwLMuipEgKQyMD0awPTSjkCijkNIxMDMvfRmEJDE0MdTK8loVMKgfLMDqZUcuCYRhIizjnRkzPRxNcwCkpqhGlCZqmISuWwdjMuNzXLS2WQWJAieoY8dpQ0JDLFJ/XtzIFDCSUlmikLshoGjTDwFgiKXcbRQo5jCkJT6VbDMrgYWNJ+a6bYVgUy+UwMTDQuYxUFtISOUiK0MlMXBY0TUNW8nm2IS2WwcBQ8t+1jSIpDI0Nym0bcpkcDP3ftQ1ZiQwgiM+zjS/oW0pCCn4YCbbxf2hsA8uK6m99K1C+l4qH1gXzFc4NmVIAkx1P/pXOzRctS/Xp0wc3b95EYmKi/srfUS4wDANaTuvNYuDto6BFU2y16tMM6HJmu6jOScHoDUDUakPBlPs6uGyt8rfBsmxpG3pSaQTa0JddoQlaQesNSubVL+3bcl83C+5+f07fMuzn3W+Wq68v4+pr22A+536zLGi5Qm/AMK8N+vNtg5Yr/qu2wV3HZz4jis+0DfbzbINrg/582yjNKvqcNj7XNhhF+e8fy7KfPbZ97nV/ydj2uW18C/hf5rn5omwpBwcHBAQEYNSoUejZsyeqVKkCU1NhDSE/P7+vOb//83jz6D32LT6GOycfgGFYWNpZoMOo1uj1c2fBqfeSIimOrDiNUxsvIjslBwRJwL+tH/rO7IaaQb6CbTy59hz7lxzHk6sciZm9mx26jA9D10ntBL/w8jLzcXDZCZz96woKc4u4IMMejdBvZjedKtw3jt7Fwd9PIubBOwCAW1UXdJ/cAe1+aCn41Zn2MR37lxzH5b+vQ1osg6GJIVoPaIo+M7sKMn4yDIML267h6Ooz+PiK41Cp0sAbvaZ1RrOewlPvcS8SsH/JMdWyhpmVKcKGt0SfGV0Ep97lMjlOrD2P4+vOqfh+/JrXRJ8ZXVC/dR2t+gDHbLx/yXHVsoZyWbHH1I6CU+9FRVIcPHgPp04/QW5uMUiSQOPGPujfLxC+vsKaVzdex2LrtQd4FMtdt4uNJQY2qYu+gX6Csz4ZBYXYfOcBjkRFo1AmhwFFol21qhgTFIBKdtrLUizL4uyzGGy/+RCvk7klo8pOdhgSVB9d6lYXXpZKycHfR+7i0o1XkMtpGBtJ0K5FTQzs1hAOAro+NE3jzKbLOLbmLD6V8tNUb1wFvad3QWAnf636ALdku3/xMdw8zi1rKJcVe0/vAnNrbdZVabEUR1edxck/LyArOVu1rNh3ZledNPlRES+wf8kx1bKGnYsNOo8LQ/cp7QW/0POzCzjbKF3WoCQkgrs1RN+Z3XTqot06cR8Hl5/EqzscCZ1r5QroNqk9OoxuLWgb6YmZ2L/kOC7tioC0SAoDYwO06t8EfWd2E1SoZ1kWF3dG4MjK04h/kQCAyzDsObUTmvcJErx/H18nYd/io7h+8DYUchomFsZoN7wles/oKqirpZArcHL9BRxbew5p8dwzUrtZdfSZ0VVLQkKJ1/ffYt/iY7h35hEYhoWVgyU6jg5Fr2mdBHWZiguKcfgPbmzLTc9TLSv2ndmNFzekiYeXonBg6XEVealjRXt0Gd8OXSeGCc665qTn4sDSEzi/7SqK8opVy4p9Z3UTXHJnWRbXD93GoeWn8PYxx0FVsbobuk/pgLbDWnyzy1Lf8YXLUkqtKeWuYjf4u7aUbjy4+BS/dloKhmF5X0LKoMnVNxbwBvGSIimmtZiLmDKEVyRFgmVZzN4/RetFf2FHOFaM2ACSJHltECQnrrfo7Cyeg5OdlotJgbORGp/OPycJCUpCYdnFX1CrSTVeG3sWHMGu3w6CJAkVr06pjAxaDWyKaTvG8QbxxDefMCloDgpyC3nkfJSEhKmFKVbfWggPX7WeEcuyWDFiIy7uCFcdF4Cqvf5zumPI/D68c3pxOwbTW8+HQq7gZZOQFAkHdzusvb0Its7qAGG5TI5fOi7F46vPtfqWoRlM2TIa7TQyQgCO5GtBr5UAwO8rkoBPXS/8ET6XN4gXFJRg8pR9iItL5/EPkSQXqLlgQXc0asiPLdh36ykWnwjnOJGU9lb6t2bVvbB6UCeeg5OSl4+euw4go6CQl0JOEQSMJBLsHtADtSrwmcP/uBCJ7Tcf8fpWSUjbt2EdzOnAj5t6F5eOcXP2o6REDrrMdVhbmmDTkn5w0dA4YxgGi/quRuSROyCgHjeU92/E0gHo/XNn3jk9vvocs9sv1uIgIikSrpUrYPXNBby4KWmxFNNDF+DlnTfatsGwmLFnIlr0Dea1cWVPJH4fvB4ESWjZRs0gXyy9OIfn4ORm5GFy8Bx8ep/Kq68Mel18bjZPrgEA9i85ju2z93G8Swy/c5v3CcKMPRN5tpH8IRUTGs9CflaBVhvG5sZYFbmAF9vDsizWjP0LZzdf5o/Jpe31md4Fw5f0553T6/tvMbXFPG6ZrIxt2LnYYO3tRbB3VafyK+QK/NZ1OR6cf8KbfVHaRlkpE+D/sXfdcVFjXftJZmgC0hTE3ntBxQaigooVe2/Ye9dd1957X3vvvYuKVBtg76JgA6SJ9F5mknx/ZCYzIZMMuvu9676v5/dj19y5yW05957ce87zsCB7S3uvB8NAMH6V6pXHpjvLeD6FOZm5mNVmMT6/jOTrhsqhf/G52XDqzjeCr+3xw9YJe7l6qIUgCDR2b4DlV+fwDJzk+FRMbTEPSbEpgr6VGxpgfcBigd/iwfkncWr1Jd74qfu50+i2mLFn3E9p4KjXpSzPRqBLiZOI6hPyaybMjjz73zmW8vT0hKenJ4YPH47hw4dz17r+foluKcgrwOpBW9kt20LbrzRFIzosFkcWneGln1l7WSeSJ02xW93rhm/n0RakfE3FlvF7gEITDMBuR7+8FYor22/y0vf9fkxg2AAsmrGyQIlVg7bwaAs+Po/AkcVsPbUnJfUc6H/sLoIvPeI9a+PoXchKyxagDlNKGtkZOdgwcgcv/f7VJ/A5dIv3XO3yTqy4gPAnGtRdiqKwatAWKPIVgjBZmqKRGJOMPbOP8tK9dvnimf9rnX0LAFsn7EVSrAa9OSczF2uHbgNN6xg/msHHF5E4tfoSL/3o0WCBYaPOT9M0Vq68inwtULeYlHSsvsK2W/toiVH93X4bgUuP3/Cetcz3lsCwAdiQ7jylErOuePMWqCeRMTgYxKLqat+i/uephy8R/DFKk84wWL71BnILGTbqdqRn5GL9bj9eeuDJINw9dx9gwCtb3Q/7/zjOoy1QFCiwauAWnccfNMVSYRycd4qXfn7TNYFho87PMAw2jNzJoy1IT8rAxtG7uGNObWFoBm+Cw3BxC58H7MDcEwLDBmDfW6WCwsqBW3i0BRFvvuDg/JPcMzUFsP+7dToYt8/wcag2jd0tMGzUZeRm5mH98O289Efez3F9D9vf2n2rLu/02ssIDdEgTNM0jVWDt0KRXyDQP5qikRyXip3TD/PSvfcH4JH3M8GxkrqOO6YeQEKUhrYgNzsPq4f8qRMck6ZoRLz+guPLzvHST668gM+vooS6QdFgKBprhv6J3GwNevO36CRsm7SPVw+u7QyDp74vcX2vPy9914xDSIpL0dm3inwFVg7czDuee/vgPafDDG9uY7h+0UY0/hnlfzla6oeMm5EjR2LEiBFF+vsluiXo4kNkpmaJnvnSFM1GEqlQMimKwtVdPuKIwwyLBOx//B6XdPPgLWlodobBlR0a3qfM1CzcOhUkeg9DM0iKTcGTmy+4NK/dvpJQ66SMxJUdGgMq6l2MJI0ETdF49+ADIl5rFtQrO7wlodZlchJeuzQcL8/8XuHblyTRvqKVNO6cDUF6kgYQ8fJ2b72w9DcP3uL+HXgyCHm5+aLQODRF49puX26xKyhQ4vqNl6J1YhggOzsfd+6EcWnnHrzmQrJ1CQHgZLCG9ykhMwsB7z+Jgv7RDIPIlDQ8/qKhRjj18KUgpFtbZCSBUw81Zbz7+BWfooQGmloomsHjl1GIS0jj0q5s95Z0NiblJLdAA0DIlSdIT8qQ1A2/o7eRk8lSTdA0jSs7bkr6TygVSvgf1YD2+R6+Lek/wdAsx5l6IcvOyIH/8buSupH2LR0PrmnoF66rmL3FhCQJXNXSjdiP8ZI0EjRF48OzCO54BACu7rypXzd2a3Tj5e1QxH9KAC2C3k1TNIIvP+KoEQBWNyT3JggC3vs1ZK13zoQgNzNXdGGkKRrX9wVwqNSKAgWu7fET71uGNZhunQrm0rz3B/BxBQrfA3b81JL6LR33LojTuNAUjYTIRLzQon259p1z2y/5ueQXt9Q/JJ9fRUmCiAEspUBiNMstlZGUiYykTMn8pJzkwqQB9stRnyREJvL4c/Qhi8rkJD6/0jz30wtxdGKAnTQ+v4zkriNf668TAES8idaU8TJKL4jfx+cRmntff5HmJlLdE/M+HgC78MV/SpDC8ANDM7z+jHgdpTeSIzM1G2nf0gEAiYmZyNUD1S6Xk/gcofkC/hCfJGqoAGx1PyVodpM+JaXoMc9Ygyg8MYm7fhefKNiB0RaKZvAuXlOnz1FJonm1JUKLoyzizRdJGhBaSeOT1jsS8ToKMj26UZCnQEIky/WUlZatlzeIJAmewRzx5ove44TkuFTOgIr/lABFvrTDsUwu4+nfR326QTO8/JFa77yUaN/z6YU4eSug0o1nWrrx6os42KG6XhSN6LA4AOwHUHRYrOQXPE3RhXTji965LScjBynxrAGV+jUN2ek5kvnlcplg/CSdoBkgJjyO22WODovV6wRNkvz5Uwp5HWDbrf3e/pzyV5yJ1Yha/075S9xS79+/R0BAAKKiopCfn4/NmzcDAL5+/Yq3b9/C0dERxYsLHTd/CWBUzEgv7xPAwswDgKEOzBSBMJr8AGBkbAiSJCQXL5IkuIXEuJj+MmiagZFWPqNiRhoHDRHRrnuR2oFC7SjCPcammvBaQxPDIkVBqJ+rBhuTJgckhHUqwpatur2GhvpVjWEYGGnlMzaU83xtdD5fy8AyLkJoNQN+mLdJEe7RzlOUdgDgtcPQ2BD5OeKGHUEQvPEzMjEq0vhxfVuk0FyC/x4a6w8ZJgjAQNWOory3DMPw3hE19ICUW6Ohscbf7T+hG0bFDIsUtaSt43IjadoJUkYKdLwoxxnfM7cxhec2E0OBH2FhkRvIOH+movQTwzC8umiDBopJUZ77T4rGSPnx+/+t8sM7N7t27cLYsWNx+vRp3L9/H8+fP+d+YxgGy5cvh4/Pz00H/0+KU/cmkopJkAQq1SuPkipAO9PixVCvVS1RSgGADVV06qFxunPq0UR6wZaTaNa1MYfzUKFOOdjqAAnTFoZh0MLDkbt26dVckoGblJM8IDEH1zq8yVaXGJkYwsFN45jZqk8LyZ0YgiDQqremjBYejnqPmEqUtUGl+qxjJkmSaOHhKMnSTilpnkOjU4+mkscaJEmgjnMNzum1ZElzVK1iK7mgUhQDZ2dNVIhbnSqSho2MJNCunsYBsp69HayLCaNQePUiCLSpqoHvd69TXZJ5nCQIdKirqVOzhhUhl+gnADArZoR6Wg7hrXo3l2aJZhg499AAMTp1d5TWDYKNxitdhXWMNi5mJElbALC6oY2U7dyjifT4yUg07uDA410rXbWU5IcsTdFo0U2jGy17NpN8D9koRM17W8+llk7gTm0xMJKjUfv63LVe3SAJuGjpRrMujfQadValLDnEb4Ig4NyjieT40RQNZy3d0Nu3JIHqjlVgpXI6tyxpgZpNq0oeXVJKCs49td+RpnpY4Ek492zKtbVqw0qw1kIY1ykEePQZLr2bS+5ykTJSNFLzZ5H/ZVbwHzJubty4gdOnT6NFixY4dOgQhgwZwvvd3t4eNWvWRHBwsMgTfkmVBhXh2NFBdGJiaAaDF/ThTUSD5vUW3e0hZSRqNavGC3lt1qURKtQpp3vRJtgy+v/eQ/MMksSQBb2FebXKaN3XiReO2n5YK1jaFtfZDoJkgdpY3iZWTMxM0HtGV9FFgiCAntO68MLgu0/uCAMj3SBxpIxEcRtztPdszaXZVSiJtoNcJCemwfN788C7+s/pwW5r6LhFJmej17SNujpONVDHqYaoQUTTDAbN4/fl0GHOol/NJEmgUaMKqF5dE8nkXr8aylgX1+kTw24YExjeqhGXZiCTYbxTU0FergyCQJ8GdVDSTBOB17dJXZgZGeo0cEiCgImBHP2bahZTC3MT9OzoIOXugME9m/J2bnpO78LSIIiMX4ky1nAdqOENqlC7HGtsiukGAwxdyNeNgXN7iR5TqMkjtQ3mxu4NUKVBBdFFm6EZDPyjJ3dNEASGLOwjultHytjFtFwNjVHXdnBLWJeyEtUNUi5Dz6ka3TAuZoS+s7vpLkBVh+6TOvJoJDwmdlDtYujuWzNLU3Qc6cqllShjA3fPNpK6MWhuL96Ra7/Zqkg2Ed0oXbUUnHtq3ruaTauhgWsd0fFTRzhqy+AFfSTntnoutVCzaVUuzblHE5SpZq97/Ah2mPqq6w32yHDwfIm5jSTQfmhrlCyriRLrMNIV5lZCmhiAHT9DYwNBlNgv+Xnkh4yby5cvo0KFCli+fDkqV64MuQ400woVKvwC+dMjC05N58Kq1RxTpIz9m7BpuOCrwNG9AWbtmwCZgUw1OZLcJFS1YSUsuzqHN+HLZDKsuTmfC6tWl0EQBAwMDTD/5HQBLH3HkW7wXNqf46OSyTRlOHZwwKwDE3j5TS1MsT5gMfdVxHFlESzZ4Mrr87gvbLUMXdwXXce2V+VXl8G+ih1HtcXw5XxOrVIVbbHaez5Mipto7lHlt7KzwPqARbwJHwBm7B2H5l0aa+qk6lcQwNBFfdFlLJ93pmbTalhwegYMjQxAEISqDLbdZarZY43PAt6ETxAEll2ZgxqNq3BlkHJ2AZcZyDBjzzgB74xLyxqYMqU9SJJgjwNlBEdsWrduWSxZ3JOX31Aux4FxfVBWRUIpI0nISHafzMhAji2eXVGzDB8TyLNJQ4xp4QgCbPi3jCA448i9RlUscnfl5bc2LYaDI/vAylTVtyqeKwAobmKE/SN6w64QncKkYa3hrjKiZTJSdQ9bRt8ujTC4J9/AqlCrLJZd+YPd5ifA69uS5WywPmCxABPoj+NTORJD7fEjSQJj1g6B2yAXXn4H17r4/fBkyHXoRqV6FbDy+jxeyDVJkljlPZ8jaNUeP7mhHHOOThFg47Qf2hqjVg/m+Ki0daNh23qYU4j3ycTMBBsCF3MLprZuGJsaY8XVP3jGEMByLKnJNAvrRruhrTB6Df9D0rZcCazxWQBTFWSEdt9aliyOdf6LBJhOU3eM5naxCuvGwLk9BXxz1RpVxqJzszn0X+0y7KuUwjq/RQK04sXnZ6NW82qCvpXJSUzZPlqAbdS8a2NM3TmGnZ8KjV/NplWx5NJvvLlNbiDHOr+FKF3Vnte3BEHA0NgQC8/MFFA2eExwZw0cFR+V9vg17+aIabvG8PIXtzbH+oDFsFTh/mjzAJpZmmL1zQWwLS+90/1Py/9ytNQP4dy4u7uja9eumDp1KgDg0KFDOHLkCA/TZs+ePTh37hz8/f1FniIuOTk5OH36NN6+fYt3794hMzMTc+fOLRIR59SpU/HixQudv8lkMty6pYl46devH75+/SrI161bN8yePbtIdf2r9AsMwyA0OAy3z4QgJzMXZarZo8MIV5QorZsDCGA9/30P30bU22gYFzNCy17N0LBtPdHtZpqm8fjmC9y/+gQF+QWoUr8i2nu21smvpJaEqET4HLqF+IgEmFuZwXVgS9RsWlW0DEWBAsGXHuGp3yvQNI06LWrAdVBLnUB2aol6FwO/I7eRHJ8K61JWaD+sNY8NvLCoIybehoSDIAk0bFsPLr2bScLAhz/+iMCTQchIyUSpirboMMJVJ0igWjJTs+B39A4+voiAoZEhWng0hmNHB1GIdoZh8OLWG9y78BB52XkoX6ssOgxvw22565Lk5CzcvPkK0dEpMClmiDZtaqJ+vXKifaukaNx9F4G7YZ+hUNKoXdYW3RrXhrkEjP+X1DRcfPUWsekZsC5mgm51a6JOKSEAnFryFUr4vHmPRxExYAA4ViyDTvVqSPrxfIxMhM+dUKSk5cDWxhyd3OqgvMR7m5OZi4DjdxH2+CNkMhmadHRAi26OohQXDMPg7f33uH06GNkZOShdpRQ6jHDlfV0XlvSkDPgevo2I0C8wNjGCU4+m7JGVCH0BTdN46vcKIZcfIT+vAJXqVkCH4W14jPGF5Vt0EqsbnxNgalEMrgOcUat5dfHxUygRcuUxnvi8BEVRqNWsOtoObqkTyE4tX8Ji4XfkNpLiUmBla4H2w1qLAmgCLAbW7dPBeBMUBoIAHNzqwaVPc0kahvdPPyHwxD1kpGTBtnwJdBjuqhMkUC1ZadnwO3oHH55/hqGhAZp2aYRmXRpJ6sarO29x9/x95GbloVyNMugwog0PX6qwpHxNhe/h2/gSFgtjU2O06tMcDdrUEe1biqLw6MZzPLz2FAUFClR1qAR3zzY6QR7VEh+RAJ9Dt5AQlYji1uZwG+wiyl0FsLQLQRce4HngGzA0g7ota6LNAOci+eT8U6Jel1IHNYHS7sf9XuUJGbA6+fhfiXPzQ8ZNp06d0L59e8ycOROAbuNm5cqVePDgAby8vL67UvHx8ejfvz/s7OxQunRpPH/+vMjGzePHj5GamspLy83NxcaNG9G8eXOsW7eOS+/Xrx/Mzc3Rvz9/p6Bs2bKoXVs3omlh+bu4pX7JL/klv+SX/JK/Q34ZNz8YLVW5cmU8e/YMFEXptNrz8vLw9OlTVK+uGzJbn9jY2ODSpUuwsbFBWFgYxo4dW+R7mzQRQrn7+voCYNnMC0uJEiXg7u7+Q/X8uyQpNhnBlx8jOz0HZavbo0U3R8ndCEpJ4eGNZ4gKjYGxqRFadHOU3I0AWBbgR9efIT+3AFUcKqKxe31JwriCvAIEX36M+M8JMLcyRctezSR3IwA29PW5/2tQFI3aLaqjnotuRmm1ZGfk4N6Fh0iJT4V1KUu49G4GUwvxLy71LldoyHuQqp2bqg0rieYH2F2uoIsPkZmShVKVbOHco4kkcSFFUXjm9wqfXkTCwMgAzbo0EmULVktCVCJCrjxGXnY+ytcqg2ZdGkkSbioKlHhw7RliPsSjmLkxnLo5Su5GAEDUl2Q8fPIZCiWFGlVLoZFDBUkHzNx8BW4/+YCE5ExYmJvAzbEaLPQ4q777EI/nb6LBAGhQqyzq1LCXHL/MtByEeL9EamIGbEpZwrlzAxQzE9+pYxgGL2+HIuzRR8jkMji615fcjQBYVNngS4+QlZaNMlVLoUX3JpK7EZSSwuObLxDx+guMihmihYej5G4EAMR9+ooHXk+Rn1uAyvXLS+7UAaxuhFx5jLhPCTCzNEXLXk0ldyMAFvrhqd8rUEqK9Y1rrZvWQi05mbkIuvgQSbEpsLKzgEvv5pK7EepdLvXOTQPXupK7EQC7yxV08SHSkzJhV6EknHs2ldyNoGkaz/xf4+Ozz5AbytG0cyMekrgu+RadhJArj5GbmYeyNUqjhUdjSd1QKpR4cO0posPiYGJmDKfujnqPfqLDY/HoxnMo8hWo0rASGrevL0k0mpeTj5DLj/A1MhHFbczRsldTWJa0kCzj/dNPeHkrFDTNoI4z62/3MyITFxYGfzFa6n8tFLxz585Yt24dNm7ciOnTp/N+y87Oxrp165CSksIdW32vGBoawsZGerL/HvHz84OJiQlatmyp83eFQgGlUgkTE+nJ/+8WpUKJndMP4ZoKwIwkCVBKGsVtzDH74ESeA6tange+xuohfyL1axpkchI0zWDnjENoN6QVZuwZJwiLzc3KxbrhOxB08SEIFcw/TdEoWc4GC87M1MnZcvtMMLZM2IvstBzI5DLQFI0d0w6i17QuGLVmsGDiT/2WjhX9NuHV3bfspEKwERQV6pTD4vOzBH4FAHBx63UcmHsSBfkFkMlkoCgKf07ejxHLB6LPzK6CiSPmQzyW9dnAw7ChKRp1W9bEwrMzBYsLTdM4NP8Uzm30Ak3RIGUkKCXLLzV1x2iBzwbAwtKv6L8ZCVGJHKXF7llH4NS9CeYcnSKIZCnIV2Dr+L3wO3qHPcdXjZ+VnQX+ODYVjdrVF5TxyPs51o/ajfSkTM34zTyKzqPcMHGzJxd6rJbMrDysXHcNDx5/BkEQIAjWIdO+lAWWze+BalWFC7fX3TfYeOwWcvMVkJEkaJrGhqOB8PRoijE9Wwj69ltSJhauv4q37+M5g4mmGVSvbIsVc7rDvhDXEMMwOLvdDyc2eUOhUEImY8Pod8w7i9ELe6Crp7BvI0OjsbT3esS8j2fHj2Gw9zcGDdvVw4JTMwTHQJSSwp7ZRzlwPvX4mVuZYub+CWipFTmjlld332LVoC1Ijkvl+nbXzMNwHeCMmfsmCBbu3Ow8bBy1C3fOhrB+HqrxK1HGGvNPTUfdlrUEZdy78ACbxu5GVmo2Tzd6TOmEseuHCnQjPSkDK/pvxotbb3jvbbmaZbD4/CxUqC08hr2y4yb2/X5Mxb7N6sa2yfsxbEl/9P+9u2D84j8nYGmfDfj0IpJXRq3m1bHo3EwelQLA6sbRxWdxZt1lUEqNbpiYG2Pyn6Pg7tlGUKcPzz5jWd+N+BrxDaScpbTYM/somndtjD+OTRF8lCgKFNg2aT8LfKmlGxYli2POkclo0rGhoIwnvi+xdtg2pH1L1+jG9ENwH94GU3eOERi12Rk5WDtsG+5ffcLObSQBWknDrmJJLDw7S6dx53fsDrZPOcDySqnGb/uUA+g7uxtGrBggMIqS4lKwot8mhIaE8/q2cv0KWHxhtsCf8GcTNZr5X7n/3yo/dCwFAMuWLUNAQABMTExgZmaGpKQkVK9eHVFRUcjLy0OnTp3wxx9//OUKqnduinosVVjS0tLQs2dPuLm5YeHChbzf+vXrh9TUVCiVSlAUhVKlSqFv377o27dvkZ//V46lNo/bDe/9gYIIGoIACJLEOv9FaNC6Dpf+4dlnTHWaD0opZJMmSAItezbFonMaXyGGYfBHh+V4cStUEDZJkiQMjA2w88la3tfXw+tPsaDbGtUDClWYAPrO9MDY9cO4pIJ8BSY2/h0x7+MEYefqSKa9rzbyyPjUnDBiMnnbKM6pEmAXiDH1ZiI9OVOAMCqTkyhdpRR2PVvH25E5MPcETq+9LFrG0su/85waY97HYULj31GQVyBAbyVlJOq3qo11/ot4C8vKgZtx59x9nWMhk5HYErQCNZpoIjzeBIdhdrsVYGhGx5gTaD+sFWbvG8elURSNqbNP4t37eEEkCUkSMDE2wP6dI2Bvp+lb/4fhmL+DTxugLWN6tcDoHhpH9ZzcAoyYcQQJiRkCPCQZScDayhRHtg6HuZbv1PndATiw/LJoGTM3D0H7fhrjIyk2GWMbzEZ2eo7wPZSTqFS3PLY/XM37ot82eT+8dvkIHRoJtq/W+CxEo7b1uOTPr6IwudkfUOpgWidJAs26NMayK3O4NIZhsKDrajzxfSmoE0ESMDCUY/ujNTwepye+LzGv00o2vLtQvQgC6DGlMyZu0aCyKwoUmNx0LiLfRgveW3Uk095XG2GjFaJ882AgNo7eBTEZv9GTjTZUSWZqFsbWn4XUhDSB/snkJOwq2mL38/U837cji8/g+PLzomUsOjcLLr2bc9fxnxMwruFs5OcUCMdPRqJ2i+rYeHspzzBY67kNASfu6dQNkiSw6c4y1G6hmS/fPniPma0WcXQZhe9xHeCMucencWk0TWO22xKEBofrrJORiSF2PVuHMlU1ZLRBlx5iae8Nou0ePL83hi/XcNTl5eRjfMPfEB+RoHP8LG0tsO/VRkn/rH9K1OtS8qCmUNr+hWOpbxmwOfnoX3ks9cM4N4sWLcLs2bNhb2+PpKQkMAyD8PBw2NnZYebMmX+LYfN3SEBAACiK0nkkVblyZYwYMQLLli3DnDlzYGtri23btmHXLvHJJSkpCeHh4dxfVFSUaF4piY9IwI39ATpDgxmG/Y+as0ktx5efZ5VfR8gkQzO4d+EhDzHzTVAYnvm/1okHQdM0lAUKnNEyABiGwYF5J1ncGl0mL8PuuKSqUHcB4M7ZEES9jdGJp0NTNDKSM+G1U4N3pChQ4NDCU4K82nJk0WkOmh0Aru32Q1pihk7odEpJIzo8jsfRk56UgXMbxX29CILAwXkneX1/dv0VKPIVOmHpaYrGi1tvOOZhgEVIvX0mRHQsaJoRLCBHlp4HIDRsALbvfY/cQexHjYP746cRCA2L0xkiS9MM8vIUOHfxMS9tx9l7gry8Ong9QpaK0gMAfG6HIi4hXSfQI0UzSErJwnX/11xaXk4+TmzyFuTVlsNrvEBpvXOX/vTWadgAKnTiF5EIuaJpx7foJHjt8tUdqaFKO1zoHTq56oKobtA0g/teTzjGegB49/ADHnk/11knhmagVFI4tfoiL/3QglOigJUMw9IUJMWlcGnBlx6xfEkiupGVlo0rWhQBlJLiuKjE5OjSc8jP1YzfjX0BSI5P1al/lJJG3KevCDyheScyU7NwZt1l8QII4EAh3Ti34Sryc4WGjbodb4LC8NTvFZcWHR4L/2N3RXWDYYCjS87y0o8tPQeGEdENmkHgySAe/9jzgNd4ffedaJ0K8gpwboNmDuDmNolTljPrr/D4xwJPBiH2Q7zo+KUmpOHGvu8PmPlPyl9BJ/5RAMCCggLs2rULPXv2RLt27TBu3Dg8fvxY/40qCQgIwIQJE+Du7o7OnTtjwoQJePr0qf4bC8lfol/w8PDAoUOH4OPjgwsXLsDb2xtHjx5F9+7d9d/8HxJ/f39YWlrC0VF4xLNmzRoMGjQILi4u6NKlC7Zt24amTZvi7Nmz+Pbtm87nXb16FWPGjOH+VqxY8UP1unP2vuS5ME0zeH33HcfxkpudhwdeT/QCV906FcRd3zoVJEkRQClpBJ4K4vBBYj/EI+L1F0kEU5piEHTxIXcdePKepO8HTdHwO3aHu351561eGonM1Gwex4vfsTuSiLUESSDguIY3KPjSIx65Z2FhGAZRb2PwRTVZMgyDgJNBkoCHhfv29ulgvcBmD288Q3YGCyuflpiBl7ffinL6AOzX4J1zD7jrgDvvpIHNaAa+gRqDKzzqG+ISM0TzA0CBgsK95xqSUZ/bbyUnfIZh86jl6e13yMvOF78BQEpCOt491UD++x+7I/nekjICgVp9e/fcfUmwPIZm8O7BB3xTUZMU5CsQdPGhnvGT4dZpDe6WPt2glTTunn/AcYPFRyToJK0tLPfOa8Yv8GSQXt3wP6Z5b98EhSE1IV00P8DSFjz11RgS/vp0AwT8tYyb+1efSNNIMOw88PmV5qPN/8RdUU4mQKUbp7V040yIJLAgTbERampDIistG098X+id227zxk9a/ygljYATmr6NfPMFMeFxkqHNbFTbE+464MRdSb8ahmbge/SO6O8/hTB/w993yurVq3H27Fm0b98eU6eyrPe///47Xr16pffegwcPYtmyZbC1tcWkSZMwatQoVKlSBUlJRaN90Za/RL+gFiMjIxgZ/XxhcXFxcQgNDUWvXr10YvEUFoIg0K9fPzx69AgvXrzQ6WjcrVs3ODtrAMeioqJ+yMDJTMkCSRKgpamckJmaDetSVsjNzNVP10AQyEzJ0ro3C4wU/woAZYESBXkKGBczQobWvWJCykheGRlJmXrrlZmqVacilFE4n757GJpBupbBlJmarReaXfu5SoUSBXp4n2iK4bcjNVuSuE9dr+z0HJgWL4bstGzJvAB7fKJdRkZGnt6+zdYyNDK1WJPFhCCADK186Vl5erEs0lX8SgDrRFwUydLKp483iKYYnsGblZrN+oHoUY7MlCzYliuBvKw8ScOGFf74ZaVl66UhoBQU8rLzYWYpR1ZqEcavkG6kJ2Xo1w2t90K7flKirafaOw26hGEYZGgZvNy8o69eqjIYhkFupvR7RSlpgb4WZW7LTstBcWtzZKVl611EiUJzW1Zalt4xz8vO54JeijS3kYXmtuRMve9IUeezf0r+0/QLb9++5XZeBg4cCADo0KEDhg8fjl27dkmeioSGhuLIkSOYNGkS+vXr98N1Vst/NXGmnx/rqKvrSEpMbG3ZqKOMDN1fwCVKlECNGjW4vwoVpKM9xMS+sp1e5ZTJZShRmj2PN7c200tbwFA0LzKkVCU7vQtwcRtzjh/FrkJJvREAlJLilSGKEqoSgiRQWiu/vsgVTT5N9FfpqqUkEVVlchJlq2vO1u0r2+o1bEAAdqoIMwNDA1hp+a3oElJGwL4Svx36yjAyMYRlSfa829reCnI9vEyUkoZ9Ja1221tCJkG3AQB2WufppfVEfADsTkwZW0vuupy9lTRjN0GgjJazdqnyRXP0185nV1GadkImJ1GmqsYxs1RlO0n4foA1JNQRZqYWxVCsuHQwAMOAP36V9L+Hppaa55YsZ6OXcJJSfKduEIC9VpTjj+mGvfT4yUiU4emGXZE47Uqp3kOCIPRG8snkpEA3KD26YWAkh6VK56zsLGBgLB4BB7D+Z9rOu6Uq2Un2LQDYlLbiHLz1RZMC7I6Sdt/qGz+SJHjv7S8B7ty5A5lMhm7dNEjbRkZG6NKlC0JDQ5GQkCB677lz52BtbY0+ffqAYRjk5BTtQ0pMimTctG7dGm3atPnuP1dXV/0P/38Uf39/lClTBnXq1NGfWSVxcSwbrqWl5f9TrVhxHeAkqdCknESb/k5cFIKBoQE6jnCTZrsmCLTXinToONJVz3EAia7j2nMLj429FZp1aSReBsEuJM5a/FWdx7STNNIYmkHX8RqI8uqOVVChdlnRCZkgCZStURq1tKK4uo5rL7n1TilpdB6jQRxu7uEIcytT0aMNUkbCsYMDb9LuOs5d8piQUtLoOMqNu243tJXeRcXdsw0XvWZiZgzXAU6Sk6XcUAbXAU7cdZeO9UFJHGMRBIFunTVRJ2XtLNGwRhnxvgVgY1EMzetV5NK6udeXZuxmGHTv0IC7ru9UDbZlrUUXepIkUK1+OVSsqQmf9xgvDbVAKWl00hq/1n2bS4brkzISLXs15Rw5ZXIZOo9uJ6kbDMPAfXgb7rrDCFfJd4qUkegypj33TliWtIBT9yaSZZiYGaNlb40jtT7dAICuWn1TpUFFVHGoKKkb9pXtOFRzAOg6tr30+FE0umj1bdPODWFRsrikbji41uUZA13Hu0sadpSSRqfRbbnrtoNdJI/8SDmJtoNbcU7ORiZGcB/aWpLbTSYj0XaIJgqv0yg3ad48koCH1rxjV6EkGraV4B8j2A+9Zl00dCZd9IwfTTPoMq7oH87/iPxVdOLvPJb68OEDypYtC1NTfvRcrVrsO/vx40ddtwEAnj59ipo1a+L8+fPo1q0bOnbsiB49euDChQvf22oARTRuGjRoIPirXLkyGIYBQRCws7NDrVq1YGdnx7HgVq5cGfXrC0Nh/05JSkpCVFQUlErhGfL79+8RFRWFdu3a6biT3Zkp7JehVCpx4sQJGBgYoGFDYaji3ymmFqaYpIqsKPxRS8pImFuZYcSKgbz0QQt6o0QZa1EFHbVqEC/yokxVe1E+FVJGonQVOwGXzdj1Q2FibiwoQ20ATds1lhdu3qBNHbQb0krnZEmSBOq2rIn2w1rxnjN9zziQcpmgDFIVZTRjzzjel77boJao37q2zkmfIIA2/Z14YdeGRgaYvmccCBCCSZmUkTA2NcL4jZ689N4zuqBsDXvRvh0wpwcvpN3K1gJj1g5VVYKfVyYnYV3KEkMW9eGlD1/SF8VtzAUGjrqpEzYO49FIVK1si97dG0OXkCSByhVLoIcH/z2dNdQNRgZyQV8RqiijuSPbQ67VRifHKnBpVlXnBh9BEGjasCLaOGkMTZIkMW39QDYsXdC3LPXEpNV8UMxOo91Q3bGKaN92Gt2WB0lgYmaCqTtGc3Xgl8FGGRWmIRjwRw/Yli8hLEN1+/BlA2CrIqEF2MVu2BLdW9+kjESpiiXR/3e+7+DYdUNhWryYqG5M3TmGF5VUx6kGOozQ/YFHykjUbFaNx/sEsPolM9CtGyRJsrqjZYSz7349ncYHQRBw6d0MTbRoQOQGcla/RHTDyMQQE7cM56X3mNKJ/SARGb/eM7ryosqK25hr9Kvw3CYnYVnSAp5L+X0/ZHFfWNlaCI1/1f1j1w/j0UhUqF0O/UR4uEgZiXK1yqLHVH507cQtI2BUzFA4fiQBAgRm7B3Hwxdz7OCA1n2F0Anqexzc6sJ1gLPgt59J1Dg3P/ynGoCoqCheII2YD0xycrJOGBd1mth9mZmZSE9Px5s3b3DgwAEMGjQIS5YsQbVq1bB161ZcuXLlu9v+Q6Hg3759w6RJk1C/fn2MHTsWdnaaLcmEhATs2bMHb968wfbt27ljnu+VCxcuICsrC8nJybh8+TJatWqFatVYrpLevXvDzMwMq1atws2bN3HmzBnY29vz7t+xYwfOnDmD48ePo3z58oLnq52fW7duDXt7e2RmZsLPzw8REREYO3asgAxUTP4qQvG9Cw9waOFpRIfFAmCVxrlHU4zbMEznVmpyfCr2/nYUd87e57bu7SvbYeiivmg/rLUgP8MwuL7XHydXXUBidDIAQG4oR9vBLhi7bqjOMMbo8Fjs/e0YHl5/xp05V65fASNXDkSzLsLFlqIonFl7BRc2X0NGMusDYGxqhC5j2mH4ioE6gcHePfyAfXOO4fXdd1xa3ZY1MWbtEF6IqFryc/NxeOEZXN/rh9ws1gfA3NoMvaZ1wcC5PXV+KT6++RwH5p3EpxeRbAIBNO3UEGPXD0OFWmUF+TNSMrF/znH4H7/LOV2WKGONgXN7wWOCu85JLuDEPRxdehZxqignlum5OcatHybAFwGAb1+SsHfOCQRdfsztqpWtbg/PxX3Rum9zQX6GYXDhylOcOvcQySmsf4ahgQwd29fD2JGtYabjqPJjdCL+PHUXD99onEJrVbLDpH4uaFJHqAtKJYUj5x7g/PVnyFL58JgWM0SPjg4YOcAJhjpA114/+IiDq64g7Gkkl9bAuTpGL+yBqvWE2C25Wbk4OO8UvA8EIF/l32Rpa4G+szzQZ5aHzl2z4MuPcGjBKUS9ZR2/CZKAU7cmGLdhmM4jnNSENOz9/Rhunw6GUsHqhl3FkhiyoA86jnQT5GcYBt4HAnFi5QV8i0oEAMgNZHAd2BJj1g3lwReoJfZjPPbMPooHXk853ahYtxxGrBgo4EsC2KjEs+uv4vwmL6SrfF+Mihmh0yg3jFw1SCc9SfiTT9j3+zFedF5tpxoYs2awTuydgrwCHFl8Fl67fTj/GDMrU/Sc0hmDF/TWqRtP/V7iwLyT+PD0M5tAAI7uDhi7fijPUFFLVlo29s85Dt9jd6DIYyMZbUpbYcAclotKl27cOh2MI4vPIPZDPADW6HDp3Qxj1w/jGZpqSYxJxp7fjiLowgNux6RMNXsMW9IPbgOFGGUMw+DqTh+cXnMJSbFslJqBkRzthrbGmLVDBHxzABD1Nhp7fjuGxzefc7sSVRtWwshVg9Ckg4MgP6WkcHLVRVzaep31swNgYm4Mj3Hu8FzWX4Ar9rOIel361q8FFCV/PBTcIDEDtmfvC9KHDx+OkSNHCtIHDBiAcuXKYf369bz0uLg4DBgwAJMnT9bpT5OQkMBBsCxevBht27I7gTRNY/jw4cjOzv7uHZwfMm6WLFmCr1+/Yvfu3aJ5xo8fD3t7eyxevPh7Hw9AnPcJAGfMiBk3NE2jb9++sLKywv79+3U+Izw8HIcOHcKHDx+QlpYGuVyOatWqoXfv3t91nPZ30C8wDIMvYbHIychFqUq2OifVwpKRnInYj19hbGqkOuaR3oSjKApRoTEoyCtAmWr2OhW/sCTHp6r4V8xQppo0Wi3AhnlHvokGTdEoX7usJK+UWhKiElXcUpZFOhfPy8lH1NsYkCSBinXLSSI5qyXmQzwykjNhW76EJGeXWrLSshHzPg6GxoaoUKesJFotoIm+ys3KQ+kqdgKiQl2SlpiB+IhvKGZmjPK1yujtWyVFIyIyEUoljfJlrWGqx/8KAL6lZCIhJROW5iYoZyeNoAsA+QVKREYngWGASuVsYCSBBKyWr1+SkJqYiRKlLFGyjP4ycrNy8eVdLGRyGSrWLSeJVguwfRsdHofs9ByUqlhSL0o2wBqpcR+/wqhY0XSDpmlEhUYjP7foupHyNRUJUUkwsyyGstVL6x8/hRKRb6JBKSmUr1VGkldKLd++JCIpLhVWdhZF8hFS6wZBABXrlpdEclZL7Md4ZCRnoWRZa53GeGHJTs9GdHgcDIwMULFuuSLpxpd3McjJzIN9ZVu9SMAA64gd9ykBJmbGqFC7rH4/QIpC5JtoKPIVKFejtCTKuVqS4lLw7UsSituYo2w1e735C/IViAqNBk0zqFC77E/NKwVoGTd9W0BRhD4XE4PEdNieu48FCxbw/EttbGxQooTQQPX09ISVlRW2bNnCS4+MjMSwYcMwa9YsndHUaWlp6NatG+RyOfz8/Hjv1eHDh3Hw4EGcO3eOt5GiT37IuPHw8EC3bt0wZswY0Tx79+6Fl5fXD3FL/ZvkF7fUL/klv+SX/JKfSdTrUkKfv27c2J2/X+T1bebMmUhMTMSxY8d46U+fPsWMGTOwevVqXrSxWmiahru7O8zMzHD58mXeb1euXMHGjRtx8OBBVK1aVXCvmPxQKHhBQQGSk5Ml8yQlJaGgQDq89pewW+leu3wReCoI2ek5KFejNDwmdECrvs11fhUxDIPgy4/gtcsHEa+/wNjUGK37tkC3SR1FoxriIxJwZftNBF16iILcAlRrVBndJnVE004NdX4VKRVK3DoVjGt7fBH3ieWWaje0NbqOay+KxhnxOgqXt3nj0U0WGK2eSy30mNIZdZ1r6syfm50H38O34X0gAMlxKbC2t0KnkW3RYUQb0a/a0JBwXN5+A6/vvgNBEmjSwQE9pnRG5fq6I9YyUjJxY68/fI/eQWZKFuwr26HL2HZwG9RS544PwzB44vMCl3fcxIenn2FgZICWPZqi++SOojDrSbHJuLrTB7fPhCAvOw8V6pRDtwkd4Nyzqc4dA4qiEHThIbx2++DLu1iYmJvAdYAzuk3sIMpPFPM+Dld2+uL+1cdQFChRs2lVdJ/UkYfQqy0F+UoEXnoC71P38S02FcWtTdG+dxN0HNgCZiJRRR9eROLqHn88CwwFwwANWtVEj/HtUcOxss782Rk5uHkgED6HbyE1IR0ly1qj0+h2cPdsLeoM/PJ2KC5v98bb++GQyWVo3qUxuk/ppPOIEADSEtNxbbcfAk7cRVZaDspUs4fHeHe06e+k86iFYViwvqs7ffD5ZSSMihmhVZ8W6D6pgyg/UUJUIq5s98bdCw9QkFuAKg0qotukjmjetbFO3aCUFG6dDsa13b6I/fgVZpamaDekFbqMaye6KxH1NhqXt3nj4Y1noJQU6jjVRI8pnVC/lW5y3rycfPgduY0bBwKQFJMCq1IW6DjCDR1HugkoQNTy7uEHXN52gz3KIgg4tq+PHlM6i3KvZaZm4ca+APgdvc1yS1Usia5j28NtsIvojs9Tv5e4vN0b4Y8/wcBQDqfuTdB9cifRnY/k+FR47fTBrTPByM3MRflaZeExoQNcejfTqRs0TSPo4kNc3eWDL29jYGJmjDb9neExsYPojmvsx3hc2X4TwVceQ5GvQHXHKug+qSMc3RvoHD9FgQIBJ4Jwfa8fvkZ8Q3Ebc7Qf1hpdxrYT3bH7+CICl7d546nfSzA0g/qtaqPH1M46qWv+16Vq1ap4/vw5srOzeU7Fb9++5X7XJSRJolq1aggLC4NCoYCBgeYdVPvpfG+Qzw/t3EyZMgVhYWHYvHkz6tatK/j99evXmDFjBurUqYOtW7d+7+P/VfJXdm4i3nzBbNclyErN5oD0SBmLz9KimyMWnZvF27anaRrrh++A//G7XD71PcamRljruxA1m1bjlfHydijmd1kFRYGSl5+maHSf1BGT/hzJmwQK8gowv8tqvLj1BgRJcBElBEnAys4Sm+8uEyz0t88EY/WQP0EQ4M7KZXKWb2j0miECx8yM5EzMcl2MyNBoNoEB5zhYoVZZbLy9VHC0c36TF/bMPso9V10GTTOYc2QK2g7m8xnFRyRgZqtFSI5P5bWBoRnUb10bq27M4y3CDMNg14zDuPTnDUHfyg1kWHFtLhq68Y2J908/4fd2y5CblSfoW9cBzphzbArPQKWUFJb334TgS48EZZgWL4YNt5YIDLVHN59jSe+NoCmay6/ug/6/d8eolXyn89zsfMwbuhthz6M4535AFdJb2hIbzk5GydJ8I8rn2F1smXwYpIzgjx9FY9KGofAYw/dXSfmaihmtFiH+UwJHRUAQBBgwqOpQCRsCFwuOBo4tO4ejS84Kxg8gsPDsTDj3aMrL/yUsFjNbL0JmsgZHSY3P0rRzQyy5+BvPQKVpGpvH7sbNg7cEfWtobIC1vgsFvlxvgt7hj44rVcjU/PHrPKYtpu/mO7YX5CuwuPtaPPF9ycOKIUgCliWLY9OdZQKS1XsXHmDlwM0AhLoxfPkAgcN/Vlo2ZrsuxqdXUSwYsko3CBAoU60UNt1ZJjiau7zNGzumHRTqBsVg9sGJAq6ob18SMaPVIiTGJAt0o45zDay+uYB3pMwwDPbPOY6zG66ClJMcoB8pJyGTkVh25Q84ujfglfHxRQR+a7sUORm5gr5t1ac55p2aztcNisLqwVtZcNNC42dibowNAUsEhtpTv5dY2H0tKCWlqZPq3t4zumLchmG88cvLycfcjitYctFCc5tNaWtsubccdhX4RrDfsTtYP2IHx42lPX4TNg9Hr2ld8DMKt3PT+2/YublQ9J2bt2/fYvz48Tycm4KCAnh6esLCwoJzZUlISEBeXh7vqOvs2bPYvn07fvvtN3h4eAAA8vPz4enpCUNDQxw9evS76v5DODdjxowBTdOYMmUK5s+fj9OnT8PHxwenT5/GvHnzOMLM0aNH/8jj/yeEoigs7rEOWWkawwYAp9QPrj3FmbV8D3GvXb7wVyHxaod40xSNvOx8LPRYw6MtyMnMxaIea1GgNXlr33tlx03ueWo5sugMXt5hHRm1Q2UZmkF6YjqW9t7AA7aKj0jAmqF/gqZoXtik+t/7/ziOV3c1CLcAsHXCXnx5F8tHwFT9Ozo8DpvG8H253gSHYc/so7znqv/N0AzWDd+O2I/xmroyDJb33YiUhDRBGwDgzb0wHJrPh++/fSYEl/68wesf9b8VBUos7rEO2ekawDVFgQILPdbwDBvte2+dCcaV7Td5ZZzbcBUhlx/rLCM7IweLuq/lRfClJ2VgWb/NoBQUL7+6D86su4LgK3xY8/2rruL9yy9cP2j3SdLXdKyZdpyXP/JdLLZMPgyGYYTjxwA7Zh/Dh+eRvHvWDd+BhMhv7PMZzfPBsBxP26cc5OV/4vuSg9svXAZN0VgxYDOPtoCmaSzusRaZKVm8MGf1vx/ffIETK/jOhTcPBLIkjRD2bUFuARZ4rOHRFuRm52Fh97VQ5BXoHL8b+wLgc+gWr4wTy8/jqf8rXl0ADYjk4p7reH3+LToJqwZtASWiG4cXnsazAA21BQD8OWk/It5EcyG8bAFs/8Z9SsCGkTt5+cMff8SOaQd5z1X/m2EYbBi1E19UwQpqWTFgC5LjUnTqxrv7H7B/Dv8dCbr4EGc3XGXbrVUGraShLKCwpNd6HpggpaSwsNtanmEDaPr23oUHuLDpGq+MS1tv4K4KnbvwPbmZeVjgsZpDiwbYnaclvdZDma/k10l174XN13BXCy0aYPnm3t5/z2uv+t+pX1OxvN9GXv6Y93HYMGIHGFqHbgDYNeMw3j54j59Z/tP0C7Vr14arqyv27t2LXbt24erVq5g+fTq+fv2K8ePHc/lWrlyJoUOH8u7t3r07KlWqhM2bN2Pnzp24cOECpkyZgoSEBEycOPG72/5Dxk39+vWxbt062NnZISgoCLt27cLq1auxa9cuBAcHw87ODmvXrkW9erq3zX8J8MTnJeI/J4ji0DA0g0vbbnAKzTAMLmy+JopPQVM00hIzePDvAcfvIiczVxTPgyAJ9pkqycvJh9ceX9H8lJLG51dRCA0J59Ku7faTRLiVyUlc2qohckyMSca9Cw9F201TNEKuPkaCKnoFAC5vu6EXsOvabj/u3+8efsCHZxGikPE0TeP6Pn/kZmmQd89v8hLFF2FoBrnZefA7yqd4SPmaJo4jxAAXtlznDFdKSeHi1uuiiKc0RSMhKhEPrz/j0nwO34YiXyF6DykjcXHrDe46KyMXfucfi+Ke0BSNt08i8PmtZrG7tjdAEq9HJiNxda+GPyfmfRye+r4Uxf+gKRq3Tgfx+McubL4mGkbMMAxoisYNrTKeB7xGzPt4Sd24uuMmZ8gzDINzm7xE8SppmkFmShaPf+zWqWDVjqmIbhAEzm/S+AsW5BVwDOVi7f7yLpYX4XRjrz/7fBH9IAvpRsrXVNw5GyKpG4+8n/MM+Ut6dIMgCR6324dnn/HuwXvx8aNp3DwYyNGGAMD5zdfEdYNhUJBbAJ9Dt7m0+15PkBSTLD5+DMtRpzbkaZrGhS3SupEcl4r7VzXUCL6HbyM/p0BcN0gCFzZrxi8nMxfe+wNE60QpaYQ//oTwJxpqkqs7fQA94KHa3GC/hJV58+ahb9++8PHxwZ9//gmlUom1a9fCwcFB8j4jIyNs2bIF7dq1w40bN7Br1y6QJIm1a9eieXNhJKk++WH6hcaNG+PUqVN49eoVPn78yJ2xVa1aFfXr19fr4f6/LqHBYZAZyEApxJFY0xMz8DUyEWWr2SMjORPxn8XRHQFAZiBDaHAYd0QTGhIuSUPA0Aw+vYhEQb4ChkYGbMSPHqh1UkbiTVAY50vz+p5u8jq1UEoar7TCvcMeftALaQ4GePfgPbdF/OrOW2kwLYrmdpsA4K263RLUE3nZ+Yh4E43azauDUlJ4rzWp6RKCIBAaEoYeU1jsjNCQcL3j9y0qEakJ6bCxt8K36CS9vEHs+IVzIcVvgsMlgeZoiua+RAHg89tYKAokeIPA4t28fRqJyrVZzJ5XQeGSaLKUksbLe2HctbZhK3XP+yef0KwzC4gWGhwm+Y7QFI3XQZp35G3Ie94Riy7JTM1G3MevqFinHHIychATHidZJ5mcRGhwODoMd1WVES5ZhiYCLhcmZiaIeR+vl0ZCXYaDK3tUr083aCWN1/c07Q5//Ek/sjaAt/ffc2zXenVDydeN0OBw3nGlLinIU+DTi0jUb1UbDMMg7MF7PajGDEJDwtB3lgdXhj7dSI5LRXJsCmzLl0RyXCqSYqR9OGUGMrwJCuPYykPvS7+HNM0g7OEH0DQNkiTx+VUUB0EgJgRJIDQ4DDUcqwAAXt19K8mpRSlpnjH708oP8EP9FTEyMsLEiRMld1v+/PNPnelWVlaYN2/e31KPv8QtRRAEB+r3S75PSJIs0kun/mLSB/2uFu18Rb6H4JdV1DoV9Z4fqpOWwyGhJ5RXWCeS9QUp6j0E2wdSNldh0DN94cWFyyhSfqZQO2Sk3oWI17dF+KBgCt1D6qF3APh1/952F67j35VfO19R3g+A+KEy1MpRlPwM8/3vOvGdusTm09KNIoz5j7RbcI+UcUMQ3z0nsM8lv6tOgr4iIDmHavdNkerEfP+7XuT36B+S/zS31M8k/9XcUj+zNGxbTy9/TomyNrCryO5emFuZoUKdcpKTGaWg4KDl9OrgWleafoEkUNupBueYWaFOOZhbS2N80BSNhlpROo3bN5CEpJfJSZ6zYR3nmnqPmEgZibotNVFWTTo0kOZ4kZFwdHfgrhu41tHL3mxqUYxz3pXJZKjrUkuayZim4eCq1bdudSW/TAkCKFujNCxVmEUly9nAtoLuiB21UEoKDm4aB32HNtK0ISxUviZP1bplYWyiB1SMARq00EQsNG5bV3r8ZCQc22rqVL91bUnGboAFUqvZTOPY3qhdfb1HJw3bahCmHdzq6qUtsCplyUXpFDM3QdWGlfRQBPD7tqGeMkiSQPXGlTnH2nI1SrO0BRJCUzSvjMbtG+jlRGvcXtPuWi2q6+UfIwgC9VppgPyadHDQqxuNtXTDwa2u3p1TE3NjVG1UmSuvQZs6eqktvkc3QLDAoyXKsBFQNvZWLH+cnrlNe95xcK0n2Q5SRqJ+6zqcgVK5QcUi8I8x/PFz1z+36QL++6mE+Rv+/qXyl4ybN2/e4MiRI9i4cSPWrFmj8++X6Jb6rWujUr3yknwqfWd6cBEFBEGg3+xukv4XdhVKwqmbI5fWpr8TLEsWF1VQmmZ4EOaGRgboObWzqO+CTE6ijlMNVGukCQ/uNKYt5IZy0YmJphj01IoosLK1QLuhrUXrRMpIuA1syaOR6DGlM2gRjiWCYOulzfFSpUFF1G9VW3TSJwgCPaZ04qGL9p3VTdQQJGUkituYw3WgBp+haeeGsK9sJ+FLAvSb3Y3rF5IkuW17XSKTkyhfqwxvAm8/tBWKFTcRXSBpikafGV25axNTI3QZ4iQ6FqSMhGPrmiirRQ7YZZSb5itYVzsAeIzT8AbZVSiJlr2aibabIAl0GtWWF1bbe3oXUUOCIAkYmRiikxZvF/uOVRLXDQLoM6MrLxy87+xuogYtKSNRoow1nHtqIrJa9m4Oa3srad34TRPlJzeQs30toRs1mlRBLS2jruMoNxgaG4qOH0XRvGib4tbm6DC8jeguAykj0apvcx66b/cpncR3HAn2Ho8JGv6qCrXKolH7+qJ9S5AEuk3owAOp6yOlGyTBhsMP1VCsNHZvgLLVxalMwLDjpX5PizK3la5aCk06OnBpbQe3hLmVmejuCk3RPGoZ42JG6D5JN5IywI5fQ7e6qFhHg67ddVx71e6p7mbQNIMeUzrr/vGX/OPyQ8aNUqnEokWLMHnyZBw8eBBeXl7w9vbm/m7evMn9/5foFoIgsOzKHJQsY8MdiwDgJp2OI10F3Cjth7VGn5nsAqm9cBMEAYsS5lh5Yx5vwjcyMcIq7/kwLbRAqu8dtqSfIAR30LxeaNWnBVsX1eSknhDsK9thwdmZvPwlSltj6aXfYWAk501mpIwEQRKYuW88d4atlklbR6COUw1eGer/12xWDVN28KPsqjashNkHJ7L8OoXKkBvKsfjCbwKMnwVnZqC0yi9B3Xb1vc49m2LIQj7vUwsPR47Li9e3JAETc2Os8p7PC4+VyWRYeX0uLEsW502Y6nt7Tu0sgPzvPqkjuqqMMHU+ggBAsKzhK7zm8iZrU4tiWHF1DoxNjXSO39h1QwVYN56zO8OxTU1ee9X3lq9mh9mbBvHyl65si3lHJkJeiOuLlLFhvnP2j0WFmmV498zaNwFVG1bkPVt9r4NrXYxdz4+CqNuyFssVRfD7lg3TNsQKr7m80H+CILDk0u+wK19SpRsEr93thrRCn0KGousAZwz4oycvn/pZ5lamWOU9nxc6bmhkgNXe82FmaaqzbwfP743W/TQkpgDQ97duHA2AZvzYe+0qlMTiC7/x3gUrWwssuzIHhkYG/OMOGQkQwLSdYwXh6eM3DUc9Ff4Npxuq+lVrXBkz9ozj5a9UtzzmHJkMUkYKdcNAjkXnZgmQv+cen4ryKp60wuPXrEsjeC7jc4M16eCAMWuH8NqtvtfYzBgrr8/j4e+QJIkV1+bCupQlawyqukR9r8cEd04P1NJ5TDt0n9yRX4bqXis7C6y8Po/XhyZmJlh1Yx5MzI11jt+o1YPRVItTC2DnuxbdHXntVd9btnppzD05nZffrkJJLD4/GzID4dxGykj8fniyKMbWzyPE3/D375Qfwrk5ceIE9u7di86dO6NHjx4YO3Ys+vbtCzc3N7x8+RInTpxA48aNOQqG/2b5qwjFuVm58D9+D7dOBSErLRvla5VF13Ht0aBNHdGvjNCQcHjt9sHnl1EwMTNG675OcB/eBmaWumHHM5Iz4X0gUAPi17gyPCZ0EBgdamEYBk98X+L6Xj/EfoiHRYniaDvYBW6DWooCtCXGJOP6Hj88uvkclJJC/Va14TGhA8oXWhjVQikpBF9+hJsHA5EYk4wSZWzQcYQrnHs2FYXkj3kfh6s7ffDq7lvVUVQDdB3vrpOnBmD5qG6dDkHA8btIS0xHmar26DymHRw7NBD94vvw7DO8dvkg/PEnGJoYwrlHU3Qa5SZKqZCdng3fI3dw52wIcjJzUaleeXiMd9fJAQSwffvq7ltc2+OLqNAYmFoUg+uAlmg3tJUoQFvqt3R4HwjE/atPUJCvQK1m1eAx3h1VGuieWGmaxuNb73Dz9APEf0mGVUlztOvVBC5dHGBopLtvv0Yl4cbBW3gaGAowDBq0qoWuo91QurJuSgxFgQL3LjyE7+FbSI5PhW2Fkug8qi2aezQWheSPDI2G1y4fvAkOg9xAjuZdGqPz2Ha8XTptyc3OQ+CJewg4eQ9ZqdkoV6M0uoxzR0O3uqK68e7hB3jt8sHHFxEwMTWGS+/m6DDCVRSgLSMlEz6HbuPehQfIy8lD1YaV0G1CBwFelFoYhsEz/1e4vtcfMe/jYG5thraDXOA22EUUkj8pLgU39vrj4Y1nUCqUqNeyFjwmuKNCbSEHF8DqRsjVJ7h5MADfviTBxt4KHUa4waV3M1HdiP0YD6+dPnhxOxQEScCxPasbhXFb1FKQV4A7Z+/D9+htpCdmwL6yHTqPbosmnRqK6sbHFxG4utMH4Y8+wsDYAE7dmqDT6LaidDHZGTnwO8rqRnZ6DirWKYeu491Rz6WWzvFjGAZvgsLgtdsXkW++oFhxE7Tp54z2nq1hWryYzjLSEtPhvT8QwVceQZGnQI0mVdBtYkdR8EKapvH45gvc2OePuE9fYVnSAu2GtoLrAGdRnqhvXxLhtdsPT/1eskePbeqg64QORaJt+KdEvS7Fd28JRYm/gHOTlA77K0H/SgT+HzJuhg8fDoDlfACA1q1bY8SIEVx6REQExo0bh0mTJunkkfhvkl/0C7/kl/ySX/JLfib5Zdz8YLRUbGwsunbVnPUTBAGlUhOCWqlSJTg5OeHKlSv/9cbN3yFKhRKhIeHITs9B2eqlRXc7tCX2Yzy+vIuFsakR6jjX1EuSl5eTj7ch4cjPLUCleuWLRFIZ8eYL4j8nwNzKDLWdquslyctOz8bb++9BUzSqNa4sSiegFoZh8P7JJ444s0aTqnqjP1IT0vD+6WeQJIFazauL7laphaIovLv/HhkpWbCvZItK9fRvIydEJSLi9RcYGMlRx7mmXpK8gnwFQoPDkJedj3I1yxTpiy46PBYx7+NRzNwEdZxr6CWQzM3KRWjIeygLlKjiUFGUakMtDMPg08tIfPuSBIsSxVGreTW90R8ZKZkIe/gRDMOgZtOqeglAaZrFBklNSEPJsjasU6+e8UuKS8Gn5xEg5TLUblFd9ItcLZSSQmhIOLLSslGmainR3Q5tif+cgMjQaBgVM0Jd5xp6mZsL8grwJigM+bkFqFi3XJFIKiNDoxH3iaVfqONUQycdhLZkZ+SwuqGkULVRZdHdKrUwDIMPzz4jKTYFVnaWqNlUv26kJaYj/PEnEASBWs2r6SUApSgKYQ8/Ij0pA3YVSqJy/Qp6y/gWnYTPL6MgN5SjjnMNveS4igIF3oa8R05mLsrVKC1AcNYlMR/iER0WCxMzY9RxrqGXHDc3Ow9vQ8KhyFeicv3yolQb2vL5VRS+RrL0C7WaV9M7t2WmZqlCyxlUd6xSJHLjn0L+qlPwv9ih+IeMGwMDAxgZaSZ8ExMTpKam8vLY2dkhJCSk8K2/REsYhsG13b44suQs0hMzuPTaTjUwfdcYnQtxzId4bB2/Fy9uveHSzK1MMXBuL/SZ5SGYnGiaxokVF3B+kxdyMlSgdQTQpGNDTN81RudEEP74I7ZO3IcPTz9zaTalrTBy5SABlDvALg775hzH9X3+UOSxwGqkjETrvi0wZcdonZPs45vPsXP6IcS81wCSlalmjwmbh3P4KNqSlZaNbZP34/bZEA57wsBIjs6j22Hs+qE6FzD/43dxYO4JJMVq0G+rNqyEqTvH8Bw/1ZIYk4wtE/bi0Y1nnFKbmBuj9/SuGLKoj2ACVAMrnlx1EZkpWVx6/da1MWPPOJ0TeWRoNLaM34PQYA1Oh0UJcwxZ1FenwyOlpHB40Rlc3nYDedkswi5BEGjRzRHTdo3RaUC+vvcO2ybvR8TrL1yabfkSGLtuqMCPBGAXhz2zjsDn8G0oVTg5MrkMbYe4YNLWkTqPy4IvP8LuWUfwNeIbl1a+VhlM3jZKQFMBsAvvtkn7ce/iQ87x18jEEB4TOmDkqoE6F7Ab+/xxeNFpHj5QrWbVMHXXGFR1EB47xH9OwJbxe/DMX4P6a2pRDAPm9EC/37sLjDuapnFq9SWc23CVh2HTuH19TN8zTucHwIdnn7F1wj6EP/7IpVmVssTIFQMFPlYAu7gf+OMEvHb7okBLN1x6NcPUnWN0crU983+F7VMPIloLWdi+ih3Gb/TkMJC0JTsjBzumHUTgiSAuAlNuKEfHEa4Yt9FTp3F+63Qw9s05hsRoDb5MlQYVMHn7aJ18cElxKfhz4j488HrKOf4amxmj19TOGLakn8C4YxgGl7d54/jy88hI1qAX13OphWm7x+rkE/sSFost4/fgtRYuVnEbcwye3xs9p3UW6gZF4djSc7i45Tpys1T4XATQvEtjTNs9Vicf1dv74fhz0n58ehHJpZUoa4MxawbDbZCLIH9+bj72zD6KmwcDochX6wYJ14EtMfnPkUViIP9HhSHYv79y/79UfuhYytPTE1WqVMGiRYsAAOPGjUN2djaOHTvGvYBTpkxBXFwcLly4IPWof738lWOp02sv48DcE4J0UkbCqJghtj1YzZsEEqISMdFxDkvZoCN6of/v3TF6zRBe2taJ+3Btt6/OMqzsLLDr6ToeV82HZ58xveVCKBVKnWVM3TEaHhM6cNc0TWNhtzV4fPOFIFqFlJGoULsstoas5H3hPfJ+jgUeqzlYebWo351lV+agedfGXHpeTj6mO89HxJtoQZ0IkkCjtvVYZ2ot4+PG/gBsHsuncQBY50yZgQyb7y5HjSaakOi0xHRMaDwHqV9ThZE9BNBpVFvM3Duel3x44WmcWCl8v9VcUTuerOHtAsS8j8PkZnMFlA1qKcw1xDAM1gz9E7dOBQsiSUgZCdvyJbDj8RoUt9YskKEh4ZjtuhgUReuMHvr9yGS0H9qau1YqlPi9/TKEBoULQA9JGYnqjpWx8fYy3s7g3fP3sbz/JlUltbqJJEAQBNb4LOAZONkZOZjSbC5iP30VgKIRBAGnHk2w+Pxs3uJ1YfM17J51RFB/NVfUn/dXoVLd8lx6YkwyJjrOQUZyps6+7T2jK8Zv9OSl7Zx+iKPc0BaZnI2O2/l0HW+B/PwqClOd5vO4qLRl4pYR6DlVEz3DMAwW91yHB9ee6tSNstXtse3Bap7x+Mz/FeZ2WgmGZgrpBtvVi8/PRsuezbj0grwCzGi1CB+fRwjqRJIE6reugzU+C3jGh++R21g/Yoeg/gRJQCaXYeOtJTxH54zkTExsMgeJ0ULUYYIA2g5phTlHpvDS1VxihUXNFbXj0RoOiBAA4j59xaSmfwgoG9QyZGEfeC7lOzpvGLUTPodvCXYXSDmJEqWtsfPJWt7u47uHHzCz9SLQSkonKOGsAxPRcYQrd01RFOZ2XIkXt97oHL/KDSpgy73lon6I/6Rwx1IeLn/9WMrr3r/yWOqHoqUcHBzw8uVLTvnc3NwQHR2NOXPm4OLFi1i6dClev36NZs2a6XnS/66kJ2XgyKLTOn+jKRr5OQU4vJD/+4kV55GdrtuwAYAz66/ga6TmSzrizRedho26jNSEdJxdf5WXvvf3Y6KGjfp3bdqCxzdf4NGN5zoXUpqiEfkmGj4HNRw9NE1j+5QDAsMGUF8z2DblAG+h9TtyG59fRemsE0MzeOr3Co9uPOfScrPzsHvmYd3tVvHE7PmNT8J2boMXUuJ1GDYAwADe+wPw6WUkl5QYk4yTqy7qLoOikZ2ZgxPLz/PSDy86LWrYAMCxpWd5tAXvHn5A4MkgnSGyNEXj25ckXNnGj0jcOf2QqGEDsHw42vxjQRcf4vXddzrRnGmKRtjDj7h1KohLo5QUtk89qHO7m6EZMDSDHVMP8up8bbcfYj7E60R7ZRgGwZce8ZBeM1OzcGCe0OhX16kgT4GD807y0k+tvoTMFN2GDcAaS3GfvnLX0eGxOg0bto000pMzcWbNZV76vjnHRQ0bgOVR0+Yfex7wGvevPhHVjejwONzYp6GdYBj23WcYRodusP/fPuUAj3/M//g9vH+iG9mYphm8uPUGIVr8YwV5Bdg5/ZDO+jM0A1pJYfdsvm5c3HJdp2Gjrpf/sbu8nazk+FQcL/Tua7c7NzNPYPgcXXoWuZm6DRsAOLnqIo9/7P3TTyz3l47XnFbSSIpN4VHLAMDuWUdEDRuA1Q1t/rH7V5/gecBr0fH7+DwCAcfv6XzWzyQM8+N//2b5IeOmc+fOcHJyQmIiy//Tu3dvtGjRAg8fPsTWrVsRGBiImjVrYty4cXqe9L8rt04FS8Le0xSN4MuPOEK6gnwF/I/f1QM8RsLv6B3u2vfwbUmAL5qi4X0ggJtIv0Un4UXgG0ngv7zsfARdfMRd3zwYKA3wBQbX92l4n97ef4/4zwmimBYMw9IWaMPS39gfIPp8gP2K8j6gyXP/ymPNNrUOoSkar+++Q3xEgqpMBt77/SXbLZPLeESK/sfuSgK00UoaASeDkJfDTpbZ6dmSnFoAuxgFntBMlr6Hbkn6ctAUzevbL2GxeP/kkySAYWZKFnvsphLvA9LcUgRJ8BbgZ/6vkPo1TTS/mrbg4/MILu3GPj/JOsnkJG4eDOSu75y9D2WBOAgcTdF4eP0ZZwgqFUr4Hr4lqRsyOQnfw7e5a98jdyQxpmgljZuHAjlDIjk+FU98X0iOX0G+AnfOabjdvA8GSpbB0Ayua3FqvX/yCTHhceJ9xbC0BS8CNUfSN/b7S76HpIzk6c99r6eSNBI0zeDd/feI+aA5Lr7xnboReOKe5MpIUzTunL2PnEz2Iyk3Ow+3T4foBW7UNiSKMrdd13pvYz/G421IuCSNRE5GDo+/ylvP3EaA4JXxU8r/MIjfD/nc1KhRg7dFJZfLsWbNGoSFhSE2NhalSpVCrVq1igzV/r8oiTHJkMlIKGnxSZyhGaQmpKO4tTmyUrO4M18xIUiCx9GSFJusF6k3Oz0H+bkFMC5mxPNNEROZXIZErTK+RSVK8+Ew4OXXxyGjyaepy7cvSZJfETRFIyFSQ7SZGJMCUibOqaWW5NgU2Feyg1KhRGZqtmRemqKRFKupe2JMMkiSgMTwQVmgREZyJoyLGSH1W4be+shkJK+vEmOS9aJYp2gZGkXpW4IkeH4WCVFJkhM+QzP49iVJq0763xE2XzIH9pgclyqZl1LSvDKSYpJByklJlFuGYZASnworWwvkZOTq5Q0CgMRYvm7om7jzsvORm5kHM0tTpMSn6s0vk8t4Y/AtKlGSmwgAbzcisYi6oT0GidFJevnHvmmR0CbFJBdJN5JiklG2mj0YhtHLiUYpKV7fJqrLkFAOSkkhPTEDxcxNkJ6Yofc9J0kCidFa70hssl5jKCMpExRFQSaTFWluI2Ukr2/1zW0Mw9eNX/Jzyd9qfdSsWRNt27ZFnTp1fhk2esTS1kI/SR7BOpsCrGOkPtoChmF4/jOWJS308u4YmRjC0Jj1pyhKBABFURylAABJlFe1WNlq1amIUQaWtpqzcis76XtIGQnr0hrHWkvb4kUiILRU9ZXcQA4TM+moD1JGwLKkph5WthZ6yATZeplbsQ6HxW3M9Eai0HSh8bOz0Dvm2nQZRelbhmZ4/Wltbyn55U8QrMOspgzpCCpddSmuJ+qKlJGwttcevyLoBsDRIZiYG+ulLQDAGz/LkhaiyLNqMTAy4N4LfdQLALvbw9cNS726YanVN0XVDe3xs7KzlMRZI0nih/pWXReCIGBmJe00K5PLBDquTzcIkuDeXXNrM73cTwLdKKlfN0wtinF+eEXpW5qiee+3dSlL6XoRgFWpnzxqioHGqfiH/v7pBvy4/GULJDExEffv34e/vz/u37/PHVX9EmlxHegs+d6o+ZLUE7KRiRFa9W0hvRWrpNF2iMbjv92w1pJfRKSchLtnG84Qta9sh1rNq0kudgaGcrj01vhStR/WWnKyJEiCF0VSr1Ut2GgZIrrEys6CY1YGgA4j3KSPgCgaHbSiuFr2bAoDY/HwUYIkUN2xCheyTRAEOgx3lTxCoJQ02g3TOOK6DW4pzdslJ+HSuxlMzFhn0eLW5mjauaFejh63QS256/ZDW0sfQ8pIdByh6dtK9cqjQu2ykkaUiZkxmntoKDrcPV0lv/wZgFeGYwcHzmDTKQT7HtVsqnHW7jjCVZq3i6LRXqtvW/drIbmosJxadTlnXwNDA7gNbCmpG5SS5lEEtB3iovcYq90QF+5Y0LZcCdRrVUuyXjI5idb9WnDX7Ye1+S7dqN2iOmzL6wakVItFCXM0aqdx1u44wg2EhHVD0wzch7fhrp26O8JIAtqAIAhUrl8BFWprAhk6DJceP0pJ8cav7WAXnT5caiFlJFp4OHIwDqbFi8GpexO93G5ugzW60W5oqyLohsY5uEKtsqjiUFFyHjFSgXaqxd3TVdJII0DwdOOnFAYg/sLf/6RxExMTg5kzZ6Jv376YO3cuVqxYgblz56Jv376YOXMmYmJi/s56/tdJidLWPF4nbWGjFkiMWDGAlz5kYV8YGhvqnAQIAug8pi3K1dBg5NRwrILW/Zx0KjQpI2FqboL+c3rw0kevGQJSFfWiS4Ys7MsL7Xbu0RS1W1TXWSdSzkb0dBnbjkuTyWSCqJXCMm6DJ8/XpPOYtrCvZKtz8SJlJGo0qYqWvTQGl6mFKYYXiqxQC0GwbRu7jk8R0Pe3bjCzMNXdtySBlr2a8cLHy1S1Zzl7dHQTKSNhYGiAIQv78tKHLx8AmYFMdFez9/SuPPyaBm3qoEmnhqLjZ1HCHL2ma7iJCILAOFXfitk3I1cO4oUGuw10RpUGFUTHr1yNMmjvqVm4DI0MMKZQ3xWWcRuG8drYfXJHWNtbiY5fgzZ14NihAZdmZWfJUSkUFoJkGahHruLTSAya3wtGxYxEdIOAu2cbXnRVVYdKaDeklc73nJSRMDY1FtRh9OrBIEhSdIEcNK83LzqnWZdGqCdCyErKSZQsa8PjfSJJEuM3Ddf5bK4Oa4fywuY7jGgjyuNEykhUbVSJF/5vYmaCkSqakcKipgIZu34or1/6zPJgd1dEdKNZ18Y8olu7CiV5UWP8OhGQG8oFkU/DlvaHgaFct/FIsNQl2pGHdZxrwql7E1HdMLcyFVB0jF0/TNVO3eM3fPkAXuRaq77NUb1xZdG+LV21lM7w/59K/od9bn7IuElISMDkyZPx9OlTlCtXDl27doWnpyc8PDxQvnx5PH36FJMnT0ZCQsLfXd//Khm5ahCGLekHo0JMzvaV7bDObxGqN+bTI5SvWQYbby9FuRp8/BQDIzn6zOqGqTvGCMqYc3QyPCa4CxxTK9evgM33lgvg2eu3qo2V1+ehZDk+SJyJmTHGrhuKgXP5E75MLsMq7/lw6d1MMGnUb1UbW+4tFwDttenvjLnHpwq2+ovbmOP3I5PRdjAfb8K0eDFsurscDQqxZBMEAeeeTbHWd4EABK/v7G4Yv9ETJub846YSZa2xwusPwbNsy5XA5nvLUcWhoqB9Xca2w9wT0wTtm/TnSAz4vYdgl6hsdXtsvL2UR8IHsAvqhoDFsK/CB4kzMjHEkIV9MGYdP4yfIAgsPj9L55dzDccq2HxvuQAMrkkHByy59BvvKAJgt+gnbxuFHlP4fGWGxoZYF7AYzbo0Fhhqjds3wMbbSwVAbZ1GtcWMveMFOzhWdhZYcHqmgK/MokRxbLm3HLUK8SgRJAHXAc5Y7vWHAEPIc2l/jFgxEMam/F2GUhVtscZ3oQCnqExVe2y6s4y34wCweC89p3XGjL3C4IZZByagx5ROkBvwy65Ypxw2312G0lVK8dJrt6iBNT4LBLsrxqZGGLVqEIYs4vOVqfnH2vQXfmDUcaqBzXeXCXBuXHo1w/xT0wXHKObWZoJQZYA1VjbeXsrbzQEAECxf2jq/RQKAz57TOrP4RYUAFG1KW2PZ5Tlo3L4BL71EaWtsCVqB6o0r89JlcnZ3ZNHZmQLdGL/RE4Pn9+aOvNVSukoprA9YLOBkqlS3PDbcWoLShQAwDYwNMPCPnpiweTi/eQSB+aemo9PotgKjuVqjytgStAIlyvDnsEZt62H51T9gU4aPf1OsuAkmbB6O3loktAC7I7jWbxGcujsKdKNh23rYdGepKGXKL/nn5YdwbtauXYsbN25g5syZ6Natm+DFvnLlCjZt2oQuXbrg999//9sq+zPK30G/kJOZi8c3XyAng0UortuypuTRAsMwePfwA6JCo2FsagzHDg30opGmJabjmd8rFOQpULlBBYHhVFhomsbL26GI//wN5tZmcOzQQC8a6bfoJLy8FQqKolGreTWdQF3aolQo8dTvFZLjUmFjb4lG7evrRSONDo/F2/vvQZIk6reuLcqdo5a8nHw88XmBjOQslKpkCwdX/f5gH559xqcXkTA0NkCj9vV5vhq6JCstG098XiA3Kw8VapdFrebV9Y5faHAYosPjUMzcBI4dHfQi9aZ8TcUz/9dQFihRrXFlVGlQUTI/RVF4EfgGCVFJsCxZHI4dGuhF6o2PSMDru+/AMAzqtqzJwyHRJQX5Cjz1fYnUhHSULGuNRu3q60XqjXjzBeGPP3EszIUXoMKSm8XqRnZ6DkpXLYX6rWrr7dvwxx8R+YZFKG7sXp+HA6RLMpIz8cT3JQpU6N3VHatIlkHTbLSdGqHYsaODXt1Iik3G88A3oJQ0ajWrqhdpWalQ4pn/axVCsQUcOzTQqxsxH+IRGhwGgiBQv3VtvSjk+bn5eOLzEhnJmbCrUBINXOvoRer9+CICH59FwMDIAI3a1eP5weiS7PRsPPF5ySIU1yyDOk419OtGSDiHUNyko4NeoLzUb+zcpshXoGrDSqK8UmqhKAovb4Xia2QiituYoUlHB71YNV8jv3GQCXWcahQJafmfFA7nplMrKKwtf/g5BilpsPe++6/Eufkh46Z3796oXr06Vq9eLZpn7ty5eP/+/S8Qv1/yS37JL/klv+Q/KJxx0/FvMG5u/juNmx8KBU9LS0PlypUl81SuXBmPHj2SzPNL2C+0kCuPcff8fRXzcRl0HtNWkgMpOjwWN/YFIDL0C4xNjdGyZzO49Gkuyi+lZsd+4PUE+bn5qOpQCZ3HtIN9ZXEOnQ/PPsN7fwDiPn2FuY05XAc4o1mXRqJfdllp2fA7egfP/F+BomjUaVEDnUa7ifJLqdmxfY/cRnJsCqxLW8F9WBtJNvTUhDR4HwhEaEgYSJJEw7b14O4pzoZOURQee79A4Kl7yEjKhH1lO3Qc1VaUDR1gdy9u7AvApxfs12nzro3hOrClKL9UQb4CQRcfIujiA+Rmsjs3nce2l+QHiwyNxo19/ogOi0Uxi2Jo1bu5JBt6blYuAk8GsazSBUpUb1wFnce0FeXQUe/s+RwMREJUIixtLeA2yEWSDV3Njv3y9hswDIN6LrXRcaSr6K4VTdN4HvAaASfuISU+FSXL2qDDCFfUcRbfdUyKTYb3/kC8e/QBMrkMTTo4oO0QF9FdK0pJ4b7XE9w5G4LMlCyUqcayukvtWsV8iIf3Pn98fh0F42JGcOrRFK37thDdtcrPzceds/cRcuUx8nPzUbleBXQe205y1+rjiwjc2BeAuI/xMLc2Q5v+zmjetbHorlV2Rg78j93FE9+XoJQUajWrhk6j2+qkBwDAsWP7Hr6FxJhkWNtbod3Q1pJs6Knf0uFzMBCvg96BIAg4uNaF+/A2ortWFEXhic9L3DoVhLRv6ShV0RYdR7lJ8rslRCXixj5/fHj2GXJDltXddVBL0V0rRYECwZce4d7Fh8hJz0G5mmXQZWw7yV2rqHcxuLHXH1/excCkuAlcejVHy15NRXetcrPzcOtUMB5ef8rt3HQZ215yRzf88Ud4HwjE14gEWJQsDreBLeHY0UF0bstMzYLv4dt4cesNaJpGXeda6DjK7d/DL/U/Kj+8c1OzZk2sXLlSNM/8+fMRFhb2a+dGQlIT0jDHfTkiXn/hsCdkchKUksaAP3pi5MqBgonmzLor2P/HcZByErSSBkESYGgGpavYYX3AYsGCF/M+Dr+1W4akmGQuLykjwTAMpmwbxaNSANiJdcfUg7iy4yZXF3XdajSpitU35wuOwN4+eI95nVciJz0XDBjWQ18F5b7g9AyBD4aiQIGVA7Yg+PIjTRmq9jT3aIyFZ2cJDLX7Xk+wvN8mKBVKNrqHYKMVTMyNsfL6PAEfTlZaNuZ3WcUeYRXq267j3TFl+yjBQn99rx/+nLgPIAjQFA2CIMAwDGxKW2Gd/2KBwZIYk4zf2i5F7Id4FvOGZrh2jFgxEIPm9RL07ZHFZ3BixQUuHykjQFMMKtQui3X+iwTGYMTrKPzefjnSEtNBgK2P2v9m1v4JAq4viqKwacxuDuRMe/zqt66N5Vf/EPgJvLwdioXd1iAvJ5+LnCJIAobGBlh84Tc06eDAy5+Xk4+lvdbjie9Lrgz1/9v0d8Kco1MEhtrtM8FYM2wbGIoBTdMcnYC5lRnW+i7kMHHUkp6UgTnuy/HpRaRg/PrO8sCYdUMFunFh8zXsnn0EJMnmV7/vdhVLYn3AYgEhZtynr/i93TIkRCXydIOmaUzYNBy9pnXh5WcYBntmH8WFzdcEfVutUWWs8Vkg8KEJf/IJczuuQGZqFgiw2HYkSYCUkfjj+DS07tuCl1+pUGL14K24e/6BoIwmnRpi8flZgiOUR97PsbTPBijyFZrxIwgYmxljhdcfqN+qNi9/dkYOFnqswet77wR923GUG6bvHitY6G8eusXRmWjrhnUpS6z1WyTwL0uKS8Gc9svw5V2sQDeGLe6HoYv5zvYAcHz5eRxZfEajG6r7ytUojXX+iwRHmFHvYvB7u2VIiU/l6kPKSIBhMH3POHQa1ZaXn6ZpbJ2wFzf2BQj6to5zDay8Pk9gaL8Jeod5XVYjLyuPAx4lSAIGhnIsOjeL9VX7CYXbuenwN+zc+Pw7d25+yKG4SZMmCA4OxrVr13T+fv36dYSEhKBp06Y6f/8l7ES5pNd6RL1lo8rUIaPq8MbTay7xUFsB4N7Fh9j/x3E2vyqfejJLiErEvM6reCGYigIF/uiwggUg08pLq+D5/5y0H0/9XvLKuLjlOq7suMmri7puH559xqrBW3n505MyMK/TSuRm5LLKrzKVGZqBUqHE8n6bEBkazbtn3+/HEXL1Mb8M1f8fXn+GPYU4hb6ExWJZnw1QFGgmbzV9Q25WHuZ1XsmjLQCAtcO2IezRR519e223L85v9OLlf3HrDbaM3wuaZrj86sksNSEdc9yX82gLaJrG/C6r8FWFcqwOGVW349CCU7hzlk8c63f0Dk6suMDLR1PsfTHv47Co+zoecnNudh7muC9niQcZTX1oigZN0dgwcidCQ8J5ZZxceRG+R27z+1bVnjdBYdg0ehcvf2JMMuZ3Xc0zbAB2/ApyFVjcYy3iP/MDA7ZN3o9n/q94Zaj/f+fsfRxZdIaX/8Ozz1g95E9QCop7P1VMG8hOz8Ec9+U82gIAWNZnIyLefOHVX13GuY1euLbHj5f/vtcTlouK0eRXtycxJhnzOq3k0RZQSgpzO67ggPO0dQMMC8X/UAvJGQCu7vThIP0L9+2nl5FYMWAzL39mahb+6KBqG6MB7aVpBkolhVWDtuDjiwjePQfnncS9Cw91lvHE5wV2TDvEyx/7MR6Le66DIk/BHz+GQX52HuZ3WcUDCgTAe28K9+3Ng4E4XYh24k3QO2wcvZN779TPB4C0RNYI1aYtYBgGi7qt4VCOC+vG0aVnEaCFxA0AgaeCcGTxGV4+9X1xn75igccanm4U5BVgTvtlSFPpPU83aAabxu7Gq7tveWWcXXcFN/YF6Ozbdw8+YP1wPt9WytdUzOu8CvnZebyyGZqBIl+BJb03IOZ9HH5q+RUt9X0yYsQIFC9eHBs2bICnpyc2b96MI0eOYPPmzRg+fDjWr1+P4sWLY/jw4X9zdf97JOzRR7y9/14cB4NgiTW1ler0mkuiYaiUkkbU2xg89dUYK8GXHiFBAmWTlJE4u/6K1jMonNG6Liw0RePJzReIeqcJ87958BZyMnN140Ew7H8ua3H4ZKZm4doeX1FsFYZmcGN/AI9J+PI2b57hVDh/XnY+bh7QGILR4bF4cO2pJMbI2Q1XoVRoEJ/PrLsiirNBUzSSYpIRdEEDrf8i8A0iXn8RxdogSAKn117W1JNhcGrNJdEQbUpJI/zxR56xcutUMFIT0iXGj8D5TRojrSCvgF18RSYkmqJx9/wDJGgh1l7f48f74tcWhmF5uK7u9OHSkuNT4X/srij+B8MwuLzdm8c/dmHLNdF20xSNrNRs+B29y6W9f/oJr+6+lUT3Pb32Ms+QP7PusigGDa2kEfM+nsc/dt/rCeI+JUjqxpl1l7lriqJ446mrHc8DXvP4x/yO3EF2Wg5nwPKEYUOvtXUjOyMHV3f6iFOT0Ax8D9/iGfJXtt8ETdO6+cdoBgV5Cnjv09AvxH9OQNAlCRoQht0B0zbkz264KqkbKfGpuH1GY8i/uvsWH55FiI4fQRA4tfoiV2eGYXBq9UXJue3Ti0i8uqMxVu6cvY/kuFTJ8Tu3QcObpyhQ4KzWta52BF9+xOMfu7EvAPk5+TrfdYYBGJrmPgR/yc8nP2Tc2NnZYceOHWjQoAEiIyNx+fJlHDx4EJcvX0ZERAQcHBywfft22NmJ+3T8r8ujG8+kETYZIO7jV44IMystWy9vkMxAxpvAH918rpd/5XnAaw7oL+LNF0neIIDdUn/srSnj4XUh47G2UEqa26UBgNd33+mlkVAWKHlEivevPpYE7GJoBve1ynji81ISrAsA0hMz8OllFAB2F+aZ30tpUD4ZiUda7X7k/RwyA/HIEoZm8PF5BNIS2YUoMSaZ5Q2S+BKSyUke79Pjm88l20Epad7uwvsnnyR5gwB2IXni84K7vu/1RJrviuKP3/OA13oRbvOy8xEa8p67fnjtqfT4gcHD60+568c3X+hF9v0WlYhY1c5AblYuQoOleYNkchm/b73168bru++4HYmY8Di99BakjOTpxoPrT0UNFYAdv/teGi6j0OBwvTQSlJLVWbXc93oiaQTSFI0QL23deCEFaAyA5R/7+OwzAPZ9eez9XLIMgiR4usH2rYRuqPjHklU7yqkJaYh8E613btN+Rx7dfC4Z9UgraTy++Zzr/4/PI5GZkiWaH2CNrsc3X3DXD649kXynKCXNIyX9KeUvoROr/v6l8kMOxQBQrlw5bN26FQkJCfj48SOys7NhamqKqlWr/mWjJicnB6dPn8bbt2/x7t07ZGZmYu7cuejUqZPee729vUWjuC5dugQbG/65bVBQEA4dOoSoqChYWlqic+fOGDZsGOTyH+6aIomyQCmOtFY4HwBFgbRBoBbtfMoCpV5mV4Zhd2xkchlXlqQQBC+f9heemGiTIP5QOyQ4hnTVQ1mgZM/g9eypqtvB0IxeuHiGYQR9WxRR5/uRvhXbUdEWbf6lovQtQRC8fIoijJ+2Mfq97QaKMH6M7vErahlFeT8Aht+3Cv26oX62kUlR+xbf3bfauvEjfVuUemmPn0I97+hpvPZzpQh+AdURdGHdKMKa+H3jp2tuk64XpaRB0zRksqLNbQRRqG/1fIQVrtPPKARUSMN/4f5/q/zQzs20adOwf/9+AOwujrOzM9zd3eHs7Py37Nakp6fj8OHDiIqKQtWqVfXfoENGjRqFBQsW8P7MzPiOsA8ePMD8+fNhZmaGadOmwcXFBUePHsXWrVtFnvr3SfUmVSWJAQEWeM1OhVVhUcJcAD5VWCgFhRpNNJFANRyrSi6OBAGUq1maiyQpX6usAHSrsNAUjepNNGNSq1k1SdoCUkaiZnMN4FphIDAx0c5Xs1lVyS95mZxEbS2AuOqOVfTuLhgYyTnAN5lchop1y0kvqAx4UVbVHavoHT+rUpYcL1PJcjbStAVQj5+mb2s0qSr5dUqSBM8Rt1K98kXiH9Muo3aL6pL3yOQkajtV566rS0SaqYUgCFRtWJF3j9T4kTKSB8pX3bGKXiJFEzNjlK7KguyZWZrCrqI03hFV6L2t3riKtOGoopFQO1+XqWYvABQUlKGkeX1bq1k1ve2uoUVTUbVhxSKtJtpjULt5dUn9Y3VDM341mkjPCQAgN5BxaM4EQaBKA2naAjWdCVe/IsxtxUuYo4RqPrOxt9LL3VVYN6o3riL5cUiQBCo3qMA5RleoU1Yv/xhNM7z5s1bzIuhG8+qiv/+Sf1Z+yLh59+6dJHfIXxUbGxtcunQJ586dw4QJE37oGc2aNYO7uzvvz8iIPznt3LkTVapUwcaNG+Hh4YFp06Zh8ODBuHr1KqKiov6OpohKC4/GkqSTJEnAY7w7FzVEkiR6TO4kugATJAFTi2JwHajFTeTZmkXPFZkDGAA9p2oiQoqZm0jyyKghxx1cNei+HhM66D3W6KmFimtf2Q6OHRxEJ2SZnA3x1gbJ6jG5k2QZFEWj20RN1Ff91rVRtkZpyXa0H8YPIe85tYvoEQJBsJDxHbTQYVv3awEzK1PRSZ8gCfSY3ImbXA0MDeAxoYNofpIkYGlrAaceTbi0TqPbgpBJ8wZpw9xblrRA635Oku2u4lCRx/vkMbGj5JERpaTRY1JH7rpy/Qos3YbI+JEyEk49mvAiW3pM6ayHOZ5Bl3HtucumnRuiRFkbyXZ0HtOOixoiCAI9p3QWXesIgoCJqTEP+br90FYwMjEUvwcEek3rwumbiakxOo1qK1knuwol0di9PpfWZVx7yWMpmqJ5iNG25UuieZfGomXI5CTqudTiRSZ1n9xR8siIUtLophURWbtFdVSqV16yHa6DWvKivnpO7SxuEBEsm32nURoagpa9msGiRHFRHyiCJNB9Ykcuok4ml6H7pI6SumFubYZWfZpzaR1HurJHX2JzG83wot2KW5uj7WAXyXZXqF0WdbSiLrtN7KBfN6boP034R+WXQ/H3Sfny5fH161f9GX9QDA0NBcdHPyI5OTm8CAltiYyMRGRkJDw8PHhHUD179gTDMLh9+/ZfLl9K5AZyLL4wG4bGBryFQs19VKtFdQGce5+ZXVkOHoLPjyKTk5AbyLDo3CweHktxa3PMPzkdMhnJ+wJRTyKt+7ZA5zH8cMlRawajUr3ygomGlJMwMTfGonOzeLsJ5WuWwdTto7k8XH7VJNJ3lgeadGzIe9as/eNRorS1YKJRs0PPPjiRl964fQMMUHFgad+jLm/SlpG8CZ8gCCw6NwumxU0EZRAkgYp1ymFsIaqDjiNdOcNQu+0yOcslNPfENB5vkJGJERafnw25oZzftyp+nkZt66HvbD63zeAFvVHPpRaXR7sMA2NDLL4wm4fnUaK0NX4/PJnjGuParapfhxGuPKJNgKWEKFvdXjh+Kr6d+aem896dGo5VMGbtEC6Pdn4AGLakH+q2rMV71h/HpsKyRHHh+JEkSlUsiWk7+TQgLXs2RXeVgUQW6lsQwIy943lh2jKZDEsu/gajYob8L2fVe1+jSRV4LuNzE/WY0gnNu7KEoIXHTyYnsfDsTF4IvKmFKRacmQFSJtOpGy26O/J4nwBgxIoBqNaoEptHq3tJOQljUyMsvjCbF0Jdpqo9pu8exxoAOnSj59TOaKFFYgoAM/aOg235EgLDgJSRsLS1wO9HJvPSG7SugyEL+/Ceq243wNIgaCP2EgSB+adnwNSimE7dKFejNCYU4rdqN7QVR4xZePxIksSco1N4EAaGRgbsu2xkINANgmDrPKAQjUv/OT1YslyCvyEjk5OQG6rnSg1WkZWdJeYenwqSJHXqRrshrXhkngDLeVa+VhmdumFqUQwLC9FIVK5fgesLXboxaF4vHsHvL/m55Idwbry9vbFlyxbs2bMHFStW/H+olkbCwsIwduzY7/a5MTExQW5uLgwMDNCkSRNMmjQJ5cppFkBfX1+sWLECu3fvRu3afByI3r17o1atWlixYoXe8v4qQnHsx3hc2Hwdt04FITc7D6Ur28FjQgd0GdtOJ/CYUqGEz6FbuLLjJr6ExcLIxBCt+rRAn5ldRcGxPr6IwPlNXgi5/BiKfAUq1SuP7pM7of2w1jqPPXKz83Btly+8dvvi25dEmFoUQ7shrdFrehdRcKyXd0JxYdM1PPV7CZpmULtFdfSa1oUlt9PxeZyRnInL27xxY38A0r6lwbKkBTqOckPPqZ15RoS2hFx9jItbruPt/XAQBIFG7eqjz0wPAU+UWr5FJ+HiluvwO3YH2WnZKFmuBLqOc0e3ie4cW7e20DSNgOP3cGnbDUS8ioLcyABO3RzRZ6aHAIdFLVHvYnBh8zXcORuC/NwClKtRGt0mdkSnUW46QfkK8hW4sc8fXrt8EPvxK4yLGcF1gDN6z/TgWMoLS9ijDzi/+RoeeD0FpVCiasNK6Dm1M1wHttTZt9kZObi6wwfX9/ohKTYZ5tZmcB/WBj2ndxEFjnvq9xLnN19jHbkZBnVb1kLvGV3RrHMjnflTE9JwcesN+By+hYykDFiXskLnMe3QfXJHnVQgDMPg7vkHuPTndZZ+QUaiSaeG6DPTA3WcdOtN/OcEXNxyHf4n7iI3Mw+lKtmi24QO6DKunU64fEpJwefwbVzZ4Y0vb2NgaGwIl97N0HtGV1FQzM+vonB+kxeCLj2EIk+BCnXKofukjnAf3kYnqFt+bj68dvni2m5ffI1MRLHiJmg72AW9Z3QVpTt4E/QO5zdfw5ObL0BRNGo2rYpe07qgZS8hHxvAAipe2X4TN/b7I/VrGoqXKI5OI93QY2pnUeC4h9ef4vzmawgNDgNUIH59ZnqgUdt6OvMnxSbj4pbr8D16B1mp2ShZ1gZdxrZDt0kddfIl0TSNW6eCcenPG/j0IoIF8fNojD4zPHjHRdoSHR6LC5uv4/aZYOTl5KNMNXt0m9ABnce01QnKpyhQ4OaBQFzZcRMxH+JhZGII1/7O6DWjqygo5vunn3B+oxfuez2BskCJyg0qoufUznAb1FLn3JaTmYurO31wfY8fEmOSYGppCvdhbdBrehceaa22PA98jQubr+F5wGswDIM6zjXRa1oXgWH6M4l6XUpo2xoKK8sffo5BahrsAu78K3Fufsi4efHiBU6dOoWXL1+iW7duqFmzJqytdU+aDg4Of6mC32vcBAYG4uHDh2jYsCFMTU0RHh6Os2fPwsjICPv37+d8gk6dOoVdu3bh3LlzAj+hsWNZEKtdu3YJnp+UlITkZE3URFRUFFasWPGvHPxf8kt+yS/5Jf998su4+cFoqWnTpnGIkGfOnJF0xPz/Pt4pLG5ubnBz05z/uri4oGnTppgyZQqOHTuG2bNnAwAKCtiQS0ND4e6IoaEhcnJ0h9RevXoVhw8f/tvrnZ6UgZyMXFjbW+olcQPYHYDkuBQYmxoXGQY85Wsq8nMLUKKMtV4SPoDdwUlLSIepZTG95IMA+3WeFJsCmqJRoqy1XhI+gN1lyEjKRHEbM70EeQCLN5IcmwKCJFGijHWRomoyUjKRnZYDSzsLvQSHAPsFmRyXCgMjA1iXsixSGanf0pGXnQcbeyu9BJUAuwOQ8jUNJmbGeok5AbZvk+NToSxQokQZa1GqBm3JzcpF2rcMmFmZ6iVWBdiv86TYFIBhWJ8XPQSjAEuMmJGcBYuSxYvEkEwpKSTFpkAmJ2FTumjjp9YNq1KWojQY2sLpRjEjvcSOalHrhk1pa1EaE23Jy8lH6tc0mFoUE6AS6xKGYZAclwJKSaNEGWu9BKMAu8uQnpjx3boBgkCJMtZFGr/M1CxkpWbD0ra4zt3MwqJUKJEUmwK5oRw29lZFGr+0xHTkZhVdNwryCpAcn/pdupHyNQ2KfEXRdeM75zaappEclwqGpmFTpmhz208hfzWc+38tFNzT07NIL/XPIvXr10ft2rXx9KkGJ0Ft1KiNHG0pKCgQOB+rpVu3bnB2duau1Ts3Pyovb4fiyJIzeH33HQDAyMQQ7p5tMGxpP52KnZWWjePLzuHG/gDkZuUBYKOJhi7qh6adGgryAyyy8YkV5/HpRSQANgqr67j2GLygt84JLSk2GUcWn0XAibtcOGSjdvXhubQfLypJLQzDwHt/AM6sv4K4j6wvllUpS/Sa2hl9ZnnonGy+hMXiyOLTCLr4CDTFQq079WiK4cv66zxeo5QUzm+6hotbr3OIy6Wr2KHv7O7oMradzvfx3cMPOLr4DJ74vQQYQG4oR9tBLeG5bIDOLei8nHycWHEB13b7IiuNRcyt0qACBs3vjVZ9WgjyA8Bjnxc4tuwc3t1ncV1MzIzRcaQbhi7uq9OgSE/KwNElZ+Fz+Dbyc1gMlXoutTB0cV80dNN9hBB4KggnV11ElArp2dzaDN0mdsCgeb10LhZfI7/hyOIzuH06mA2zJYBmnRth2JJ+OtngaZoF6ju/yQsJkSzAX4myNugzoyt6TO2kcyL//CoKRxafwX2vJ2BoBjI5iVZ9W8BzaX+dvEyKAgXOrL2Cy9u9kZ6YAYCN1BswpyfaD2utc/xe33uHo0vO4sWtNwAAQ2MDtB/WBp5L++k0WrIzcnB82Xnc2O+PnAwWRLC6YxUMWdhH9Agh5MpjHF9+Hh9UuC6mFsXQZUw7DF7YR6exlhyfimNLzsL32B0o8thQ74ZudXX6JgGsbvgcvo0zay8h5j2Ly2Npa4EeUzqh32/ddH5kxLyPw+HFZxB04QEoFcWKU7cm8FzWn4ti0haKonBxyw1c3HKNNU4BlKpki76zusFjgrvOvg1/8glHFp/B45vPWd0wkMF1YEt4Lu2v8+g5Pzcfp1ZdwtVdPhxeTMW65TB4fm+06e8syA8Az/xf4ejSswgNZoEpjYoZoeMIVwxb0k+nQZiRkoljS8/h5sFA5GWzulHbqQaGLuoLR/cGOsu4czYEJ1ZeQMRrFs3a3MoUHhM6YND8Xjo/Er99ScSRxWcReCqIC1l37OCA4Uv76zxeYxgG13b74uyGq/gawWKO2ZS2Qu/pXdFrRpef38j5q07B/2KH4h86lvpPyvceS4nJ4sWL8eTJE1y/fh3Az+Fzc/f8fawYsBkEwMNZIWUkSpazwbYHq3m7Mtnp2ZjmvADR4XG86BM1L86s/RPQcaSbdhG4uPU6ds04zOXRLqNqw0rYeHsp72v4W3QSpjSfh7TEdF4UBikjQRDA8qt/CByEd888jAtbrrNOllpvE0EQaO7RWOBo+ellJGa4LER+XoGgDENjA2y+u5znBElRFJb324SQy4948Bzq3cPukzti8p+jeHV66vcS87usBsMwvL6SyUkUtzHHtgereZN4fm4+fmu7FOGPP+ns27Hrh6HvLL6DsO+R21g/cgdIghCMX5lq9tgavIJn4KQnZWBqi3n4GslHjSZlBBgamHdymmChOLHiAg4vOs21VbtedVvWxBqfhbydhrhPXzGl+TxkpWcL+paUkVjru5DHNcQwDDaP2wPv/QGC8QMBuA5oiT+OTeHtArx7+AGz3ZZAWaDkt0NOwsTMGFuDV6JCrbJculKhxAKPNXjm/4r3DqrhVgbO7YmRKwfx2h1y5TGW9tkAAIX6ioRNaStsf7ia58Sak5mLGS4LERkazc+v4ieatmssumpFZAEsncK2yft16kaleuWx+e4ynvGfFJeCKc3nISU+VVAnAFh66Xc078rnGto35zjOrr8igJYhSAJNOjhg2ZU5vF2cyNBoTHOej/ycfF6kDikjYWAox8bbS3mLME3TWD14K26fDRGMHRigy9h2mLZrLM/AeXHrDeZ2WsmjUwBY3TCzNMW2B6t5pLoFeQWY474coSHh/PFT9dvIlYMwsJCDcODJe1g99E+QBMmLrCVlJEpVssW2+6t4Bk5GSiamOc0XoEaTJAGaYTDnyBS0G9KKV4aaZ6+wbpAkgZrNq2O9/yKe8R8fkcDqRmqWoG9JksAq7/m8DwyGYbBt8n547fLVMbcBLr2bY/7pGUXaIftPC3cs5drmrx9L3br9rzyW+vlG5f9J4uLiYGlpyV1Xq8biaoSH87l5kpKSkJiYyP3+/yV5OfnYMGonu/gWCrOkKRqJ0ck4svA0L/3kqksCwwbQ8OJsnbiPR1vwLTqJ42kqHMpJUzQ+PPuMi1uu89L3/nYU6YUMG3V+mmaw1nM7j7bg7YP3rGEDCKx8hmFw/+oT3D7N51jaNGY38nMLdJZRkKfAhlE7een3zj9A8KVHAtwx9YR2ZftNvAkO49IpJYW1nttB07SgrygljYzkTOyeeZiXfnnbTYQ9+ijat/t+P8ahRQPsdv6W8XsBBjrHL/ZDPE6uvMhLP7LojMCwYfMzYMBg4+hdPNqC6PBYHF50mtdW7Xq9uReGG3v9eenbJh9AVlq2zr7V7he1PPN/xRo2gPArjQFunQrCg2uaHU+GYbBu+HYo8xXCdihp5GbmYeuEvbx03yN38NT3peAdVDfp1OpLPNqCgrwCrBuxHYyO8aMpGsnxqTgw9yQv/ey6KwLDBtCMzfYpB5CakMalJ8enYse0g2w9dIxfxOsvOLeBzz+2/4/jAsNGnZ+haazz3M4DI/zw7DNHbyJ4d2kGj7yfw//4XV765rG7kZedLwhBpikaigIl1o/YwXsXQq48ZqkPdIwdAFzf689D+6Yo9h2glJRO3chMzcbO6Yd46V67fBEaHC4cP9X1wQUnEfsxnkvPzsjBpjG7VbohbMfXiG84tvQcL/34svM66TBomqVd2TxuD49/LO7TV+yfy/LsFdYNmmbw7sF7XNnhw0vfNeOwwLBR14miaKwdto0XXfvq7lvWsAF0zG3AXdW89NPL/2AYOPAXjZukpCScPXsWK1euxNy5c7Fy5UqcPXsWSUlJf1f99JYfFRUFpVKz2KalpQny3b9/H+Hh4Twiz0qVKqF8+fLw8vLivdCXL18GQRBo3bq14Dl/p9w5G4LczDxJHiDfY3e4xY5SUri+108a70VJwe/oHe765oFASaArhmZwdedNLRK8dNy78FAU24GhGaQnZvAWu+t7/CSBrkiSwNWdGv6VTy8j8f7JJ9F20BTLI6M+JgDYL2x9IH7X9vhy1w9vPEPq1zRRbA5KSSP4ymOkfE3l0q7s8JYGPCQJHn9VwPF7kqinNEXjxn5/KArYxS4vJx++R25Lcvrk5eTjlpYheH2vvyRAGwBc0erbb18S8cT3hWgZDM3gW1QiXgS+4dK8dvtKj5+MhNcuzSIRGhyGmPA4UURnNW2BNqHg1Z03JUHgZHIS17WIMO9deIjstBxREF1aSSPwVBC32NE0Da/dvpK6wdA0fI9odMPn0C1JlF6aonF1lw+3OGemZuH26RDxvmXYPCGXNYsdqxvixxYESfB4u6LexUjyzdEUyx/37uEHLk2fbpByEtd2a3Tjmd8rJMUki77rNEXj4fVnSIrVBE1c2XlTEu2bJEmOkBIAAk8GIT9PnEaCpmjcPBSIAlWegnwFbh4MlBw/RZ4CgSeDuGvv/QGSOyYMzeCqFu9TUlwKG20oMbclx6Xiic9LLu3aHv26cXWXj+jvP4MQzF//+7fKD3MMXLx4Ebt27YJCoeBZzr6+vti3bx8mTpyInj17SjxBWi5cuICsrCwuMik4OBjfvrFfzr1794aZmRn27t2Lmzdv4syZM7C3Z8/5J0yYgOrVq6NGjRowNTXF+/fvcePGDdja2mLo0KG8MiZOnIi5c+di1qxZaNu2LT5//oxLly6ha9eu/+8h7tFhsZAbyCShxxV5CiTGpKB8zTLISM7UyxtEykhEh8VqyngfpxdmPTkuFQV5BTAyMUL85296kX1lchJf3sUCqqGNDI2WBLqiaQZftOoUE140Ft3osFgu/PrLuxg9Rh2NSNWZu7oMUkbqWewYxH1KgHUpKygVSiRGS/MGMTSDL+FafRseC1JOSiKx5mSwDr0ly9ogOS5FL2+QXC7jj194nCRAG8MwiPug+WKO+fBV79cWQRD48i4WjdqxYHNR+saPohEVqiFKjS7q+IXHcUCMMe/j9PKPRb3VLiMWMgOZZN8qC5RIiEpC5fqmyErL5u1Y6hKCJHh9G/M+TmX4i9crPTEDuZm5MLUwRUJkol7UZJmBDNFhmv5hdUP8HoZm+HX6Dt1QI+Pq0w1aSSNC5avF3hvHHdWJ1othEPM+HiXK2IBhGMR/ShDNC7DvSHQ4vx1yufTclpedj+T4VNhXskPq1zTOf1BMuHlH3Y73wh3swvI18hsoioJMJkPcx6+SgIqAZv5Uwx9EhcYUQTeiRX//Jf+s/JBxExAQgK1bt8LCwgJDhw5F/fr1YW1tjZSUFLx8+RLnz5/nfteOXPoeOXPmDA8o8O7du7h7l93CdXd3F1ApqMXNzQ0PHjzA48ePkZeXBxsbG3h4eGD48OGCcHUnJyesWLEChw8f5uo7ZMiQ/wibuYm5iV4+IwAoZs5G9+iDfgcAMOxzuTJMjdkvZklCQZKDJVeXJSU0zaBYcS0wtOImgjPvwmJipnmusZn+MoBC7TA3QXqS+OJFEEAxi2K88vRBzAPgHEZlcpleQ5OUESim5X9hYmZcpG1bddtNitBummZ4TqzFzI31GmlGWu9FUcpgGAYmWuNcrHgxidzqPIXaXQTRboexqTHyc8QNO4IkUMxCuwyTIo2fuh1GJoYCvxkdpfDabWxqrDcogiQJGJqwPhtFeW9piuaVYWpRTG+9tPvzR/qW9QlKFc8MwFRrjE3MjYs276jGnCAIGJkYShrmpIwsVCdjvYaEOp/2/6Wk8HtrYqZfNwyNDbjdnaLpH83Xv+ImQj+0QmJShAjBf1T+hx2Kf+hY6uTJk7CwsMDBgwcxbNgwODg4oHz58nBwcICnpycOHDgAc3NznDx5Uv/DROTs2bOcQVP4T71LM2/ePN41AIwZMwYHDhzAjRs3EBgYiHPnzmHmzJmiODwuLi44cOAA/P39ceHCBYwePfr/nTQTYJ3RpBRTzdeihrE3MTNB4/b1JbegKSUFFy2Icpc+zSW/PGRyEi17NeOcfcvXKosy1ez18ts499Ac77Xu5yQ5kZEyEq4DNCi6Dq51eIulLjExM0ZDLfAx1wHOku1mALhqOeK26N5EbxvsK9uhYl02KosgCLj0aS65BU0p6UJ920Lyq5yUkXBwq8tRPFiXskKt5tUkj2doqlAZet4RmZxEm35O3HV1x8qwKW0lmh9go2K0nV7b9HeWXOQJkuCNX5OODnr5x4qXMOfxUbn21zN+NMOLRmvZq6le3ahcvwIHmmdkYoRmnRvp1Q3tMlr1aa53/Jp7OHLRTGWqlkKF2mUl+4phGDj31OhGq74tJA0bVjc0721dl1p6+ceMihmhsVbkkOsAZ8njGYIg0Ka/5h1p7uGol3+sZDkbnkN/635OehnUXXoXfd4hVc7w6mjQ4jbmqNeqFkgJqhFKSaNVX834FUU3WvVtwY1XFYeKsBUBIOXqJSPR3ENLN/o5g5CYSEgZCbeBLUV//ynkr/jb/Mv9bn7IuImKioKrqytKlCih83dbW1u4urr+v/Mz/ZulfM0ycOnTXJR/haEZDFvcl5c2eEEf1pDQcQspYzmZtAkIG7evz5Iv6piYCJKleej/ew9NGkHAc2l/0ReaIAl0HOHKC6N2G+wCuwoldZZBylhY+u6TNdxERiZGGDi3l+4CVNJ/Tg9eBFe3iR1gotrF0FVGiTI2aKsVSVGitLVoeLhaPJf25y0K/X/vAYIkdd5DykhUa1SZpb5QSQ3HKnDs0ED3gkqw4zdkAZ8+Y+jifqKGICkj4dyjKY9Gwql7E1SoU07nwkKSBGRyGXrP1ERwyWQyDFvSX5CXqxYBdJ/ciYcA3XGkK6zsLET71tzKDJ3HtuPSTC1M0WemhyCvtgxZ0IcX4txrehfVV7Swb2Vylq+stdbCVaaqPdwGtRQ1BBmawbAl/XhjNXBeL66NutpRr1Ut1G2p4Q1q0KYO6jjV0NluNU2AdgQQQRDwXDZAnH+MJNBuSCsejUSb/k6wr2wnMn4kjEwM0V2Lm8jQyACDC70zhaXf7G683QWPCe46qRTU7bYqZYkOw9twaVa2FizHmYRuDFvC142+s7ux0ZIi41epXnmewVylQUU07yrOkcUw4Cgj1DJkYV8wNETntqadG6Gqg8bgatalEao0qKB7/EgCpIxEv9+6a55BkvBc0k+0zQRJoOu49rwIvPaerWFtbyk6txUrboKu490Fv/2Sn0N+yLgxMzODsbH0Np+JiYno0dEvYeX3w5PhpPrSI1X8UARBwNDYALMPTkSzLvyw0noutbDwzEx24SfYr3D1xNmwbT0sPj+LN2mRJImV1+dy2DTq4xeA3dpedmWOgFbAdYAzJm8bxdaFJCA3kHETSNvBLpiyYzQvv4mpMdYHLuaoA2RyGWSqMixtLbDOfzFsy/GN4P6/d8fAuT3ZSUirDIIg0O+37hg0j2/8lChjgw0BS2CtYtiWGcg4R83SVUth460lAkySSVtHor0n6xROykheeyZuGcEjUQTYCXmF1x/c8Yhcq4yaTatilfc8AabFwrOzuK9oNb8XCMDYxAjzT00X0EI06eCAOUemsEcdhcavedfGmHNsCi+/3ECOtb4LUUU1qWv3ramVKVZ5z+eFXANA59FtMXrNEI4Tixs/Aug8tj3HI6UWcyszbLi1BKVUrNraZZQsa4MNt5YIQCI9l/VHz2mdAULTt6RqQRm2pJ+ATNC+sh3W+i7kQn+1x69C7XJYH7BYgNcza/8EzuDhxo8gYGAkx4y943m7hwDLjr34wmwYm2mPH9u39VvXxrLLc3i6QRAEll2dg3ouNbl2q3XD2MwESy7+jppN+RGTLr2aYfrusZAbylkyVS3daNPfGTP2juflNzIxwobAxSinog7Q7luLkuZY67eIZwwBrCE4ZGEfVXgyydON3jO6CvjmrOwsseHWEm7HTmagKaNUJVtsvL1UAAA4fqMnOo124/etylgeu24oOmoRxAJAxTrlsOrGfG4XUnv8qjWqjLW+CwWO0/NOTuN8V7R1w8jEEH8cm4LG7Rvw8jdqWw9zT0yDkQ7daNLRAQtOT+fll8lkWO2zEDVUbOTa42dqUQwrrs0TYAK5e7bB+I2ekMmFc1uHEa4CTi3T4sWw8fZSlFaFxWuPn7W9FdYHLIaNvfRO6T8t/8sOxT+Ec7N+/Xq8evUKhw4d0nmEo1QqMXz4cDRs2BCzZs36Wyr6s8pf5ZYCgIg3X3D33H3kZOSibHX2q1UKkTQ3Kxe3TocgKjQaxqZGcO7ZVCc4m1oYhsG7hx9w/+oTKPIKULlBRbTu10ISCTkjORMBJ+4h/nMCzK3N0Ka/E8rV0M3vArDn1c/8X+O5/ytQFI06TjXQopujJFpoUmwyAk4EITkuBdb2VnAb1FJgCGmLUqHEfa+neBsSDpIk4NC2HntUJ7EtH/MhHrdPByMjOROlKtmi7WAXUe4qgMW7uXvuAT69iICBsSFaeDRGrebVJb90Pz6PQNDFh8jNykOF2mXRZoCzJFpvdno2Ak8FIyY8Dibmxmjdt4Uo9xHAjt+boDA8vP4UygIlqjWuApc+zSWRdFO/pSPwxD0kRCXComRxuA1sycMuKSwUReHJzRd4eTsUDMMa0s26NpIEKUuISkTgySCkJqShZFkbuA12kZzsFQUKBF96hLBHHyGTy9CkowMatKkj2bdRb6Nx5+x9ZKfnoHTVUnAb1FISbTk3Ow93zoQg8s0XGBUzglP3JqLcRwDbt+GPPyLkymMU5BagYr0KaNPfSRIJOSMlE4EngxD/KQFmlqZo1a+FwMgsXMbzwDd46vsSlJJCrWbV4NSjiSRKeFJcCgJP3ENSbAqs7CzRdnBL2JYXP1ahlBQeXHuKN0FhIAjAwa0eu7MooRuxH+Nx+3QIMpIzYVehJNwGt5REBC7IK8Dd8w/w8dlnGBgZoFmXRqjjXFNy/D69jMS9Cw+Qm5mHcjXLwHWgM88HqLDkZObi1qkgfHkXCxMzY7Ts3Yy3Y1NYGIZBaEg4Hl57CkW+AlUaVkLrvi0kkZDTEtMReCIIXyO/obiNOVwHOusEnlQLTdN46vsSLwLfgKYZ1G1ZE827Ni4SyvQ/Jep1KdHFFQoLyx9+jkF6Gkreu/WvxLn5IeMmKysLM2fOhImJCcaOHYs6dTRfqG/evMG+ffuQm5uLTZs2/dfv3vwdxs0v+SW/5Jf8kl/ydwln3LT8G4yboH+ncVMkz9n+/YXn+EqlEsnJyZg0aRJkMhksLCyQnp7OYcbY2Nhg9OjROH36tODeX8KXL2GxuHuO/TotW90ebQZIf93k5eTjzln1zo0xnHs2RZUGFSXLCH/8Efe9nqAgtwBVHCrBpXczya+bzNQs3DoVjPjPCTCzMkWb/k6SXzcMw+DFrTd45v8aNEWjdovqer9ukuNTEXgyCCnxqbAuZQnXQS1FWasBdnfh4fVneBsSDoJkfYwautWV/HKM/5yAW6eDkZmShVKVbOE60FmSS6YgX4GgCw/w6UUkDIwM0NyjMWo0qSpZRsTrKNy78BB52XkoX7scWvdrIclhlZOZi9tnQhATHgsTcxO06tNclNEdYPv27f33eHTjmWrnpjKcezaV/PJPT8pA4MkgfPuSBIsS5nAd2FKU0R1QfZ36vcKr26FgGAb1XGrBsaOD5M5NYkwybp0KQmpCOkqWtYHroJaSPGdKhRL3rz5R7dyQcOzggHoutST7NuZ9HO6cvY+stGx252ags+SupnrnLeJ1FIyKGcG5R1Oec6wu+fDsM4IvP0JBbgEq1a+AVn2aS+5qZqVl49apIMSpdm5a93cSZXQH2PF7dfetaueGRs1m1eDUzVFSN1IT0hB4Mki1c2MBt0EtueACXUJRFB57v8CboHcgCAINXOuiUbt6kjs38REJuHMmBOlJqp2bQS0lebIUBQoEXXyEj88+Q24oR7MujfTuakaGRqt2bnJRtkYZuA5wkuSwys1idSM6LBYmZiZo2buZTsoJtfwfe98dFjX2vf8mM/QOomLvihV7RUURULH33rtrWXvvvffee0NURCkKir0rFqyIIL13ZibJ748wmQmTZFjd72fd33qeh0dz5ya35dx7cu8576velX509Rm3c9Oie2PJXU31zlvc1wRY2lmgdd9mOseD2kLTNF7cfI3nN1+DoWnUaF4NjTrU/fWpF/7jUqidm969xR2x9MnZs2d/+N5/g/zMzk1eTh7WDduBW2fvcxDgKhUFI2NDTNkzRgduHGARSdcM2Ybs9BzIDWSgGQa0ikajDnUx79RUneOQ9OQMLO21AS+D3rB+GAQBlZKCha055p2aonP2DQA+ewKwc8pBqBQUZHISNM1SGLgPc8HkXaN0FtW4iAQs6Lwa4aHf2AmbACglhSKl7LDs0iydxYVhGBxdfBYnV3oBDKMJ6SQI9JnZBcOW99OZMD+//IqFXdYg/lsie+7NsFvxZWuUxrLLs3QmJ5VShW0T98M3H+yLJAlQKhpyQxnGrB+CLhM8UFCe3wzFst4bkZGcmV8GA0pFo5azIxZdmK5znJWTmYNVA7bi/pUnvL41sTDGjEMT4dy9sU4ZN0/dyUdozoNcLuP61rlnE8w8PFHnOCQlLhWLuq3DuwcfeGVY2Vti0fnpqOWsy2d0fuMVHJhzAhRFQyZjx4+hGXQe745xm4fqTMpRH2OwoPNqRL2P5nwKKCUFhwrFsOzyLB3Di6Zp7J91HOc3+YAA67dB5fODDV7ch/WnKjB+7x5+xOLu65Ack8Ibv8r1ymPppVk6C7ciT4mNI3fhxokQnm4YGhti0o6RcB/K9wsBgIdXn2LVwK3ISsuG3EAGJn/86rvVwYIzU3WMoszULCztvQHPA0N5fWtmbYq5J6YIcrVdO3AD2ycdhDJXydMN10EtMXXvWJ1FNSEqCQs6r8bnF195umFXwgZLLs7UOTJjGAYnll/A8WXnQNMMO34UDQZAr2mdMWJVfx2DJfz1Nyzssgax4fG8vi1drSSWX5mNEhWL8/JTKgo7Jh/Eld3+Gt2gaMjkMoxaMxDdJ3fUafer22+xtOcGpCWm8/q2RrOqWOQ1Q8eozcnKxZrB23D34iPe+BmbGmHa/nGCfFS3zt3HhhE7kZOVy9ONZl0aYvbxSTofDKkJaVjcfT3e3A1j/WgIQKWkYGlngYXnpun4vAGA97Zr2DPjKCil1txG0+g4uh3+2DZCx+CM+RKH+Z1W4du77zzdKFbWHssuz5I8Tv4nhdu5ae4C1U/s3MjTUmF/99+5c/PLc0v96vIzxs2K/ptx++w9YdwJAlh5dS6Px+nNvff4s9VCFjW1wC3qaKnV1+dzaTRNY4rzArwXoBVQOxBue7CSd6Z969x9LO+zUbC+BEGgw2hXTNk1mkvLzc7DqFp/IiEyUSf8k5SxXEP7X2/kLV7nNlzB3hlHRftlxKoB6DurK3edFJOCkTWnIjs9R6cdpJxEkRK22P96I++LcNsf+3Flp79odMvck1N4YbjhoRGY0Gg2VEpKJ3yXlJOo5FQe2x6s5C0s8zxX4YmfACIwwfbV+puLeTxOTwNeYo7HCsE6kSSB5t0bY+FZjY8apaIwrv5MRLzVBWojSQIGRgbY9Wwtzxfq+qEgbChAX8FViwB6TuuM0Ws1YJaZqVkYWXMqUuJ1KTdIGQkLW3Psf72R54txdPFZHFvKh8/Xlj+2j0Tn8e7cdUx4HMbUmc5SbhRoh0xOwqFicex5sZ5nGKwZsg03ToSIhlIvvTSLR4YZ9ugjprSYz1JZFOhfdbTUusBFnNHFMAymtV6EN/fe6+oGwTpHb7m3gnNYBYC73o+wuPs6wfoQJAG3Ia0x/cB4Lk2Rq8Co2tMQ9zVeUDeMzYyw9+UG3o7axa2+OvQH2jJkSR9epFFKfBpG1pjKUm4I9K1NcRvsf72RtxO8e9oReG32EcX3nHl4ItoNbsVdR7yLwvj6M1kuMQHdKF+zDHY8Xs0zmhd3X4f7V54I6wYIrAlYwONxehn8BjNcl7BjJzC3Ne5QD0svzeLSKIrCH43n4vOrrzrvLUESkBvKsfPxGl70YeDx21gzeJtgmwmCQNdJ7TF+0zAuLTsjByNrTkVyTIrg+JlZmWL/6428CKtfRTjjptnfYNzc+3caN/8ZbqlfTSLff0fw6buigFoEQeDoYv6u1/Fl59n/CNxCU6zTW9gjDTT78xuheCcC587QDBiaxpm13po0hsknaRSuM8Mw8N0XyINmv3nyDmLDdSdvdZ1yMnNxabsGBl2Rq8CJ5eeFC8iXU6u8kJvPmA0AV3b6CRo2AIvAGh+ZiBsnNNDsSTEp8NkdII6/QwCHF57m/X5m7aV8jiDde2gVjQ9PPuOpvwaa/cPTz3jk+0wYa4Nhx69gO48uPivatzTNIOT8A0S81SCe3rv8BOGh34TbTTNQKVW4sNGHS6MoCkcWnREuAGwI7sWtvjw0X79DQUiOSRVEQqYplodLG1o/Kz2b40sSk6NLzvL4xy5u8RU0bAAWvyTqfTRCzj/g0qI/xyLw+G1Rw4YgCZ12nlzpBYbR5RlSt+Nl0Bu8uafhkXt1+y1CQ94J6wbDGkinV3nx0tQEpkLC0Az8Dgfx+Mdunb2P6E+xorqRm5UH723XuDSlQilpNALAmbXePP4xn93+yEzJFO3bpO/JCNCinUhNSIP3tmuSwOWHF53hcUKdW3+Z5aIS0Y3PL77i4dVnXFp4aATuej8S1w0SOu08tvQc27cic9v9K094/GOPr73Ax2dfBN9bhmZAqyicW39Z8wya5njahIRhWLqGlPg0Li3g6C0kRCWJjl9Wajau7gnU+e23/Bry27j5hyTkwkO9wGZhjz5xhkROZo4kbxDAhirePnefu7597r7kuT6lolkuqXw/qW9h3xH1PlofYwPuaJHF3Tp7V/LMnaZYHiC1vAh6o5dGIjs9h8d/dPPUHWlQNxAIOq0p496lx9JotQwQ/SkWX1+zlA0Mw+DWuft6AQ+1+zbk/AO9wGbPAkORmcryH6XEpbK8QXpA3W5rLfK3z9/XA0xHI+jMXe7649MvSIySppFQKVQ8brCg03ckQRgZmkGQ1vg9uf5CL41EWkI6z5AI0jd+JIFb5zScWne8HurlDfr84itnSChyFXjg8/Rv1Q2aonHv0mOOGyz6cyy+vo6U7CuCIHhEisFn7+kFbdTWjdCQMGQkZ4rmB1jagif+r7jroFN3pKkUwPB0g+VXkqaRiI9IwKfn4Zp2nLknDconI3H7vKZvb527r0c3GITefoe0xHQA7NH5y+A3ekH5eONXCN0IPnuPG68vLyMQ9zVBNL/6nvuXn3DXwVq6JdgOmsaNkyGSef5p+S+Hgv82bv4hyU7PFgXw4+XLYDlXcrPy9KNFEqxhwN2bmQuGFp8wAPb8WE0AqX2vmJAkycuXmZqtF2o9O0OTPydDfxlsXbIF/y8kDMMgK1XDGJyTkSO5qKglK78dKqVKkgQTYCfkLK26Z2fkSJKScnXJ58zJLkS7SZLgj5/IbpW25Gpx8qjfFSkhCpShz9AsmKcw7QD471JOlnS9GJpBViq/jMKMn7qM3Oy8QtA1MPw6ZebqfW9pmoEi35DLKUTfkjK+bmSlZumtV85P64aeexggM42fv1DzTv5zGYZBntYuqpDQFM3v24xcvdQWgOZdKkzfEkQB3cjQrxuKHAW3A1Uo/ZORvL7NSsvWO+fqm5t+CfkPohMDv42bf0xKVS0JlZ4vKAMjOexLsdFDlnYWMLOS5gGiKRol88kKAbARHHomGVsHay5qyqFCUcmvISDfUbGqpoyy1UvpZQUvrVWnklXEo0q0RbsdpR1LSU7IMjmJMlpOr6WqlNA78REEgRIVWSdkA0MDFCklHokCsEaBdkRMYcowsTCGdVHWCdmuhK1e2gKVikIprf4pXcVBmhWcAA+7pmSl4uJ584WhGZTijV9pyTJIGYkyjhqfnlJa4yIl2u0oWdlBcrGTyUkO6E5dhhRpJsCCvBUtw2IimVmZwsJWGnKCphmdOukTqyIWHHdQ0bJF9NIWUEqK937r0w2CJHh1KlVI3SjF042Skjork5M8DJ5SVUvo55YiNP1DEAQcKhSVzE7KyAK64SC50wOwNBJqUE6b4tZ6ufMoFc17b0tVdtA7VxUtW4TzAypRsZheShaaonl9W0bf3FZAN37LryW/jZt/SLhwYRGFI2Uk2g5oyTnJyuQydBjZVnoik5FwG6JxBGw/oo30NjpJoNNYDRS7tb0VmndtJFoGQRCwKmLB41/pOLqdXlbwTlrOpZWcyqNS3fKiZZAyEhVql0WV+hrk5E5j3SQnZEpFw3NMO+66UYe6sC5qJbqgkjISTTs34DkCdh7nLn2EQNNoP7Itd912oLPksQYpI9F+eFsusszY1AjtBreWHD8jEyO4aHHVtB/lKskKToBA5/GaqK9iZe0l+ccIkoB9aTvUc9U4cnYc006yDJqieRDzNVtUQ8nKDqLGJikjUaN5VZ6Tc+dx7mAkPgMLjp9zj8asIS+hG636NNMg5spk8BzTTrJvSZKAmxYNgXsBFF7d/CQ8x7pxx2OWthZo2aup6GJHEIC5jRlaaHFLddCjGwzNoNM4jW6UrV4ajo0ri+sGSaB0tZKo3lTD29VprJukkV2wb+u71UaRkrai7zopI9HQoy6PYqXTOA+9x2sdRmkoOtr0bwEDCUOelJFwG9KaC7c3NDKAx7A2kuNnYCTnoYq3H9mW5xdUUAiSQBct3ShS0k6Sf4wgCdg62KChhxOX5qlvbqNodBrrLvr7LyE/s2vzL9+9+W3c/ENiYmaMP/eNBQFCZ6Eg5SSKlLTFsOV9een95/VgF5YCCqqeeCZuG8ELVy5axh6j1rCRMQUXelJGomKdcugxlR/2OWb9YFjaWeiUoeaWmX5wAi8UvEazqhruqALzH0ESaNShrg653LT941iuIYEyDIwM8Of+cbz6turdFE07NxA1VjzHtOOFRMsN5Jh5eAJIGaFThkzORgCN3TiEl95tcgdUrldBt2/zyxyxcgAv3NzS1gKTd47i2lmwHQ4VimHAgh689CFL+8C+tJ1uu0kCIICpe8bwQvnLOpbCoIW98usBnXuqN6sCz7HteOkTt4+EmaWJziJMykjIZCRmHJrA82dp4FaHo6koKATBkiY269KQ1x8zDk2AzFAuOH7GZkaYsnsML919mAvqtqmlu0DmX/ae3pkHF2BkYoRpB8azUUsCfWtb3BojV/NpJPrM7IIy1XR3MdRljts0jGfMFilhi7EbhnBtKlhG2Rql0Gt6Z176qDWDYGWvy8PFjh+B6QfG87CjqjaoiB5TPXlt1a5X/Xa1eVFJADB17xgYmRoK9q3ckKVl0a5vi+6N4dyjsegGrcdwFx4JrUwm494BId0wszLFhC3DeOmdx7uhmoDRpS5zyJI+vB0PMyszTNk9mo2MEhi/YmXtMWQJH15k4MKeKF7OXnj8CGDSzlGcMQuw/GPDlvXLr0eBMkgSVRtW5HHaAcD4zcNgbm2ms1OpprqYcWgC74OlTusavA8aftsJNO/aCC166MI9/EryX/a5+R0K/pPyswjFzwJf4eiSs3hzl3XANDA2QLuBLTF0WV/YFLPWyZ+Rkomji87i+qGbrB8OgMr1K2DQwl680FhtuXX2Ho4vP4+vr9lIHFNLE3QY6YpBi3oJ0gTERybi8ILTCDp9l/NFcXKpiSFLeqNmC11cFYZh4LPbH2fXX0ZsOOvkaV3UEl0ndkCfWV0EKRi+vonE4YWnOedfgiDQtHMDDF3aRxA7QqVU4ey6y7i41Rep+RENxcrZo9e0zug8XpgI8M299ziy6Aye3wgFwB5ltOrTDMOX9xOEss/JzMHxpefhszeQO0svW6M0+s/tLsr++/DqUxxbeh7vH38CwG63uw9tjSFL+ggCoqXEp+HIwjMIOBoMRS7rrFq9aRUMWtQbDbTYnrUl4OgtnFrthciwaACAubUZPMe6YeCCHoJgczFf4nBo/incPv+AdR4lgAbt6mDI0j46fEkAuyvlvfUazm28wjkk2zrYoMeUjujxp6cgWNmn5+E4vPA0Hvk+B5OPVdSiWyMMXdZXkKZDkafEqZVeuLzTj4vWKlGpOPrO6gqP4W0Ex+9F0GscXXIWobffAVB/vbO6IUTzkJmahaOLz+L6wZucr1OluuUxYH4PtOgmvAiFXHiAE8vP4/PLCADsUWKHEW0xaHFvQSDNxOhkHJ5/CjdO3uF0o3ar6hi8uDfqtNLFVWEYBtf238Dptd6I+RwHgD3u6jKhPfrO6SoIxPgt7DsOLzjNRRwRBIHGnvUwdGlfQbBOSkXh3IYr8NpyFSmxqQBYZu9e0zqjy0QPQefsdw8/4sjC03gawDony+QytOrdFEOX9RUEtMvNzsOJZedxZbc/54NVxrEk+s3pLojHBQCPrz/HsSXn8O4hG8FpZGKIdoNbYcjSPoI0D2mJ6Tiy6Cz8DwdxTuvVGlXCoEW9BTGHAODmyRCcXOmFiLdRANgjSs8x7TBgQU9BIM3Yr/E4vOB0vpM0e/RZz7UWhizpw3HwaQtN07i8ww/nNlxG/LdEAOwxWvdJHdBreudfloJBvS4lNXaBytL6h58jT0+F3cN/Zyj432LcpKenIycnB8WKiaM8/v8qfxf9QkpcKrLSc2BXwkYS3VYteTl5SIhKhrGZkSSqr1oYhkHi92QochWwL2UniU6sluyMHCTHpMDcxkySc0YtNE0j/lsiaIpGsbL2hVL8jJRMpCWkw8reUpIzSC2UikL8t0QQJIGiZYpIRtWoJTUhDZkpWbB1sJHkfFKLIk+JhMhEGBobslv4hXCOTIpJQU5mLoqUtJXkJVJLTlYukqJTYGphXCicDIZhkBCZCKVChaJlikiiE6slKz0bKbGpsLA1l+TTUgtFsX0Lhu+vICXpyRlIT8yAdVEr3pe1mKiUKhaIUc76zBSmbzndcLCWRLdViyJXgYSoJBiZGEqi+mpL4vck5OUUXjdyMnOQFJMKMytTSVRmtTAMg/hviaBUFIqWKSLJuaaWzNQspManwbKIhSSqtlrUugGCPaIsjG6kJaYjIyULNsWsJFHR1aLWDQMjA9iXsivU+CXHpiA7o/C6kZudh8TvyTAxNy4UMSXDMEiISoIyTwn70kUk0YnVotaNvzq3MTSDomWK/LJGjVp+Gzc/YdxkZmbiwIEDuHnzJtLS0kAQBIKCggAAb9++xaFDhzBy5Mh/XYf8VfnNLfVbfstv+S2/5VcSzrhp9DcYN4/+ncZNobilCkp6ejrGjx+PyMhIVKlSBdbW1oiIiOB+r1ixIl6/fo2AgIB/XYf8ryUmPA5em6/i5qk7yMnIQYlKxdF5nAc8RrQR/AKhVBQCjt7CpR3XEfEuCkYmhmjVsyl6/OkpytodHhqB8xt9WP6cPCUq1i6LLhPbo03/FoJfd7nZefDdG4gre/wR9zUeZlamcB3YCt2ndOQ5GmrL67thuLDxCp4EvAKTzy3VfYonmnjWF8yfkZKJS9uv49r+G0iJT4W1vRXaj2iLLhM9RPltHvo+g9dmH7y594H1WXCtjR5TPQUpCAD2a/ziFl8EHLuFzNQsFC1rD8/R7eA51k3wC5KmaQSfvgvvbdfw+eVXyA3laN61EXpM9RTl7or6EI0Lm3wQfPYe8nIUKF21BLpMaA/3oa0Fv+6UCiWuHwzClV1+iPoYAxMzI7j0bYHuUzrqwOSr5eOzLzi/8QoeXHkKlZLllur2Rwe07NVU8Ms5OyMHPrv94bM3AIlRSbCwNYfbEBd0m9RedJfoRdBrXNjkgxdBr1lW8JaO6DnVU5CeA9CAwfkdCkJaYjrsHGzRYZQrOo93E+R+YhgGd70f4eJWX7x/9AmknESj9nXRY2onODbWPSoDWFoPr81XceNkCLLTs+FQoRg6jXNHh5FtBXdXKIrCjeMh8N5+DV/fRMLI2BDOPRqjx1RPUe6ur28icWGTD0IuPIAiT4nyNcug68T2aDOgheDOlSJXAd99N3Bltx9ivsTB1NIUrgOc0X1KR1HW7rcPPuDCpit4fP0F6Hxuqe6TO4r6kWWmZuHSDlY3kmNTYGVvCY9hbdD1j/aiO3CP/V7Aa5MPQvNZweu2qYUef3oKHpUB7E6j91Zf+B8JRkZKJuxLF8nXjXaCu2MMw+DW2Xu4uNUXn56HQ24gR9PODdDzz06i3F3fP8XgwqaruHX2LnKy8lCqsgM6j/eAx3AXwZ0rlVIF/8PB8N5xDVEfYmBsaoTWvZuh+1RPUe6uTy/CcX7jFdy//AQqhQoV65ZHtz86oHWfZoJ9m5OVC5/dAbi6xx/xkYkwtzFHu0Gt0G1yB9Ed8Fe33+LCJh88uxEKhmZQs3lV9JjqyUOP/1XlZ/1m/nM+N1u2bIGXlxcWLVqENm3a4NChQzhy5AiCg4O5PLNnz0Z8fDwOHjz4d9b3l5Of2bkJe/QRM12XIi9XwUWsqPWxprMjVl2bx/OpUClVWNxjPR76PAVBEhyGhkxOgpTLsPLqXDi51OSV8cDnaT5kPMN5/pMkAZpm4NKvBWYf+4Nn4GRn5GBGm8X4+DycB4VOykiYWZpgQ/ASHZ+Yq3sDsHncXshkpKaMfE6cvrO6YsSqAbz8idHJmOq8APERibyIB5IkYF+6CDbfWaZznHB4wWmcWHFBw0OV325KRevA/QNAxNtITG25EFlp2Zpoknzo94pO5bA+aDFvG56maawbugOBx29z/aMuAwAWnpvOc6wFgJe33mBu+5WgVCqu3epxaejhhKWXZvEmcUWeEvM6rsSLoNcgQHCRbDI560i9JmAhqjepwivj1tl7WDlgCwgCOn3bYVRbTNk9hjeJZ6RkYmrLhfj2LoqHsULKSFjaWWBTyDKdheLCJh/snnYEpJzk3kN1GcOW90P/ud15+WO/xmNKi/lIiUvjReoQJIESFYtj851lvK1+hmGwa+phXNzqqzN+NMVgxqEJOo61H599wfQ2i5GblVdg/IDqzapitd8CnoFKqSgs67MRdy8+0tENgiSx/MpsHUPt8fXnWNh1LRia1hm/lj2bYO6pKTwDJycrF7PaLUXYw09cu9R9ZWJujPVBi3lUJkA+HcbInYK60WOqJ8asH8wbv5S4VExxXoCYL3E642frYIMtd5bpGFHHlp7D0cVnBXVj/OZh6DapAy9/5PvvmOq8ABkpWTrjV65GaWy8tZR3xMgwDDaO2oXrB4N0ymAYYN6pKWjZsymvjNd3wzDbfTmUCqXW3EaAAYN6bWth2ZU5vI83pUKJBZ3X4GnASx3dkBvIser6fJ2PmBCvh1jRl6WKKTi3uQ1pjWkHxvHmtszULEx3WYQvod90+tbc2gybQpahTDX+B6L39mvYMemgoG4MWtgLgxf/OO/i/6Wo16Xkhj+/c2P7+N+5c/ND0VJ3795F06ZN0aZNG9E8Dg4OSEiQRoT8LwulorC4+zoWll4r3JCFkAfe3AnDieUXePdc3OKLR/kw59rKSaloqBQqLO6xjkdbkJGSieV9N4KmKF5Io3rhDjp1B9f2a6D1AeDAnBP49OIr+3wts5emaGSl52Bprw288PLI99+xZdy+fLI+mpcfAE6v8cYTLdoCANg0ajcSIhN1QjlpmkHi9ySsH87nRnp2IxQnVlzgPVfdboDlkdKmLWAYBkt7beAbNgDAsL99eRWB/bOO88rwPxyMwOO3ef2jLoOiaKzot4lHW6DIVWBJj/VQKZS8dqvH5Yn/S5zfcIVXxqmVXngZ/Iarh3YZilwlFndby6MtSIpJwepBW0FTtGDf+u67gaDTfBTVXVMPIzLsuw54nJpKYWW/Tbz0j8++YPe0I2wegTIOzT+F13fDePesGbyN5aIqEILM0AxiwuOwdfw+Xvr9y09wcasv77nqdjMMg/UjdvJoCyiK1Q2eYQPk9xvw7v5HHC1Av3Bpx3Xc837M1UO7DEpFYUnPDTzagqz0bCzttQGUkhIcv9sXHsBndwCvjCMLTuP9488cPYN2X+Vk5mJJj/W8dzrmSxw2jdolqhsXNvnwaAsAYPO4vYgNjxccv5TYFKwdup2XHhryjqNpEdKNnVMO8WgLGIbB8j6bdAwbddsj3kZx74NabpwIwfWDQYJl0DSNVQO3IiUulUtXKpRY3H0dFLkF5zZ2Tnl+8zXOrPHmlXF27WU8C3wlqBvKvPzn5Sm59JT4NKwasAVUQd3I7zf/I8G4cZyPHrx3xlGEv44U7NvM1Cws682f28JDI7BjMvtxLqQbx5aew8tbb/DLy38wDBz4QeMmKSkJ5cqVk8xjYGCAnJzCIW7+F+WBz1MkRaeIYlTQNIMru/w5+HeapuG11VcUt0aN8hp8RgNjH3DkFhQ5SlE6BYIg4LXlKnednZEDv0NB4nWiaER9iMGLIA01gs/uABAyaYA2722+3HVMeBweXX8uih9BqWg8DXiF759iuLRL269JgmnJZCSu7PLnrkND3uHbu++S7fA7EoysNA2qsdeWq+JYHgygVKjgdyiIS7p17j4ykjNF8XcYmsHFbdc4aguVUoVLO66LItbSFI2UuDTcu/SYS7u2/4YkhglJErioNX5piem4eVKc6oCmaHx8Fs5FdgHA5Z1+0n0rJ3Fph4b/KPz1N7y+EyaKjUOraNy5+AiJ0clcmtfWq3oB167u1XD0PLn+gnNMFyyDpnF1XyDyclhDnmEYXNzqK4qlw9AMcjJzePxjN46HsMjGIspBgNUN9e+52Xm4KjEeNEUjNjyexz/msydAEkSTlJG4uFUzfvGRibh/SYBsMl8oFY2XwW8R8S6KS/Pe5qt3/K7s9OOu3z38iC+vIiTbceNECNKTNYa8Pt2gVBRn/ADAHa9HSEtIF33XGZrBpR3XuWgliqJwacc1cd2gGaQnZeDOBQ01id+hIPZDQGxuI/lzW0ZKJgKO3ZZs99fXkTzakCu7/CHTA5CozQ32S8rPGDb/cgPnh4wbS0tLxMfHS+b59u0b7OwKF6nwX5SwR58gM5D2uM9MzeL4UNKTMvTyBskMZHivRZz5/sknSfAthmHw7d137osoMuy7Xt4gUkbi/SPN4vj2wXtJEDhKRePt/Q/c9cenXwqlMB+efNGUcf+DJJgWpaJ5k9L7x5/1LqbKXCUXPkqpKIQX2KoWkvdPNO3+8Piz3vFLjklBShwbtp4QmaSXN4gdP00Z7x9/kgQvpGkGH59p+ik89Jte3iCCIBCmPX733uvt27f3NOP3/vFnyecD+dxPWtxE7x99ljTSaIrGuwf8MvRFo2Sn5yA6P7Q6Ky2bhSCQGD6ZTMYz6t4/+STNX8UwiP4Uy4WUf/8Yw6O6ECxDTvL6590DYdJatdAUzRuLT+qjYD3yQauMQunGfS3deCQ9JwAs/1h4qIZ37dPzcEndYBgG7x9rzTuP9c9taQnpSPzOGsBJ0Ro9ERO5gYzXVx+efJIcb5Z/LJzbSYt4E6mXYoUgCV7fvrlfCN3Q6tvf8mvJDxk3derUwd27d0UNnK9fv+Lhw4do0EAYd+W35PtyFGIiU08ShQ091PbxkMlleumPCALc10mhymAYyLTKKExIq1xroit8O2SC/xcTA0PtdpOFWiTU7SBIQu+ETxBEgb4tnOrIufErRH4GvEVBZiDTWy9S/tf6lmEY/ngUom/lhn+93bK/2Ff88ZMVavz+Ut+iwHsokxUqjFn97ML1Lf5y38r+4vgVfG6hxq/AnFCYeUf7Hn0fCgRBFBhvWaE+YNR1L4x+M9CdR/TObSTJjTFZqLmN35+Fm9t+KCbnfyb/ZRC/HzJuBg0aBIqiMGHCBPj7+yMtjbW6v379Ch8fH0yZMgWGhobo27evnif9d6VR+7rS/CsE4FCxGIqXY3ldLGzMUbleecnFjlJSaKAFH97A3Ukvm28dl5rcpFq+VhlY68HsoPOdZdXSuEM9yTrJ5CQvYqpWS0feYikkcgMZareqzl038ayvl6OnsVYZDdyd9O7CWBWxQIXaZQCwiKb12taSnMRpikYDdydNGR51JfmPCJJAxTpluegW+9JFWL4eiQmZUlG8CIyG7k6Si7xMTqKRVv4qDSrA1FIPDgwB1NcCC2ziWV+atkBGoqlW39ZtK4A0XECMTI14FAGNO9aTHj+CQEMtkLYGHk56ebvsS9tx/Ecm5iZwbFpFkn9Mp289nCR3uUgZiZotqnEO/aWrlYBdCWnMFZqiefqnXzdkPN2o2byqXv4xUk7CyUUTAdXUs4FebrAmPN2oo9e2Mbc2Q+V8+hOCINDQ3UmyDIZm0FBLN/T1LUGwAIBqDBubYtYoW6O0pLFJKSn+O+LuJLmrKZOTaOBeh3tmpbrlYWEjjcPEMAxfNzrWl9zdk8lJUeDUX0Z+H0v9NalYsSIWL16MzMxMrFy5Et7e3mAYBkOHDsW6deuQl5eHxYsXo3Rp4fDL3wI4NqmCao0qiU/6DNBnRheewveZ1U100ZbJSZSqWgIN3DXK6dyjsSDcv1poikbvGV20niFD7wKQ89pCykjUa1cb5WpoxtVjRBsYmxkLT+L5SdrRGpa2Fug4ylV00idIAu7D2/BCXrv+0R5cqEzBOpEEjEwM0UELJr1MtZJo2L6u5KLd889OPCC83jO6iC6opIyEXQkbtOzZhEur51pLkhiRoRn0ntmVGz+CINB3VlfRyYKUk6hcrzxqtqjGpbXp3wJWRSxF20FRNHr+6cldG5kYofvkjqJftKSMRIvujTmDGQA8x7pBbigXXFgIgr1HmxusSAlbtB3gLGpIEASBLuPdeWCJ3ad4ii5EpIyAmbUp3Ia05tKqNqiIGs2rSRpEfWZ25S08fWd2FS1DJidRomIxNO5Yj0tr2rkBipcXJ4qlKRp9ZnbVPEMm413rtoNEndbVedFSbkNbw9TCRHSBpGmapxtmVmboNNZNnPeJJOA6sCUvnL/LRA+QBCE45gRJwMBQjo6jNbxPJSoWR7MuDcV1gwC6T+nIi2TqOa2TpG7YFLNC677NubQ6rWugYp2y4rrBAH1nddPRDTFDnpSTKF+rDC8StHWfZrAtbi2uGyoavaZp5jJDIwP0+LOTJF9Z004NeJGEHUa7wsDYQHRuIwgCnSd46P72HxeFQoFdu3ahW7ducHV1xZgxY/D48WP9NxaQP//8Ey1btsSmTZt+qB4/zC3VokULnDlzBuPHj0fr1q1Rv359ODs7Y+zYsTh16hSaNm2q/yH/YSEIAosvzuQ4WdQToHpC6D29M4+MDgBa9WqKYcv78fKpFc++dBGsujaPF7pqYGiA1X4LYFPMiisTyN9mJoAJW4bzvrgAoMefnhzRnroM9QRSyakc5p2cwstvbW+FVdfmwcTcmLdAkiQJuVyGeaem6oSOj14/mFtoCpbRwN0J4zcN5eUvW7005p+ZCrmBnLeoEgQBIzMjrPSdp0NVMef4JFSuV4H3bHVZ7Ue2Re+ZXXj567nWxh/bR4IgNXxUBMEaVNb2lljjv4CHrUKSJFb6zkWxsmxYrnoc1F+4gxf31qFscB/mgr6zu/HbnX9fyUoOWHp5Nq8PTcxNsMZ/AYvcTGh8U1kuHALT9o3TocMYuKAn2vR3Fuzb6k2rYPqB8bz8RUsXwbLLs2FoYsibxAmSgIGRARZ7zUDJSvzQ8Uk7R6F26xqCfduieyMMW9GPl79qg4qYffQPFrJAvRjlLw6mlqZYfX2+DrrxogvTOWwaMt9hXV1G98kddUL/m3VpiFFrWL4p9Rio+9KuhC1WXZ/PO/ZRhxerd2O48cvXjTHrB+tgNHX9o32+oa07fuVrlsb8M3/y8lvaWmDV9fkwsSygGzISMgMZ5hyfzL2jahmxegAHOVBw/Jza1MQf20fy8peqUgKLLsyA3NBAZ/yMTAyx3GeODqzCzMMTUC0fW6jg+LUb1Ar95/FD/+u0qoGpu8eA5OkGAAKwtLPAGn9+WD5BEFh2ZQ7HWK+ul7qMAfN6wHUQn7Kh7QBnDFzQk5dPfZ9D+WJY7jOH14dGJkZY7b8AVkUsuHdJ3R6CJDB512gdWIy+s7vCfaiLYN9WbVgRM49M5OW3c7DBiqtzYGxqxOtbMt9oXHBumk7o+C8nP3sk9QM7N6tWrcLZs2fRrl07TJo0CSRJYubMmXj16lWhn3Hr1i28efNzkWi/uaV+Un4WoVipUOLuxUcIPnsPWWnZKF21JDqMaquDl6EtEW8jcXVvIMJff4OJuTGcuzdBq95NRWHjc7JyEXTqLu5dfgxFjgKVnMqhw+h2osBYAIvBc23/DXz/FAurIhZw6dcCTTs1EPULSE/OgP/hYDwLfAVKRaFmc0e0H9lGFP6eYRi8CHoN/yPBSIhMQpFStnAb3BpObWqKfukmRifj2v4beHM3DARJop5rbbgPay0KTU+pKDy8+gw3T4YgNSEdJSoWh8eINjpYMtoS/TkWV/cE4OPzcBiaGKKpZ3206d9CFPZfkavA7fMPEHLhAbIzclCuRml0HN2Ot7tVUL68isDVvQH4FvYdZpYmaNmrGVp0bywKG5+dkYMbx2/jwdWnUOapULVBRXQY7SrIAQSwffvm3nv4HbyJmPB42BSzQtsBLdGwvZMopUJqQhquHwzCy6DXYBgGtVpWR4eRbQX5zQB21+Gp/0sEHLuN5JgUFC1bBO5DXVC7ZXXR44X4yET47g3Eu4cfIDOQo5FHXbQb3FIQ9A9gI8zuXXqMoNN3kZmShVJVHNB+ZFtUqV9RMD/A8jL57g3Al9AIGJsZo3nXRmjdp5kgBxfARkEFn76Lu5ceIS87DxVql0PH0a6igJgA8P7JZ1Y3PsbAwtYcLn2bo2nnBqL+F5mpWQg4eguP/V6AUqrg2KQKOoxyRdHSRQTzMwyDV7fewu9wEOK/JcLWwQZuQ1qjnmstUd1Ijk3Btf03ERryFgRBwKlNLXgMdxEF/aMoCo98n+PGiRCkJaSjePmi8BjeBtWbVhEdv5jwOFzdE4APT7/A0NgAjTvWR9sBzqKUJoo8Je5ceIDb5+8jKz0HZR1LoeNoV0HuOLWEv/4G372B+Po2EqYWJmjZsymcezYR1Q11FNwDnydQ5CpRuV4FeI5pxxlWBYVhGLx78AHXDtxEzJc4WNtbos0AZ/boVEQ30pMy4HcoKB/Ej0Yt5+rwGNGmUNQQ/5So16WUui6gzK1/+DmyzFTYPC88zs3bt28xduxYjBs3Dv36sR85eXl5GDp0KKytrbFr1y69z8jLy8OgQYPQsWNHHDhwAN26dcPUqVP/ct1/Gzc/Kb/pF37Lb/ktv+W3/EryTxk3u3btwtmzZ+Hj4wMzM81Hy/Hjx7F3716cO3dOLwfl4cOHcfXqVRw/fhzt2rX7YePmp1y93759i7CwMGRmZuoAsgHsVuGQIUN+poj/hORk5eKp/0tkpWWjVJUSkl9PAPv18eHpF0S8iYSxmRHqt6st+vWrlvTkDDwPDEVejgIVncqJ0gmohaZpvL4ThpgvcbCwMUd9t9qiX79qSYxOxqvgN6AoGo5NqkjuDAHszsqzG6FIjkmBbXFr1G1bS2/0wfdPMXj34CNIkkDtVtX1EiMqchV44v8SGcmZKF6+KGo5O+olFPzyKgKfX3yFgZEc9Vxri9JBqCUrPRtP/V8iNysPZauXQpUGFfWO37uHHxH1PhomFiZo4FZbLyFkakIant94DZWCpV+Q2hkC2PF7GfwG8d8SYVXEEvXa1dZLKBj/LQGhIWFgGAY1mlcV3RlSi1KhxPMbr5ESlwr7Unao41JDL9nmt7DvbKiwXAYnlxp6SUNzs/Pw1P8lMlOzULJScdRoXk1vlNPHZ18QHvoNRqasbugj9MxIycSzgFfIy1GgQu2yonQCamEYBq/vhCH6cyzMrc1Q362OXkLIpJgUvAx+A0pFoVqjSpI7QwCrGy+CXiPxezJsilmjnqt+3Yj5Eoc3996DIAjUaukoujOkFkWuAs8CQ5GWmI5iZe1Ru1V1vboR/vobPj0Lh9xQjrpta+olnczOyMHTgFfIychBqaol4Ni4sl7dCHv0CZFh32Fiboz6bnX0kt2mJabj+Y1QKPNUqFS3nOTOEMDqRujtd4j9Gg9LOwvUb1dbL1lqQlQSQm+/BU0zqN60iihVyi8nP+sU/Bfv/fjxI0qVKsUzbADA0ZE9Pv/06ZOkcRMXF4cTJ05g9uzZMDLST7IqJT/MLTV37ly8fv1aMprjR4yb7OxsnD59Gm/fvsW7d++QkZGBOXPmoH379nrvffr0KQICAvDq1SskJCTA1tYW9erVw4gRI1CkCF/RJ02ahBcvXug8o1GjRli/fv1fqvOPCsMwOLnSC6dXX0RulgZZuHS1Eph+YDyqN9W1lD+//Ip1Q7fj80sNl5ehsQG6T/HE0GV9dBYXlVKFvTOP4coufx7OQ9WGlTDr6ETBSfb5zVBsGr0HMV/iuDRTS1MMWdwb3SZ30JmcsjNysGXcXgSdvstzeK7vVgczDk0Q3L4NPnMXO6ceRkpsKpdmXdQK4zYN1fFVAdht9/XDd+Lx9RdcGkESaNW7GabsHq3DaMwwDC5tv47DC08jKy2bSy9eviim7hmDeq61dcqI+hCNtUO2491DDWaH3ECGjmPaYcz6wTpM3BRF4djiczi34TIUuRr01PK1ymDm4YmCi2TYo49YP3wnh7EDsNFFfWd1Rf953XUWF0WuAjunHsb1Azd5ESg1W1TDzCMTBQ2Qh77PsGXcXiREanCRLGzMMHzlAM6fSlsyUjKxcfRu3PV6pNFngo3EmXZgnODRht/hIOybeQxpiRqwN7sSNpi4bQRadGuskz8+MhFrh27HyyDNOTopJ+E6sCX+2D5SxzhgGAZn113GiRXnkZOhwZcpVcUB0/br+hoB7MK7dsh2fNLC2DEwMkC3P9pj+Mr+OkeqlIrC/tnHcWnHdSjzNLpRuX4FzDw8UdCAfHX7LTaO2o3vHzUgk6aWJhg4vyd6Tuukoxs5WbnYNmE/bpwI4Tnl1m1bCzMPTxA0zkMuPMD2SQeRHJPCpVnZW2LM+sFoN6iVTv7UhDSsH74TD32fcYsRQRBw7tkEU/eMETTuruzyw8F5p5CZqgGyLFrWHlN2jRLkTIr+HIu1Q7bz8KTkBjK0H9kWYzcO1TGcaZrGiWUXcGbdJeRpoaaXrVEaMw6OR9WGlXTK+PD0M9YN24GvrzVo40Ymhug1vTMGLeqlqxt5SuyedgTX9gVCpRW5WL1pFcw8MlHHVwxgkcM3j93D4YcBbHTY0GV90UXAOTgrLQubxuzB7XMPeGtdow71MP3g+EIxwv+T8ndxS2lzRwKAnZ2dzpoKsAC/Qvh26rTExETJ8nbs2IHKlSujbdu2kvkKIz90LLVy5Ur4+fnByckJHh4eKFq0qOgXm5OT0196dkxMDPr06YNixYqhRIkSeP78eaGNm1GjRiE9PR2tW7dG6dKlER0dDS8vLxgbG+PAgQO8Tp80aRK+f/+OMWPG8J5hZ2eH+vWFyR6F5GeOpQ7OO4lTqy7qpJMkCZmhDFvvruAtkFEfojG+4SzkZSt0oxcIwHOMGybvHMVLXjlgC4JP39UxQkkZCTMrU+x+tpbHVfP6zjtMb7MENE0LRmaNWDWAjfrJF0pFYXqbxXh7XxewTCYnUbSMPXY9XcPbWbp17j6W99ko2i9zTkzmGThZ6dmY0HA2YsLjdAADSRmJqg0rYuOtpbwv2/Mbr2DP9KM6zyZIAiRJYG3gItRuqQk3T4hKwrh6MwRh6QmSQMseTTDv9FTe4rV90gFc2nFd5+uGlJEwNDbA9kerUdaxFJf+5VUE/mg6F6o8pWBkT+8ZXTinWIBd4Bd0WYNHvs90xoKUk7AuYondz9fx/GKeBrzEnPYrdGDs1VKQh0uRp8Tk5vPw5aUuai0pI1G6aglsf7SaZ3xcPxSEDSP4FBlsR7H/LPWexQuRTU/KwLj6M5EYnSw4fnVa18Bqv/m8xevYknM4uuSsbhEkAZlchs0hy3gLZPTnWIxvMAs5mbm640cA7sPbYNq+cbz0dcN2IODoLUHdMLEwxq6na3nG47uHH/FnywWgKGHdGLq0LwbM78FdUxSFWe2WITTknaBuFClph51P1/B8xu56P8LiHutEv5hnHp7I4+HKycrFxEazEfUxRrBvK9crj00hy3iGufe2axytgLaoHehX+y1Avba1uPSkmBSMqzcD6UkZOtASBEmgaacGWOw1g6cbe6YfxfmNfPoRdZ0MDOXY9nAVytcsw6V/fROJiY3nQJmnFIzM6ja5A8ZvGsZdqylW7no/0tUNGQkLW3Psfr6OR4b5Iug1ZrktA0MzgroxbtNQdJ/ckbtWKpSY6rwQH599ERy/EhWLY8fj1Xp3Xf8JUa9LqbV//ljK+lWQTvrQoUMxfPhwnfS+ffuidOnSWLduHS89Ojoaffv2xcSJE9G7tzAf17NnzzB16lTs3r2b2+lp2bLlDx9L/VC01P379+Ho6IjNmzejffv2qF+/PpycnAT//qrY2dnh4sWLOHfuHMaNG6f/Bi2ZMGECTp06hXHjxsHT0xOjR4/G6tWrkZycDC8vL5385ubmcHNz4/39FcPmZyQpJgVn1l4S/I2maVBKCocWnOKlH192XtiwAQAG8NntjyitL8oPTz8j6NQdQUWmKRrZ6dk6ddg36zgYEcMGAI4uOcv72rt3+QkLxy9QJ0pFI/ZrPHz3afirKIrS4a4pKHumH+XtUlw/cBPRn2IFkZBZdNuPuOutCTXMSs/GofmnBZ/N0AxomsG+mcd46efWX0ZGqq5ho77n1rn7PITb6M+xgoaNuk6KXCWOLzvHSz+04BRUCpVoyPK5DZeR+F2z2/Lq9ls89HkqOBa0ikZqQjq8Nmsg5hmG4fpW7JvlwNwTPP6x4NN38elZuGC7aYpGxLsoBBy9xaUpFUrsnaFrNLKFsvbNrj8P88q/tOM6EqOSRMfv+Y1QHm1BSnwaxyWmUwTNgKZoHJh7kpd+cqUXcrN0DRuADT2+fuAmj3/sy6sI+B8JFtWN3MxcnFntzUs/MOcEaJoR1Y3jy87x+MceX3uBl8FvRHUjITKRx19F0zR2/XlY8Nlq2TPjKI9/zP9wML6FfRft2/ePP+P2OQ1tQU5WLg7MPSH4bHVfFBzfCxuvIC1R17AB2PG4d+kxb0cn/lsCLmzyESyDpmgoFSocKcANdnTxWagUwoYNAFzc6svjH3t7/wPueD0U1g2KRkZyJi5s5Ndh74yjOrxg2nJw3ike/1jIhYcsSrjI+EV9iIHfoWDBZ/3/JvPnz8e+ffu4v86dhSFDjIyMoFQqddIVCgX3u5CoVCps2bIFbm5unGHzs/JDxk1eXh7q1Kmj9+z7R8TQ0PCHaRucnJx0ti6dnJxgaWmps62mFpVKhezsbMHf/i9FaDdFW2iKxqNrz5GWmA6APZ4IPntPmmtIRiLwmGYhCjh6SxIrhFLRvAk+JjyO3YGRAMdS5ikRosXxEnAkWBJPhqEZXDugMW5eh4TppZFIjknBy1tvuevrB2+K8gYBbLv9Dmu+Lu5efARFrjiNBEOz5/pq/iqGYeB3OEiSRkIml/EW+RsnQiT9E2iKRsj5B8jJYo9UMlIy8dDnmeT4EQBuntTwHwUckR4/mqJx/dBN7vrr62/4KkAMqC3Z6Tl46POUu/Y7HCQJNEcA8NMq44nfS0kaCYYBYj7H8QzB6wdvSr5TpIyE/5Fg7vrW2XuCPnxqURtESfnHNkqFEjdPhkgCVsrkJAKP3eauA4/p142AY7c4IzshKknUUNG+59a5+9y1/1Fp3aBpBtcPavr23YOP7HGJxF56WkI6ngWGctfa9wsJSRI83bh/+QnvCLygsLQFX3mG4HUJvjmA7dsArfG7ceKO5DtFUzTuXXrMcbtlZ+TgrvcjacBRksSNExoiTHZuE/fvoima1zffwr7j4zNpGom87Dzcu/SEu/bXoxsMGFw7eEP0919C/iYQv7Jly6Jq1arcn9CRFMBuTiQl6c7v6jSx+/z8/BAZGYnOnTsjJiaG+wNYV5WYmBjk5krTnxSUH/K5qVSpEmJjY3/k1v+5ZGdnIycnB1ZWumejkZGRcHd3h1KphK2tLTw9PTF06FDI5f/3kNrJsamQyUioaAkuIAZITUiHVRFLZKZmSSLiAuwWsbYPS2p8ml6k3tysPOTlKGBsaqSX3wVgwcyStcpIjE7WiyabrMUYrM0eLCXa7UiOTZWc8GmKRtJ3DVFjSlwaSBmpt14psakoWckBKqUK2enSJK8ssaWmTilxaSBJAlLDR6nYL0gTM2OkJWbopRQgZSSvb1PiUqVRrAGez0thxo8gCV4ZSdEpeniD2Dx/pQwAvDLSEtIl89IUzSsjNX/8KKnOBft+2znYICcjl+czI1on7fGLT9OL1KvIVSInMxfm1mZIjdffblJO8t7bpO/6dSNF67mF1Y1knm6kSOsGzfB1Iza1ULqRHJuKstVLg2EYvZxolIrW0XF9usHQDNKTMmFmZYb0pAy99SF15rZUvTxqmalZoCgKMpmsUH1bUP+SYqR1AwyQHKP/uf+kEPhJn5u/mL9SpUp4/vw5srKyeE7Fb9++5X4Xkri4OKhUKkyYMEHnNz8/P/j5+WHFihVwdnYudF1+aBUfOnQo5s6dizdv3qBGjRr6b/gH5dy5c1AqlWjTpg0vvUSJEqhbty4qVKiA3NxcBAcH4+jRo4iMjMSSJUtEn5eYmMizTMV2hPRJkZK2oPQoNEESHACfuY05DIzkkpM4QzM8B0W7ErYgSBJSs4yppQmMTNhIgSJ64OUB9ljJvpSmjGJliuDzi6/ikxMB3rl3kZK2wvkKiHa+IqVsWZZiMXRfGYmiZTVfBEVK2uqdLAHALr8MuYEc5tZmvOM23TII2BVoh9RuBPtcGRdpZW1vqXdRoSia3+6StpDJSUkDR/1+aLdHShiaQRGt8StapgiiP8eKTuIEScC+NL9vCyPa+WwdbHjO6QVFJidhX1rrvS1pK7mLxlYMsC1uDYB9hw1NDKGQIH1lmALvYQlbvdxERqZGMLEw5tqgTygVxWt30TJFEPZI+FhDLdrO9j/St/al7JASmyaO7isjYV/mr+uGWscJgoB1UUukxosbqDI5qaPjNCWtGzI5CSt71lHdqogFZHKZpLFCF3hv7Uro1w1LOwvOF1Rbd0XLKKB/RcsUwbd330X7iyAI3nv7W4DWrVvj9OnTuHz5Modzo1Ao4Ovri+rVq3ORUnFxccjNzUXZsmxkW9u2bVG5cmWd582bNw9NmjRBp06d/vJx1Q8dSyUnJ6NJkyaYNGkSVq9ejQsXLuD69euCf/+kvHjxAocPH4aLi4uOL83s2bMxbNgwtGrVCu7u7li1ahU6deqEoKAgSWTEy5cvY9SoUdzf8uXLf6huLv2aSx5rqOHA1c6GhkYGaNOvhZ5tbhqugzXIn25DWuvlz/EY1oY7XixaJj8cVKIMI2NDtOiuiYZxG+qi56iF4CEtV29WFcXK2YsvLATLG1SrpeZFbj9C2nOepmh4DNMYr826NoSxmXgYIUkSqNmiGucsShAE2o9oI9luSkVz6KYA4DrQWfKrTiYn0bpvc84R19zaTBr2Pr9ebfprHKndhrro5QbT7puyjqVQqa40/5i5tRmPhsBjmIv0zg3NoP0ITd/Wc60lyT9GEARKVyvJQ95tP6KtNCeaioa71vi16t1UkhCSlJFo6FGXc6SWG8jRblArSf4jmqLRToviwXVwK+m+lZNwH9paszg62KB+u9qS42dgZICWvTTI7Hp1gyR4tCFVG1ZCycoOksf9tg42qNtGg7zbfkRbySNbmqLRfrimb5t0qi/JP0aQBKo2rMQhpwOAx/C2+nVjmEY32gxw1nuM3KJHEy7E28TcBC17NZHmr2IYuA7UfLWzc5u0bmj3banKDnBsUlmSf8zEwhhNO2sc4d31jB8DRu/c9I/L33QsVVipXr06XFxcsHfvXuzatQuXL1/GlClTEBsbi7Fjx3L5VqxYgUGDBnHXZcuWhbOzs84fADg4OMDZ2Vn0SEtMfsi4WbVqFe7cuQOVSoVr165h69atWL16Ne9v1apVWL169Y88/m+RiIgIzJ8/HxUqVMCsWbMKdU+fPn0AAE+ePBHN07lzZ55j1fz583+oftb2Vhi0qJfgb+poGzXVgloGLuwFM0sT0Ymm59ROvOiOCrXLov3ItoJ7izI5CWt7Sx0agtHrBrMw+SKTwMjVA3m4E4061EX9drUFFy9SRqKMY0ne4kiSJCZuHQFAlw9HfT1hy3Ce4ec+zAXla5YRbDdJEnByqYkmnTTGq4mZMUavGyxYf4IkQMplOr/3mt4ZNsWsBMsgCJYnSDtyrWgZe/Qp0Hfa7TY2N8aghfzxHba8H4xMDUXHb8C8njzcl+pNq6B1n2aCix0pJ2Ffyo4X3QEA4zcPA0mSosbE2I1DeGG7LXs1RY3mVYX7VkaiSv0KaDtAs6jIDeSYsGWYTl6ANWwIksCELcN4de483g0lKhYX9HEhSAJNOtXnLdiWthYYtkyYdFcdbTNy1QBeev+53WBhbSbat13/aM/DXSrrWEqHwkG7DAsbc44qQy0j1wyE3FAuWsbw5f14Ydf129VGo47C5JmknETJyg7oqBWaTxAEJmwdzqMT0PzI/o3fPIzna+I6qCUqOZUX1Y1azo5o3q0Rl2ZkYoSxG4ThOdhIQhJjN/J/7zG1I+xK2AiPH0HApV8LXuRakRK26D+3u05eIF83zIwwdEkfXvrgxX1gYmYs2rd9Z3Xl7UpXbVgJrgNbis5ttg426D7Vk5c+dsMQjp5BSMauH8KLCmzetZEo9g8pI1Gxdlle5NqvKP8EK/jcuXPRq1cv+Pn5YevWrVCpVFizZs0PBRj9jPxQKPi1a9cKnbcwIdxiEhYWhtGjRxc6FFwtcXFxmDBhAmQyGXbs2FFoiy83Nxdubm7o3bs3Jk6cqP8G/FwoOMMwuLTjOo4t4UdZVG1YCVP3jhEE2ot8/x2bxuxB6O13XJqZlSn6zuqKPrO66kyKFEXh+NLzOL/JB7mZGoeseq618Oe+cRw3kra8ffABW8ft5WHp2BSzwvAV/eGh9RWoFkWugsWbOHCTw9JRh09P2jlKEATv4dWn2DHlEGI+a44ripcvivGbhwky7WakZGLr+H24ff4B9zUlN5TDY5gLxm4cIggw6Hc4CAfmnuSd1ZevVQaTd41GjWa6YxX/LQEbR+/hRe4Ym7FklIOX9NaBO2AYBufWX8bJlV48LJ2aLaphyp4xvDBwtYSHRmDT6D08LB0LW3MMXNAT3SbpYgiplCocmn8al7ZfQ5762IVgcTam7hnDOw5Qy8tbb7Btwn4elk6RkrYYtWYgxzulLTmZOdg55RACjt7mdvpIOYk2fVtg4vYROhhCAIvFsnvaEcR/0+BWlKrigInbRqB+uzo6+VPi07B57B7cv/SEO0IxMDZApzFuGLlmgA6GEABc2e2PIwtP8/yKKtevgKl7xuhwMgEswOOm0XvwMliz82pqaYLe07ug39xuOosUTdM4sfwCzm24zMPScWpTE3/uHSsI4f/+yWdsHrOHh6VjXdQKQ5f2QcfRuhhCijwl9s08hqt7A6HMY6NICIJA826NMHnXKEEQvMd+L7Bj0kEelk6xcvYYu2GIIIZQZmoWtk3cj+AzmoADuYEM7Ya0xrhNQ2FiZqxzT+Dx29g/+zjP16lsjdKYvHMUajnrbv8nfk/CptF78Oj6c+5r3sjUCF0nemDY8n46zr0Mw8Br81UcX34emSma417HplUwdc8YXhi4WiLeRmLT6D28yCtzazP0n9cDPf/01J3bVBQOLzyDi1t9NVg6BNDQ3QlT947lHZ+r5fWdd9gyfh8PS8fWwQYjVw0QNFRys/Owa+oh+B8O5rB0SBmJVr2bYdKOkXoBIv8pUa9L6TVcQJlZ//BzZFmpsHxTeITiX0l+afqFHzFu0tLSMGHCBGRkZGD79u1/iZn8y5cvGDp0KEaPHo2BAwfqvwF/D/2CUqFEaEgYstOzUbKyg6DiF5TI998R8TYKxmbGqOVcTS96cE5WLl6HvIMiV4nytcoUCmHz04twxHyJh6WtOWq2qCYZnQCwKMhv77F4N1UaVhRceLVFjdSbFJ0COwdrVGtcWS9CalJMCt4//gSSJFG9WRVRXim1UCoKr++GIT0pEw7li6KiUzm9UX4xX+Lw5VUEDI0NULNFNb04FopcBUJD3iEnMxdlHEsVikzv65tIRH2IhqmFCWo6O+pFD87OyEFoyDuoFCpUqlte0CjVFoZh8PHZF8RFJMLa3hLVm1XRix6cmpCGdw8+gmEYODauLMorpRaapvH2/gekxKXBvpQtqjaspLdv4yMT8elZOGRyEjVbVNOLrK1SqhAa8g5ZadkoWam4XvRZAIj6GIOIN5EwMjUqlG7kZuchNOQdFDkKlKtZWhD8raB8eRXBIRTXbFFNL3pwZmoW3twNA6WiUbl+BcGFV1vUSL0sQrEVqjetolc3kmNTEPboEwiCQPWmVUR5pdRCURTe3H2P9KQMFCtrzx5p6hm/2K/x+ejdrG7oQw9W5CnxOuQdsjNyULpqCY4MVUoi3kVxCMW1WlbXqxs5mTkIDQmDMk+JCnXK6kXWZhgGn56HI/ZrAizt8uc2PbqRnpSRH0lKo1qjSnqRtf9p4Yyb6n+DcfP2t3Hzt4uUcZOYmIisrCyULFmSi27KycnBlClTEBERgS1btogORlZWFgwMDGBoqIHcZhgGS5Yswc2bN//SQP7mlvotv+W3/Jbf8isJZ9w4/g3Gzbt/p3Hzfx/z/ANy4cIFZGZmclFJd+/eRXw8C+DUo0cPmJubY+/evbh+/TrOnDkDBwf2S2vZsmV49+4dOnTogIiICF4kk4mJCeeg9OHDByxZsgSurq4oWbIk8vLyEBISgtDQUHTq1Ol/Oog5WbkIOnkHQafvIiMlk2OVrtlCnEMn7NFH+Oz2x+eXETCxMEbLnk3RbnArweMDgD3S8TsUhLvej5CblYeqDSrCc5ybKPM4wzB4fvM1fPcHIup9NKyKWKLtAGe07tNMlIMlMToZ1/bdwOPrz0FRNGo5O8JzrJsovxRFUXhw5Sn8DgUhPjIR9qXs4DbUBc06izOPR3+Ohc9uf7y6/RYESaKhuxM6jGoryi+lyFPi1tl7uHH8NlIT0lGycnF0GOmKeq61Rfv288uv8Nntj/ePP8PQxADNuzSC+3AX0R2i7IwcBB67jVvn7iE7PQcVapdFxzHtRJnH1YzdPnv8EfEmCmZWpmjdpznaDnQWPD4AWO6cawdu4v6VJ1DmKeHYuDI6jXMX5ZeiaRpP/F7i2oEbiPkSB5vi1mg3sCWcezYRPP4B2B2Vq3sC8CzwFRiGgZNLTXiOdUPxckUF86uUKty9+Aj+R4ORFJ2CYmXt4TG8DRp1qCv6Ffwt7Dt8dvvjzb33kBnI0LhDPUnmcTVj982TIUhPzkSZaiXRcXQ71G4lzjz+/sln+Oz2x6fn4TAxN4ZzjyZwG9JKdIcoMzUL/oeDcefiQ+Rk5qJyvfLwHOsmyjzOMAxeBr/B1X0BiAyLhqWdBdr0d4ZLX3HmcTVj90PfZ6BUFGo2rwbPse1E+aUoimWzv37wJuK/JaJISVu4DWmN5l0biepGTHgcfHYH4GXwaxAEgfrt6qDjmHaiO0SKPCVCzj9A4PFbSIlLQ4mKxdF+ZFvWaVpkhyj89Tdc2eWPsEcfYWBkgGadG0oyj+dk5iDweAhunb2HrLRslKtZGp5j3ASPhNXy9v57+OwJQHjoN5hamqB172ZoO7Cl6A5RelIGrh+8iXuXH0ORq0S1hpXQaZyb6A4fwzB4GvAKvvsCEf05Ftb2lnAd1AotezUV3SFKiErC1b0BeBrwCgxNo06rGvAc6ybKPP5bfg0p1M5Nq1atQJIkjh49itKlS6NVq1aFAvAjCAJBQbrQzfqkd+/eojg6amNm5cqVOsaN1H3FixfH2bMsnHt0dDT27NmDd+/eITk5GSRJomzZsvD09ETnzp3/Ejjhz+zcxEUkYHqbxYj9Gg8CBBiG4cIbO452xeRdo3l1YRgGB+acwJm1lzRhkPk/2xa3wfqbi3QmzM8vv2Km61JkpGRyUTHqe4ct76fj+EdRFNYM3o6gU3e4fARJgKEZlK5WEutvLtLZkn12IxQLOq9m0Xfzz/xJGQkwDKYdGA83rSgVgDXoFnRajZfBb7jwaPW/tZwdseLqHJ2joMDjt7Fu2A4A4JUhN5Bh8cWZaOjuxMufEp+GmW2X4OubSBZzg9b0bateTTHnxGSdheLM2kvYP/s4L8SUIAmYW5lhTcACHT+PqI8xmO6yCEkxKSDAhhur7+35ZyeMXjdIZ/x2TDqISzuua/qWIMCAQbEy9lgftFjHmHj38CPmeCxHdkaOzvgVhIsH2CPOZb034veLYt8AAQAASURBVP7lJzrjV9GpHNYGLtQx1O5feYKlvTaApmhe3xIEgbknJ6Nlz6a8/FlpWZjtsRxhDz/pjF8DtzpY4j1Txwi+ujcAW8btAyEjuDBvgiRgZGKIFVfn8qgwAHZBmd5mMaI/xbJ9pKUbHsNdMHXvWJ1F+PDC0zix/AJPNwgQsLK3xPqbi3SORMJff8OMtkuQroVBpL530MJeGLyYDxNPURQ2jNjFgWNq923Jyg5YH7RY5yj2ZfAbzPNcBWWugoMOIGUkGIbBlN1jeBE9AJCXk4eFXdbgWWCoTt9Wb1oFK6/N0/mICT5zF6sHbQXD8HVDJiex6Px0NO7IjxRNS0zHTNel+PIqgtMNUk6CVtFo3q0R5p+eqnPMdmGTD3ZPO6KjG6aWJljjt0CHKyrmSxymuSxCQlSSlm6w4d5d/2iP8ZuH6ejG7j+PwGvLVS3dYN17ipS0w4agxTpH6e+ffMZs92XISsvW0Y3R6waj17ROvPwqpQor+29GyIWHXHvV7S9fswzW3VykY6g9uvYci7uvA6WiCugGMPPIH4I8eL+CqNeljL9h58biX7pzUyjjZtKkSSAIAvPmzUPRokW568LIli1bfrqSv7L8qHHDMAzG1puBiDeRoiGNE7YMR9c/NMdxgcdvY83gbYJ5SRmJomWK4PD7rdyirchVYGD58UhLFAfJWuI9E806N+SuTyy/gCOLTgsCnJFyEjWaVsXGW0u5tKSYFAypNBGKXKUg1gZBENjxeDXPMNgwahf8DwULotCSMhJtBzhj5mGNQ/fnl18xrv5MwZBlgiBgYCTHkY/beDs4M9ouwauQt4J4KQQBDFrYmxet9tD3GeZ7rtJtNDRcNcfDd3LRFBRFYbjjFMSGx4v27fSD43nh41d2+WHrhP3CZchJlK5aEvtebeB0Kys9GwPLj0d2eo5oGWsDF6JuGw0P0P7Zx3F2/WXBvmJDqJ2w/MocLi3mSxyGV5/CQvoXvIUAZDISe15u4DlHL+uzAXe8HgnWiSAJdB7vnh8Rx8qbe+8xxXm+YFgpQRIwNjXC8fCdnOM5wzCY2HgOPr8IF9WNgotX8Jm7WNFvs2BeUkbCroQNjn7azi3aijwlhlSaiOTYVNG+XXD2T55hd2btJeyfc1ywHTI5icr1K2LrvRXc+KUmpGFQhQnIy1EIh9sTwNZ7K+HYWIPvsXXCPvjsCRAdv1a9m2LuiSlc2tc3kRjjNF14LAjW6f5Q2Faej9ac9svxLDBU5B4CfWd3xfAV/bm0pwEvMdtdGPKClBEwszLDia87uQ8SmqYxsuafiP4UIzp+U3aP5jlg++6/gU2jdwvmlclJOFQohgNvN3MGbU5mDgaWn4BMEcoUAFh5bR7vo+fwgtM4udJLcJ4iZSSc2tTEGr8FXFr8twQMrToJKoVKeD6Ukdj9bG2h/MD+18Izbkytf/g5sux/r3FTqFDwrVu3YsuWLShatCjvujB/v0VYXt1+iy8vIySxGs6uv8QZAAzD4Mxab1GjkqZoxIbH44EWtP6ts/eREpcmqvykjMS59Ze5a6VCiQubfUSRW2kVjdCQd7xIEd99bBSIOIgYAa8tGv6j1IQ0BBy5JQqvT1M0bpwMYZFX8+XiVl/R0HSGYaBSUri6N5BLCw+NwIug16JAcAwDeG25yqNoOLf+smgYKk3RSEtIR/Dpu1za42svWL4rUYAv4Oy6S1y/0DSNM+suiUJ+0ioaEW8i8fzmay4t8NhtycmblJE8csKcrFxc2nFdFLeGpmg8vPqMxz92ZZcf+3yhWxg2+fIODV5V/LcEhJx/KFonhmbgu/8GDxDxwiYfyET6lqEZ5Gbn8aDy397/gA9PPkvqxvmNV3gYTmfXXRYN8aUpGgmRSTz+sTteD5EogSBMkgTOrtPoBqWi2L4W0Q1KRSPs4Uc+7cSBm+KGDVjD0WuLhv8oPTkD1w7clBy/4DP3ePxjl7ZfE8WMYhi2Xj67/bm0b2Hf8cTvpfj45UdwavOPSesGg4yUTAQe11AjPAsMRWTYd+m5TUs3WAZ4cd1Q8zhpRzHePHlHEtm44NyWl5OHi9uuic5TNEXjWcArHu2Ez54AUCpadD4kCODS9n8Wy02v/GwY+C/rkatffgjn5rf8vDwPDNUbfZQQmYTYcNbXKCMlk+UNkthokxnI8CzwFXf97MYradA/isbrO2EcEd/X15F6odZJGYnnNzTcNk8DXkoi9VIqGo+vv+CuX98J0wubzhpRYdz14+svJCdKmqLx+Ppz7vr5jdeSoHEA62vx5RXrk0VRFF7dkuYNImUknt3Q9O3zG6GSQHMMA3x7952D7U+ITNLLGySTy/A8ULuMVyAkANBpiubxDH18+kWSNwgAQIA3fo/9Xki2m1bx+/Zl8Fu9NBLKXCXePfjAXT8NeCk5fgzN4GmAZuF6fiNUEtANYPnH1EZadkYOPj77ogdUsWDfSusfTTN4//gTt8h/C/uul4KBlJG88XgS8FKyTpSK9Y1Sy7v7HzgoBTFhaAYvgzW8a4+uPy+Ebrzgrp/fCNW7656dnsN9wDAMw34oSIEREgSea+tG4CtJ3QCA6M9xSMynhUiKSWHD3qV0w0CGpwFaZdwM1ctf9TLoNfeufn7xFdnp0hyCbDs0HxdP/MWNQIAdv4fXnov+/lv+WfklHYr/C0JRtOiXiraolaswkOkF8xX6nvwJuLD5tWkj9HEf/XCdtPIxEiSKgnWiaNaHSc9nB1cGA708QwzD/FA7qL8yfgQ/H/vVKF0x7b4pTBkE/vp4aI+xPsoQoefqo6ko+Fw6f/wKW8aPvLfszqH+ev2VMogC46eXQqLAc3+obwszfpTmY4JWzzt6ms7XP73KodOOwjgtqO/R+3yBOonuNvKqxTKAEwTxQ/pH6/kIK1inX1J+dvflX7xzUyjj5vDhwz/0cIIgMGSIMBrmf11qNq+K06ullceqiAWKly+a/39LFC9fFLFf48W3xpUUajSvxl1Xb1oVN0/dEc4M1t+hQq0yXJRA2RqlYWxuzAP7Kyg0RaNmc83Za21nR3x48llUyWVykucsWq1xZc5BVLxigGMTjR9CLWdHSdZgUkaiTisNx1mNZlUkWaUBFoCsfK0y+XWUoXK9Cvj0QoI1mAFqNNPq22ZV4b1dGsyyaJkiHP9R0TJFYFPMSpJ4suD41WhWFQ99n4nWiZSRqN5UMxYVncrp5x9jWJBBtdRuWR3fP4r7RsjkJOq01vRt9abCUWC8eslJVGmgiTaq2awqnt0Q9vFQt6NWCw1wXPVmVfXu7plbm6FkfiSemZUpSlVxYHdyRI+NCvRt06rwPxws+nyWRqIEF6VTumoJmFqaSBKsUioaNbR0o5azI97cey+pGzW1APOqNqxUKFJLR60xqN2yOm6dvSeuG/ICutG8ql5jwsDYABXrsH4kBEGgauPKeP/wo7iRShA83ajRrCoubPIRzpsvtg42KFKKdb62K2GDIiVtuZ0cIaGUFO+9rd60Ku54PRLNT5IEqjSoyPnolK9dFobGBlDkKkXvYWiGP34tq+OrhE+kTE6iTqvqgr/9MvIfNm4KdSx16NChH/77LcLSwMMJxcrZix4bESSBLhPbcw6QBEHoRMZoC0kSsCpiiZY9m3BproNawsTMWHT7lqEZdJ+igSg3NjVCx1GuoqGgpIxEuZqleYuE51g38UaCnfC7TerAXRctXQTNuopzLJEyEk061udFDXWb1EF6h4hhePVwbFIFFZ3KSZbRfkQbXkRWj6mekuSRRiaGPATTFt0bwbqoMF0DoBkvdV/K5DJ0mdhe9EiAlLHkkTzepxFtYGAoF/WpoCka3bTeCQsbc7gOaiVaJ5mcRPWmVXjI150neEjuGFAqGl0meHDXZaqVRN22tQSh+NXtaN27GS+8u9vkjpLEqiTJ5x+r51oLJSoVl9SNzuPdOaOcIAj2PRaZiEmSgLmNGVr3acalufRvATMrU3HdYBj00NINQ2NDdB7nLpqflJEoVbUEnFw0NBIdR7vq5dTqrqUbdg42cO7RRHL86rvV4cErdP1DWjcYikGncRrdqFK/Iqo2rCg5fh5DXXih8z0mdxQ1bFiHfgMet1TTzg1gV8JGUje6TerAQQaQJJmPzi3cBlJGwra4NZp10QQ+uA1tDUMTA3EfxAJzm5mlKTyGi/PHsQ7hFXhRX53Gues9ctcO+Pgtv5YUyrgprPNwwb/Nmzf/H1f/3ysymQxLvWfpcEWpHWcbujuh7+yuvHs6T3CHS5/mbD7te2QkjEyNsPQSPwTXzNIUiy/OZPlw5Pz8ANBhtKsO5Piw5X1RowX79aI9MbPGkwUWnZ/Om1AcKhTDzMMTQZAEb8JU/3/Y8n68L38AmLpnDEpVyScIVD8qn0+nZKXi+HP/OF7+mi0cMSKfS6hgGQRJYPrBCbwJnyAILDw3DdZFrXhtUP+/etMq3PPU0qZ/C45rSLtvZXI23HyR1wwe1LqBoQGWXZ6lwxWl/r9zj8boOok/8fWZ2QVNPOtz/al9j6mFCZZ6z+L5gVjbW2HB2WmQyWW8dqvL6PmnJ1po8QYBLH9O5XrldfiJCJKArYMN5p6cwstfvmYZTN09ho2MEhi/8ZuH6YT5zjwyEUXL2PP7Np/7qFyN0pi4bQQvf6P2dTFgfg+27gXKkMlIzDkxmYfHQpIkllycCfMCXFHq8uq1rYUBC3ryyug42hWug1ry+kf9fwNjQyy7NIvHG2RiZsyGrBsZCI6f29DW8NDiRAOAQYt6ccYLXzfYaLrFXjN4fV60jD3mHJvEhWVz+fP/P3hRbx2qikk7R6KMY0m+buSXV6xcUcw4NIGX37FxZY4rSkc3CAJT947RCYGfd3oqbIpZ895BdXlVGlTAqLV8dPaWvZqi2+QOvP5RlyEzkGHhuWk8ihW5gRxLL82CibmxYN827dJAJ0y7x1RPNM+nlih4j4m5MZZens0LT7e0ZeciuaGwbnT9oz3PmAWAkasHoFqjSqxuFJgXrItaYcGZP3n5y1QriT/3jQNBCM9to9cN5u2c/oryT3BL/SrySyMU/xvkZxGKk2JScGWnH26cDEF2OgtR7jnWDS59mws6PNI0jTteD3F553WEh0bC2MwIrXs3Q+cJHqKQ/N8/xeDS9usI8XoIZa4CleqWR+cJHmjaqYHgl49SocSN4yHw2eOP6M9xsLA1R7tBreA5tp0gFw7AUjV4b/XFo+svOLyarn+0522Ja0tOZg6uHwzCtf03kBidDDsHG7Qf0RYeI9qIAnaFhrzDxa2+CA15B4Ik0NDdCd0mdeARWmpLWmI6fPYEIODoLaQnZcChQjF0HN0OroNaCgJ2MQyDh1ef4dL2a/j47AsMjA3RomsjdClAuqgt8ZGJuLzjOoLP3ENOZi7K1SyNzuPc4dyzieAOGEVRuHXmHi7v8mch5i2M0aYfa1iJgRF+C/sO723XcO/SI6gUKlRtVAldJ7ZHA3cnwfFT5Crgf+QWru4LQNzXBFjbW8JtSGt0GO0qCkb4/vEnXNzqmw/iB9RxqYHukzqITt5ZaVnw3XcD1w8FISUuFfal7NBhlCvch7nwjAhteXYjFN7bfPH2/gfI5DI09ayPLn+0F6UbSY5Ngc/uAAQev83SL1R2QKexbnDp11yQ7oBhGNy5+AiXd17Hl1cRMDY1QsueTdF5grsoJH/Mlzhc2n4Nty88QF6OAhXrlEPn8e5o3rWRYN+qlCrcOBECnz0BiP4UC3NrU7gOZHVDDIwwPDQCF7ddw8OrLIhfjWZV0fWP9rwQfm3JycqF36Eg+O4PRGJUMmyKWaP9iDZoP7KtKFDnm3vvcXHrVbwMfguCAOq1q41ukzqiagNhMML0pAxc3RsI/yPBLP1COXt0HMV+7AgBdTIMg8fXX8B7my8+PPnMgvh1aYiuf7QXBSNMiErC5Z1+CDp9BzkZuShTvRQ6jXVjWd8FgB4pisLtcw9wZZcfIt5GwcTcGC59m6PTeHcULS3MDxj1IRre267hrvcjKPOUqFy/Irr+0R6N2tcV1o08JQKP3oLP3gDEhsfD0s4CbkNaw3NMO0EOPAD48PQzvLddwxN/1kG8Tqvq6PpHe9TUOkr91US9LmVWcgH9E6HgZHYqzD/9O0PBfxs3Pym/6Rd+y2/5Lb/lt/xK8tu4+R0t9UsIwzD4/ikWWWnZcChfVPQLQlsyU7MQ/TkWxmbGKF21hN7wTpqmERn2HXk5CpSs7CD6BagtKfFpiP+WCEtb80JBjauUKnx79x00RaN0tRJ6CQsB9usuOTYVtsWt9ZIJAuyuxLew7yBJEmUcS+olLARYaPr0pEwULW2nlwwSYEOLv3+MgYGRAco4ltRLWMgwDKI+RCMnMxcOFYrBwsZcbxnpSRmI/RoPUwsTlKzsoHf8KIrCt3ffoVKoUKqKg14yT4Dd+UiISmYd00VoFLRFqVDi27vvYBgGZRxL6SUsBFjcm5T4dNYpVA9RKsBSKkS9j4ZMTqKMYym9cAgMwyD6cywyU7NRvJy9XjJIgN1V+v4pFkamRihTraTevmUYBt/CviMvOw8lKxXXS+YJsHhNcRGJsLAxKxQJLaWi8O1dFCgVjVJVS4jubmlLYnQykqJTYFPMSnTnQlvUukEQBMo4lhSl2tCW2K/xSEvMKLRu5GTmIOpDDOSGcpRxLKmXcJJhGHz/GIPsjBwUL19UL9EtwOL9xIbHw8TcGKWqFG5u+/buO5R5SpSs7KCXzBMAUuJSER+ZBEs7c71Em4DW3EbTKFOtpCgNza8mBH7uaKnwWP2/nvw2bv5huev9CIcXnsbX1yx4lExOokWPJhi9ZiCKltE9ZkqJS8W+WccRdOoOVEo2oqRkZQcMXtQLbfo76+RnGAbXD97EiRUXWJwVsNEQ7Qa1wohV/QUnm++fYrBv5nHcu/yYc7KtXK8Chq3op0NzALCTy9l1l3Fhkw+HBWJqYQLPMe0weElvQSPn/ZPP2D/7OF5ogdbVaV0j/1y8sk5+Ra4CRxefxZXd/lzEipW9JXpM8UTvmZ0FJ9mnAS9xcN4pfHjyGQDrV9CkU32MXjsIpaqU0MmfkZKJA3NOwv9oMJT5URVFy9qj/5xu6DDKVXCSDTp9F0eXnEXU+2gAgNxAhlZ9mmHUmkGwc9BlDk6ISsLemUcRcv4B5whatnopDFnaF87dG+vkZxgGl3f64fQabyRGseBtRiaG8BjeBsNW9BM0Ur++icS+Wcfw6NpzzsnWsUlljFg5QMf/CWAX3pMrvXBxqy+Hc2RubYYuEzwwYEEPwUXy9d0wHJhzAq/v5OMREUB919oYtXYQz2FZLTlZuTg8/zR89wdyWDy2DjboPb0zuk3uIGhAPvB5ikPzT3F4RKSMRPOujTB63SBBYy01IQ37Z5/AjRMhHF5MiUrFMXB+Tx3fMrX4HQ7CieUXEPMlDgBgYCRH2wEtMXL1AEFDKuZLHPbOPIa73o843ajoVA7DlvdD4w71dPLTNI0Lm67i3IbLSIlNBQCYmBujwyhXDF3WV9DI+fQ8HPtmHeNh5tRq6YiRqwYIHhMq8pQ4vvQcLu/0Q1Yai+ViaWeB7pM7ou/sroIG5POboTg49yTCHrGggwRBoHHHehi5ZiAPjVotWWlZODD3FPwPByEvhwW/tC9th36zu8FzrJugbtw+fx9HFp3Bt3ffAbBO9a16N8WoNQMFj2ATo5Oxf9ZxBJ+5x0XLla5WAkMW90Gr3s108jMMA589ATi9+iLivyUCAAyNDeA+1AUjVvUXNFK/hX3HvpnH8PDqMy5is2rDShi+sj/qtdU9JqRUFE6v8cbFLVeRlpgBgI3O6zTOHYMW9SrUB8A/Kv/haKnfx1I/KT9zLHX94E1sGLlLJzSalJOwsrPA9kereV9sqQlpmNh4DhIik/jRJ/m4FWM3DEGPqZ7QlmNLzuHokrM62BakjESpKg7Yem8FbxKI+hiDP5rM0YH8J0iW6GXe6alo1UsDSc8wDNaP2An/I8E6ikCSBGo6O2K133zeAvn2/ntMb7MYlIrmlUHKSJAyEusCF/LOs1VKFea0X4GXwW90I5oIoE2/Fph9jE8JcufiQyztuQEg+DgapIyEiYUxtt1fyfMVyErPxuTm8xEZ9l0wsmfAvB4YuqwvL8172zXsmHyQ5cDRqpZMTsLWwQY7Hq3mfQ0nfk/ChEZzkBrPR41Wj//UPWN4UUMAsGf6UR4KsXY7KtQui423l/IIN8Nff8PkZvOQl6PQGT+CILD00izeIkzTNJb32Yg7Xo90wvMJkkBDDycsvTSLZzw+vxmKOR4rwNA0L5qElJEwMJRj4+2lPOJJRa4C09suwftHnwT71nOsGybvHMVLU1ONFNQNmZyEubU5tj9axTNw0pMy8EeTOYj9miCoGyNXD0SfmV14ZZxadREH550U7FuHCsWw7cFK3i5czJc4TGw8Rwc1miDZOs45Non3gcEwDDaP3QPffTd0yyAJODatgrWBi3gL5PvHn/Bn60U8njZ1flJGYrXfAp6BSqkozO+0Gk8FAAMJAmjZqxnmnZrC0437V55gUbe1bB0LjJ+RqSG23lvJI2XNyczBVOcFCH8dKTh+vWd0wag1fCfkK7v9sXX8Ph3dUEc+bX+0mmf8J8emYEKjOUiJTeFFf6nvn7htBC9qDwAOzD2J06sv6tSHlJEoW70UNt9ZztvFiXgXhUlN5yI3K093bgOw2GsGj4qGYRisGrAFwWfu6uBgESSBem1rYcXVuXp3H/8JUa9LWRVdQJtY//BzyJxUmH3+dx5L/UYo/ockKz0b2/84AAA6iwqtopGelIFD80/x0k8sv6Br2ACcUbFv1jEebUHMlzgcXXqWl4crg2Ihzc9t4C+ce6YfEeQyYmgGDBhsHrMHijwNVsSrW29ZvBABE5mmGby69RaBx25rnsMw2DRmDyglpVMGTdGgVBQ2jt7D65ObJ+/gxc3XwqHaDPu7Nm2BUqHExlG7wYDRuYemaORk5GLXn0d46V6br4oaNgBwYsUFRH2I5q5TE9Kwe9qR/Dbx81IqGknRKTi+7Dwv/fCC00hL0KXDULd1++SDPNqC8NAIQcNG3Y7PL7/iyk4/Xvr2Pw7oGDZA/vjRDDaO2s3DkHl49RlCLjwUxB1iaAaPfJ/jzoWHmnJpGhtG7gJdwLBR10mpUGHreD5/lu/+Gwh78EG0b312++Pdw4/cdU5WLraM28vWoUC9KBWNzNRM7J9zgpd+evVFXcMG4N7LA3NP8GgL4r8l6OiXdjtivsThzBpvXvq+WceRmaZLh8HQDMAAm8ft5dEWvL3/QdCwAVjdeHPvPfwOBfHSN4/dq2PYqPNTFI2No3bx+uTWuft44vdCUDcYBrh19h4PoVilVGHjqN0AI6wbedkK7JzCh/Dw3nYdX0K/iY7f2XWXeLQF6ckZ3DMKvlY0RSM5LhVHF53hpR9dfA7JBQwb7ft3/3kY6UkZXHrEuyhBw0Zdxtc3kbi41ZeXvmvKIR3DBlCPH6sbarR2gEUoDjqta9io73ka8ArBZ+4J1uFXkf9ytNRv4+Yfkltn7iFPi9uooFAqGsGn7yIrHzJcpVTB71CQJMAXQzMIOKoxJK4duCHpL0JTNEvSl6+9ybEpeOjzTLwMhvX1ueetAc/y3R8oipkBsF84PnsCuOsPT7/g6+tIUfwIhmYQGfad2y4HWI4XKbwQmZyE7z5NGQ+uPGWPV0QUU03XoL3YXdntL02/ICd5/EeBx25LAgXSFA2/w8GcIZiTmYMbJ+9IYpKo8lQI0gJd9N13Q7JvGZrBFS3eoJgvcXh1660kb1ByTAqeaHH0XN0XKEnRQcpI+OzV9O2rW28R9zVBkv/o/eNP+PpGi6Nnt7/k7rZMTuLafo0RcPvcfUkaCUpF486FB0hPZhc7iqLgu/+GXooAPy3QPr9DwXrh+6/uDeTGOC0xHXe9H0miDudk5OKOl8YQvKZPN0DweJ++vIrAp+fhkrxd0Z/jNEeBAHz2+Osdv6tauvH4+gukxqeJ88dRNJ7fCEVcRIKmjN3+eqgt+ON388QdUEpxEEZaRSPg+G3OEMzLyUPA0WDJvqUoGoHHNXPb9QM3JSk6GJqBzx5N38Z/S8DTgFcSugGkJaTjke9zLs13X6BkGSRJ8PTvlxTmb/j7l8pv4+Yfku+fYiHXs52pUlJIimZ3YtKTMpAjgRwMAISMRMznWO465kucXl6BtIR0jkAy9muCXrh/mVyG6M9x3HXU+2i9vEHR2nXS+r+UaOf7/jFGL0dP5HvNrkr05zjJCZ+tGNtegN3pUftDiGanGER/0bS7MGXkZechLSEdAJAUk6qXN0gmJ3l9G/05Vi+9RbzWIhSjVT8xIUgCMQXGT5JbiqLx/YOGaFO7flKiXZfYcHFUbSCfGPGjZvxiPsfp5SaiVDQSo1hE26zUbM7XREwIArx2R3/R/x5mpmYhJ4P174r/lqgXOVhmIOOVEalPNxiG10/RhdSN6AK6oW/8ot5rjd+nWFESWm1R14thGMRHJkrmpVR0Ad2IlTTqAJZ/LCUuFQCQEpcmiRwMsCSj2n0b8yVWL71FYlQyRz0Rk8/RJyWkjOT1bdSHaMkyaJpB9KcY0d9/Cflt3PyW/7VY2JgVinPH3Jp1GDWxMNFLBgmGgZkW0Jy5tRkIPZE+ckM5DPLP/C1s9EeJ0BTNy2dZxEJvvcy1fHrMCxFJBIDXDgtb6XsIkoCVVoQZ27f6OV/UoHxyAzkMjaUdA0kZwWuHhY2ZfkIqAjC1NMkvS390Gk0zPKBAC1tzvQaUiZZPgXkhxo+hGV4+SzsLvSER5rYF2l0I0W6HmZV020kZCUutMTa3MSsUZ4+6T40LgMUJC8EbA3NrM71RODI5C46prpM+oSkaZlplWNpZ6DUktPumMFF2AL9v9d1DEAQs7Qr0bWHmnfz2EgQBEwtjybysHxS/ToUpQ912MytTve8gzfDfW3Nrc73kqkamRpyvWGH6lqZpXjss7Sz0viOFnc9+y/9eCmXc9OnT54f++vbtq//h/1Fp1buZ5AJMkgRqtqgG2+Ks052JmTEad6wnOYlTKhou/Zpz1637Npfk6JHJSbTu04w7uipVpQTK1SwtqdCEjEALragel74tJHdVSBnJIccCQJ3W1fUaK+bWZqirFbnQdoCz5CLB0AzPkbNZ14aSIaoEAZRxLImy1UvlXxNw6ddC8muTUtFo3Verb/s0k/wqJ2UkGrWvy0UzWdtboXar6npZ2ltpoaq27tNc71FZ2wGadleqWx7FygkDOarFwNgATTvV567b9G8hmZ8gCbgO0IxfAw8nGJtJhzHbOtigejMN/1HbAc562+3ST9OOlj2bSH4xEiSBqg0rcdGEhkYGaN61kZ7xowqMn7RukHISzj2bcFADDuWLoXK9CnoNeW36E5d+LSQXeVJGwnWgpm9rtqgG66JWks83tTRBfbc63LXrwJaSdWLA142mnRtAbigRJEuwEWbaEW9t+jnr1Q0Xrb5t1aeZ9HsrI1G3bS0uUtPCxhz1XWtLvyMqmoc43KpPM8ldFZmchKuWbpSvVYblIpMYPrlcxqN4aNOvhST5LkESvPH7FUUdCv7Df/90A35CCmXcqNlVtf+USiViY2MRGxuLhIQE5OXlISEhgUtTKpWF+nr+r4pDhWJwH+oiPDGxgUkYsqQPL3nggl4gSULwHpIk0KxrQ1Ry0qD11m5ZHU4uNQUnDZIkIJPL0XdWV02xBIHhK/qLHk0RBNB1YnteBFDrPs1QulpJwcmPlJGwsDHjaA0AlrZg6FJpo3fw4t68CBLPsW6wLGIp3A45iZKVHXhGnbW9FXpM6SiqmQwDDF/Rn2fE9ZnZBXJDA+EyZCRqtXRE3TYa3qDytcqiZc8mgkaXOjJp4IJevHT1eArZjgRJwHVQSx4ScsP2ThyZolCdjEwM0fNPDYw9SZIYsXKATl5t6TOjCy86zm1IaxQray84fjI5ySJHj2zLpZmYGWPA/J46ebVl2PJ+POOy2+SOMLUwEW1Hhdpl0byrZlEpWsYeHUYLh96ro58KRq71n9cdBEmK6AaJRh3q8WgkqjetgvpudcR1Q0ai3+zuBdrVl9UNoWoRBDqP46NMO/dojHI1SovqhpmVKbpM1EQAyeQyDFsmrRsD5/fkhY93GOXKUikItEMmJ+FQvhhcB2oWeUtbC/Se3lm8AAYYvrwfr+97Te8EQ2NDkDKBvpWRXF+qpUy1kmjTv4XgWKhpHgYv7s1LH7SoN4gClCHcPSSB1n2a8Wgk6rerjRrNq4q+UwZGBuip1U6CIDBiZX9xo5kAek7rzMMYazPAGSUqFBMdP+uiVug42lXnt19Kfh9LScvZs2d5fwcOHICdnR3q1KmD7du3IzAwEN7e3ggMDMS2bdtQp04dFClSBAcPHvy/rv+/WibvGgWP4W1AEKzBovYzMLc2w8Jz03gkfABQtUFFLPeZwymgTC5jJxCC/ZKZc3wyLz9BEFh8cQZHxshy3LBl2BS3xhr/+Tq8M007NcCso39wW9EyA7YMUkai66QOGL1uEC+/obEh1t9cxGHTkDKS2y4uUak4NtxaqgMO1mmcG0avHQQDYwOW08hAlk/AJ8eIVQN0yOhsilph460lKFXFIb/dJDepVW1QCeuDFutg6Qxf1R89p3qClJG8vjUxN8aMQxPQvCufk6l01ZJYG7CAY/GWyWVcGQ09nLDs0iydiXfmkYlw6deC46pR962lrTmWXZ4Fx8Z8vJ7aLatj0YXpMLc25/UtQRBwG9IaU/eO5eWXyWRYeW0ut4ulzVFkX8oO624s1gFXdOnbHFN2j2aPU7T6ViaXoe/sbhi0iG9wmVqYYGPwElTI/1JXh+MDQBnHUtgQvERnS7/PzC4YvLg35OpnG8gAgn0XJmwZDg8tEkV1XTcEL0Hx/F0l7fGr2aIa1gQs0AFjnLh1ODzHtmP7R2v8zKxMMe/0VDTQWkwBoJJTeay6Ng/W9pb5Zcg4w7N590aYf2Yqn2uLILDo/DTuS53UGj/rolZYdX0+KtQuyyujoUddzDs5hduN48Yvn8hz3KahvPwGhgZYe2MRh02jPX7FyxfFhqDFOngvHUa5YtzGoewxqdb4yQ3lGLq0L3oW4GSytLPAxltLUMaxJFeGum8rOpXH+qDFOoCPQ5b2QZ+ZXThuNvX4GZsZ4c99Y3UwZUpWcsC6G4u4umrrRr12tbHcZ45O4MK0A+PRblArHd0wtzHDEq+ZqKlFvguwTOJLvGdxu7rac1vbAc46nFokSWL5lTlo4F5Hq2/ZMuxK2GBt4CIdyhTnHk0w7cB4budRPX4yOYne0zpj2HK+YWliZoz1QUtQqV4FrTLYdpauVhIbg5cUClTyt/wz8kM4N+vWrcPr169x8OBBwe1/lUqF4cOHo3bt2pg+ffrfUtFfVf4O+oX4yETc8XqIrLRslK5aAs26NpIEh1IpVbh/5Sm+vv4GE3NjNOvSUC9K6rew73jo85Tlz3Eqh0bt60riM+Rm5+GO10PEfGG5pZx7NBEEpdOW908+43ngK1AUjRrNqqJO6xqSR1yZqVm4ff4BkvK5pZx7NpE8G2cYNrT89d0wyPK3tguSOhaU5NgUhFx4iPSkDBQvXxQtujfm4cIUFIqi8PjaC3x+8RUGRnI09qwvCGqmLTHhcbjn/RjZGTkoV6M0mnSqL4kOq8hT4v6lx/gW9h1mlqZo3q2RKC+YWsJff8Mj3+dQKVSoXL8CGrjXkYyEy8nMQciFh4j7mgAre0u07NVElBcMYPv23YMPeBn8FgzDoJazI2q2qCY5fulJGbh9/gHHLeXcs4kk8jVNs5E4YQ8/QWYgQwP3OrydRiFJ/J6EkAsPkZmahZKVHdCiWyNJdFiVUoWHV58hPPQbjEyN0KxLA5SsJMwLppaojzG4f/kJ8rLzUKF2WTTuWE9SN/Jy8nD34iN8/xQLCxtztOjeSJQXTC2fnofjif9LUEoKjk2roG6bmpJ9m5XG6kZiVDJsilujZa8mkui+DMMgNOQdQkPegSRJ1HGpAcfGlSXLSIlPQ8j5B0hLTEexsvZw7tlEr2488XuJT8/CITeUo3HHejw8HCGJ/RqPe96PkZWejTKOpdCsSwNJ3VAqlLh/+Qki3kbB1MIEzbs10ouuHfE2Eg+vPoMyT4VKdcuhgYeT5LF0TlYu7lx4iNivLLdUy55NJNGZGYbB+8ef8PzGa9A0y5tXy9lRrz/OPynqdSmnTGswxtY//BwiNxUm34L/lTg3P2TcdO3aFR4eHhg7dqxonl27dsHPzw/e3t4/U79fXn5zS/2W3/Jbfstv+ZWEM25K/w3GTeS/07j5IfqFrKwsZGVl/XSe36L5Yr519j6y07NRskoJuA1pxTkSC0l6UgYCjt7C19ffYGxujBbdGqN2q+qiXxI0TeNZYCjuX34MRa4SFZ3KwXVgS15kQEFJiEqC/5FgxOSzgrv0a85DnS0oKqUK9y8/wbNAFkvCsWlVtO7TTJJDJ+pDNAKO3kJSdApsHazRbnArUYZhgP1ivnX2Pt7cDQNBkqjnWgvNujSU5Jf6+OwLgk7dQXpSJhwqFEO7Ia0keXqy0rIQeDwEn56Hw9DYAE0867O+GSK7JAzD4NXtt7jj9RC5mbkoU7003Ia0ktyuTolLhf+RW4h6/x2mlqZw7tkENZpVFR0/iqLw5PoLPPR9DmWeElUaVETbAc6SHDqxX+MRcOQW4iLYnZu2A5x1jlm0RalQ4o7XI7wMfgMwDGo6O6JlzyaSuyQRbyMReOw2UuLSUKSULdyGtJbcQczJykXQqbsIe/gRcgMZGrg7Se6SMAyDsEefcOvsPWSlZqFEJQe4DW0tuYOYnpyBwGO3ER76DcamRmjWtSGcXMR3SWiaxoubr3Hv0mPk5ShQvlYZtBvcSnIHMTE6Gf6HgxHzORZm1mZw6dtccgeRUlG4f+UJnvq/BKWi4dikMlr3bS65S/L9UwwCjt7idm5cB7WU3EFU5Cpw6+x9vL7zDgRJwsmlBpp3ayS5S/LpRTiCTt5BWiLLCq72vxKTrPRs3DwRgg9Pv8DAyACNO9ZDA/c6orskDMPgzd0w3D7/ADkZOShdrSTaDWkNGwmn6dSENAQcuYVv76JgYmEC5x5NJHcQaZrGE7+XeHj1KRS5SlSuVwFtBzpL7iDGf0uA/5FbiA2Ph1URC7j0byG5g6hUKHHP+zGe33wNhqZRs4UjWvVu+q/hl/qvyg/t3IwePRpRUVHYt28fSpbUXYwiIyMxZswYlCpVCnv37v1bKvqrys/s3GSlZ2Npz/V4FhjKTfA0TYMkCYzdOBRdJ7bXucf/SDCL8KuiuAWXUlFwbFIFyy7P0llUk2JSMK/DCnx+GaEpg6JhYGyA2Uf/gHOPJjplnFp1EYcWnGJ9gfInFUpFoWnnhph7crKOwfIt7Dvmtl+BuIgErgxKRcHcxgxLvWehlrMjLz9N09g5+RAu7bjO+sTkz1uUiobnmHaYuH2EzoT5+m4YFnZZg4zkTF4Z9qXtsNJ3ns72uCJXgVUDt+CO1yMuP5OPyjpkSR/WAbXAhHnX+xFWDdwCRY6S8ymgVBTK1SyNVdfm6Rw9pCdnYGHnNXhz731+GQxomoFMRmLyrtHwGN5Gp2+v7PLDjsmH8sdZU0YdlxpY4jVDhw8nLiIBc9qvQGTYd027KQrGpkaYf+ZPHT4jhmFweMFpnFzlBZIk89vIcBEtMw5P0FnwPr/8irkdViI5JoXXt9b2lljuM0dn4WZRpHfD/3Bwvg8CSz9AUzR6/tkJo9cN0unbZzdCsaTHOmRn5HBjS6kolKhYDCuvzdM5OsrJzMGy3hvx+PoLzfjRNEAQGL12kA7NCADcPBmC9SN2QaVU8fq2Sr6vWsFFNSUuFfM6rsLHZ1/4umEkx/SDE3gRQGo5t/4yh46srRuNOtTD/DNTdQyWqI8xmOOxHLHh8axvC8PmN7MyxWKvGTp+dTRNY8+0o/DacjVfNzTj5zGiDabsGq1jDL57+BELOq1GWmI6b/zsSthg1bV5KF+Lb9Qq8pRYO2Qbbp29r6MbA+b3wODFvXXG74HPU6zotwm52Xm88StbvRRW+s7V4cHLTM3Com5r8erWW/7cJiMxcesIeI5pp9O3vvtvYOuEfaApOt9figClolDT2RFLvWfqGJwJUUmY034FIt5EavqWomBsYoQ5JyfzqBTUbTy+9DyOLT3H+bqp29GyZxPMOvqHjsES/vob5rZfgcTvyby+tbSzwLLLswS5vn4FUa9LuaV+fufGOOrfuXPzQ8ZNSEgI5s+fDxMTE3Ts2BG1atWCjY0NUlJS8OrVK/j6+iI3NxfLly9HixbSoab/dvkZ42ae50o88XspGja58Nw0nvHxLPAVZrkvE/RgJ+UkqjWshM13lmuUlqIwrt5Mjo1YW9ROzJtClqF6E03Y7vVDQdgwYqdgfUiSQOu+zXmOy1np2RhebTJSE9J12kGSBAyMDbHv1Qae4+vRxWdxbOk54U4hgP5zumPY8n5cUlxEAkbWnIq8HIVO2DkpI2FpZ4FDYVt4O1Frh25H4PHbomHqU/eORQetKKD3jz9hUrN5bIRfgVtkchKlqpTAnhfreYvBtNaL8Obee9HxW3ltHo9o9N6lxxynT0EhZexO1Kpr87k0pUKJkTWmIi4iQXD8ZHISOx6v4e3IqPmuhIQgCXQc7YrJO0dzaWmJ6RhWbTKy0rJ1x09GwMTcBPvfbOIxfu+edgRem6+KRtWNWDWAF4UX+f47xtSdAZVCJTh+diVscPDdFp7RvLj7Oty/8kS0b+eenMIzPl7eeoMZbZYI1omUk6jkVB7bH67idIOmaUxoOBvhoRG6If35UTsbgpbwDPMbJ0KwetBWwfqQJInm3Rth4dlpXFpOVi6GV5uM5NhUnXYQJAEDQzn2vNzAc3w9udJLlBaCIIBe0/k8TonfkzC8+hTkZSl0olPV0YoH323hRQFtHLUL1w8FierGH9tH8iIcPz0Px8TGc0BTlA60EyknUaJCMewL3cjbQZ3ZbileBr8RHb9ll2ejiacGkuCh7zPM91wlmFcdrbj+xmIuTaVUYXTtaYJAlwTB3rPtwSpUzncGBjR8V0JCkKxT//QD47m0jJRMDKs6GRkpmYJzm5GpEfa/2VQoxvb/tfCMGyPrH34OkffvNW5+CMTP2dkZc+bMAUEQOH/+PBYvXozJkydj8eLFuHDhAkiSxOzZs/+/N2x+RsJDI/DI97mo8hMEgePLzvMm65MrvUSPR2gVjbf3P/Cg2R9fe4Hw0G+CeCwMw4AggLNrL2meQdM4sfy8aAg1TTO4eeoOYr9q0D4Dj91Gcpzu5K3Or8xT4tL2a1xaTlYuzm24LFwAADDAhc1XkZ2PDAsAl3dchyJXKTgZ0xSNtIR0BBy9xaXFf0tA4DFxwwYAji87x1sMzqy9BKIAuahaKBWNiLdReHj1GZf27sEHhIa8Ex0/kiRxaqWXTplimCQ0xW6vf3oezqWFXHiI6M9xouPHMOBxT6mUKpxYcUHw+QCLB+S7/waHDAsA1/bf0CGC1NSJQU5mLq5q0WekJ2fg0o7rkkjWZ9Z48/jHvDZfBa2iRMcvITIJwafvcmkR76JYqgNJ3TjHq8PpVRfF+1ZF48OTz3gRpOEfexYYik/Pw4Wxihi2jNNrLmqSGIY1yEV1g0bI+QeI+qhBrA06eQeJ0cmC7WBoBpSKgrcW/1FeTh7OrPUWLgAshMHFbb48/rHLO/2Ql61r2ABs36YnZ/L4qxKjk+F3OFhSN06suMAh+wLI11dGELOSVrEcdXe9H3NprPNtqPj4kQQ7zxQoU0o3Xga9wfvHGkqW+5efiCJAq+t5dr1mbqMoSqdM3j00A/8jwTxKFr9DQUhPzhCd2/JyFLiy6xenX/gPyw8jFHt4eODChQuYO3cuevXqhQ4dOqBXr16YO3cuzp07Bw8PD/0P+Q/LXe/HkqBVDMPgy6sIJESxypaVni35JQSw4ZN3L2q4be5efKgXfOv+5cfcRBbxNkovVD5BELh3STORhVx4IJ4Z7MR069x97vpl0BtJ3iCApS14oUWEeevcfWlOLYbB7fOaMu5feSr5fABIiEzCl1cRbB1pGvcuPZIG5ZOTuOOt3bePJCNqaJpGaMg7jv8oMToZH5+F6+XouavF23XX+5EkeCGlonj9/+HJZ6TGp4nmB9jFSNtIu3X+vmSdCo7fE7+XemkkMlOz8Oauxsi+ff6+ZN8SJMHjZLp/Sb9ufHv3naMIyM3Ow5MA8R1QQK0bWn178aH0+FE0Hl97zhlpUR+i8f1jjKRukCSB+9q64fUAhAQMGqXi921oSBiy03NE8wMsbcHTgFfctV7doBnc0tKNR1cluOPyJTkmBR+ffuGu73g91AtYeVdbN7wf6eVEC3v0CSn572paYjre3f+gRzdkvHfkrvcjvYCm2kz3n55/5ahsROvFMHjgo9GN2+cf6NeNs7+JM39V+SGHYrWYmprC3d0d7u7u+jP/Fp7kZuWCJAnQ4iCpANiFHgAUOeIkm5wQQG62Jl+uwDFOQaFpBpSSgkwm02t0AOwEnqddRlauXqCnPC2mZO3/S4k2u3JuljSnFgAe71Zedh4IkgBDSVdM3Q6WjVx6wmcoht/u7DxBML6Coh63wrSbIAhevtysPL0w9tqcPNpjL1UGr28z9ddLu/8LO37afZWn591laAY5WmXk5o8fCqsbuYpCgI0x/PcwR6GXR41hAGWeEoZGBrz2iAlBkry+zcnM1VuGtl4Xvm//mj7laulGbla+buh5r9TtZRh291VK1Gzi2vcWJkxaXffCzDsEUWBOyM7TCxKrUqhA0zRkMlmh+okkyAL6p3/eyS3kmP1j8rNAfP9i4+anuaWys7Px/v17vHz5Un/m38JJ+VploZJgzgVYbhT7/PNcyyIWvHNzIaFVNMrV1DjW6sOgAICiZYpwTnQlKxeX/JoF2C8i7TIq1Ckn+ZVGykiU1/IJ0b5XSrTrXqFOOcmvNJmcRCWnclpllNFPcignUbIyG9kjN5DDoUJRSaxxggDKaQEelqtZBioJ+H6ABWNUw+nbl7KDibk0R49KSaFczTLcdfmapSXbTRBA6WoluOsy1UroXVQYhkF5rTIqOkmPn0xOcgB/AHj1kxI1tQXAjqUURQApJ3l+Q+VrlpFklQZYGoli+fgn5tZmsCkmHoEDsEZ82Rp83dBneNg62HARaQ4VisLASPpbkFJRvPe2oj7dIAlencoWQl8Bvg5VqF1Wr27wxq9WGb2GDUES3HtFEARKVS0hqRukjOS1u1zN0nrnNlNLE9jmR73ZOljDVCK6CQBUKor33parUVoS54kgCJSs4sA5P5euWkIv/xhN07wx0KcbanTtX1n+yzs3P2zcxMTEYM6cOejYsSPGjBmDKVOmcL+FhoZi0KBBeP78+d9Rx/8vxblHY5jbiJP3kTIS7kNbc06WMpkMnca6iSsowU742lwnHsPbSC4qBEmgywTN8aGlrQVa920mSkhHkgRsHWzQqH1dLs1zTDvJXQ+aotF5vKaMstVLo0YzYdh0gG131YaVeJNG5/HuksYKpaLhOdaNu67vVhtFStmJtl3NG6QNatd1YgfJIwQQBDxGaKKf2vRvASMTQ9FJn5SR8BzTjnOyNDQ2hMfwNqLtJvJJNlv2asqldRzdTvLrlAHQZYImoq5ISTs06VRfdEImZQRKVCqO2q2qc2mdxrlJjh+lotF5nGZntlqjSihfq4zk+NVtW4vnQN5lQnvp7f38KDm1NO3SUJK0kJSRaDewJWd4kCSJzuM9JN91mVwGtyGtuWu3oa0hkzIc83VDXQczKzO0HdBSfPxIAlb2lmjauQGXplc3aIanf6UqO6BO6xqSfVvRqRwPkqHLBA+9utF5nEY3nFxqoHj5oqKGASkn0axLQx4URZcJ7SU5hhiG4VF0tO7bnDXkJXSj/Yi2HFCpgaEBPEe7SugGAWNTIx7FSoeRbfUQ1zLoqqUbNsWs0aJbI/G+JQkULWuPeq4aTrtOY6V1g53bfp9a/KryQ8ZNXFwcxo0bhwcPHqBFixaoUaMG7yvI0dERaWlpCAwM/KFKZWdn4+DBg5g+fTo6duyIli1b4tq1a/pvzJeMjAysW7cOnTp1gpubGyZPnoz3798L5r1z5w5GjBgBV1dX9OzZEwcPHoRKJe1T8HeIobEhZh+bBFJG6CgcKWP5kgry5/SZ3RWVnMrp+GGQMhIECEw/MJ4XMWTnYINJ+ZExBcsgSAK1nB3RdVIHXvqYdYNhX8pOJ79MTkJmIMPcE5N5uztV6lfEwAU9uWdyz8/nkHHp1wLOPRrznvXn/nEwszTRWYRlchImFsaYcWg8L71510Ya8k2tpqvL6zu7G0f/ALCG4LyTkyE3lOuUQcpIFClhi7EbhvLSO413Qx2XGjoLpLofJm4bAftSmlBwM0tTzDw8EQQhPH7la5VBv7l8bqLBi3ujdLWSgvkJGYnZxybxIoYcKhTDuPx6FhxzgiDQ0N2JF/GlrqeVvZXg+BkYGWLO8Uk8o6F2y+roPqUj+0ze+LH/dhjtioYeTrxyZx6ZCCNTQ92+lZOwsDHH1D1jeOltBrRAi+6NuHeCy59f3vAV/Xk0IIZGBphzYjKPpkG7rxwqFMOIVXwOrZ7TOqFao0rC40cAf+4by9v5tLa3YukuCF3dIEkCjk2qoMfUjrz0Eav6o3g5e8E6yeQyzD05hRcxVL5WWY5HjTd+bJQzWvZsgtZ9+VQHU/eOgbm1maBuGJsZYebhibz0Rh3qcUY3IaAbvaZ1Qs0WmogvkiQx5/gkGBjJdT5iSBkJm6JWmLBlOC+942hX1GtXR1Q3xm8axkMRNjEzxqyjf4AkhcevbPVSOjQg/ef3YHdjhHSDJDDzyB88GomiZewxYesIXj202163bS10HMPnfRq3aShsHWx02y0nITc0wNwTk3lGX/WmVdF7Rhfumdzz8//rNqQ1mnZqgF9a/iqPlNDfv1R+KBR81apVCAwMxObNm1GrVi0cOnQIR44cQXBwMJdn/vz5iIyMxJEjR/5ypWJiYtCnTx8UK1YMJUqUwPPnzzFnzhy0b6+L+1JQaJrGxIkT8fnzZ/Tt2xdWVlbw9vZGfHw89u3bh9KlNZPogwcPMGvWLDg5OcHV1RVfvnzBxYsX0alTJ0ybNk2iFI38LEJx2KOPOLnSCw98noKhGZhbm6HjaFf0nd1NEGQvJzMH59ZfweVdfkhLSAcIoEG7Oug3tztqt6wuUALwxP8lTq++yAK0gd1u7zLBAz3/9BQEokpNSMPpVRdx7eBNZKfngJSRaNGtEfrN7S4KdhV85i7OrL3ERfuUqFQcPaZ4wnNsO8GvxNiv8Ti50guBx29DmauEgZEcbQe0RP+53XX4kgB2XK/uCcCFzVdZx06w28a9Z3SBS9/mgl/5X15F4OQqL9y58ACUioaJuTE8hrdBv7ndBYHEFHlKeG3ygff2a5zzYa2Wjug3uxsaetTVyQ8AoSHvcGqVFx77vQAY9viw01g39JnZRYfTB2BBAk+vuYSre/yRkZIFgiTQuEM99JvbnReSry33rzzBmbXeeHOXNdDtS9uh2x8d0G1yB0EAw8ToZJxedRF+h4OQm5UHmYEMrXo1Rf+53XW4xAD2yzvw2G2cXX8JX19HAmC5c3r+2QntR7QR7NuoD9E4udILQafvQqVQwdDEEG6DW6Hf3O6CobGUisKlHddxcasv67QOdheo98yucO7eWCc/AHx4+hknV3rh/qXHoGkGZlam6DjKFX1mdxWkIsjNzsO59Zdxeacf51hdz7UW+s3proMno5ZnN0JxapUX58BuU8wKncd7oNf0Tjp8ZQALoHlq1UVcO3ADWWnZ+YS1jdB/bnde2LG23D5/H2fXXeaifRwqFEW3SR3ReYK7IABe/LcEnFx5EQFHb0GRq4DcUI62/Vug39zuglQSNE3j+oGbOLfxCqLeRwNgWbB7Te/MsoYLjN/XN5E4ueIC5+xtbGYEj2Ft0G9uN0EAUaVCiYtbfHFx2zUk5gc51GxRDX1ndUXjjvV18gPAm3vvcXKVFx77PgPDABa25vAc0w59ZnUVBNnLzsjBmTXe8NkTgPSkDBAE0LB9XfSb012Hi0otD32f4cwab4SGvAMAFClpi65/dED3KR0EAQxT4lJxcqUX/A4FISczF7L8Xdz+c3vwjr3UwjAMbpwIwfkNl/H5JRuAUKpqCfSY4okOo9pKHo39k6Jel5TFW4MxtP7h5xCKVBjE/jtDwX/IuOnWrRvq1KmDxYsXA4CgcbN9+3b4+vrC19dX+CESolAokJGRATs7O4SFhWH06NGFNm5u3ryJxYsXY+nSpWjdujUAIDU1Ff3790eTJk2wcOFCLu/gwYMhl8uxd+9eyOXsIrFv3z4cP34cR48eRdmy+s9T/y76hbycPORm5cHcxkySF0UtFEUhMyULhiaGkkin2pKTmQNlngrmNmaFUkpKRSEjJROmFiaFRuPMSs8GpaJgYWNeKKdCpUKJrLRsmFmZSqKpqoVhGGSmZoEkCR3AOzFR5CqQnZEDCxtzvT5FALtYZKZkwcBILmigCEludh7ysv/6+BmZGkmiOGtLdkYOVAoVLGwL17cqpQqZqVkwtTSV5CrTlszULDAMa2QXpgxFnhLZ6dkwtzaTRIpWC8MwyEhhgRilUGS1hdMNa7O/Nn7GBoXXjaxcKHOVf0k3MlOzYGxmJGgECcn/SjcIgpBEH9cWRa4COZm5MLMyLdT4qftWbiiXRMjWlv+lbvyfzm1pWaDpwuvGPym/jZsfPJbKyMhA8eLSRI0Mw0CplPayFxNDQ0PY2UkT0YnJrVu3YGtri5YtNb4n1tbWcHFxwZ07d6BQsF79X79+xdevX9GpUyfOsAFYw41hGJ6h9r8QQ2NDmFqaFEr5AfboxdTShPX7KKQYmRrBxMK40F8bpIyEqaUpDAq5MAIss7CphUmhlV9uIIepZeEmVoA9FjG1MIGxHudcbTEwMoCppaleh0K1kCR7PGZUyIkVAAyNDX5o/AyNC9+3RqbsO1LYvpXJZez4GRY+KNLE3PgvjZ+BITt+hTE6AK3xM/srfWsIEwuTQpfBjd9f0Q0Tw7+kGzK5DCZ/YWEE/ne6oc9xXVsMjAz+ct+aWprAyLTw7f5f6sb/6dz2F3XjlxCG+fm/f6n8UCi4jY0NoqKiJPN8+fIFxYrpHi/8X8uHDx9QuXJlnZfc0dERV65cQWRkJCpWrIgPHz4AgI41WqRIEdjb2+Pjx4//k/qGh0bgzNpLuHXuPlQKFexK2KDTOHd0n9JR8KtTkavApe3XcWnH9Xy6AxLNujRCn1ldUbWBMPfT67thOLPWmwMNLFm5OLpO7ADPse0EJ86stCyc3+gDnz0BSI1Pg6GxAVz6tUCfmV1EuZ8eXn2Ks+svI/T2WzAMe2TUY4onXAcJb4snxaTg3LpLuH4oCFlp2TC1NIH7UBf0ntFZkGFZvT3stdkHH5+FgyCAms6O6DWts+i5d9THGJxd640bJ+9AkaOAlb0lPEe3Q89pnQS/bCkVBZ89Abi4zRffP8SAJAk0bF8XfWZ21aGQUMvHZ19wZq037lx8BEpJoWiZIug83gPdJrUXXPhys/NwcYsvLu+6jsSoZMgNZHDu2QR9Z3UTjbx4EfQaZ9ZewtOAl2BoBmUcS6LbpI5oP7KN4IKRnpSBc+sv4+q+QGQkZ8LI1AiuA1uiz8wugkd+AHDn4kOcW38Zb+/n60XDSuj5pyda9W4mOH7x3xJwZu0lBBy9hZzMXJhbm6H9iDboNaOL4JEfTdPwPxwMry1XER76DQRJwMmlJnrP6IIGbnUE6xTxNhJn1l5C8Jm7UOapYFPcGp3GuqHHVE/BXQOlQonLO/xwacc1xHyJh0xOokmnBugzsyscG1cWKAF4++ADzqzxxgOfp6ApGg4ViqLrxA7oNN5NcLckKz0bXpuu4spuP6TEpcHAyAAufZuj98wuotxPj68/x9n1l/Ey6DUYho1w6ja5I9yHthbs2+TYFJxbf4U7+jIxN4b7UBf0mtFZ8MiPYRgEn7mH8xuv4MOTzwCAGs2rote0zmjetZFgnaI/x+Ls2ksIPH4beTkKWNpZoONoV/Sc1knwyI+iKPjuu4GLW68iMiwaJEmgvrsT+szsgjqtagiW8elFOKsbFx5CpaRQpJQduox3R9dJHQR3ZPJy8nBx6zVc3nkdCZFJkBnI0KJ7Y/Sd2RWV6gofh7+6/RZn1nrjyfUXoGkGpaqWQLc/OqDjaFdBgy0jJRPnN1zB1b0BSEvMgKGJIVwHOKP3zC6i7PH3Lj3GuQ2X8eZuGBgGqFy/AnpO9YRLvxa/vqHzsxFP/17b5seOpdasWQN/f3/s3bsXFStW1DmWevnyJSZNmoRevXph4sSJ0g/TI3/1WMrd3R0uLi6YPXs2L/3+/fuYNWsW1q9fj0aNGuHUqVPYtWsXzp07p2OEjR49GjKZDLt27dJ5fmJiIpKSNCiWERERWL58+Q9t2z2/GYp5HVfq4KwQJIGKdcphQ/AS3iSuyFVgtvtyvL4bxos+IeUkCAALz0/X4VO5eTIEqwdtA0ESXFSFmq+moUddLPGeyTNw0pMyMMV5Ab5/jOFFYbAOqQZYG7hIZ6E4u+4S9s06DlJGasrIx9LoMNoVU3aN5k0CMV/iMLn5PKQl8tE/1VQKm+8s4000DMNg28T9uLLLn4fRoS5v2PJ+6F/Aeff9k8+Y0WYxFLkKXt+qHVK33F3O4+GiVBQWd1/HAdyp1YKUkWBoBjMOT0C7Qa14ZTy8+hSLuq2DmvtHLUS+Q+ragAW8I4uczBxMb7MEH5994Y2fTE6CIEms8JmDev+PvasOj1rp3m+yW6NGgeLuTnFvKdYCxSnurhd3d3d3dy9WaAuluJXiWmgpdfd2d5P8/kg3u9NssgXu7/u43+U8zz6Q6SQzmcmZOTNzzvu2rE6UcXW3N9aP3Ama1mtbih9zHLs2wKzjEwgDJy4iHn81mo3okFhR/5lbmmOt70KU0QsNBoAD807g6JKzRP/RNAWW5eA+uT2Gr+5P5A9+9x0Tm85FWlKaqG3zFMyNjfeXEpMwy7JYPWgrvA/7gaIoom1ZhsXoDYPQOZtj+6s77zDDZTEYDUOWkRU+vd5vEXEsqcpUY3a7ZXjh+4Z/Pqd7b44D5pycJPLtuX36AZb2Wg+apnRlUAAFCjVbVMWSyzMJAyc5PgUTHech5H2oqG2VJkqsuDFX5Btydv1l7Jh80KButB7Iw/3r60bUt2j81Wg24iMTSd1Q0rCytcSGu4uJBQbHcdg+6QDOb7xK6kZW//Wf313kvPv5+VdMdp6PzLRMUf8VKGGPjfeWwK5AbiGdYRgs6bEOd88/BgXdYp5W0GBZFpN3jxLxqD25HoB5HVaA48S6UaFOGazymU8s3jLSMjGt5UK8f/xZrBsUhYUXphNRmgBw/cAtrBmyjdANrcN6o451Me/UZMLAiY9KxIQmcxDxNUrUf6YWplh7a6HIb+rI4jM4OP+kwf7rNK4NRm8Y9FsaOMKxVH4n4BeOpaBKgEnU7X/PsVT//v1hZmaGcePG4dChQwgNDQXAO+ju2bMHU6dOha2tLXr27GnkSX+/ZGZmwtRUvGLWpmVmZgF/ZR1PSeXV5ssuHh4eGDZsmPBbsmTJT9VTrVJjac/10KgZUbghx/LoxIfmnyTST632EBk2AB9KyzIslvfZSNAWJEQnYvWgrQKpofD8LOj+J57P4bHtOvGs3dOPiAwbgA8pVWWosaTHOiI8+eurYOyefoSvh34ZWXW8ussbDzyeEs9aO3S7yLDR3p8Um4w1g0luq8dX/QWYc/13196/f85xgraAZVks6bEOmekqUduyDIvwr5HYOeUQkX55pxceXfHPahuyDI7jsHbodsRFxAvp6akZWNp7I1jGcP+9f/gRJ1ZcINKPLDqDz8/FKMWMhgWjYbCk53oekC5Lor5FY+OoXQCXrW2zohj8zjyE18HbxLO2/rUP0d9jDfZfekoGlvXeQLzf2wcfcHTJWaI9+Tbk85xeewn+Pq+IZ63stxmpiWkG2zY+MoGvs57cPvUA3of9suou7r9tE/fj+8cwIV2j1mBx97XQqDTiMlgOwW+/Y99skn/p3IYrvGHDcsRqk9Gw4FgOK/ptImgLkuKSsbL/ZtHkC46v4/Obr3FhExmhuW/WMZFhoy1DncnrBqOHffTtfSh2TDlIvCug+4ZvHPCF3xkS4Xvd8J0iwwbgdTwlIRWrBmwh0p95vcT5jVeJ52rbCQAOLTyF9491u9Acx/EEmKmZBvsv8ls0tk3cT6Rf33cLd889zmobMj84YP2InQKSOsDvwCzttR6MAXBMjuXw8ekXHFtC0oQcX3YOH54ESugGK5B2aiUmLA7rh+8Q6YY2wuf+xSe4tvcm8awdkw4gIijKYP9lpqmwpOd64vv88DQQB7PGYEP9d2HzNTy9HoDfWv7F0VI/ZdwUKlQIa9asgZWVFfbu3Qtvb29wHIcZM2bg8OHDyJ07N1atWoV8+f7zhGJmZmaC4aIv2jQzM34lrTVqpPJq82WXDh06YPfu3cJvzpw5BvMZk3vnHyMxJlkS/4NlWFzd64PMdF6hGYaBxzZPyfwcx69+fI7eEdKu7/cFIwfNDuCCHu9TSkIqvI/4SeJmsAyLqG8xeHZDB9h4aYeXUaAr/TK+fwyTpZFgGRav775H8NsQIU3LHi4lCiWNSzt0HC8BN1+LVmdEGRoWt47fFagRAL4dOBlNZhkWnvtuCde+J+4hPSVd8kiaZTlc2n5dmOxUmWpc3uUtWSeO5ZAcl4I7Z3UQ81d3+5DxvdmEoimibeMi4nH3/GOwEtgcLMPi27tQvLmvg0Xw2H7dKIifxzZP4frjs0B88v8i+R6MhsXja88RGRwtpF3cck2WRoKmaVzW4696ePkZP8HL6Mb1A74CqjHHcbi45ZqMbnBQZ6gFAwsAvA/58TQSEv3HsRzOb74qTHZpyem4cdBX+ptiOcSGxePRVR18/+UdN2SxdGgFTfCuhX+NxLMb0jQSLMPi/ePPCHwRJKR5bPOUxKUCsvpvu24B89LvLb5/FC9ehDI0LPzOPBSoEQBeN4ztTlzb4yP83+/0Q6QmpEmPbSyLyzu9oFbxPpkatQaXdtyQ1g2OQ1pSOkF14Ln3pqw7CAXgwmZdMEtiTBJun7ovqxthnyOEiFIgq/+MtO3FbIvD300oDqDYX/j924wbAKhcuTKOHTuGxYsXo2fPnnBzc4O7uzsWLFiAo0ePomJFw6F7/9+SJ08e4thIK9o0raOy9l+pvFIOzfny5UOFChWEX04iqgxJYEAQlCbyDnbpyRmI+hYDAEiKTUF8pDxvkEKpQGBAkK6MF19lwbfAAeGBkcJuwfePYUZ5gxRKmijj49NAo0BXn/11uyracEpjop/v4zPpyRTgJ1R9Ur3AgCCjzsMaNYOQ92FZ/9fwIbRGFFl/UgkMCDLqhJkYkyyQVMZ8j0VaUppsfqWJAoEBurb6HPDVKG/Q11ffhOvgt9+NIjNTFEXscn18It9/jIbFx6c6nqEvOek/DkS9Al8EydJIsAyLT/66MgIDgqAwohuZaZmIyOKWSklIRUxonGx+WkGTbfviqyzoH8Dzj2l3QsMCIwiqC0OSXf8++X8xqhv6+b++/CaZV19I/fsiOWED4v4LDAgy+t6shsW3d7xPJcdxCHr9TRbNmWXYbLrx1ejYlpKQKsAtxIXHIzkuRTa/0kRBfLf8NyXHN8frg5Y379u7UKMUKzRNEW374ennHOhGoOwz/8h/T36JW0qpVMLR0ZGITPpvS7ly5fDy5UuwLEs4Fb979w7m5uYCzk25crzfyIcPH1C5sg4fJiYmBtHR0ejQocP/az1NzU2Nwr9r8wGAqRHodwAAByLCwMTMhB/IZCYWiqaESTonkR8syxERBqYWxqMNTIg65eyT03+PnERN6Ec2mZiZGIWY138uraCJM3VDQlGUqG1zsmWrbdOcRGVwHEf0gam5iVEeIP1IqJ8qIwcRRWYW2d47B6LfVkpTJSDDH0RR1E/1n0nWeyhzGA1mov/epiY58pXQtu/PtK2AYC3zKvr68P+mGxb631TOxh3991WYKGUXPbRCrBs58eTU3mOSg3GH48jxycRMSfraGBCFiUKYA3LStnz/6d7DLAf1+pGIrv+K/OrR0r9t52b8+PHw9PSUzXPjxg2MHz/+pyqVU4mJiUFwcDCBKOzk5IS4uDj4+em2oBMSEnDr1i00atRIOI4qVaoUihcvjkuXLgnWPQBcuHABFEXByYl0Hv27pUH72vJMyRRQvFIR5C/OH+1Z2lqicsPyRlmiG+hFDjVwq2OUzbeuq4Ng3JSoUhT5isqH4HMsh/puOtCuxh3ryU4StJIHANRKjWZVjIbompibEKBrTTrXl+dYoik00YsKqde2puwRE8ADGWqjk2iaRr22NWW391mGRQM3vbZtX5vwr8guNE2hYr2yAipuviJ5ULJqMdm2YjQsGrTXtW0DtzpGWcQbdtTVqULdMrDOYyWZH+Dbql4bB+G6cad68kdGChpNOusccWu3rm50xyqXtQUqN9I5HzbuVE+eJRocEfHWwK22/A4UBRQuUwBFyvJwFBaW5rK0BQCvGw3127Z9Hfn+y6KR0E6oxSoURoGS9rIcS/w3Uku4bpjNuT+7KJRk21ZtWsloiLzSVEk4nctRCgB8f+tHTNVr4yBPMwLA1t4G5WvzjrUURaFh+zqy/ccyXDbdkG9biqZQxqGkABZol98W5WqVkt1RYjQMQW3RwK2O7DdCK2k0dKst6FvZmqUEnjcp4cAjPmulcad68pxoChpNuzSQfeZ/W/5wS/2gBAQEICIiQjZPRETEL5Fpnj17FgcPHhRAAO/du4eDBw/i4MGDSEnhtzB37dqFfv36ITpad77frFkzVKlSBcuXL8eBAwdw/vx5jB8/HizLYvBgElZ89OjRCAwMxOTJk3Hp0iVs3LgRR44cgZubG0qWLPnTdc+JlKtVGg7OVSUHJo4Des/qSkyGvWd1kdzeVyhplK1ZCjWb64yCRh3qoGj5QpIDE8dy6DGtk+4ZCgV6z+wsWWdaQaNxp3ooWk4XydR6YDNY57Ey+B4UTUGhoIlIGEubXOg0ro3kJE9RFDqOdiVCtTuOdYXCRGHwHlpBw8o2F1wGOQtphcsUhFO3hrKDfq8ZnYlJuse0TpIs4rSSRuEyBdC4k26yqu5YGRXqlpEsg2U5gn6Boij0md1VctVMK2lUa1qJoJFo1qMR7IuJqTD4B/LfSLdJuh1GE1MT9JzeyeDzAb4/WvZ1JELt2w1vCXMrw/guNE3BxMwE7fW4iXLb26LtsBbSgz4FdJvUngj17TqhHSiKMug+pIX8b9m3qZBWunoJ1HF1kO4/Dug9m9SNnjM6S052CiVPh1FbL+S8bhsHlKhcVFI3WJZFzxk6XaBpGn1md5VcydIKGvXb1SIQoFv2c4RtPhvDukHx30Tn8TrdsLA0R9eJbpIGFEVTaDe8JUEj0WGMK0xMlQb7g1ZQyGVjQfA+5S9uj+a9m8gatD2mdSIiKLtP7cCPOxL9V6CEPZp2003ylRuW5/njZMadPrO7Emm9Z3eVNORpJY1KDfhnaqVp1/ooWCq/7NjmnkWdAPCYQb1myI9tzj0bo0AJeyHNdUhzHjtHIX5xiqagNFWiw5jfnFvqX4xz8/+GHZ2RkUGA4/2onDx5Env37sWFCxcAAH5+fti7dy/27t2L5ORkyfsUCgVWrVqF5s2b4+zZs9i+fTtsbW2xYcMGFC9Owms3atQIS5YsQXJyMjZu3Ag/Pz/07dsXEydO/Ol6/4jMPT0JFery2DQKpQIUTQlcOIOX9kaLPk2J/PXb1ca4LUNBZ+Xjj5T4LixeqSiWXJ5JDPgKpQIrrs9FwVIFsq5p0DTF32eiwNT9Y0SUDW4jWwuDOq2kiWOr6k6VMe0gGdpvbWeFVd7zhAFXWy+KomBmYYpFF2egaPnCxD2DlvRCi6zJTPve2jKcezXGkOW9ifxFyhbCEo8ZMLc047mcaB2fk7WdFVZ6zRMxpk/eO0ow9HRl8Pd0n9oRHce6EvmrNq6IGYfHQWmS1Q96+QuWsMeKG3OJAZ+iKCz2mIFSWQzNiqy2ohV8G4/eMEgUlt+sR2MMW9lX4KPSr1O5mqWx4NxUIr+puSlWec8XOK20z6ZoCkoTJWYfnyDCNnKf0gGdxrUh6qRt27ptamL89mFE/jwF7bDi+lxY5s6lKyPrG7SwtsDya7ORv7g9cc/IdQOF3bjsbdt2aAv0mUtOXKWqlcD8s1NhYm7KGzl6/WdXwBarvOeLkKBnH5uAyg3LE2Vo6zVgYQ+4DHQm8tdpXQMTd44Q6q9fp6LlC2PZ1VmEAadQKLDccw4KZ0EOCP2Xdd+kXSNRq0U1ogzXwc3Rb5670E76bVulcQXMPPIXkd/SJhdW+8wXdgz0dcPUwhQLzk8T0WH0m+8O1yxDPbtuOHZtgBFryLD8giXzY+mVWQJRpb5uWOa2xMrrc0W4QxN2jhAMvez913VCO3Sb5Ebkr1ivHGZn8WZl1w37Ynmx0msugYBNURQWnJ8qQA7o6wZFUxi+uj+adiV3PJp0ro9R6wYS+bRllK5WAgsvTCPGNhNTE6zymid8m6RuKDDzyHgRnUnn8W3RbVJ7ok7atq3VohrPNaYnue1tsfLGPFjltiLKAAWYW5pj6eWZKFTqP4/l9kdyJjnGuYmMjBT+3717d7i7u8Pd3V2Uj2EYREVFYfXq1aAoCkeOHPn7avsbyq/SL7Asi+c+r+B78j7SktNRtFwhuA5pLqs0MaGxuLb3JoLehMDc0gxNuzRA3TYOkgigGrUGDy49wwOPJ1BlqFCmRim4DnYmsCyyy/dP4fDc64OwL5GwsbOCc+8mqO5YWXLHJTM9E74n7+O5zyswGgaVG1ZA6wFOshQJn59/xfUDtxAbHo+8Be3QaoATwXicXVITU+F12A9v7n8ATVOo2aI6nHs2koS/5zgOr+++h8/RO0iKS0ahUgXgOthZEogQ4LEwru+7ic8BX2FqbooGbrXRqGNdSZRYhmHw9PoL3DnzEOmpGShRqShchzQ3CLamlYigKHjuvYmQj2HIZc0zgdduVV0SXVWtUuPe+cd4dNUf6kw1ytcuA5dBzgROT3YJfhsCz323EPktGrnz2aBlP0dUalBesv/SUzNw69hdBPjyQHPVm1ZCCz3m7ezCcRw+PPkMr0O3ER+VCPsieeEyyFkSiBDgw6+9Dt7G+8efoFAqUNe1Jpp2ayBJDaENyfY9cQ+pSWkoXKYg2gxpjsJlpNHRY8LicH3fLXx9HQyzXGZo3Kke6retJXmUxmgYPLz8DPcuPoYqXYVS1UrAdXBz5C0k5lfSSujncHjuvYmwL5Gwss0F515NUKNZFcm2VWWocPv0Azy78QKMhkGl+uXRaoATrO2kjxADXwThxgFfRIfGIk+B3GjV3wkV6paVzJ+WnA7vw354dfcdKApwcK6G5r2bSNIXcByHN/c/wOeIH5LiUlCgeD64DG4uCUQI8NAS1/f74pN/IEzMTNCgXW006lRXkhqCZVk8u/ECfqcfIC0lA8UrFkGbIc1FxrK+RH2LxrW9N/HtfShyWZmjabeGqONSQ1I3NGoN7l14goeXn0KdqUbZmqXhOtgZue2lj6C+vQ/F9X03ER4UBdu81mjRpymqNK4o2X8ZaZnwPXEPz2++AstyqNq4Ilr2c8wxfch/Q7TzEpvbETDJ/fMPUieATvD7R+Lc5Ni4cXJy+iGwIo7jMGrUqP8K1s1/Uv4ubqk/8kf+yB/5I3/k7xDCuFHm/vkHaf65xk2Oz41cXFwEdNHr16+jbNmyKFtWvJKgaRo2NjaoVasW6tc3zPb7R0hJiE7Ew0vPkJqYhqLlC6GOi4PkShPQ7fYEv/kOc0sz1HerLbvSBPgV0eNrAVClq1DGoSSqO0nvwgD8iujx1ecI/xIJKztLNOpYV3alCfArouc+r8AyLCo3LC+70gT4FdEDj6eIC4+HXcHcaNihjlGiw4/PAvH2/kcevr95VdmVJsCHnN6/+ATJcSkoWCo/6rWtKUtCyHEcXvq9RWBAEEzMTFCvTU3iHN6QxEXE4+GlZ8hIzUSxSkVQq2U1WR4d7W5P6MdwWFibo0H7OgYpC/Ql/Esknl4PgFqlQfnapWVXmgCPq/Po8jNEfYuBTT5rNOpY1+hK8+vrbzzOBwdUbVpRkgFeK+kp6Xjg8RTxkYnIVzQvGravLRtxx3Ec3j36hA+PP0OhVKBWq+qE/5YhSYpNxn2Pp0hNSEXhsgVRr01No7oRcOsNgl59g1kuU9RvV8sgnYe+RH+PxaMr/vzOTfXivHOyDEeRRq3B42vPER4YCcvclmjUsY5BygJ9+f4xDP7e/K5mxfrlULFeWdn+y0zPxMNLzxATGge7Ara8bhghcf38/Cte330PUICDc1WUrCJmgNeX1MRU3Pd4iqSYZOQvYY/67WrJEqxqd0I/+X+BiakSdVwdjB7LxEcm4OHlZ0hPzkDRCoV5h3QjuuHv9RIh78NgbmWOhu1ry+4wA/xO6BPPgKydm1Ko1rSSbNuqVWo8uuKPyKBo2OS1RsMOdYwSjQa/DUHALR4kskrjCpIM8H/k95EcGzezZs0S/h8QEIA2bdqgW7du/y+V+rcIwzDYM/0Izm+6BkbDCOHIeQrZYer+MQY5d17fe4/lfTchKjiah1jnONA0jTZDmmPMpsGiiTszPRPrR+zEzaN3wYHjDVSWQ5FyhTD7+ASDSnrvwmOsH74DiTHJQp1MzJToPrUj+i/oLhr4k2KTsbzfJjz1DOAHFYp36CtXuzTmnpxkkM/oyi4v7Jx6COnJGUIZFlbmGLqiLzqMFjvpRQRFYUmPdfjwJJB3nuT4wbZ26+qYcfgv0TY0x3E4svgMji8/B3WmRijDJq81JuwYLjrzB3hcmaW9NuD7h7CsMjgAFJr1bISJu0aKDC+NWoNtE/bjShY4nxbyPn/xfJh+aJzInwkA/H1eYfXALYgJjRPqpFAq0HGsK4av6ieauNOS07FmyDbcOfuQ9+fM6r8SlYtizslJBiewm8fvYsvYPUiOTxXKMDU3Qb957ugxvZNo4I+LiMeyPhvx4tYbov+qNKqA2ScmCj4/+m17fuNV7JtzHJlpmUIZlra5MGr9QJE/DMBP7ot7rMOXF8FE/zVsXwfTDo4VTS4Mw+DAnBM4s+4SNBpGCPu1K2CLKfvGiKD4AeDdo09Y1nsDIr5GCbpBURRcBjpj3JYhIsNLlaHCxtG74XXoNjiOA03x/VeoTAHMOjqecO7WyqMrz7BmyHYkRCUK9AMbRynhPrk9Bi7uKdKN5PgUrOy/GY+u+BNtW8ahJOacnGTQuLu21wc7Jh9EWlK60LbmlmYYvLS3iKYCAKJCYrC053q8ffCRaFsH56qYdWy8yDjgOA7Hl5/HkSVnoM5QC2VY57HCX1uHolmPxqIyvr4KxpKe6/HtXaigGxwAp24NMXnvKJHhxWgY7Jh8EB7br4PVsEIZ+YrkwfRD44hoSK28uP0GK/ptRsz3WEGXNippuI1ohVHrBoqOhtNTM7Bu6Hb4nrpP6EaxioUx58Qkg0ekt08/wMZRu5Acl6Ib28xN0HtmF/SZ01WkG/FRiVjedyOee78i+q9i/XKYe3Ki7BHb7yDUvzgU/Ke4pf6ITn7lWGrLuL086nC2HuAdTims9V1ERAh8eRmMsQ1mQqPSiCILKJpCsx6NMeuoLvye4zjM6bACT689F0VZ0QoaZham2PZsFTHAPr3xArPaLOVDqQ18Gb1mdsbgpTqHX7VKjXENZuHrq2+iaBWFkoatvS12vVhD+Id47r+FtUNIigV9mbhzBNoOaylcJ8UlY4TDVMRFxIsAy2gFjRKVimLLkxXEqvPQglM4vOi0+OFZ3EFLLs8kJsjwL5EYWWsqMlIzRe9BK2jUalENy67NJga/VQO3wPuwnygCSuvUuOn+MoLw792jT5jYdC5YlhX3H0UJPFxaYVkWU1ssxOu77w3WydLGAjsC1hD+PfcuPMaCLqvF750lQ5b1JqKAMtIyMbr2NIQFRohgAxRKGvbF8mHH89XErs/5TVexbcJ+yTJmHh2P5r2aCNdxEfEYXmMKkuNSDL5H+TqlseHOEsKw2zH5IM5uuCz6BrUOyau85xGEjcFvQzCm7gyoMzUicDeKptC0S33MPTWZSF/QdTUeXHxiQDcomJiZYtvTlSheUeefFXDrNaa1WsRP7AZ0o/uUDhi2qp9wrVFrML7RbHwOCBK/t5KGbV5r7AxYQxgf3kf8sLL/ZvHDs2Ts5iHoOEbnDJ+amIoRDlMRExor6j9aQaNo+ULY9nQl4Zd2dOlZHJh7QvzwrE974flphDN8ZHA0RtScgvTkDIP9V92xMlZ5zyN0Y93wHVkowmLdUChobLi7hNjZ/fgsEOMbzwGjYQzqRqsBTpi6b4yQxnEcZrgsRsAtMdo5raBhYWWOHc9Xo2DJ/EL6oyvPMKfDCskJe8DCHug7V7dgV2WoMLrOdIR8CDM4tuUpZIedAWuM7mj/N0Q7L3E2TX/5WIpKuvOPPJb6qWipoKAgnDlzBgkJCQb/Hh8fjzNnziAoKOgXqva/LVHfouGx7brBQVLL/XRgHjkAHVl8BoxarPwAv5q4dfwuvr7WoZy+ffARj6/4GwwfZxkWqgwVTq26QKTvm3VUFnjs9BoPJMYkCdd3zj5CoIHBG+BxW+IjE3B5hw5aX6PWYO/Mo4YfniV7Zx8ToNkBnp8qNizOIBIry7D4+vob/E4/ENKS4pJxfMV5ww/nN2Owd+ZRYuA9ueoiMtPEho22jKc3XvBb/lkS/O67sOIXFcHyfEVHFp8h0g/OO8H3raH+4zhc2eWF8K86x/1nXi/x8vZbyTqlJqXj3PrLxDN2Tz8ii8VyZMlZgn/M54gfQj6GGcRDYjQsIoOicX3/LSEtMz0TB+adFOXVlz0zjhAGxoXN1wwaNtr3eP/oMx5efiakxYTF4dzGKwa/QS4rPDX75Hxs2Tlo1GLDBuD7w+/MQwLh9sOTz7h3/rGEbnBQq9Q4vvwckb5v1jGCODK7nNlwmeAfe+DxVBJdm9WwSIxJJrjdGIbBnhnyARgH5p4g+Meu7rmJqJAYg/2npdu4dfyekJaamIpjS8+K8gIAsqK9s+vGmbWXkJ4iNmy0ZQTceo3nN18LaaGfw3Ftj4+kbrAsh0MLTxHphxee5nncJHTjxgFffP8ULqS98H0Df+9XknVKT83A6TUexDN2Tz8ii/FzbNk5gn/s1ol7kqjfjIZFTGgcPLPxV/2R30d+yrg5evQojh07Bhsbw9EaNjY2OH78OI4fP27w738E8D15XxYgimVYBNx8LcD3Z6Rl4t6Fx/KInEoaN4/dFa59jt6R9U9gNCx8jt4RJoTQz+H45C8mdsx+z91zOv4j7yN+su/BsRxuHNRNji9vv0WCHm+NIUmKSUbALR3Hy42DvrJ1omkKXod0BJL3zj+GRi2NqKolJg35wNMvcBwH7yN+soCHCiVN8HbdOn7XKOjfA48ngiGRGJOEZ14v5YHHaBq+J3T8OTeP3TECnsbiht57BwYEIfRTuOxWcmZaJh5e0hGZeh26LTvgcxyHGwd9hesnngFGaSSiQ2Lx7qGOrFGOkwngV9o+R3Wgm36nHkjmBXgModd33wtkjapMNW6ffmCk/xS4eUzXfzeP3ZX33dGw8D1xT/iOIoOj8e7RJ1kaCa0RpRXvo34GMVKEMhiWaNs39z4IlARSkpKQimdeL4Vrr0PyukFRFLwO676R+x5PZWkkOI6nKgjSWyR5Hb4tS/GgUNK4SejGPVmMKZbh+ceS43m8stTEVDy66m/0G7klGttkytCwxHsHvQlB8NvvsujM6kw17l98Ilx7HzY+tl0/cEvy77+D/AHx+0F58eIFateuLel0p1AoULt27V8C8ftfl8SYZFkgLa0kZXGupCWlGeUNAkUhSW9XJTkuGZwM/woAqDLUwmCXGCONH6QVWkEjIVpXRmJUolGo/MRY3XOTYo2XAfAGjnC/kXqxLEcYTEmxKbIOoboy+PfQqDXITJOmBwD41XxSrO69k2JTQBuJHmRZTlgJJsenyuYFeCNNf1csKSbZKB8OwXSdg7alaIpoz4ToJKNw/InR5HvnRPTfI8XIu7MMi4Qo/TKSjXKDafMBQEZKBhi1NCIuLxz5HcYlG31vjZpBRhZtRE7allbQxHebEJkIVgIYUlcPXXvmVDcSCd1IksnJG6cJepx0STE5a1utjnMch9REeWOW0bBIjM3Wf8bGNk73XSTHpxodQ7LrRnKccd1IT84Q0Odz2n+kbuRgbMvBmPlfFe5v+P1D5aeMm7i4OOTPn182j729vUFSyj/CS8GS9kaVU6GkhSgo6zxWRmkLOJZDAb0z5gIl7I2S5FnbWQrPzV88n+yRBsA7ChYqpSujUJkCsjsYFEUR59769ZOTAiV1jnoFS+WXfQ9FFoKwcG+JfMYNQUCgtjAxNYGtvTRmDMD7YRQoQbatsTJMzE2QO+u5eQrmNkpbwDCsqK3kVqcAYK8XCZTfSFQXoP1GdPkKlS4gO9nRNEU4hBcsmTMHSv33sC8m/10plDQK6fVf/hL2svD9AG+k5SuSBwBgaZuLB7GTEY4DCur3Xw4cQXPZWMDCmn9uvqJ5jUJhMBqGaNvCZQrK9h9FUShQXOcvZSwqTyv6fVCoVAGjFAGFyupwgQqUNP7d8mXkF+qYt7B8JKZCSRNtW7BkfjBGylCaKpG7AB8EkDu/rVHuJ4ZhibEjf3F7o7phVzC3EJmVk7ZlGZZsWyO6QdEUCpbK2Xj2R/7z8lPGjYWFBeLj5bdP4+PjBR6nPyKWZj0bQ2kqPdnRShpNujYQokhMTE3QekAzWUOC4zi0HuAkXLsObm6UW6rtsJbCoJ2vcB7UaS0Dew/AwtocjfS4atoMaSG7Zc2BQ7vhrYTrivXKomiFwpIDMkVTKFymAOFI3W54K6NHZW2G6hyQG3WsKyDuGhItb5B+pIPb8FZGuIlYuA7WRQG17OcIg3wC2jKUNFr1dRQidHJZW6BZj0ayA7JCQaN5b50jbpshRvqP5p2QtVK0XCGef0zqPSieN0jfkbrtsJaykx3LcoRzdw3nKrITPUVTKFOjBBGp4jailezRF6Nh0WZwc+HaqXtDWdJCWkmjUYe6gpO6QqmA6+Dm8kchLItWerrhMshZllWaVtBoM6SFMDna5bdFg/a1ZcswszCDox4NgauR/gNA6EbZmqV4/jEp3aAo5C9hj+pOuig8Y7rBMizaDtHRL9RvV0uWf4xW8DQg+gZtu5zoxhBd/zXv00R251Sh5KkOtNGH5rnM0Lx3U1ndoGmK17ksMaobChpuem1bsGR+ef4xil/o6fPmtR0qrxscS45tv6v8G4+kgJ80bsqVK4c7d+5I0iAkJyfjzp07KF++vMG//xGeNmD46v4G/0YraFha58LgJb2I9D5zuyG3va3kIDBgQQ8C06No+cJwn9xesoz8xfOhux7/CgCMWNMfZham4kEga7wdu2kIgXpaq2V1OHZrIMn7VKFOWbgMbKZ7DEVh/LZhoGlaNIhrod3Hbx9OPK9lP0fJSZuieGLAOi66sHlTc1P8tWVo1t/FdTI1N8GodQOI9K6T3FCwVH7Jwa/L+HYEVH7eQnYYtNgwQCWt4CNh+s4jEbwHLu4JS1tLyTKGrexH0EiUq1Ua7fSMl+xlFK1QWKBa0MqYTYOhNFWKytC25/htw4iQ2kYd66Bum5oGJ1SKplCjWRU069FISFMoFJiwfRgfdZbtHjoLzn7cVpLioe3wlihdvbgkR1bLvo6o0riikGRpw4eUS703DxnQh0jvNbMz8hSyk9SNPrO7ErtJhUoXkOQaohU08hXJgx7ZeLqGrewLc0szSd0Ys3EQERJd3bEynHs1keTUKuNQkuB90uqGQgvzr19EFrXAhO3DCMOhWc9GqOZYyeAxEEVTqNeuFkHGamJqgvHbsvovW8VoBQ0TUyVGbxhEpHcZ3xZFyhaU/G47jHYRqBYAnrZgyPI+BvPSChpWua0wcFEPIr3/gu6wzmMt2X+Dl/YmsKBKVSsholDRL6NQ6QLoMqEdkT5y3QCYmJkY0A3+33FbhxERl/Xa1kSD9rUleLtoVGlcAS36NBH97bcSFgDL/cLvv/0CPy8/Zdx07twZSUlJmDBhAgICAoi/BQQEYPz48UhOTkaXLl0MP+CPAAA6jW2D6YfGEVvZoIDarWtg08NlIpj5vIXssPnBUjRwq0MoXL4ieTBhx3D0ni1u72Gr+mHUuoEEIy6tpOHo3gCb7i8VcTKVrFIMG+8vJVaHAL8rMO/MFLQe0IxIpygKM4+OR+9ZXZBLL1zYxNwEbYe2wGqfeSJ8EQfnqljtM1+EsVO2ZimsvDGPYD0GAFMzE6y4PgfthreCqblu8MllY4Ee0zthzsmJopVi895NseDcVBTJxmtVrWklbLy3FKWqlSDSre2ssOHuEjh1J3dXbO1tMHx1f4zMZgwBPFnjxF0jCSZ1iqLQwK02Nj9cLsKHKVgyPzY/XIa6rg7EMU3+EvaYdmCsaDAGgL+2DcOQZb2JflKaKNCiT1Os91ssAuYrX7sM1vuREAIAzzC/5NJMEb6PQqHAgnNT4T6pPcz1jnbMLEzRaWwbLL0yU4QvUr9dbSy/NhulqpJcbRXql8Na34Wisi0szbHWdyFcBjaD0lT3LKvclug/vzum7B8tmmjbDW+FWccmkBhJFM8BtOn+MhFfmV2B3Nj8YCkadSSZnPMUssO4LUMxYCE5mQI8x9mYjYNhVzC3kMazoNfDxvtLRcCKxSoUwaYHy+DgXIVIL1ymIOacmIg2ejskAP8tTD84Fn3nusPSVk83zJRwGeSMNbcWiOgRqjaphDW3FqJ8Ns6w0tVLYLnnHNR1JfF9TExNsOzqbHQY7UocW1tYmcN9cgcsODtFpBtO3Rth8cUZKFaRbMMqjStgw90lBHwBAFjaWmL9ncVw7tWYOFq1yWuNoSv6YswmkpAYANwnt8eUfaOFo19te9RrUxObHy4T4cPkL5YPmx4s5Q1tvW/BvlheTN4zSrQIA4DRGwZh+Kp+sM2n0w2FUgHnno2x8d4SEXZSWYdS2HB3Mao2qUikF61QBAvPT4NzTxLfh6ZpzDs9GT2mdhSOJwHA1NwE7Ue2xnLPObKAoL+F/It9bn4a52bLli04ffo0KIqCiYkJ8uTJg7i4OKjVanAch549e2LUqFF/d31/O/k76BdYlkVgQBDSktJRqEwBWV4ircSGx+P7hzCYW5qhbK1SsqifAO80+8n/K1QZKhSvVNQoIi7AA+dFfI2CdR4rlK5ewqjPQWZ6Jj75fwXLsChdvYRR1E8ACPkQitiweOQpZEdgikhJamIqvrz8BoqmULZmKUnuHK1wHIevr74hKTYZBUra54joLiE6EcFvv8PU3BTlapWS5JXSCsMw+Pw8CBkpGShSvhDyFc5jtIzo77EI+xwBC2tzlK1ZyqgDtFqlxqdnX6BWaVCqanGRUWpIwgIjEPUtBrb2NihZpZjR/ktPzUDg86/gOKCMQ0lJXimtcByHb+++CwjFxtCGAR7U7uurb1AoFShXq5QsorG2jMCAIKQmpqFQ6fw5Ak2Li4hHyIcwmOcyQ9mapYz7OmkYfPL/gsx0FYpXLGIUERfgo6civkbBMnculKlR0mjbqjJU+OT/FYyGQalqxXOEjfL9Y5iAUJydYNOQpCal8SCJFFCmZimjaN8cxyHo9TckxaYgf/F8BsE2s0tiTBKC3oTAxMwE5WqVMjq5syyLz8+/Ij05A0XKFTSKFg3w3HmhnyJgbmWOcrVyqBv+X6HOVKNE5aKyvFJaCf8SichgHqG4VLXiRvsvIy0Tn5/zkaSla5T4rXmlAN28BIumoBTG20NKOCYRSP9n4tz8Eojf/fv3cf78ebx//x6pqamwsrJCpUqV0LlzZzRoIEaA/V+UP9xSf+SP/JE/8kd+J9HOS5T5rxs3XMY/07jJMf2CIWnUqBEaNWpkPOMfkZSk2GRc3eODW8fvIiUhFcUrFUX7ka1550UDKxaO4/D0egAu7biBLy+CYWFlDkf3hnAb0UpyxRkTGotL22/g7vlHyExToXydMugw2sUgBDrA70TcPfcYV3Z5IfRTOGzyWqNlX0e4DnaWZPn+/jEMF7d64onnczAaFtUdK6PjWFdJlm9Vhgo3j93Ftb0+iAmNQ97CeeA6uDla9GkiyfL9yf8LLm71xMvbb0ErKNR1qYkOY1wkWb5Tk9Jwff8teB++jcSYZBQuWxDthrVE064NJFfzL26/gcdWT3x4GghTc1M07lQP7Ue1ltxNi49KxNVd3vA9eQ/pKRkoWa042o9sjXrZtte1wnEcHl5+hss7biD47XfksrGAc88maDushSTLd2QwD/h43+MJNJkaVGxQFh1Hu6Jqk0oG82vUGtw+9QBX93gj4msUcue3Rav+TnAZ2EySnyj4bQgubvHEM6+X4DgONZtXRcexbSRZvjPSMuF16DZuHPRFXHg88hfPhzZDWsC5V2PJ1fy7R59wces1vLn3AUoTBeq3q40Oo10kWb6T41PgufcmfI7dQXJcCopVKIx2I1qjcae6krrh7/0SHtuvI/B5EMwtzeDYrSHajWglyb0WExaHyztu4M7ZR8hMy0TZmqXQYbQLaraoZrD/GIbB/QtPcHnnDXz/GA7rPFZo0ccRbYY0l9ypDP0cjkvbruPRVX9o1AyqNqmIjmNcDdI7ADxuz63jd3Ft701Eh8QgTyE7uA5yRou+jpI7lYEvgnBxyzUEZFFo1G5dAx3Hukpyr6Ulp+PGAV94Hb6NhKhEFCqdH22HtYKTe0NJ3Xh15x0ubvPEh0efoTRTonHHumg/ykUyEikxJglXsnQjLSkdJSoXRftRLqjfrpakbjy+6g+PHTcQ/DoEFtbmaNajMdoNbym5GxP1LRqXtt/AvYtPoM5Qo0LdMugwxtUg9QnA79L5nXmIK7u9EB4YCVt7G7Tq54TWA5tJ7sYEv/sOj62eeHbjBViWQ41mVdBxrKtR7rXfQzhp1Mmc3v+DolKpsHfvXty4cQPJyckoU6YMhg4dirp168red/v2bdy8eRPv378XIrIbNmyIAQMGwNra+E51dvlDv/CL8is7NyEfQjG52XweayQr4kHLd+Lo3hCzjo4nBhqO47Bh5E5c3e0DhZIWogVomoKlbS6s8p4vOi9/c/8DZrouQWa6SvD8197rPrk9hq3qRww0qkw1FnZZjcfXngt1AfjzcvtiebHWdyHhmAnwkP+Lu68DB06InNKWMXrDIBEfTkpCKqa1XIRP/l9A0TwfjPbfMg4lsdpnvmjb/uJWT2z5ay8UCt17a31jZh2bAMduDYn8USExmOQ0D1HBMQKeiZavpnbrGlh0cTrhPMhxHPbOPIqTqy6SbZvlgLzs6mxUa0oaE19eBmNK8wVISUgV9Z/LIGdM2j2SmIQZhsHK/lt4AED9tqUp2OazwZpbC0STkb/PK8xtv4JH383Wf/3nd0e/+aTTckZaJma3W8YbgFnvq/XvKVK2ENb6LhRN9DeP3cHKAVtAUSDalmU4TNo9Eq56kUwAf2w3xXkBgt99BwWeTFfbf5UalscKzzmiI62Tqy5iz4wjorZVKGnMPzsV9dvWIvKHfg7H5GbzEReRIGrbxp3rYc6JicRxIcdxWXQm10EraeE7pGkKFtYWWOk1DxWy+bG8f/wJ01svJig3tPd2GtcGozcMInRDo9ZgkftaPPB4Kuq/vIXzYJ3vQtHRzoNLT7Go2xqwLCfqv+Gr+4sc/lOT0jC91WJ8ePJZpxsUBQ4cSlYphjU3F4iM4Ku7vbF+5E5CN2glDXDAjMN/iXxJYkJjMbnZfIR/iRJoVrTfikPzqlhyaYZogXFg3gkcXXJW1H8mpkosuTxTtFAKehOCKc7zkRSXIuq/Fn2aYtrBsYRusCyLNYO3wevQbVHbWttZYc3N+SI/uRe332B2u+VQZ6pFbdt7VhcMyhaQocpQYU77FXju84rQDQp8SPda34UiP7nbp+5jed+N4ABybGNY/LV1GNqPbI3fUXQ7N01A0b+wc8Mmgsu4+0Pz28KFC+Hr6wt3d3cULVoU165dw/v377Fx40ZUr15d8r727dsjb968aNq0KQoUKIDAwEB4eHigUKFC2Lt3L8zM5F0QsstPORT/kV8XlmUxt8NKJMYkE6GcWiW9c+YBAR8OAFd2eePqbh8AIMIgWZZDalI6ZrstJ2gL0lMzMKf9cmRkoxXQ3nt67SX4ntQh4gI8DPqT6wFEXQB+8ogJi8Mi97UE+FnUt2gs6bEODMMQIeHaMrZN2I839z8QZWwavRuBL4L452a9u/bfr6++YcOInUT+d48+Ycu4vQBHvjejYcEwLJb13kjQFgDAYve1iP4eS9RViy7r7/0SB7PB9985+xAnV10k6q5tA1W6CnM7rCBoCzRqDWa3W4bUxDSD/Xd9/y1c2n6DKOPc+iu4deIukU/77kmxyZjbfoUAOgbwQHPzO60kBm/9+h1aeAqPruhoCwBgz/QjeH3nHfG+WsfAiK+RWN5nA5H/2/tQrBywBSzDitqW4zisG7YDnwO+EvesHrSNR3fmILSvtg0+PP6M7RP3E/mf33wl0Apkb1uNSoNF3dYQtAUcx2F+p1WIj0w02Lb3LzzBiRUXiDKuH/AVqAzYbLqRnpKO2e2WEbQFmemZmN1uOTJSSN3Q3nth8zV4H9ahJgPAsaXn8PDSM6Iu2nePj4jH/M6riO8tJiwOi7uvhUbDGOy/XVMP4cVtHRI3wPPNffL/IjxX2x7geOTgtUO2E/k/+X/B+pE7RbrBaliwDIsV/TYRtAUAsLTXBkQGRwvP1bYTwNMa7J15jMh//+ITHF1ylqi7tg1UmWrM67iSAJNkGAZz2i8XgfNp28Dn2B1c2HSNKOPiFk8BZTx726YkpGJO+xUE9lFqYirmdlgJVYbKYNseW3YOd8/rkNQBYN/s4wi49Zp4X+03HPUtGkt7rifyhwVGYHnfjWA0rHhs44BNY3bjw9NA/M7yn0Yofvv2LXx8fDB8+HCMHj0aHTp0wIYNG1CwYEFs375d9t5FixbhwIEDGDJkCNzc3DB+/HhMnToV3759g5eXl+y9hiRHxo2TkxOcnZ0REhIiXDdr1szoz9lZzA78R3jx936F0E/hkjgKHAec23RVUGiO43Bm3SVJMDSWYREXHo975x8LabeO3SV2FbILTVP8M7NElaHiiTwl8rMaFp+efcH7x5+FtMs7vfiBQkIJFEoa5zddEa5jwuJw+/QDyfdmGRZ3zj4SoPUB4MLmq9IYGFmD05Wduo//w9NAvH/8WRJ/h2M5XNpxAxl6qMRn1l+WRFXljcc0+BzRTXYPPJ4iJjROGgeDAs6uvyxMdgzDGCSCFMpgWIR/icTT6zpU7xsHfJGZrpJE0qUVNM7ocUulJqXh2l4fSYoARsPihe9bBL0JEdIu6XEbGS6DgsdWT+E6LDACj2Wg8lmGhfdhPwJN9tyGK5JhxBwHqFUaXNuj4+h54ftGktOHv4fD+U1XBUNeqxtSTqEswyExOomgRvA9eR9JscmSWDdUdt3IVOPC5quSfcFoWHx99Y3gH7u22weMmpXXjY1Xhev4qETcOn5Xtm0fXH5KGPIXt1yDwgji8OXtuj7+8jIYr+++l8SI4VgOV/f4EIb8mfWXpPuP5ZCRmknQSDy++hyRQdHSusHxz9S2PcuyxHecXViGRdS3GDy64i+keR3yQ0ZKhvTYpqBxVu+Z6SnpuLLLSzI/o2Hx5v4Hgn/s0vYbsic6CoUCF7dck87wO8h/OFrq9u3bUCgU6NChg5BmZmaGdu3a4c2bN4iMjJS8t2bNmqI0R0ce2+hneCpzZNzUqFED1atXF7aFatSokaOf3BbUv11e3n5jNIojPiIB4V+jAPC+OcZ4gxQmCry8/VZXht9b2UgDluXw8WmgMEl8fR2CtKR0yfwAP2jol2GIlVdfGA2L5z46Ur13Dz4aRUjlOA5v7ukmiec3X8sCdrEMC3+fV8L1K7+3RuHf01My8OVlMF9HhuHrZYSj56Uf2bYKE5n+4/iIjLiIBABA1LcYo7xBov67/VaWIoBlWLzK2qUBgM/+X2V5g/j3AFHG85uGyQe1wmhY+Hvrta1eeVKiUTOEAfzCV/4b4VgOAb66b+SV3zuj6LO8PkQA4KlJgt+EyLaVQkm2rbEytPxj6Sm8Pnz/EGaUQoNWZteN17JAgYyGFXYSAOD9o09GQf/AgTCg/H1e/ZBuvLz91njUY1omAgOC+OI4Dm/ufTCqs4Ru3DaiG+D5x2KyFjBx4fGICo6Wza8wUeCFr26X6+Wdt7Ko1yzDGyva9g98ESxQaUgJRZM6blw3GPh7v5T8+79RPn36hKJFi8LSkvQ/q1SJP9L//PmzodskRctykDt37h+uS44cijdt2iR7/Ud+XIwNMLp8P5afQAzL4S2Gbv077yHy5Pi9f6wy+vl5H4W/twyKv+GH7/2h/uOytxXkCNp19TJ4IVnED/dH9rbNifzoPdRPfLfCLT/YFz9wi5AxR/k5kHXPyT1EnX6ibXNQyM+07Y8K2d85vukHyzBcXs7u/Q98t7+hUBwH6lfcarPuDQ4OJpLz5s2LfPnEQRaxsbHIm1cc7q9Ni4mJ+aHijx07BoVCAScnpx+6D/jjc/NfkxrNqhjlz8lb2E7gLrHOY8XTFsjoEqNmUKOZDmCsumMVIyzUFCrWKytEt5SsUowAGzMkLMMSIGY1m1eThWZXKGnUbFlNuK7SSIYeIEsomkKVxjrntVotq8lDsyto1GqhK6O6U2WjhHe5bCxQujoPQqdQKFC5UQXZ3R6W41DDSa9tnSrLkjVSFIXCZQsKEWz5i+cjwP4MCaMh+48vT7pOtIImwBbL1SptlH8MHFBdr4xaLYz3X+1Wuh3Yak0rGZ0glaZKVKxXVriu4VxFnmOJpgiH1OpOlY3uYNja26BIFq6OpU0uHqtEpv+yt211pyqyZVA0hTIOJQWsmKIVChvFFmIZliijZvNqst+UQkmjZnPdd1uxflmju7kURRGO7TVzoht6oJg1mlUxShhqbmmGsjVLEuUZ01lSN6oYJTLNX8Je4AbLWzgPP84ZGduqE2NbZdn3oBU0qjapKOxcl65RggCpNCQcyxH6lBPdyA44+tsJhyyU4p/8ZTXxkiVLMGzYMOHn4UH6g2olMzMTJibiaEktFVNmpvzumb54eXnhypUr6N69O4oVM47zlF3+GDf/JXFoXhXFKhaW5oqieMh/LTgfRVFwn9xB8gxYCxnfuJMu3K557yawzmMleTTFshy6TdadjZqa86i0UqsRWkmjQt0yqFBXN3G1Hd6SHwAkBiaGYdH5Lx3ybp6CdnDu2Vhy0KAVNJzcGxJgX53HtZUm4qN4I81NL2qhXK3SqNywvOSgT9EUOoxyISJC3Ce3lzyW0kaj6UOtN2xfB/mL55PxJeHQbVJ7oS1pmka3iW6G3wH8excpVwi1W9cQ0loPbAZzSzPJSZtlWHSdqIu2yWVtwXOFSeRXKHlOLf2IrA6jXWQNZpbl0GGMDua+UOkCaOhWR7b/Wg9oRhgCXSe4SRoSFEXBxMyEoCGo7lgZpaoVl+6/LN3Qj5Zyn9xB1v/CroAtmuihMzt1bwhbextZXxJ3Pd0wMTVB57/ayupGGYeSBDpzm6EtoDRVSrYvo2HRZbxON3Lb26JlP0fZtm3UqS4Ret1pXBtp5nGKb6v2o3S6UapqcVR3qiyrG+2GtyIgA7pNai+5SOKj0czRqr+O96luGwejpJPuk9oL4xJFUeg2qb3kFiWtoFGgpD3qt9NF1LXs5whLm1yyutFtkk43LCzN0WFka1ndqNa0EkEj4TayNd/fkn6OnIj+5H9V5syZg927dws/fZ8afTEzM4NaLT4aV6lUwt9zIi9evMDKlStRr149HozwJyRHxs2KFSt++vdHDAtN01h0cQZy29sSA6Z2QHDu2QRdJ5GTYZshzYWBSn9worIm36VXZhEDvnkuMyy9MgvmViQfjvbentM7EUR/ANBnblfUd6tF1IWiAFA8RPq8M1OI/PmL5cO805OhVCrEZVDAuM1DUbkByTE2butQgXpBu7LVDjplapTE+O3DifwV6pbF+G3DAYp8b1pBQ6FQYM7JSSKsjbmnstIo3Xa2tn51XR3Qf2F3In+TzvXRZ3ZXon34+tEwy2WGpZdnEQO+QqnAksszYW1nSQyY2nvbDmsBtxEkqV7n8W0F8r/s/Wdrb4PFHtMJQ9TazgqLPWbA1NzUYP8NXNyTIMEEgKEr+sAha4Wr6z9+gC5cpiBmHvmLyF+0fGHMOPwXaAVNGNoKJc/9NWXvaBHWzZR9o1GiclGh7vplVW5YXkRVUaNZFYxY01/03rSChtJMiQXnphKI2RRFYeH5abAraGdQNxy7NUSPaR2JMlr2cxQgB7K3bS4bCyy7OpsI/Tc1N8XSK7NgYW1O7K5o7+02qT1BYgrw/FWNO9cj6qLlaMpXOA8WnJtK1DdvITvMPztVxPWlLWPU+oEieIExGwcJu17ZdaNU1WKYtHskkb+sQylM2j0SFEWRbaukoVDQmHVsgghHaNaxCShYqoBQd/33qdWiGgYvJUOoG7jVFugrsvefqYUpFnvMIPCvFAoFFl+aAZu81oRuaL+v1gObocMYF6KM9qNaC+SbdLb+s85jhaWXZxIo7JY2ubJC1g3rRr957mjUgcRVGbC4J2q3qkG8r3ZsK1AyP2Ydn0DkL1S6AGafmAiFQjy2URSFCTtHiChkfjfRHkv9yg8ASpQogQoVKgg/Q0dSAH/8pPWT0RdtmtR9+vL582fMnDkTpUuXxqJFi6BU/hwcX45wbqTOuyiKMrg1qE2nKAq+vr4/VbF/ivwqQnFKQiqu778Fn2N3kJqQhuKVi8BthDwI3PObr3Fp+3UexM/aHE7ujWRB4OIi4nFlpzfunH8IVboK5WqXlgWBY1kWDzye4vJOHsTPNp81WvR1ROsBzSQh+cO/RMJj23U8vuYPhmFRw7EyOoxxJVZC+qJWqeF78j48991EdEgs8hXNA9dBzdGsZ2NiEtKXr6+CcXGLJ15kOQzXdXFA+9EuKFLWMOx/eko6vA75wevwbSRGJ6FI2YJoO7wVGnWsI0lX8eb+B1zc6omPTz/D1NwUTTrXR9vhLSUpFbQgjLdP3UdaUjpKVedB/Gq1rC7Zf1oQxuA332FpawHnXk3hOthZEpI/+nssLu+4gfsXn0CtUqNi/XLoOKYNKtU3DALHaBjcPf8YV3d7IfxLFOwK2KL1gGayIHBaEEYBxM+5Kg8CJwH7n5meiVvH7+H6gVuIDYtH/hL50HZoSzh2ayBJV6EFYXx97z2USgUauNWWBYFLTUzF9QO+8Dl6BynxqShasTDaj2iNem1rSoL4vbz9Fh7bPBEYEARzK3M07doAbYe1lKQbiY9MwNXdPvA780AA8Ws/2oU4ZtEXlmXx8PIzXNnlhe8fwmGdxxIt+jjKgsBFBEXh0vYbeHTlGTQaBtWaVELHMa4iTCqtqFVq+J1+iGt7fRD1LQZ5C9vBZVBzNO/VWJKuIuhNCA/i58uD+NVpXQMdxrhKUmKkp2bA58gd3Djoi8TopCwQv5Zo3Kme5NHY24cf4bHVE+8ff4KJmQkad6wHt5GtJCkVkuKS4bn3JnxP3kNqYjpKVi0Gt5GtUad1DUndeOb1Epd33MDXV9+Qy8YCzXo0RpshzSWPBLUgjPcvPIEqU4UKdcui4xhXVG5oeCzWgjBe2eWFsMBI5La3Qav+TmjZz1ES4PL7Jx6E8emNAB4LqFkVdBjjKuJW+51EOy8p6UagqF/AueESoWHv53h+27ZtG06fPo3Lly8TTsWHDx/G7t27cfr0aRQoIE3zERoaijFjxsDS0hJbt279KUdireTIuImIiCCuWZbFpk2b8PbtW3Tr1g3Vq1cXuKVevHiBs2fPokqVKhg3bhwKFy4s8dT/DflDv/BH/sgf+SN/5HcSwbihGv66ccM9yPH89vbtW4wcORKjRo1Cr178DqBKpcKAAQNga2uLHTt2AAAiIyORkZGBEiV0u8KxsbEYM2YMVCoVtm7dikKFjHPVyUmO9nsKFiS3NY8cOYJ3795h3759xDZT8eLF4eDggLZt22LIkCHw9fVF7969f6mC/wZhGAafnn1BamIaipQrJEIANiTR32MR8j4U5pZmqFDXuCOiWqXGhyeBUKWrUKJKMUk4en0J/RwuEGfmhNwxPTUDH58GgmVYlHEoCZs88g6YHMch6E0I4sLjkadgbpSsapzALjk+BYEBQaBoCuVrl5ZcbemX8cn/C5LjUlCgZP4ckTvGRcQj6M13mJopUb5uWcmdJK0wGgYfnnxGRmomilYonCPi08jgaIR+CoeFtQXK1yltlPhUlaHChyeBPHFmteI5Ij4N+RDKE2fms0EZh5JG2zYtOR2fnn0Bx3EoV6uUJNWGVrSkpPGRCchXNK8k1L++JMYk4cvLYCiUClSoW0aSakMrLMtjK6UkpKJwmYI5IneMCY3Ft3ehMMtlhgp1yxglPtWoNXj/+DNU6SoUr1w0R8Sn4V8iERYYAavclihXu7RR3chIy8THp4FgNAzK1CiZI+LT4LchWcSZuXNE7piSkIrPz7+CoiiUq106R8SngQFBSIxJQoES9iKmdUMSH5mAr69DYGKqRIW6ZYwSnzIMg49PvyA9OR1FyhWS3KXTl6hv0fj+MRzmVuaoULeMcd3IVOPjk89QZWpQqmqxHBGffv8YJhBnlq1ZyjipbEo6Pj77Ao7lULZmqRyRAv8bpXLlynB2dsauXbuQkJCAIkWKwNPTExEREZg+fbqQb+nSpQgICICfnw47bOrUqQgLC0OvXr3w6tUrvHqlgzCws7MzSt+QXX7qMOvKlStwdnaWPD+zt7eHs7MzLl269Me4MSLXD9zCgXknBcwHAKjZohrGbRlikDMpIigKm8ftxeOr/oIDnl0BW/SZ0y3LOZRUUo7jcHqNB06svIDkuBQA/Dl24071MHbzEINGTuCLIGz9ax+BaVKwVH4MXd4HTt3FXGJqlRoH553ExW3XkZGSAYCPmGnZ1xEj1w0wuF3/wvcNtk/cj8AXuhDDUtWKY+S6gUTkk1bSktOxY/JBeB26DY1KA4CP6ugwygUDl/Q0yGfkd+YB9sw8ivBAHXBUlcYVMHbTEINHAnER8dj61z7cOfdIcE61trNE96kd0X1aR9EExnEcLu+4gcOLzyA+C88GFFDXtSbGbRlikIH8+6dwbB6zm8COyVckDwYs7CGiOQD4yeH4svM4s+4SUhPTAPA+CU7dGmLMpsEGjyLfP/6ErX/tI7BmipYvhGGr+on8EADecNo78xiu7PJCZjrv+GdiZgLXwc0xfHU/g0dZTzyfY8fkg/j2LlRIK1erNEZvHISqjSuK8ifHp2D7xAO4eeyuECWYy9oCnf9qi37z3Q0a595H/LB/znFEfdOFjzo4V8XYzYMNHpdFhcRgy7i9eHjpmXBcbmtvg96zuhh0BuY4Duc2XMHx5eeQGJMMgNeNhu3rYOzmISIofgD4+vobtozbS+DZ5C9hjyFLe6F576ai/IyGwcH5J3FhyzWkJ2fphokCzr2bYPT6QQYnyVd33mHbhP0EoFyJKsUwcu0A1NFzONdKemoGdk09jOv7b0KdyeuGWS4zuA1vicHL+xg0zu9deIzd0w8LWEEAUKlheYzZOFhEUwHwAIPbJuyD3+mHgnOxVW5LdJvcHr1mdjZo3F3d7Y1DC0/p8J0ooE6rGhi7ZYjBo+SwwAhsHrsXT28ECGNbnkJ26D/fHe2GtxLlZ1kWJ1dexKk1F5GShUFEK2g07VIfYzYPMbgA+PgsEFv/2oe3Dz4KaYXLFsTQFX3RtEt9UX5Vphr7Zx/HpR03kJkF+mlipkTrAc0wYk1/o4ur/7pwvxb9/zNR5LNmzUKBAgVw/fp1pKSkoHTp0li5ciUcHBxk79Ni4Bw/flz0NwcHhx82bn6KW6ply5bo0qULRo8eLZln69atOH/+PLy9vX/08f8o+ZVjqXMbrmD7pAOidFpBw8LaHFserSB2GmJCYzG6znQkxiQbjF7oO7eb4Pinle0TD+DcxiuivNroqq1PVhCkdF9eBuOvRrNFkP9ambR7JNoM0UW2sCyLRd3W4v7FJyL/K1pBo0yNklh/ZxGxQvf3folZbZeCZTkiwoWiKVAUhSWXZ6Kui4OQrspQYZLTfHzy/yKqE0VTqN+2FhZemEYMsF6HbmPVwC0ioBgtH86Ge0sI4ruk2GSMqTcDUd9iDL53xzGuGLt5CJF2dMlZHJh3QpSXVtCwzmOFbU9WIH9x3Uo1/EskxtSdgdSkNINlDF/VD+5TyCiEtUO3wXP/LVEkCa2gUbhMAWx5tJzYYXn/+BMmOc0Do2aI6C+K4h8x+9gENOuh4xpiNAxmtV2K5zdfi6KNaAWNyg3LY5X3PMJ4vO/xBAs6rwYAos8pmoJCQWOV93zCUTY9JR1/NZqNb+9Cxe9NAc49GmPm0fGE8eGx7To2j90jaiNaQcPc0gybHy5H8Yo64z82PB5j6k5HfGSiwbbtOaMzhiwjF1q7px/BqdUXxWUoaeQpkBvbnq4kdgGC34ZgXMNZyExTGSxj/PbhhBM5x3FY2nM9/M48NKgbJasUw4Z7S4Rwc4DnS5reajFYliV1I8spfNGF6WjgVltIV6vUmNJ8Id4/+mRQN2q3qoEll2cQux83j93B8r6bxLpBU1CaKrHObzFh4CTHp2Bs/ZmI+Bpl8L3bDmuJiTtHEGknVl7A3plHRXlpBQ1L21zY+mQFYfxHBkdjdJ3pSElINVjGoCW90HtWFyJt4+jduLzjhigvraRRoLg9tjxeTuwef/L/gglN50Kj0pBlZLXDjMN/oUUfnYHKMAzmdVyJJ54BBnWjQt0yWHNrodGd3f+GCMdSaAgahn0xcyIskqBBzo+lfif5qVBwe3t73LlzRzJmPSMjA3fu3IG9vfEtyH+rJMUlY3cW3052YRkW6ckZODCHtGCPLD6LxFjDhg3AT7ZRIbpVbvC77wYNG20ZMaFxOL3mEpG+a+ohScMG4I2l9NQM4fqZ10vcu/DYoGM5y7D4/PwLru/3FdI4jsOmMXtEhg3Ah99yLIdNo3cTyK5eh27jw9PPBuvEsTzL9hPPACEtMz0TW/7am5VBXCe1SoOdkw8R6afXXpI0bACeuPPr62/CdUxYHA4uOGkwL8uwSI5LwZHFZ4j0/XOPIy3ZsGEDAPtmHyNoCz48+QzPfWLDRltG2OcIXNjsSaRvG79fZNgAWSswjucu0ucfu3fhMfy9XxkMo2YZFq/vvif4xxiGwabRuwFwoj7nWA4Mw2Lz2D3E3y7v9JamU+CAWyfuEbuEqYmp2DnloDhvVp0yUjNFE+eJ5eclDRsAOLHyPEFbEPo53KBhA/A0I3ERCSL+qt3Tj0gaNgCwY9IBgrbghe8b3D79QFI3vr76hmt7fIQ0juOwecwekWGj/Rs4DpvG7Cb4x3yO3sXb+4YRhDmWd17X8mEB/E7ElnESusFy0KgZ7Mi24Dq/8SoivkRKvvfV3d7ELlN8ZAIOzBWvvrXvnZqUhkMLThHphxacQmqiYcOG//tJgn/sc8BXg4YNwPdfZHA0zm0gx77tEw+IDRtAaIct4/YS/GOPrvjj8dXnkrrx7uEn3Dx6x2Ad/sh/X37KuHFzc0NYWBjGjBmDO3fuIDExEQCQmJiIO3fuYMyYMYiIiED79u2NPMmwqFQqbN++HZ07d0bLli0xYsQIPHnyxOh93bt3h6Ojo8Gf1rlJK1L5jhwxbHD83eJ74r4s0BXLsLhz7pFASKdWqeF16LYkXxLAr9S8Dt4Wrm/svyUL8MUyLK7u9hYG35jQWDzzeikL/JeekkHwV3nu85HG6smSy7t0g9C7hx8R+ilcEpOE4zhEfI3Cm3s6ss0ru71lkVhpBU1MEvcvPpWlkWAZHvY+Ug/y/epub9n3VihpXN+n4z/yPuwne07PMiy8j/ghM51fAKQmpcHv9ANZ4DiGYeGjN1h67rsp60vFshzRtt8/huHdo0+yNBKJMcl4ci1AuL66x0cWj4SmKVzZpdt9fe7zGrFh8ZLb1RzL++FoiVEByHL6AHzbXtur67/bpx5AlSlNI8EyfDRfQjQ/7jAaBp77bxoBrKRx44CvcH3jgK/se7MMi2v7fARDIj4yAY9kOLUAIDNDBb/TD4Rrvv9kKB7A4bIeJ9on/y8IfvtdRjd42oIXvrojsau7vWXBC2kFjat7dP336Iq/LI2E1qANC9QdV13Z7SX7TSmUCqL/fI7ekc3Palj4nrgnUFtkpGXi5vG7srrBsRx8juh043oOxjb97zb8SyRe3Xkn238pCal4oGcIXtsrrxsUTeHyrh8ndPxPCsX++u+fKj/lc9OrVy+EhITg2rVrmDt3LgAyLJzjOLRp00ZkUORUli9fLqJMnzZtmlHK9HHjxiE9nZzUIiIisGfPHoPndXXq1IGrqyuRVq6c4fDav1sig6OhUNLQGDFwYsPjYZXbEslxKcSqwpBQNIWob7oJOyokxihSb0pCKjLTVTDPZYaoEDE+QXZRKBWEURDxJUrW4OI4ED4T+v+XE/18kUHRRjmWwr/oVuVR32JAK2ijfDjRITEoUMIeapUaSbHJsnlZhiN2xaK+xYCmKbAyQKzqTA0SY5KRv5gZ4iMTjaLuKhS0qK2MoVjr81XlpG0pmiL7T+KoQSssyyEyKOqHytDm0x776fuTGRJGwyIySO+7/RYDhVIha/xzHIfYsHjktrdFamKacd4gCmT/hRh/j/TkDKQnZ8AqtyViQuOMkggqlAqifcK/RMr3OQeCIPandCM4SlbHWYZFxBe9/guOzpFuRAZHo3CZguA4DnHhCbJ5GQ0j0g2FgoZGRjk0agYJUUmwsLJAQlSi4EcnJbSCJr7b6JAYo/qUEJUIhmGgUChy1N90Nv0zphscyxHf7W8p2i3bn3/A31WT/7j8lHFD0zRmzJgBV1dXeHp6IjAwECkpKbCyskKZMmXg4uJikOEzJ6KlTNcPJXNxccHAgQOxfft2Wdr0pk3FDn0HD/Lb261aiR3SihUrhtatW4vS/xOS297G6AADQIiqyGWTy/igxHGwtdedr/IgWjTkZmBTC1OYmpsIdTImLMMS+XIXsOUneZkBVt/p1UYCi0d0j14ZtvY2ssYHTVOwK6DzG7LNZy1LWJi9DKWJEuaWZrITJK2giPewzWdtFMaepinBYdQmj5VRoiiW5Yi2tbW3gUJJyw7i1nY6fxubfMYjcDiW/EbsCtgiLDBCeoKk+D4W6pSDMgDyW7LOY4XM0DjJvLSCJsqwyWedI93Q1sXC2hxKE4XsQgGgkFu///JaG42QUZoqYZEF2Z+T92YZlmzbgrmN6qytXtSUFE5Vdsn+jcRFJEh+VxRNwa5gbiJ/TtpWWwZF8QChWmd2Q6JQ0mTb5rORHQ+0z7XOw+M6aYEwZY00NvvYZlw3ctlYCL5GOWlb0diW3xYULb2Txuf5eX+WP/L/K79Ev+Dg4IAZM2Zg9+7dOH78OHbv3o0ZM2b8tGED/BpluiHx9vZGoUKFUK2aOAIH4LkufoTv4u+SZj0by9rEPCdMNcHj3zyXGZp2rS+7TcpoWMIhrkVfR9mVv0JJo1VfR8ERt3CZgihfp4zsNrfCRIGmejD2rfo5ybNp0xRcBjoL1zWcKhODrSGxtbch+KtcBjrL1ollObQe0Ey4bty5HkxMpe12LW+QNhqNoii06ucke7zGaFi06KuDmG/eu4nswMpD5dcTwnFt8lqjTmsH2f7jWA7OvXSouC36NDVaRusBurYtU6OkUf4xc0szNGyvc0ht1b+Z7OBNgYKLXhl1XR2M8o/lL2GPinoAgy4DnY0eAbXUa1un7o1kDQ9aQaOaYyUBPM7E1AROPRrJHlMwGgbNf1A3mvdqIhwL5i9ub5R/jKYpOLo3FK5b9nWUPypT0IRuVG5U3ij/mLWdJWrpcX25DHCWPbLlWA6t+utAWBt2qCPLP0ZRFEpUKYaSegB1rQc0+2HdkFtc0Aoa9dvVEgx/S1tLNHCrbfQbIcc2I7qhpNG6fzPhukTloihZtZjsd2VqboJGHesI162N6Ua2se23FO5v+P1D5bfjlvo7KdM/fvyI4OBgtGzZ0uDfPT090bp1a7Rq1Qr9+vWDl9d/7vzUvmhenpfEgK5RNAWapjBgUU8ivc+cbjAxVRoMu6QoCi37ORIhspXql0OjjnUNGga0gqcV6J4Nxn7I8j5ZzzNc757TOxEYHU261Ef52qUNDkwKJY28hfPAbWQrvTQFhq3sa/jhWTJ0RV8Cm6TtsBawL5rX4OTFR2SVIHiDrO2s0Gd2N4PPprJ2T4auIOvQfVpHWFiZG3wPiqZQr10tgjeoWIUicBnkbHCwpGkKChMF+s4l6zBwcU+e5sBAf1AUz/OkjwNSs0U1ODSvarBOtIKGVW5LdJ3YTu8ZFIav6ic7HvWf350IX23RpwlKVC5quAwljUKl86P1wGZCmqm5KQYvlYd3GL6qH/GNdhzXRtiFMvQelRtVIHiD8hayI3iB9IWiKFAUMHgJeeTde1ZXmJiZSPafc8/GBFp2uVql4ejeUFI3TM1N0WtmZyJ9yLLeAEVJTpDuUzoS4ccN29dBpQblJHUjd35btB+t2zlWKBQYvqqfwWdrZfAyMrTbdUhzFCyVX7JtS1YtBueeuug4S5tc6DvP3fDDKd4PaNiKPsQ7dpvcHpbWuQx/IzRPrKpPGFqodAG4jWhlcAyhaJ4mov8Ckv6k//zuAuWH6B6KQtthLQgaieqOlVHHxcGgLtEKGrmsLeA+pT3xDKFtJca2vnPdichDp+4NUapaccn+y188H9oMEcM3/E7yd9Ev/BPlp40bjUaDU6dOYfjw4XB1dYWzs86C/fTpE9atW4eQkJAffu7fSZmuNVYMHUlVrVoVQ4cOxdKlSzF58mTQNI3FixfjwoULss+MiYnBhw8fhF92KvgfkRFr+qPntE5QZu0yaAeUfEXyYOnV2SJOplJVi2OVz3wULGVP5FcoFegwxgWT94wi8lMUhdnHJ/ArL32eIfC4J+tuLxLxztRqUQ2LLkxH7qwQWG1+U3MTDFjYQzQoKU2UWHFjLuq31U1O2kGtfJ2y2HBnsQjMr1U/J0zeM0rYAdCWYWmbCxN2DIfrIHI1ZG1nhfV+i1CxXtZugN7gVMelBlZ5zxeFY/ae3QWDlvQSVqnaMnLnt8WCc1NFeCEFS+bH+tuLUKxiESI/RVNo2dcR805NEk1qE3YMR6dxbYTVvfbvBUrmxyqveSLqiQp1ymCF5xxhda7NrzRVotvkDhi1YSCRn6ZpLLowDU7dG+rqk1WFklWLYZ3fIhH0fcP2dTDnxCThGEV7n7mlGYav6oduk0mjwczCDKtvLkBNfWyhrDKqNamItbcXicDgOox2wZhNg2FhbU6UYW1niemHxsFJb/cCAOzy22K93yKUyfLBEZqRAhp1qotlV2eJgNqGLO+NPrO7wsSM1I28he2w5PIsEXVI8YpFsObmAgHkT+BMUtJoO6wlpuwfg+wy/dA4tBnSQqQbhcsWxJpbC0SgdtUdK2PJpRnIUyg3kd/E3AR953bDoCXkYkShVGD5tdlo2L6O0Kbady9bszQ23FlMwDAAgHPPxpi6f4xw3KgtI5eNBcZtGSriK7O0yYV1txfq6Ab0PtFaLathtc98EdBej2kdMXRFX5hl4Rdpy7DNZ4N5pyajfrvaRP78xfJh/Z1FOj4x4V0oOPdqjPnZOLUAYOymIeg60Q1KE1I38hfLhxXX54o4mcrWLIWVN+Yhf/F8RH6liQKdx7fFX1tJ8kSKojD/7BQ079NUMIi09xSvVATr/RYTMAwAjz8178xkoc21+c1ymWHIst7oOaMTkd/U3BSrfeYTZLba9q3UsALW+y02CnT5R/578lM4N5mZmZg8eTJev34NW1tbKJVKxMbGCjxSKSkp6NSpE3r06PHDjJ49e/ZEsWLFsHr1aiI9LCwMPXv2xNixY9G9e3eJu3XCsizc3d2RO3du7N2712h+tVqNoUOHIjo6GufPn5dkL923bx8OHDggSv8VHICkuGQ8uuyP1KQ0FC1fGDVbVJVF5eQ4Di983yDoTQjMLc1Rv10to4i1MWFxeHLtOVQZapSpUQJVGleU3aJlNAyeXg9A+BceobiBWy2jihz6ORzPfV6DZVhUblhekjtHK6oMFR5d8UdsWDzyFMqN+u1qGUWsDXwRhLf3P4CiaTg0r2oUcTg1KQ2PLj9DUmwKCpbKj7quDrIRSBzH4e2Dj/j8/CtMzU1Q19VBkjtHKwnRiXh0xR/pKRkoUbkoajSrIotYy7Isnvu8QsiHMOSytkADt9pGEWujvkXj6fUXUKs0KF+nDCrWKyvbfxq1Bo+vPUdUcAxs7W3QwK2WUcCxb+9D8cL3DcBxqNq0klHunIy0TDy6/AzxkYnIVzQP6rWtZRTz48PTQHx4/BkKJY1araobBDrUFz6C5SmP3l22IGq1qm5UN176vUXQ6xCY5TJDvTYOyFNQHo07LiIej68+R2a6CqWqFUe1ppXkdYNh8OzGSwGhuIFbbaOIteFfIuHv/RKMhkXF+mVRvrYYKE9fVJlqXjdC42BXwBb13WpL8oJp5eurYLy++x6gKDg4VzEIAqovacnpeHj5GZJik1GghD3qujrIojlzHId3Dz/ik/9XmJiZoI5LDaNo3IkxSXh0xR9pyekoXrEIvxNpRDcCbr3Bt3ffYWFljgZutY36y0R/j8UTzwCoM9UoW7MUKjcsb1Q3nngGIDIoGjZ5rdCgfR2jaM4hH0LxwvctOJZFlcYVRWSyv5tocW5M1fVAc7+Ac0MlQWXy+B+Jc/NTxs2ePXtw+PBhjBgxAr169cL+/ftx6NAhgiRzypQpSEpKwq5du37o2QMGDICdnR02bNhApAcFBaF///6YPHkyOnbsaPhmPfH398eECRMwevRo9OzZ02h+ALh48SLWrl2LLVu2SEZlxcTEEKynwcHBWLJkyT+y8//IH/kjf+SP/O+JYNxk/g3Gjdk/07j5qWipmzdvombNmgK1giEruXDhwvj06dMPPztv3ryIjhaH1/0IZTrAH0nRNC3pb2NI8ufnOZ2SkpIk8+TLly/HdciJMAyDp54BuH3mAdIS01CkXGG0GdpCdkciIigKnntvIuhtCMwtzdC4U3006lBHckdCrVLj7rnHeHj5KTLTVShToyTaDGkuuyMR/DYE1/beRMTXSFjltoJzr8ao2aKa5KorPTUDt47dhb8Pj5NTqUEFuAxsJrkjwXEcPjz5jBsHfBEXEQ+7ArnRakAzVKpfTnLVlRSXDK+Dt/HmwQfQNIWazauhee8mkjsSWgb1W8fuIDk+BQVL5ofL4OayOxIxYXHw3HsTgS+CYGKmRAO3OmjSpb7kjgSjYfDw8jPcOfcQGamZKF6xCNoMbSG7IxH6ORzX9vjg+6dw5LK2QNOuDVCvbU3JHQlVhgq3Tz/A42vPoVFpUK5WabQZ0lyWQyfwRVAW43oMbPLaoEXfpqjuWFmybVOT0uBz5A5e3H4DjuNQrUkltOrvJLkjwXEc3tx7D+8jd5AQlYC8hfPAZZCz7I5EQnQiru/3xYcnn6BQKlC7tQOa9WgkuSPBsiyeXn+B26fvIzWLW6rN0BayOxJR36Jxbe9NfH39Dea5zNCoY1006lhXckdCrVLj/oUnuO/xBJnpKpSuVgJthrYwSL2glW/vQ3Ftjw/Cv0TAMrclmvVojNqtqkvqRkZaJnxP3MMzrxdgNAwq1isHl0HOsjsSH54G4saBW4gNi0Pu/LnRqr+T7I5ESkIqbhz0xet770FRFByaVUGLvo6SOxLa3d+bx+4iKTYJ+Yvbw3Vwc9kdibiIeFzbexOfn3+F0lSJ+m1rwbFbA0l+KYZh8OiKP+6ee4S05HQUK8+PbdmPwvUl/Eskru7xQciHUFhYmaNplwao366W5NimylTjzpmHeHT1GdSZGpR1KAXXIc1lufO+vgqG575biAyOgnUeazTv3QQOzlUl2zYtOR0+R+/ghe9rsCyHqo0qotUAJ1jbWUmW8bvIr/rNUP9gj+Kfpl/o2rUrRo3ifTz279+PgwcPEjs327dvx9mzZ3+YfuFXKdMBHgSwU6dOKF++vGgHSE7Onj2LjRs3Ytu2bahatWqO7vkV+oWk2GTMdF2Cj8++gFbSYDWsEDo6YGEPkUMqAJzfdBXbJx0ARVFgWRY0zecvUbkoVtyYKyL9C/8aiemtFiP8SyT/bJYFTdEABUzcOULEZ8RxHPZMP4JTazyEUEvtv9UcK2GxxwwRV9Qn/y+Y6boUiTFJ/Pk3B4Di/XTmnZ6Cem3I6DmNWoNVA7fi1vG7ojKc3Bti+uFxIq6oJ9cDsKjrGoH7CBRfV2s7Kyy/NhsV6pYl8qclp2Nex5V44ftGVEbXiW4Ysaa/aDDzOnQba4du45GSOQ5UVtsWKGmPVV7zRINyXEQ8prdejKDXIbq2pWlwHIcRq/uj60Q3Uf8dX34e++YcE/pN299la5bCcs/ZIh+Mb+9DMb31YsR8jwWtyAqXpXiag+mHxhFUCgBvEGwZtxeXtt8QvXcdFwfMPztFZEy8uf8Bs92WITUxTdcmHO+ns9hjBuEsCvDG1tJeG3D/4hNRGS6DnDFx1wiRoXbvwmMs7bUBGrWG57uh+Cg3uwK2WHljLkpVIyfV5PgUzG63DO8efhKV0WdOVwxY2EPUf5e2X+fRd7PpRtHyhbDSa57oCCXqWzSmtVqM0E/hRP+B4/DXtmEiPiOO43Bg7gkcW3ZO0FdtnSo3qoCll2eKjMHAF0GY4bIECVGJoGmKhx2hABNTJWafmCji+mI0DNYM2Qbvw36i927cuR5mHZsgMrT9fV5hfqeVyEwjdcMqtyWWXpkl8t1LT83Ags6r4O/9SlRGx7GuGL1hkMhQu3n8LlYN3MJHf3EcKJoCy3CwL5YXq7zmifyT4qMSMdNlMQJfBAvfuLaNhy7vix7TxLvvp9d4YNf0wyLdKF29BFZcnyMy5r9/Csf0VosEXCuOZXmHcwWNKXtHExF42v7bPvEAzm+6Knpvh+ZVsejCNNFC6d2jT5jdbhmS41P47y1rtjTLZYqF56ehVktp3LX/pmjnJbOMur+8c5Np/uQfuXPzUw7FFhYWSEhIkM0TFhYGW1t5PxBD0qxZMzAMAw8PDyFNpVLh6tWrqFy5smDYREZGSjrzPnz4ECkpKQYdiQEYrHtaWhrOnDkDW1vb/1gnLuy6Bp+zkFy1QHja0NGD80/C6/BtIv+DS0+xbcJ+cCyXNcjo8n//GIY57ZYRIZgatQYzWi9GZBawn3APy4JlWKwdtp33sdCTi1s9cWoN3/baUEvtv2/ufcDK/puJ/ElxyZjeajGS43lSTq1hwLEcVOlqzO+8Ct/ehxL37Jt1DL4n7hksw+/MQ+yeTqJEf/8Uzg/e6Sr+2VnPB8dD9U93WUzQFgDA6kFbBUj/7GWcXX8Z5zddJfK/uvMOqwdtBaNheWoIvbaNDonF9NaLCdoCjuMwx205QrLeTb8/OJbDjskHcff8I6KMm8fvYt/sY0S/af/98jIYC7qsIbBzMtMzMb3VIsSFx2fl5evFZcHkL+uzEe8fk7ujp1ZdxKXtNwy+t7/XC2wcSR4Tx4bHY2abJTyiM6ejwOA4DhlpmZjdbhkBngYAWyfsx4NLTw2WcePALRxeeJrI/+VlMBZ3Xwe1Si08WwsfkBiTjKktFxG0BQCwpOd6fHgSaLCMo0vOwlMPLRrgiTy1tB7ZdSPsSyRmtVlK0BYwDIMZrksQkUXJoH8Py3LYMHIXnnm9IMq4utsbx5ad4/Nnq9P7R5+wtPcGIn9qYiqmt1okYDSxerqhzlRjUbe1BKUHwOu9zxE/g+99/+IT7JhM0lKEf43E3PYrDOpGWmIaZrouQXxkAnHPumE7EHDrjcEyLm7xxJm1JCXL24cfsaLfJjBqJqv/+G8R4EEkp7VaRACMchyH+R1XIuhNiK5t9dp4z4wjuH3qPlGG35kH2DXtsEHdCH4bgrkdVhK6ocpUY3qrRYgJixPychzfxoyawaoBW/Dm/geijDPrdHqf/b1f3n6LtUNIDLX4qETMdF2C1IQ0nW5ktXFmmgpzOqwgkJx/S+HAA/n99O+//QI/Lz9l3FSpUgX3799HcrJhYLXIyEg8fPgQNWrUMPh3OdGnTN++fTs8PDwwYcIEREREYOTIkUK+pUuXol8/w2GTXl5eMDU1hZOTk8G/nzt3DoMHD8aePXtw6dIlHDhwAAMHDkRYWBjGjRsHE5P/fyK0D08+46XfW0l0X4oCji07Ryj08eXnJPFeGA2LwBfBeO6jY5u+f/EJwgIjJcugaRonVl7QPYNhcGLFeck6a2HvQz7ojJXr+30lye74gZbFBT1DIjUxFRe3ekoC4GmZtrXGEgBc3Hwta/AS38MyHNKS0nkOpiwJ/RyOu+ceyWKMnFh5gcA5ObnqAiiF4bZlGRYRX6MI2okXvm/wyf+rJNYGTVM4vlzXlhzH4djSs5Jb3yzD4s2993j3SGes3DpxHzGhcZLvQdMUzqzTTUSqTLUkXxLAD/w+R+8QqLhXdnohM1VlEM+DYzmoVRp4bLsupMVHJuD6vpuyFAHnNlwh+MfOrr8MfnYw/N6JMUnwPuwnpH0O+Ap/IzQgx5adIwz54yvOS+KksBoWwW+/4+l1nbHy6Io/Qt6HSfefgia4pViWxbHl8rrx1DOAMFa8DvkhKTZFQjcAgMN5Pe639JR0nNt4VZba4tpub8KQv7jFExq1xjD/EcshPSUDV3frqBEigqLge/KebNueWn2RMORPr74oOe6wDIvokFjc1qOd0H7HUm1LURSOLj1L6POxZfJj24cnn3ln6Sy5c+YhzwUn2X8UoQsatQYnV10wmFf7HrfPPCD4x67t8UFacrpBzB6O440oj62eor/9XvIrhs0/G+jmp4ybnj17Ijk5GRMnTsSrV6+EFVFGRgaePXuGKVOmgGEY9OjRw8iTDMusWbPg7u6O69evY9OmTdBoNDmiTAeA1NRUPHjwAA0aNICVleEz0WrVqiF37ty4fPky1q9fj1OnTqFYsWJYt27dfwyx+NEVf3neGQ74/iFMWDWnJKTi3cNPRjh6FHh4WceN8uiqfBkswwp+AAAQ9DqEgPM3JBRN4fHV58L1g0tiNnB9YTQs7l3QMwpuv4UqQ5o3COBpC7QrSwC4d/GxUd6Zexd1ZTy5FmAUfTY+IkHgP2JZFk+uPZelkaAVNB5e0WvbK/5GeZ8+Pg0UJqKY0DieN0imrRRKGo/0+u/x1Wey4IWMhsUDD13+j08DZXmDAH5QfnJN13/3Lz6RBVxjGbL//L1fGYW9T0/JwFu9VfN9jyey91AAHl5+Klw/vvpcFtAN4KHxwz7zq+b01Ay88pPnDVIoFWTbGuu/LP4x7Y5EyIcwRAWLfQH1hVbQeHTFX7h+cOkJOJnJgdcNHWfe67vvkZkmDyiqUTPw9yYXMMYoAgjd0COYlZLEmGR88v/K389xeHjFX143aBqPfkA3OI7nH4uLSADA75AEBgQZH9su6b6RR1efGQU0fXTlmaBvn59/RWK0tC8lwH+H+rxr9z2eGKW2uKu34Pkjv5f8lEOxg4MDJkyYgE2bNmHcuHFCupaniaZpTJo06aePd8zMzDB69GiMHj1aMs+mTZsMpltaWhr186lbt65Brqn/pKgz1dJIednzAVAb4V4BAFC8YaB/rzFuKY7lwGgYKJQKoSzZImiKyGfMUOHroTH4f/l7fqwMVbpuW1ydqebh3Bn5d9fWRXsUISccx4naNgfdp+u/nLQtJW5bY/2nUZN1ykkZKqIMeb4ybT1+pAw+n65exniDOA46Xypo2zbnumHs+VmlkG2rUssaHkIZKg1MzU1/uv+MFaFf9/833cjWf/o8gDkpwxi/Gcuyv6YbOfgGKQrEd6vO1IAzQrHCHzGzUCgUOWrb7P2nzknb5lAf/mvCZv3+hfLTIH6dOnXCvn370LlzZ1SsWBGFCxdGuXLl0KFDB+zduxdubmJnyj+ik7K1SssSAwI8cJcWsdY2n7VR2gJGwxDYMmUdSsmOrRRFoXDZgkK0Q7EKhQXQNClhNSzK6JVRoU4Z2d0hWkGjXG1d/jIOJWWfL9Rdv4y6ZWRXaQolrQP4A1CmZimj/DlKUyWKV+KjbpQmShSrKE9bAEAggtTWT57LiAcM1DpB2hfLa5S2QKPO1n81SxllJdaPbilZpZjRHQ+O4wgAtQr1ysr3n5JGhbq6CChj2EUA/12Vrq6LSCtbs5Q8bYGCJqKsytYsZXRCNbc0Q8EswD6r3JawLyaPRcQyHPHdlnUoZdT4LVDCXog2KlK2oCxtASDWvwp1ysjSFtAKGmVr6fKXrlFCEj1XX7Lrhlz/KZQ0Kur1X7lapY0azAqlQg+wj+JpC4z0n75ulMmBbljbWSJfET74IW/hPEZxnjRqhvhuyzqUkjWAtTQSWsf2EpWLyu4mAfxu64+0bXbd+B3lD0LxD0pAQAA+ffqEkiVLYvz48dixYweOHTuG3bt3Y9KkSShVyvgA+G+XRh3rwNbeRnLQpxU02g1rKRgeNE2j4xhXyUGGoihYWJqjRR8dN5HLIGdeoWUGzM5/tRX+b2lriZb9nCQnSFpBo0BJe9TW47ZpP8pF9siBZVh0Gqcro2i5QnxIuUwZ1Z0qo3hFXbhvxzFtZI0VRsOi/SjdcaKDcxUULlNAtowWvZsQoZyd/2onawgqFDRcB+uQk5v1bIxcNhbS/UFT6DDaRRhQTUxN4DailWSdKJqCTV5rgkai7TB5GAOO5Yj+syuQG027NZCcULVw/JUb6qJnOox2le8/DYtOY9sI12VrlkKFumWl21ZJo75bLQIdttPYNrI7YxzHERQdDdxqI08hO1ndcB3cHBaWOoTkTmPbSE/AFGBqYYJW/XTRM636O8HE3ERygqQoCp3GtRH+bmFlAZdB0hxZNE0jX9G8qNdWFxnYbkQrecb1bLpRsGR+1HVxkJxQFUoalRqWJwzajmPbyPYfo2HRfrSrcF21SUUUr1REVjea9WhERO11HtdWnmOJAtoMayFcO7k3hLWdlWR/0DSF9qNchPB8hVKB9qNay+qSZe5ccOquQ752HdIclBxPG8ehi55u2OS1hnOvxrLvXbR8IVR3qiykGR3bsunGH/m95KeMmwkTJuDSpUvGM/4RSTExNcG805OhNFWKBjOKplC2Zin0m09ywLhP6YAaTlX4AVdvHFAoadAKGrNPTCRCGW3z2WDGoXGgKIoog6IAUPwk0n4k6WM0bGVfFKtQWDSxKJQ0zCxMMffUZCJMtGSVYhi5dgAAEAOH9v6OY1zRwI2Ec5+8ZxTsCtiKBhpaQSO3vQ2m7COPI+u6OgiTuH69tPcPW9mXoDqgaRpzT02GuaWZqG1pBY0i5Qph+Jr+RHrbYS3QuFM9gCJxm7R8N1MPjCVCUc1zmWHOyUlQKGiyDIrvv6pNKorCXfvOc0eFumJiUoWShtJUibmnJhFhvvmL5cPEXSMBimxb7f3OvZqgpd6EDQBjNg5GwRL2Bts2l7UFZh2bQLxfpfrlMGBhD6I99f/fc3onUSj4jMPjYG1nabCMfIXzYPz24US6o3tDuGRRalAG+m/c5iEoUlaH66RQKjDv9GSYmJsa1I1S1YpjUDZuqc7j26JWi2rCt617Fg2FgsasYxMIhG1rOyvMPPKXwHUkPD+r/+u41OC53/Rk8NJeKFlFvIuhUNIwtTDB3FOTiBD4YhWKYMzGwcS76rdB22Et0KRzPeJZE3eNhF1BO4Nta2VnhekHxxLptVpUQ/cpHURlaP8/aEkvVKij213gKVkmwsLaXGQE0woahUoXwMh1A4h0l0HOgmFB9J+SBkVRmLxnNAFBYWpuijmnJkFpojDYfxUblEfv2V2I9F4zO6NKowr887P3n1KBuScnEejleQvZYcre0QbGNv5mx24N4KK3GAGAkWsH8IuebGHutJKGhZU55pwkKVbK1SrN84nBcNt2nej224aCC/JLkVJap+J/pvwUzk2nTp3QsmVLjB071njm/3H5FZwbAAh+9x2n13jg1ol7UKWrkL9EPnQY5YqOY10NgpupMtW4vOMGLm71RNjnCChNlWjatT66T+1IbA3ry7tHn3Bq9UU8uPQUjJpB8UpF0GlcW7Qd2sLgVm1qUhoubLqGSzuuIzYsHuaWZmjRxxHuU9oTk5C+PL3xAqfXXETAzdfgOA7l65RFlwnt4NyzscHVcXxkAs6su4xre32QHJcCaztLuA5ujq6T2hsE4OI4DrdP3cfZ9Zfx4clnUBSFGs2qwH1KB9R1rSnKD/CAYKfXeMD7iB/SUzKQp1BuuI1ojS7j2xqkkmAYBp57b+L85msIfhMChYkCDd1qw31KBx13TzYJfBGE02s84HfmIdSZahQqUwAdR7ui/WgXg8B/memZ8Nh6HRe3eSIyKBqm5iZo1qMx3Kd0QMkqxQyUwIepn1pzEU+uPQejYVGqWnF0Gd8OrQc2MwgclxyfgnMbruDKLi/ERyYil40FWvdvhm6T2xPEnPry8PIznF7rIYTPV2pQHt0mtUfTLvUN5o8JjcWZtZfguf8WUhPTYJvPGm2HtUTXiW4Gwek4joP3ET+c33gFn59/BUXTqN26Btwnt0fN5tUMlMBD3p9e44Gbx+4iM10F+2J50WGUCzqOayPs2uiLRq3B5Z1euLDlGkI/hkNpokDjLvXRfUoHSXDBD08+4/RaD9w7/xgaNYOiFQqj09g2aDe8pUHgv/SUdJzP0o2Y73Ewy2WGFr2bwH1KBxHWi1b8fV7h9BoP+Hu/BMeyKFurNLqMb4cWfZoa1I2E6EScXXcZV/f4ICk2GZa5c8F1UHN0m9xehGOlbds7Zx/izPrLeP/wI0BRqO5YGe6T24t4orQSERSFM2sv4cYhX6QnZ8CuYG64DW+FLhPaGQRuZBgG1/f74vymKwh6HQKFkka9trXQfWpHVG1c0WAZX19/w6nVF+F3+gFUGWoULJUfHUa7osPo1gZpVlQZKnhsuw6PbZ4I/xIFEzMTOLo3QI+pHUU4SFp5c/8DTq2+iEdXnoHRsChRpRi6/NUWLoOdDYJipiSk4vzGq7i08wbiIxJgYWWOlv2c4D6lvSTw5qOr/jiz9hJeZgFcVmxQHl0nuMGxW4Mc+Yb9N0Q7L5kn1wTNyB/5yQmrSEaG9fN/JM7NTxk3S5cuxZcvX7Bnz57ftnP/U/Krxo1WeOwPVpY3J7swDAOapnPcBz9bxo/k1+JAyPHH/GoZrBas6we+vR8t4z/Vtr9b/2kjp36n/vtfadv/lG4A/7/990c3ftpV9T8mf4ybnzyWGjFiBJKSkrB69WpZqoI/knNJT8lAQlQSEf0iJ4yGQWJ0kgj8TE5SE9OQGJ1EgJnJiVqlRkJUEoFZIiccxyE5LgWJMclGozG0ospQISEqCZnp8iGw+mUkxSYjOS4lx2Wkp/Jtq4/dIScMwyApJhmpiWk5yg/wiMiJ0UlGHWG1olFrkBidhPSUnLUtwK86k2KSZUO39UWVyfdfhpHwYq1o+y8pNuf9l5meiYSopBxFXQH8BJEYk0zgGBmTjNSf1I2kH+i/pJ/UjZSc6R/HcUiO53Ujx/33H9CNjLSs/sth1A/LskiKSUZKgjzkgL6kp2QgMfr/d2zT6kZO+0+rGz8ytqXEp/6QbvwW8i8G8fupUPDFixfDysoKV69exY0bN1CoUCHkySPeLqUo6ofoD/6N8ub+BxxZcgZPrwcAHB8h1WZIC/Se3QU2ecQWd1pyOo4vP48rO28ImCY1mlVBnzldJbf3H131x7Fl5wTsEVt7G3Qc7Yru0zoY3B6Oj0zgUWD330JmWiYomkIDt9roO7ebwe19juPB4U6uuoCg1zwqaf4S9ug6vh06jnM1uDoKC4zAkcVncOv4XWjUDJQmCjj1aIS+c90N8moxDAOPrddxdsNlRAbxeCMlqhRDj6kd0bKfo8EV3ufnX3Fk8Rk88HgCluVgZmGK1gOd0XduV4NM0aoMFU6t9sDFrZ5IiEoEAFRqUA69ZnZBw/Z1DLbtC983OLLkDAJuvgbAR+60G94SvWZ1EdFUAPwgfHTJWVzd482jAlNA7ZbV0XduN1RtUslgGXfPP8Lx5efx8SmP2JunkB06jW2DbpPdRDQVAM+SfHTxGXgdvg1Vhhq0gkbjTvXQb143g9v7HMfBc99NnFrjge8fwgAAhcsWRLeJbmg3opXBleq396E4vOgU7px5CEbDwsRMiea9m6LfPHeDR1+MhsG5DVdwbtNVxGSBCJZxKIme0zuJKCS08u7RJxxZfBqPrz0HOMDCyhyug5uj79xuBqNr0lMzcHLFBXhsv47kON54quZYCX1md0XtVoYBRZ9cD8CxpWcFgDjbfNZwG9kaPWd0NngsnBCdKCAkZ6TyulG/bS30ndtNRAGilZvH7+LUqgsIfMEjqtsXy4vOf7VDl/FtDR4Lh3+NxNHFZ+Bz7C40Kg0USgWcujdE37ndDPJqsSyLyzu8cGbdJYR/4UHoilUsgu5TOsBlkLNB3fjyMhiHF53G/QuPwbIcTC1M0bq/E/rM7Wbw6EuVqcaZtZdwYcs1xGfh01SoWxa9Z3VBo46GYTVe3XmHI4tPC7g8lra50G4YrxuGjr5SE1NxbNl5XNnlJSwsaraohj5zuqKGUxVRfoDHojm+7BzeP/4MALArYIuOY9rAfWoHg8fCseHxOLr4DG4c9EVmugo0TaFRx7roO8+d8NvTCsdxuHHQF6dWX8S3dzx4aaHS+dFlghs6jHb5/XdxfjUU/B98MPNTx1JSyL+ih1MUwTf1vyi/ciz14NJTLOiyGgCIqApaQaNwmQLYeG8pMYinp6RjouM8fH31TZSfYzlMPzQOLfo0Jcq4tOMGNo3eDZqmiIgViqZQuWF5rPKaRxDfxYbHY1yDmYgNixeVQStoLLs6S2RE7Zt9DMeXn+exZfSjKijAsVtDzD4+gRgEgt+GYHyTOchIySCiERRKGuaW5lh/ZzFBbsmyLFb024xbJ+7yCVlFaPE6uk/pgGGrSLTqF7ffYKbrEh7rQv89lDTyFMiNzQ+XEcShqkw1Zrgsxuu774l30Lbb2M1D0HGMK1HGrRP3sLzPxiyeHbKtSlQuivV3FhMGTnJ8CsY3noPQT+Gi/AAw7/Rk3qlZT06v8cCuaYcN9l+tFtWw5PJMwjckMjga4xrMRGJsMgG8plDSUJgosdp7HuE/xHEcto7fh4tbPEFROv9Bbdu6DnbGpN2jiAnyk/8XTHKaB1WGWtS2VraW2Hh/KWGgMgyDhV3W4OHlZ8SqV/u9GOJRe+L5XIDcz95WBUrYY9ODpURET3pqBqY4L8Dn51+z5efbbcre0XAZSDqYXtvrg3XDdvBcRnq7KTRNoXydMlh9cwFh4MRHJeKvhrN4ZNxsdaIoCksuz0Sd1qQRdWjBKRxedFqkGxQFNOpUT+SE/P1jGP5qOBtpyWmEbtBZDv3rbi8ifOs4jsPqQVvhdeg2PxFxuudzHO9oPXr9IKJOr++9x7RWi8CoGeI9FEoatvlssPnhMiLaTa1SY3a75Qi49dqgboxcO0DEo3bn7EMs7rGO58DL1lbFKhTGhrtLCAMnNTEVE5rOxbd3oeKxjeMw+/hEOLk3JMo4v+kqtk3YL25bmkJ1p8pYdnU2YeBEhcTgr4azEB+VSOgGraChMFFg5fW5qNaUXGDsmHwQZ9dfJrGBstq5ZV9HTDs49rd0zRCOpeIdoGB+nuCTUaQgwy7g33Msdfv27Rz9/tcNm1+RzPRMrOy/GRzLisJFWYZFWGAkDsw9QaQfX35eZNho83Mch3XDthPb/TFhcTyRICAKxeVYDm8ffMS5jSTH0q6ph0SGjbYMRsNged9NxNHLhyefBZoBUbgoB/idfgA/PWh2AFg7bAfSkzNEYZaMhkV6SgbWDNpKpN87/xi3jt/N2mLVe3zWYHNqjQfePvyoew7DYEXfTaLBG+DDN+MiEkQcPR5bPUWGDaBrt23j9yEqJEZIT01MxZoh28CBM9hWwW+/49jSc0T6ofmnRIaNNj/Lslg5YDOxTR76ORy7ph8m6iG8O8vB3/sVAa0PAFvG7eWPPgy0rSZTgxX9NhMT+QvfN7i4hYeQ5wy0ree+W3h81Z9IXzlgi8iwAfi2TUlIFfFXeR/2w4NLT0Xb+dq2Pjj/JEFboMpUY3nfTXy7GGiryG/R2DvzGJF+Zs0lfPb/YiA/v7W+YcROJEQnCunxkQnYOHo3nyfbMZEWXfrsustE+t4ZR0SGjbZOLMNiRd+NxNFn4IsgHF50mnhX4d05/ru+eewukb5u+A6kJqWJdIPVsMhMU2H1wK1EOz68/Iw3bIBsusH/e37jVbz0e6v3biyvGyqN6D0YDU+FsXX8fiL9yk5vBNx8JakbO6ccImgL0lPSsWrgFujzROm3VciHMBH/2JHFZ0WGjTa/1oDTP6aKCIrC9kkH+Hc1oBsvfd/i8o4bRPr2iQdEho22DI1Kg+V9NxLHWq/vvc+iDgH57Wb91/uIH+5ffII/8nvKb76n9r8rfmceIjUxTTLSjmVY3DjoK0x2jIbB5R03ZHEz1JkagqPHc+9NybwAPwh4bNPxPCXFJuP2qfuSZXAsh/iIBAJi/vJOL6Mgfhf1uIm+vv6Gdw8+SpbBMiw+PvuCzwFfhbSL2zyNgvjpD2RPPQN4TiYJbA6WYXHn7CPER+kmuwtbrsmDm1EUru3RGRI+R+/yCKYy/Xdll5fgZ5CZnolr+25K9x8HpCdn4PYpnSF4dZe3kW1vDhe3XhOuor/H4uGVZ9Jty7II/xJJkKVe2n7dKNCcPrfUu4cfEfwmRLb/Am69RujncCHt4lZPWRA4hZLGlZ1ewvW9849l/UZYDQufo35IzfKpYVkWHtuvy2LpMAwLr4M6ItrrB3zlMWhYDhf1dCMlIRU+x+5K6wbHITEmGfcv6igCrhjTDZoiuIlCPoTK0kiwDIsvL4OF40mAN8qN6calHbr+e+7zCpHB0ZJtxVN6PEVsFlkrAFzYeg1y5xMUTRFG9q3j95CRlindfwyLa3t9BD8ttUqNq3u8ZXUjMz2TMASv7fGR3THhwOGiXtvGRcTj3oXHkjQSHMshOiQW/l4vhbTLO24YHds8tv3hlvpd5YeMm9evX2P8+PFwcXGBq6srJk2ahLdv3xq/8Y+IJPhNCJQm8p76mekqRIfw/glJsclGeYNoJY3gLCZegA8zN4ZTEB0SKwwyoZ8jjPIGKZS0wPYL8Gf3xkD8gvRW5d/efpd9vqF8QQZ2q/SF0bD4ksUTBQDBb78bReplGRahn/gJWKPWCH48UsKxHN+eQhkhskYBwDtwx0fyBlRMaJxR3iCliYLov6C33+V5gzgIPjIAz39kbCyiKArBb3Tv8eVlsCxvEMuw+PpK13/BOe2/d6F6//8uazgymuxl8GH4cqLO1PVZSkKq4CMlJTRNEXX/9u57jvjHtE7JEV+jjNI8KJQK4rs1qhssl61OoZJ59UVf/76+zoFuvNRr2zffZQ1NgDfUtGz3HMch7FO4rBMtv1OpN+68/Q6lETTg9JQMwYCKC0/g/c9kRKlUiMY2WcdsDgj7HCHsxHz/GG4UmZmmaaI/cjK26X+3v6Ww3K///qGSY+MmMDAQEydOREBAADIyMpCeno5nz55hwoQJ+Pr1q/EH/BFCzC3NjfIZ8fn4M38zA86NIuF0+QEeaI4y4vBGK3gAOf2y5IRlOVhY6TBGcllbGKUt0PdbyEkZfD5dGeZWYkwTQiggl55vi7mludGBTL8u2jN3OaEVFNm2luY5WtRo7zE3gMuSXViWI8qwsDIDLcFUrhVTPUqAnLQtx3FEe1pYW8jkznquXv6cvEf2uhj7dimagoU1WcaP9J+ZhWkOuIwosW4YuYmiKZhk+aPlqG1Zluw/awujZZj9qm7koD9yEf1nlqO21eo4RenaQEpoBZ1NN8xyFFGkrXvOvtvs36GZUWdeEzOlkCdHYxvHEu1pYWzcyWGeP/LfkRwbN0ePHoVKpUK/fv1w4cIFXLhwAQMGDEBmZiaOHTtm/AF/hJDGnevJrrgomkIZh5LIXywfAN6IcHCuaoQJlyHg+5t0qS8bmqxQ0mjUoQ7Bv1KotGEgK61wHEdERzTt2kB2jufh3HXRMDWcqxodEMxymaFmi6rCtZN7I3mOJVBw7KZzNmzQ3jBwmb4UKGEvwNjTNI0mnevJbkEzGhZNOusA7Rp3rifbtrSCQjXHSgLFQ95Cdihfu7QsxxLLsGiiB5rXpHN93mdEQhRKmnjvCnXKwK6ArWR+7T3129USrh27NTTKG9SseyPhuo5LDaP8Y9Z2lqiiB+zm1K2hbNtyLIemet9t40515XWDoohv1czCDLVdHIzrRpcf6T8a9dvWEhxSi5QrhKIV5PnHWJZDo07ZdENmklcoybat1rSSUf4xU3MT1GmtQ8Vt1t2IblAUHN11ZdR3q210VzNvYTuC86ppl/qy/ccyLJp2yT7uyI9tlRqUg11+/lu1zWeDyo0qyOqGqP861TfCAk+jaVcdyF4Zh5LIV1Sef4yiKGLscOzWUNY4pRU0nPT677eUfzFCcY6Nm5cvX6JatWoYOnQo7OzsYGdnh8GDB6N69eoICAj4f6zi/6aUqlocDTvUkRxoOJZDv3kk/UKfOV0lV120gkbVppVQpZHOo72OSw2UcShpsAyK4jceekzvpHsGTYvKJO6hKbTs60iE+rbs54h8hfMYLIOmKZiam6DjWF2UkXkuM/SY1kmUV1/cJ7cnaCQ6jnGBWS5Tgys1WkHDroAtWvXX0RDkL5YPrQc2k520+85zJ57XfWpHAJTByUuh5DmZ9I2CSvXLoYZzFcn+Y1kOfWZ3JdL6ze8uuVtHK2jUa1uTCEdt3LkeipYvZHBioWgKFE2j2+T2evVUoO9cmf6jKLQb0UqYVACg7dAWsMljZbj/sigb2o3Q8T5Z21mh819tZSf5XjO7EFEqXSa0g0KpMNgftJLnK2vWQzdJFKtQhOfIktINjkO/+d2Jiaf3zC68IWGgXrSC5vtLj0aiZotqKF/HMCGrNjKm54zORFr/+d0lx3qaptCsRyMCwbt57ybIXzyfpG4oTZTo9JeO4sHU3JQoU1wxoMsENwJd221Ua1hYmUv2n629DVwGNRPS8hayQ9thLeR1Y647EcHlPqUDD7po4B6FkkaxikXQsIMOKqFcrdKo41JDdmzL/p32ndsNrETj0goaNVtWI2gkGnWogxKVixo8GtYCRLpn0VIAgEKhMDq2uQ5uToTBuwxyRu78NhJty+8Eth/lIvnM30I4/GtxbnJs3MTHx6NKFTHWQOXKlREfH2/gjj9iTGYe+Qu1s0JHFUoFFCb8BKAwUeCvbcNEYcEOzlUx4/A4mGYR/ilMFAJORuVGFbDw/FSSF0mhwPJrswUmbm0ZoPjV7vzTUwg2bYAnFBy+qh8f3kpT/D1ZA0jTLvUxcecIIn8uawusvrlAMHj4/HydrOyssOL6XBQsmZ+4p9eszug6oZ3AmaRQKoQBpONYVxGnVv7i9lh5Yx6s81iJyrAvlherby4Q0Sn8tW2YEDqq5aehaQq0gsaQ5X3gOogMCy5fuwwWnJvKHxNQINq2VLUSWHF9LjHgUxSFBWenolrTimT/URRMzEww7cBYEbZKA7famLhrJJR6/awto2aLaph9fCKR38TUBCu95qFYFomo/ntbWJljsccMImQeANqPao3+WRO/0LZZ/deib1OMWjeQyG+T1xqrby4QKC+EbwRAbnsbrPKeJ6LDGLy0N9pkkXrSSr3+o3guKn2DCwCKli+MZddmC7sS+u9duExBrPaZL8Jbmrp/DOq3rUW8t5YHasymwaKw4GpNK2H2sQkwNTfN4hvSlVGhXlksvjSD0A2aprH0ykyUr12abNssks25JycRCwUAcO7ZGKPWD+S53LLpRoMOdTB5L8mJZp7LDKt95gs7TPpta5nbEss954joTHpM68hzRRnQDbcRrTFwcQ8if77CebDSax5s81mT7wEgX5E8WHNzvggva/SGQWjeq0lWfl0ZFE1h4KKeaDecJGwtU6MkFl2czh/ZZNONEpWLYZXXXBFVxZyTk+DgXIV4b4qmoDRVYvKeUajXhqRMqevigCl7R0NpqhSNbdWdKmP+6clEfoVSgRU35qJUFmWJ/thmbmmGBeenieho2gxpjkFLegnjgH7/NevRGOO2DCHyW+W2xOqbC2CfteOj37Y2eW2wymue8Lc/8vtJjnFunJycMGjQIAwcOJBI379/Pw4ePPivDfv+O+gXPjz5DL/TD5CalI6i5QuhZT9HAsMjuyTHp8DnyB0EvQmBuaUZmnSpz5POSSynOY7DC983eODxFKoMFUrXKIkWfZoil4y/RWx4PLwO3UbEl0hY57FCs56NDYJcaYXRMHh0xR/+3i/BMiwqN6oAx24NCAyd7BL+JRLeh/0QGxaHPIXs0KJvU0nuKoAPEb5z5iHe3P8AmqZQs0U1NHCrbRAITStfXwXj5vF7SI5NRsFS+dGyv5NBkDKtpCWn4+axuwgM+ApTc1PUd6uNms2ryrbtu4cfcefsI6SnZKBE5aJo0bepQQBGrSTGJMH7sB9CPoQhl7U5HN0bioxMfWFZFv7er/DoyjNoVBqUq10Gzr0aG+RX0kpUSAy8D/shKjgatvY2aN67CUpUNsxdBfBO1fcvPsEL3zfgON5YaNKlnkGQQK18/xgG7yN+SIhMRL6iedGyn6PIkNWXzPRM+J68jw+PP0OhVKCOqwPquNSQhcD/5P8FvifvIzUxDUXKFkTL/k7EzlN2SU1MhfeROwh6/Q1muczQuFM9VG1SUbb/Xvq9xYOLT5CZrkKpaiXQok8Tg9xjWomPTIDXodsIC4yEVe5caNajMcrWNMzrBvDQBE+uBeDZjRdgNAwq1i8Hp+4NDQJoaiX8a5ZuhMYhdwFbtOznZBDcUitqlRp3zj7C67vvQVH8QqhRx7qyuhH0JgQ3j91BUmwKCpSwR6v+jgT2U3ZJT0nHreP38Mn/C0zMTFC/XS3UbFFN0veF4zi8f/wZd848QFpyBopXLIKW/RwNAjBqJSkuGd6H/fDtXSgsrMzRtFsDVKpfTrL/WJZFwM3XeHj5GdSZapStWQrNezchdn6zS0xoLLwO+SEyKArWea3RvHcT0SJBXxgNgweXniLg5muwLIeqTSqiSZf6BkECfxcRcG6iq0Khlv6WjQljkooM+9f/SJybP8bNL8rfxS31R/7IH/kjf+SP/B0iGDeRVX7duCnw5h85v/0Q/cKNGzfw5s0bIi00lA8ZnDp1qig/RVFYtWrVL1Tv3yHhXyJx99wjfnVavhCadm1gEPpdK6pMNe6df4zgtyEwtzRH4051DcKy68vXV8F4eNkfmemZKONQCg3b1zbIeqyV9JR03D79EBFfImFlZwlH94aCc7Mh0e5g+Hu/AsuwqNSwPGq3qi4b0ZAUmwzfk/cRFx4Pu4K50axHI4OM0lphWRbPfV7h7f2PoLJ2bio3LC/r9Bf9PRZ+px8gOS4FBUvlh6N7Q9kdK41ag4eXnyEwIAgmZiZo4FZbcDyWku8fw3D3/GNkpGageKWiaNK5nuyOVWZ6Ju6cfYTvH8OQy9oCTbrUR+EyBWXL+OT/BY+vPc/auSmN+m1rya7KUxNTcfvUA0R9i4FNPms4dW9kkG1dKxzH4dWddzwGDgdUbVoRDs7SO1YAj9h7+9R9JEQmIm+RPGjWo5HgQG1IGIbB0+svdDs3LjUkKQu0EhEUhTtnHyE1IRWFyxZE024NZHes1Co17l98iq+vgmGeywwNO9ZFiUpFZcsIfhuC+xefIjM9E6WqlUCjjnVkd6zSUzPgd/oBwgMjYZnbEk7uDQhE3+yi3cHw93op7NzUbl1ddscqKS4Zt089EHZunLo3kt2x4jgOz31e4c29D0DWzo3cjhXAg3z6nX6ApJhk5C9hD6fuDQ1ShmhFuzv7yf8LlKZK1G9XS3T0k11CP4fj3vnHSEtO532putaX1Q1Vhgp3zz3Ct/ehsLCy4P3OZHasAB4s8dEVf2HnxthubmpSGvxOP0BkUDRs8lrD0b2B7I4Vx3F4c+89Am69AcdyqNK4AhyaV/39qRf+5fJDOzc//PA/9AuyospUY+PIXbhxyBc0RYFS0GDUDHLZWGDS7lEivwKAh6Vf3ncTkuNSoDBRgGN5hNym3Rpg6v4xooE/NTEVS3tvxJNrz4VzdUbNIHd+W8w5OdEgZ8uNg77YNGYPMtMzoVAq+KgEjvfnGL1hkGjgiAmLw4LOq/HhyWfQShoU+OiiwmUKYMH5aaItX47jcHLlBRycfxKMhgWtpMFqWCiUNPrOdUfv2V1Eg3Lw2xDM77waoZ/CoVAqBFj+crVLY+H5aaKzb4ZhsHPyIVzYwoPc0QoajIaBmYUZxm4aDNfBzUXv/fruOyzuvg5xEQlEGbVb18CcExNFfDgZaZlYM2grbp9+QLStlZ0lZhwah/rtxFFbd88/wprB25CamKbrP5ZFy76OmLhzhGjgT4pNxqLua/Hi1hsB5p/RMMhXJA/mnZmCSvXFx1mXtl/HjskHocpUC/1HURS6TXTDkBV9RINyRFAU5ndahS8vgwUfBEbDonilIlh4YbpocuE4Dgfnn8SJFefBshxoBd9/SlMFhizrI4LiB3ierwVdViMyOJpo2yqNKmD+2SmwK5CbyK9Ra7Bp9G5c23eT0A0La3NM3DkSzj3FfFT+3i+xtNcGJMUmE7rRqGNdzDg8TnRUkZacjhV9N+HBpadE/9na22DWsQmo1ULM1eZz9A42jtqF9JQMKEx0utF2eEuM3TRYtGCIi4jHgi5r8O7hR6L/CpS0x8Lz0wwe9Z5e44F9c46DUTO8bjAsaJpG71ld0G++u0g3Qj6EYn7nVQh5H0b0XxmHklh4fpqI64thGOyZfhRnN/Dou1rdMDU3xah1A+Gm50CulbcPP2JRtzWIDYsn+q9mi2qYc3Ki6BhWlaHC2qHbcfPYXaJtLXPnwrT9Yw3yUT249BQrB2xGakIa0X/NejbGlL2jRMd4yfEpWNJzPfy9XhJtm6eQHeadnizymQKAq7u9sW3CfmRmqHRjG4BO49pgxJr+IoMz6ls05ndejc/PvxJtW7R8ISy8MB3FK8ovKv9bIuzcRFT69Z2bgu/+kTs3OTZuIiIifqqAggXlV6T/dPkV42bVwC3wPuInjoCi+PDmFTfmEgPs+8efMKHJXAGSXF9oBY16bWpisccMIY3jOEx2no839z6IwiZpmoLCVImtj1cQxse9C48FvqvsQlFAx7FtMGbjYCEtMz0TI2tORfiXSFH4J62gYWmbC7tfrSN2DS5svoat4/dJtkt2rpr4yAQMqzYJyfGpovdQKHmuoZ0v1hK7XTun8JwwUl/3vNOTifDj4HffMbr2dKhValF/0AoalRqUw7rbiwjDYEGX1QIpp77wzrwU1t1eRPA4vfB9g6ktF/J9l73LaQrOPRtj5pHxQhrDMPirwSx8DggS95+C5xra8Xw1sevjc/QOVvTbZPilAfSe1QWDlvQSrlOT0jC8+mTEhMWJwPxoJY3c9rbY/WotMXkdW3YO++cclyxj4q6RaDu0hXAd9S0aw2tMQXpKhsH3KF6pCLY9XUnslqwbvgOee2+KQ6mz5vVlV2ahrqvOKfWT/xf81XAWGIY12H+1WlbDsquzBcOA4zjMcFmMgFtvRHXSOtJvfriM2Jl4dOUZ5nRYYTCChI9Ea4nx24YLaapMNUbVmorQT+EGdSOXtQV2vVxLGOaXd3ph4yiSvkJfhizvg556EY6JMUkYVm0ST7lhQDfyFc2LXS/WEruVe2cexYlVFyQjYWYdm0AYj98/hWNkzalQZ4opN2gFjXK1SmPj/SWEYbC013rcPv1A1BcUBVA0jTU3FxA8Tq/vvsNk5wXgWFakszRNoXGX+ph3SudUzLIsJjSZgw9PAg2ObSbmptj+bCWxo3371H0s6bne8EtTQPcpHTFsZV8hKT01A8OrT0Z0SIzB/rPJa43dr9bK+kf+t0QwbsIrQaGWhxeQE8YkDRmF/pnGTY731QoWLPhTvz9iWMICI+B16Lbh0G6OHwQOLThJJB9dchYcxxnEzmAZFg8vP8PHZzpo9he+byTh3FmWA6thcHLVBV2xHIf9c47LOF8CHtuuIy5CFx3ne/I+vv9fe+cdFsXxxvHv3lGlizTBqICKDTtWFBUQEQv2miD2Eo3+LInRaOzGxBaNsWGvUbEgooCKBbsiCqJgQUXpvV7Z/f1x3HLLNRCISObzPDx6e7M3887s7L475f2+lL95S8uUl5WP8zLh+wVFQjm7SnNw+T9s1GQACPg7WKFjA0jeoj6+SpJoTxWTkZwF/y2BSh0bigL8Fh/l1OOJ385CLBIpbA9aTCPq1gtW+RuQDIXfKlZULo2kjYBDK05yju9fdlzybFbU5DSDK0du4v2Lkii1dy88wsuH8npJ0jIJCgU4KaN/RNM0/FQ4HQDwzx/nkJtZEuk6eH8YUt6nKYxSTItoZCRl4uLuEhmPgtwCHFl9Wi6tLPt+OcaJIeO/5aJCx0Zqx9tn73HL/x57LPFtMi7uCVUcI4aROBL7fuFeQ0dWnwZNM0rb78GlJ6xyNABEhb9gp1DlsqAZMDSNY2v9Ocf3LjmmcmHyhR0hSClWPAeAm6fu4N3zBKV9Iz+nAGe3lshniIQi7PvlmFxajp2rTnH0xy7sDEFmSrbSvpEUn4LQQyWSLNlpOTi5MUDlFt+9pfrGyd/PQSSQd2ykdry4H4cHl56wx+Kj3+Pa8XCFbSH92QO/nuAcZzW4FJSLphncOHmHE5n54eUneH4nVum9TSQQ4p/fz8nky8Dv5yPKVSQY4PSmAGSlZrOHQg/dQOLbZKXtl5WajQs7Q5T8YDWBqWB04v9CnBtC5RJ24rbKYFo0zSDq1gs2RHlBbgHuBj5SE7iKj7Dj4ezna8fDVc49i0U0wo6Hs2HM37/4iPjoDyoDjzE0g5unSx5EV4/eVBkzgxbTCJG5uT65FqVWRiIvKx+PQ5+yn0MOX1cb1C308A32c/iZexCXQbZAerNkGAZXj91SGXiMr8HD1WO32M9hJ8LVBja7fykCeVkSWzOSsySOporosDw+j6MtFXYiXE1gOppjd+yjN0iOVy0jISwS4fa5Ev2j0CM3wKh40jE0w3k43g+KUCsjkZGYiajwFyV5HL6hsv14PG7d3jh1FzxVukHFwpZJxbYKCgUIP3NPbd+4Jtt+ZegbN07dZYUwP71OwquIt2r0x4AbJ++wH68cvVWuvvHsZgyyUrKVpgcksgUPL5c4EqGHb6gsE1WcRkr4uQdqZSSktkq5cvSm2r5x7bhs31BzbxNLdjhlp+UAkEwvKXM0OXnItN81Nf1PLKJx5chN9l72OjIeH18lqXTqREIxRwjzytEboFRoajE0w9HyI1QviHPzhcjNzFMZkVNKXpZE26Ygt1B92HSqJL3k3DwwqvRXIOnQwiIhWyZ18Pg8Trqc9Fy15ZIKHAJAXhnyAErZoeYchmE4aui5mfllWuwnzUMkFLF1oAxazHDsyM3Mh9qY/wyQn1PIyUsVPB7FSZerZLRKlsLcEk2estQtVSqPnPRctYG6ZNs7N1O9HQDX3vxs1efQNM1pv7zMPFBqoujK5lGYV1QGKROGW7dZeWolAmgxDUGBZASxrH2DW7c5avuGrKZSWfIAuHWbm5mrIqXEkZd9mcgr431HWhaGYVCQW6gyrVhElypTGe9txdeFOl0pQPICU/qeoE4Hr6hAwL64fV77KRdvZcuRVbY2+2KQCMWEfxvrRlYQqQj/DgAaWhqoYy2JyWJoasDR31EELaZR175kKrCunaXaB7CxuRG7iNWqoblaUT2xSAxrmQWm9RysVb5BUTwK1rJlsi/bVKVsOutGVipvltIoqbLnqnMKKIqCZUNJTBZNLU3UVrGTCCi2Q2Zti3UZ8tDR04aRmWT3l2ldE7WyBWJRqfazt1RZtwBgIRNXxspOtXQGIHnblM2jnkNdlW/ZPD4PNk3qsp+ty9p+MmWxsrNQeRnyNXio17gkj7r2lhALVfcNvgYPZvUka1X0jGtBz1j1ugKGgXzfUIOBiR6rvWVR30ytbIFYKC5Vt2r6BkVxr/My1q1sOpvGatpPg4d6DjLt18iqTJp20vajKArm9ZXvkpTmIVufde0t1ToeWjqa7CJyEwsjaOsq30EFSFTdS7efur5hVs+UXQdkZWuhStgcgPz9s14T1e3H4/NgLXPdVkuIc0P4t3EZ0UVlEC++Bg+9RnVjFwJqaGqgr29v1TcyHgW371zYzx4TeqlUzuXxeeg/1Z1dR2BiYYzO/ZVLQoCS3PBlQ617TnJVeSNjaIYTorxRW1vYOtZX6qzweBLdINktwl5T3VXekMUiGl6TS3Z4dPJqC6M6BkofqDy+RF9JNpjfgGl91Oo+eUwo2WHlOq47+GqcAo/xvdhAX7p6Oug9prtKJXFNHU30GlWykLPfZDe1Gj2ydWvV0EKl/hhFUTCta4J2MtpEXpPdVDpptJjm7J5p2b0prGwtlDrB0sXXsgED+09VHaJeLKLhKdN+zkM7SRx5Ze2nwUP3YZ3Zbed8Ph/9JrmpdT7cfVzY//cZ31PlWzmPz4PXVHd2BNDQ1ADOQ1RoLFFALUNddBtcElVcbd8Ag/5T3dnPDVvWl+iPKWs/HgXrRlYc3a7+U91Vt5+IRj+Zuu3g0RomlsZK1w7x+Dy0c3PkbG3vP7WP6uk1EQ3PSSVRjXuPcYaGlvIpPx6fB7dvXdgNAFo6WnD/zkWlI8HX4KP3WGf2c9+JvdX2jQEyfcO8Xh20V6E/RlEUjM2NOJGT+01W3X60mOa0H6F6QZybL0QtA13M/msSAMjdOHgaPBiZGWH8ypGc42MWD4FlAzO5B6T0RjX1Dx9OLAyrhhbwWV78G6XuTdJdKkPmcrftTvn9W+gZ1ZK7CVA8iV7L3N3TOJE5Wzo3RV+ZnTGlz2nTuyV6jym5KVEUhTk7p0BDW1MuDx6fB76WBubumsq5+fYa1Q3t3VspvcG6+7hwdIM0tTQlofAV6OHw+DzoGdbClD++4xwf/IMnGrT4RunN79ulwznRk43qGGL6pvGsTaXzMKtnijFLuNpSPitGoralidxNXFrG77dO5ETGbdC8HkYsGFiciFse6S6VAdO5N9eZWydIFJNL1y1PsoPrf3umc3a1OHm2hcuILgodQYqi0GVgB3T1dpL5HR7+t2ca+HyewvbT0tHErOLrWorHhF5o0a2p0rod9H1fjm6Qrp5kuzegpG+YGmDimjGc4yN/HIS6dhby123x6ZPWjeU4s+b16rC/Udp2Hp8H60ZWxXpjJUxaNw76Jvry/Y9HgQKFuTuncl5YmnVqjP7TFD/8eDwKjt2bcRwuAPhhxxRoKusbGnz8b/c0zvXmPLQTOnq1U+ysUBJ9q/bFEi+AxEmYt2c6KB4l58zz+Dzo6utgusxuSEDSPvatG8q3X/HpoxcN5myJNjDRx8w/J0qSlO4bGjyY1jXBd78O5xwft2w46libKr23zdziy9mxV6+JNcYs5vYvWTtsHetj4Pd9Ocenb/SBroG8DhePJ7lPzNszjbOVv62rI1zHdlfoZFM8Ck6ebRSG66hW/IdHbsq8FZygmIpGKL4T8BD7lx5H3OM3ACQ3H5cRXTBx7RiFgaUyU7Lgt+gIQg5dh7BIsjCwfjMbjFs6XGlHCz4QhkMrT+JjnGQ7v7auFtx9esJ31Si52C2AZEHh7p8O4ebpkkWaTTs1gs+KUQpjf9A0jdObLuCfP84jvXgBtJ5RLQyY3gdjfxmmMEx5XMQb7PnpCB5cjmDXfLRzc4Tv6tFo3M5OLr2gSIgjK0/h7LYgdv68tpUxhs7pjyFzvRSusYm4+gx7Fx9F9O2XACQ3vS4DO2DSurEKpyXysvKwd/ExBO29yi6arWtngVGLhshpUUm5ceoO9i87gfjixckaWhroPcYZE9aMURh0LfVjOvb8dBjXjt2CqHjqxa5VfXz76wh0GSAf+4NhGATuCsHRtf5IeitZQKurr4O+E3rDZ8UIhWHm38UkYM9Ph3H73AN2dKKlc1P4rhqFFt2ayqUXi8U48ds5nN58AZnJWQAkIxWDvu+LUT95Kwz2+PxuLPwWHUHEVckOMoqS3OwnrBmjMJR9UUERDiw9gYCdwewaC7N6phg+fyAGzvBQ+HC+H/QY+5Ycw8uHrwFI+kb3YZ0wcc0YhUHzstNy4LfoCC4fDIOwULKGqp5DXYxdMozVUipN6OEbOLTiH3x4+QmAZLrE/TsXjF81SqGERlJ8Cnb9eAg3T91h3+qbdLCHz4qRHCdCCsMwOPPnRZxYfxapCekAgFqGtdB/qhvGLR2mcPT2dWQ89iw6jHsXH7N9o03vlpiwerTCoIcioQhHVp3Gma0XJWuoIJluHjLHC8Pm9VcYLDDyejT2Lj6KZzdjAEge1l0GdMDEtWNgo2CqJT+nAPuWHMPFPaEozJP0DcuG5hj1ozf6TuytsP1unbmH/UuP483TdwAkfaPnyK6YsGaMwoCS6YkZ8Ft0BKFHbrKLnhu2/AbfLhuObt4d5dIzDIMgvys4svo0Et8kA5BMBXv4SjSkFAXr/BD7CXt+PIRbZ++z66Gad22C8StHKYz5JRaLcfKPAJzaeB4ZSZK+YWCih4Ez+2L0z4NVBnv8krBbwd/Zg1+kPGipOsTaBSj8Ju6r3ApOnJsKUlnyC4lvk5GfXQDzb+oodDhKk5edj6S3KdDR05ZME6hZW8MwDBLiEiEsFMCyoblK7RUp2Wk5SPmQBoPa+iqjE0sRi8X48PITaDEN60ZWZdJeSU/MQEZSFkwsjFDbUvW6F0Di5HyMSwTFo2DTyErljhcpye9TkZOeCzMbU5W6NlIK8gqR+DoJmjpasLa3LFPdJr5JRkFuISwamKmM8iolNzMPye9SoWugA6uG6tfK0DSNhNhPEAlEsLKzVBnBWkpWajZSE9JhVMdAZQRWKSKhCAmxn8AwgHUjyzLduNM+ZSAzOQu1rUxURtCVIigUICEuEXwNPqwbWaqM0islKT4FeVn5MKtnqjICspT8nAIkvU2Gdq2y942PrxIhKChH30jPQeqHdOgb11IZnViKWCxGQmyiZM2avaXKKL1SMpIykZ6YCWNzI5XRpaUIBUIkxCaCoiRrccrSN1I+pCEnPRemdU1URgeXUphfhE+vEqGprYm69pZqF+4zDIPEt8koyCmERf06KjW7pORl5SEpPhW6+jqwbGiutv1omsbHuEQIi4SwtLVQGcFairRvGJoalEn8UiwS40PsJzA0U+a+8SUhzk01dW4EAgH27NmDy5cvIycnB3Z2dpg4cSI6dJB/s5XFz88P+/btkzuupaWFkBD5eAQBAQE4duwYEhMTYWZmhqFDh2LIEMVDncog2lIEAoFAqE6wzk28XcWdm/qvvsrnW7m0pf4t1qxZg2vXrmHYsGGwsbHBxYsXsWDBAmzevBmOjo5qz//f//4HXd2SBlX0dnH27Fn88ccf6NGjB0aMGIHIyEhs3rwZhYWFGDNmjFz6qiLlQxrObr2IK0duIi87HzaN66L/tD5wHeuscDpALBYj7MRtnNsWhLdR76FdSxs9hnWG9yxPyY4ABbx/kQD/zYG46X8XgkKJ/srAGR7oNrijwrciQZEQl/ddQ8COy/j0Ogn6xnpwG9cDA2d6yIXJl/Ly4Suc3nQB94MiQNM0WnR1gPfsfgqnsQDJyFPgzhAE7g5FemIGTCyM0XdCb3hNcVX6dhdx9RlOb76AZzeeg+Lx0L5PKwye3U+pPlFGchbObQtC8IEw5GRItKW8Jruhz/ieCt+cGYbBrTP3cGbrRcQ9fgNNLU1083aC9+x+SsOsJ75Nxpktgbh6PBxF+UX4pqkNBs7wgMvILgpHJcQiMUIP38C57Zfw4cVH6OrroNeobhj4fV+lo2Nvnr2D/+YLkhglQhGatLfDoO890UnJWovC/CIE+V3BhZ3BEm0pUwP08emJ/tPclb6dR99+gdObL+BRyFOAAVq5NMPgH7w4UWRlycnIRcDfwQjaewWZyVmoY22KfpNc0XdiL6UjH/eDHsN/SyCe340Fn89Dx37t4D3bU6k+UerHdJzdGoTQw9dZVfD+0/rA7dseCvsGTdO4cfIOzmwLwpvIeGjraqH70M4YNKuvUrX5D7GfcGZLIK6fvA1BoRC2repj4Iy+cB7SUeF9QygQIvjAdQT8fQkJcYnQM6oF17HdMXBmX6WjK3GP3+D05gu4F/gIYjGNZp0bw3tWP4XTWIBk5Clwl6RvpH1Mh7G5Efr69oLXVHelo7pPwqLgvzkQkWFRAEWhrZsjhvzgpVCeA5BMb5/ffhmX919DdloOLOqbod9kN3j49lQ4VcYwDG6ff4Azf17Ey4evoKGpga4DO2DwD/2Uqs0nv0uB/5aLuHb8FgpyC1GvSV0MmO6BXqO7KRxVEovFuHr0Fs5uC8L7mATo6GnDZURXeM/ylJOQkBL//AP8N13ArbP3IRQI0aitLby/90TnAe0V39sKBQjyu4qAnZeR9DYFBrX14f6tCwbM6KM00nDMvVic3nQBD4MjwdA0WnZvhsGz+3HW+VVbKrpupvqNfZSZajdyEx0djalTp2LatGkYNUoSJr6oqAg+Pj4wNjbG9u3blZ4rHbk5d+4cjI2NlaYrKirC0KFD0axZM6xbt449vmLFCty8eRMnT56EgYH66QugYiM3cY/fYF7vZSjIKYneSvEoMDSDdm6OWH7uR87UjlgsxupRm3D95B3weBS7g4inwYOmlibWBv0st6biweUn+GXgWtBiml0jwONL9Go8fHti7i7uAsWCvEL85LESUeEvQIFi12zw+DwY1NbHhrDlcg/64ANhWD9+G3h8qiSPYr2ob5cNx7hfhnHSZyRnYW73JUiIS+TEAaF4FKxsLbDx+nK5KarDq05h35Jj4Gvw2Dz4GjzQYgZzd02V04r6EPsJc5yXIDutJCw9RUmWMDTt2AjrLi/hPIQZhsGmqTsQuCuUrR9pHhSPh1/9F3B2UgASh2Ch+woICkuit0rbpau3E5Ycn8u5iQsFQizzXo97Fx+z7SytW119HfwW8ovceqNbZ+5hxfANABi59vOe5YlpG3047ZeXnY95PZchLuJNsWFgy2ViaYyNN1bITYOd334JW2bs5tSttP2m/P4ths7tz0mf8iENc5yXIPl9akn7FUuG1G9mgz/CfpVbr7Lnp8M4tu6MXN0yDPDToVlwGcHVinrzNB7/c1mKvOwCub7RumcLrLrwE8dBFYvFWPftVlw9epOTB0+DBw0NDay+uEhuTcXjK0/xs9caiEViNkKz9FzXsd0xf98MjoNTVFCERZ6rERkWLdd+eka1sCFsORo05z7orxy5gbXf/gkej5Jrv9JSGIBkKnhO9yV4H/NRElxRWr08Chb1zbDxxgrOwmgAOLH+LHYtPCTXN8RiGj9sn8zZLQVIoqPP6f4LMpOzOH0DkOxm/C10KWdqlWEYbJvlh7PbguT7BkXhl5Pz0Ll/e04eL+7HYb7rryjKF8i1X0evdlh2ah7HQRUJRVg+7A/cPveAe28rlhlZF/yLnKN298JDLBu8Hgwj3zf6T3PH91sncvpGfk4BFrgux8sHccV2gT3HyMwQG68vl3OCA3eFYOPUHeDzS9WtiMaE1aMx8kdvVEfYkZu3thUfuWnw+qscual2u6XCwsLA5/MxYMAA9pi2tjb69euHqKgoJCUllel38vKUB+l69OgRsrKyMGjQIM5xb29vFBQU4Pbt2wrPq0zEYjGWev/GcWwAsDfMR6FPcbRUmPuzfwbh+ilJBFTZrdG0SBKK/xfv3ziyBXlZefh1yHqIhGLOlkZpfkF+V3Fp3zVOHvsWH8PzO7EAA0790WIaOem5WD70d87xhLhP+N13G+cGIy0TABxYdgKPr5REGwaATVN24OOrJLkAZwwtmZ//Y+LfnOOR16Oxb4kkLL1sHmKRRGNrw+S/ObIFDMNg+dDfOY6N5DgABnhx/xX2/HSEk0fIoesI3BXKqR9pHmKhGMuH/c4JNCcoEuKXgb9BUCDgpJe2S/iZezi96QInj+PrzuL+pQjWVvYcMY2C3EIsHfQbR7YgIykTq0ZtglisuP38twTixqmSiLgA8Pfc/XgdGS95KMpUL00zyEjOwupRmzjpX0fGY8vM3aytbPri/++YdwDP78Zyzln33Z9ITUjjtl/x9fIuJgFbZ+7hpL974SGOrTvDKbs0P1pMY+23fyL5fapMWWks9V7PcWxk6+xJWBQOLudKW1zYEYKrx27K5UGLaAgFQklfk5EtKMgtwLLB6yESiDjSE9JzZa8HKQeW/YNnN55zyiI9Jy8rH8sGr+eEXkiKT8FvPlvB0IzC9juy+jTuBz3m5LF52k58ePlJTn+MoRmkvE/Fep+tnPTRt19g18JDbH1KEYskgp6bp+3iyBYAwMqRGzmODVDygh8X8RY75x/kpL92PBxntwVxyi7NQywSY+WIDRzZApFQhF8GrkNRfpHC9rsX+Aj//H6ek8fJDQG4c/6hJI9SdVuUL8DSQevYaNGAVFB2A8QixX3j/PbLHEkWANi98BBiH72WG8ygxTSyU7OxcsRGzr0t/vkHbJq6E2AU1C2APYuO4NmtGFRriPxC9SE2NhY2NjbQ0+MOvzZtKhmRiIuLU3QahxEjRqBv377w8PDAihUrkJ6eLpcHADg4OHCON2nSBDweDy9fvqyICWXiXuBjJL9LVRqjgqEZnPvrEkRCya4BhmFwavMFpdFkGZpBTlouJ3x/8IHrKMoXKI2SSvEonN5Uok1UkFeIwN0hSstEi2nER3/A0+IbPCDRfVIVoY2vwYP/lkD2c1J8CsLP3Veeh4jGvYuP8Ol1iRPrvyVQbaDAgL+D2c9R4S/w5uk7lXYE+V1Bfk5JZNRTGwOUbjVnGAaCAiGC94exx26euoOs1Gyl8XcYBji9JZB92IlFYpzZelFpW9BiGqkJ6bh9vkQa4eKeK5L2V9LmPB6F05tLHKjs9ByEHFIuVUGLaMTci2N35gHAuW1BKuP18DV4OLutRP8o/vkHPLkapTT+By2mEfbPbY7+2OnNF1TGoGFoBoEyGj0PLz/Bp9dJKvvG+e2XWEeeYRic2hSgNFQ+QzPIy8znhO8PPXwT+TkFyvsGBZzaFMA+7IoKihCw47LS9qbFkgXfsvpjATuCVT4beHxu30j9mI4bp+8qtVssovEo5Ck+vPzIHvP/U3Xf4PEpnJPRdntxPw6xSvTKpHYEH7jGieh7elOA0hhQDAMIBSIE+V1lj906cx/piZmgxUr6Bs3A/89AiMUSR14sFuPMn4FKX0ZpmkZGUhbCz5RII1zaexXCIqHS+uXxKJySebnIy8pD0L6rKus27vEbjv7Y+b8ugcdXfW87I6MNVi1hGDAM/dl/xLmpRNLS0mBqKr96XXosNTVV7jspBgYGGDx4MObNm4fly5ejX79+uHLlCmbOnIm8vJLOmpaWBj6fDxMT7tSHpqYmDA0NkZaWVvqnWVJTU/HixQv2Lz4+vrwmAgCib78EX1P1bobstBx2i2NWarZa3SC+Jh/Rt0s0fZ7ffaky+BZDM3jz9B0ExdID76I/sNs8lcHj89it1QDw7FaMyiBiYhHNbjcFJDdXdeH+wYArcngrRnUwLRGNyOvR7Ofnd2LVhn8vKhDg7bN3xWUUl0k3KPqOTN3eiVXbfqkf0pCemAkASH6XqlY3iK/Jx3OZun1+56XKMtE0gxiZUZXXT+LV6gZRFDi6T09vPFdZt2IRjafXS5zZ53dilaZlyyWmEVu8fRsAopUIHMqmfxZeco08vxOrdqdPXlY+EopDG+Rl5eNjXKLKoHx8DT7nun1+96Vqh4uR6I9JpQc+vPykViaAr8HtG1Fq+gYtpjlt8fLBK/USK+C2wbObqvuGWETj6Y2SvhF9W/U9AZDoj72OlNzXGEai46UqiCbDMHjO6Rvq720ZiZlI/SB56Uz/lIm0jxkq0/M1+Zy6en73pcr7CE0ziH34in25ePP0HRseQBkUj+L0v6c3y9I3opV+Xy2oyKiN9O8rpdotKC4qKoKmpvw2Oy0tLfZ7ZQwbxl3b4eLigqZNm2LFihXw9/fH2LFj2d/Q0FBsupaWlso8zp07p3BHVnnh83ll8oqlN3l10VdLpy/POVJHoEzpGXDe9NWFQP/cMsn+blnO0ZC5mfL5PLX+E6dcVPF6HFW+DfW5dpSj/RiAJ5OHdE2Duki65SkTw5SyoyztV6puy4KsHWXRGdIoVbdlWQpYob7B46mLxs/57SqrW37565bbN9Rv95a7bstQt7L2UjxK5UOOoijudVtOO8p83yltBwWVDg5FUeyam7L3P9l7W/nqllC9qHYjN9ra2hAK5T1sgUDAfl8e3NzcULt2bTx8+JCTh0ik+A1XIBCozGPAgAHYtWsX+7d48eJylUdKO/dWavVXzOubwaKBZJeAgYk+bB3rq4z5IBaK0datZDdZW1dH1WrMfB5aOjdlF/Y1bPkNDOuoXkhN0zQnjw592qh8E+Rr8DgLcSX5qb4h8DV4aNm9GfvZqW8b1UPvPB46eJTk0dbNUe0bsIGJHho61pfkx+ejlYty2QJAIpzZprdM3bo5qtQ/oigK9ZvXg3GxtpT5N3XU6tuIRWK047RfK5WK3Tw+D21dS9I3bm+nVn9M8rslO9ic+rZVq03kJFO3rXo2Vxt3REtHE806lSz+7ODRWq3GUjv31iXlc1N93QISrS7rRpJAjLUMdNG4vZ1KJ0osEnPsbufmqLL/8XgUmnZqxMYT+sbBGiaWxirLRIvL3zfae7RiPzfr0kSt/hiPz4OjzC6djn3bqHSieHxu32jn5qjWt6llqItGbSU72CiKQhtXR7XTiu1cy943QEk0rkyLF0bXtjSGTZO6KvXHxKLS97ZWKvs4j89Dm94t2WvVvk1D6Bmp0x9jOP3JyaONSrsl97a2Kn/zi/MfjlBc7ZwbU1NThdNC0mN16qgPJlcac3NzZGeXTAmYmppCLBYjI4M7FCoUCpGdna1wWkxKnTp10KRJE/avfv365S4PALTo5gD7Ng1V3vSHzxvA7tagKAojFgxU+kYrEa+zQMd+JZ2tx7DOqG1lorSD0mKaE2JeQ1MDQ+f0V6np08qlGexaNWCP9Z3YC1o6Wkpv4jTNwHu2J/vZqI4h3Mf3VK5NxOPB7dsenIBw3rM8lfYxiqKgqa0Bz8kl2jYNmtdDG9eWKnRkgME/eHF2og2fP0DpA5XH58HEwgg9R3Zhj7Xv0wo2ja2U5sEwDEbMH8jeXCmKktS1Ejsjra0KAAApfElEQVT4GpKQ8bLbS13HdYeBib7SeX9aTGPY/0oW3uvU0sbAGX1V6gZ17t+eE525/zT34hEixeWiQGHgTA/2s3m9OugxootK/SOvKe6c7fyDf/BSuv6C4lHQNdBBn/Eu7LGmHRvBwcleTd8YyBn1GLFgoNKpEx6fB4v6ZugysCROVldvJ5jVM1XeN2iG0zf4GnxOXZeGr8FD8y5NODISHr49JVIYyvqGmMGQH0rkTwxM9OE50VWlblfPkV05u6UGft9X0l2VyGdoaPLRf2rJbimbxnXh5Kn8oU1RFLy/9+RsBx/2P9V9w9DUAL1kJFba9G6J+s3rKW8/RtJesn1jxIJBytfPaEikYmQd/56jusLYzFDlvW3YvJL20tLRwuDZ/VTqzbX3aM3ZCdpvihs0tDQUt0fxoUGlJB6qHQwN0BX4Y1S/ZFRnqp1zY29vjw8fPnDWyACSLeLS78sDwzBITEzkbA1v1EjyVhkTw13pHhMTA5qm2e+rEoqisPzsQlbVWdqBpDeEgTM8MGA6V3Cw12hnjPl5CCcdRVEABdS2NMGqwJ85N3wtHS2svbQYBrX12XSy505aNxadvNpx8hi+YIBET0U2j+KyfeNgjZ+PzeWkr21pglUBP0G7lIPDK9Ye+vHA93JxTKZv9EGbXi3YdLL/OvZohhlbJnDSN2xZHz8dmgW+Bk9uuFxLRxPLz/0otz325yM/oGELybZcXqm67TmqG0Yt4m7h7ODRBlN+/1aSXuamTFEU9I31sCZoMeeGz+fzsTrwZ5jWNSme1pLmIan/kQsHwXVcd04e/Sa7YsgP/ThlkdaZ+TdmWHFuIccxqWWgizVBi1HLsBbnuHRI/vutE+VibXz363BWvLH0sH+jtg0xf98MTnrLBuZYdnqBnJ4Rj8+DhiYfS07MRb0m3K3/c3ZMQdPikZnS7dehbxtMWMuNE9WsU2PM3TW1WN+K2346ejpYHfgzZ+s4RVFYeno+64SV7hv9Jrti0CzuQ6X70M74dtlwbt1SACiJFMGaoJ85W481tTSxJmixRLWdKlkTLz3XZ8VIuZD/Q+b0Y3XUSrefdSMr/HLyf5z0RnUMsfrCImjX0pbvGzwK8/ymy8Vomrx+HNr3aa2wbpt3aYLZ27m6XfWb2uDno3PA1+Bz249HQVNHE8v8F8hFUF544Hv2BUV6jtSe7kM7YdxS7vR+294tMWOLL0DJ9w09w1pYe2kxJyowj8fDyvM/ok5x5N+SviE5d+jc/nKhG/r4uLDOJOfeBsDM2hQrA37ibMvX1dPBmqDF0DPi9g2+hqRvTNvog3ZurSDLmMVD2JADpftGw5bf4KeDszjpzWxMsfxMcd8o1X58DT5+OvyD3NZ/QvXhq4hzIxAI8N1338HIyAh//y3ZJpyUlITCwkLOyElmZqZcfBt/f39s3LgRM2fOxPDhkptfUVERhgwZghYtWmDt2rVs2pUrV+L69es4efIkDA3VhyIHKh6huKigCNeOh+Pa8VvIzcxH/abW8Jzkimadlf9W7KPXCNgRjNeR8ahloAPnIZ3Re0w3pcHT8rLyEHzgOm6duYeiAgEatW0Ir6nuCjWAAIlDGHk9Ghd3h+JD7CcY1TFA79HO6Dakk1JJhYykTATuDsXDy08gFonR0rkp+k1xUyotIBaL8SAoAkF7ryLlQxrMrGvD3acnnDzbKA3Jn/g2GRd2BOPpjefF6sWt0HdiL6WyDUKBEDdP30Po4evITMmGtb0l+k7ojVYuyqdW3ka9R8Dfl/Hy4Wto62qh84D2cP/ORWnwtIK8Qlw9chNhJ28jP7sADVt+g36T3Thv8KV5fjcWF3YGIz76A/SMasFleBe4jOyqVFIhOz0Hl/ddw+3zDyAsEsHByR5eU92VBhZkGAaPQ5/iol8oPr1ORm0LY/Qe2x1dB3VQGPwOkOzUCdwZgsdXnoJhGLTq0Rz9prgpDSwoFolx+/wDBB8IQ9qnDFjUrwOP8b3Qzr2V0pD8CXGfEPB3MKJvvwBfk4+Onu3g4dtTaWBBQaEAYf/cxtWjN5GTkYt6TSR9o3mXJkrbLy7iDS7sCMarJ2+hq6+Dbt4d0Xtsd4U6Q4AkLlDIweu4deYuCvOKYN+6IfpNceOMTsrCMAye3YxB4O4QfHj5EQa1DdBrVDd0H9pJqaRCZkoWgvyu4t7FRxALxWjepQm8pror1DcDJFO/Dy49QdDeK0h+lwpTKxP08emJjv3aKl3jkfwuBQE7gtkYPG17O8JzsqvSwIIioQi3/O8h5NB1ZKZkwcrWAh6+vdGmVwuldfsuJgHnt1/Ci/uvoKWjic7928Pdx0WpJEZhfhGuHr2JsH9uIy8rHw2a10O/ya5wcFL+8vjifhwu7AzGm2fvUctQFz2GdUHPUV2VSirkZOQieH8Yws/dh6BQiCbt7eA1zR31m9ooTM8wDCKuPsPFPaH4+CoJxmaGcB3bHV29nZRKKqR9ysDF3aF4FBIJWkzDsUcz9JvspjSwYHWAjXPzwga8gvIt5ZCF1i1CYZMPX2Wcm2rn3ADA0qVLcf36dQwfPhzW1tYICgrC8+fPsXHjRrRu3RoAMGvWLEREROD69evseW5ubujVqxdsbW2hpaWFp0+fIjQ0FPb29ti2bRt0dEo6iNTpcXFxgZOTE548eYJLly5h0qRJGDduXJnLSuQXCAQCgVCdkD6XtJ/XrbBzU9T041f5fKt2u6UAYNGiRbCwsMClS5eQm5sLW1tbrFu3jnVslOHm5oZnz54hLCwMAoEAFhYWGDVqFL799luOYwNIAvZpaGjg+PHjuHXrFszNzTFz5ky5HVcEAoFAIBC+Lqqlc6OtrY3p06dj+vTpStNs2bJF7tiCBQvKlU///v3Rv39/9QkJBAKBQPja+A9rS1VL54ZAIBAIBEIFkcovVOT8r5Rqt1uKQCAQCAQCoSKQkRsCgUAgEGoiDFOxWDVf8cgNcW4IBAKBQKiBMDRTJr0yVeeXF4FAgD179uDy5cvIycmBnZ0dJk6ciA4dOqg9NyUlBVu3bsX9+/dB0zTatGmD77//HnXr1i13Oci0FIFAIBAINZLiKMOf+4fyj/qsWbMGJ06cgJubG2bNmgUej4cFCxYgMjJS5Xn5+fmYPXs2IiIiMHbsWPj6+iI2Nhbff/89srKyyl0O4twQCAQCgUCoMNHR0QgNDcXkyZMxffp0DBgwAJs2bYKlpSW2b9+u8twzZ87gw4cPWLt2LUaPHo3hw4fjjz/+QHp6Oo4fP17ushDnhkAgEAiEGohkAIapwF/58gsLCwOfz8eAASW6Xtra2ujXrx+ioqKQlJSk9Nxr167BwcEBTZs2ZY/Vr18fbdu2xdWrV8ttO3FuCAQCgUCoiVRkSoqdmio7sbGxsLGxgZ4eV65G6rDExcUpPI+mabx+/RoODg5y3zVt2hQJCQnIz88vV1nIguIKUlRUBACIj4//wiUhEAgEwtdC/fr15SLnVzZMLdFnrJrhng/IP99MTU1Rp4687lxaWhpMTU3ljkuPpaamKswnOzsbAoFA7bnffKNYD1ERxLmpIImJiQAkopsEAoFAIJSFqtRrMjY2ho6ODgqbZFf4tzQ0NOSebz4+PvD19ZVLW1RUBE1NeQFSLS0t9ntFSI9/zrlKy12u1AQ5nJycsHjxYlhZWbGN8DnEx8dj5cqVWLx4MUfpvKbyX7MX+O/ZTOyt2RB7K0ZV1pmFhQUOHjyIzMzMCv8WTdPg8bgrWBSNsACS9TVCoVDuuEAgYL9Xdh6AzzpXGcS5qSDGxsZwd3evtN+rX7/+V6e+WhH+a/YC/z2bib01G2Jv9cTCwgIWFhb/ap6mpqZISUmRO56WlgYACqeyAMDQ0BBaWlpsuvKcqwyyoJhAIBAIBEKFsbe3x4cPH5CXl8c5Hh0dzX6vCB6PB1tbW8TExMh9Fx0djbp166JWrVrlKgtxbggEAoFAIFQYFxcXiMVinDt3jj0mEAgQGBiIZs2asSNJSUlJcouUe/TogZiYGI6D8+7dOzx+/BguLi7lLguZlqommJqawsfHR+lcZk3jv2Yv8N+zmdhbsyH2EkrTrFkz9OzZEzt37kRmZiasra0RFBSExMRELFy4kE23atUqRERE4Pr16+wxb29vBAQEYOHChRg5ciT4fD5OnDgBExMTjBw5stxloRjmK1bGIhAIBAKBUG0oKipitaVyc3Nha2uLiRMnwsnJiU0za9YsOecGAJKTk+W0pWbOnAkbG5tyl4M4NwQCgUAgEGoUZM0NgUAgEAiEGgVxbggEAoFAINQoiHNDIBAIBAKhRkF2S1UBjx8/xuzZsxV+t337djRv3pz9/PTpU/z99994+fIl9PT00LNnT0yaNEluT//79++xZ88ePH36FNnZ2bCwsICrqytGjhxZ5fok6qgKe1+8eIFdu3bh2bNnYBgGzZs3x7Rp09CoUaMqtaUslNXee/fu4cqVK3j+/Dni4+Nhbm6OEydOKDyPpmkcO3YMZ86cQXp6OmxsbDB27Fi4urpWmR1lpSrsPXDgAKKjo/H8+XNkZGQoDef+Jahse+Pj4xEYGIj79+8jISEBurq6aNy4MXx9fRUKBf7bVLa9qamp2L59O2JiYpCamgo+nw8bGxt4e3vDw8MDFEVVqT3qqIrrWZbLly9j5cqV0NXVxaVLlyq17ISyQ5ybKmTIkCEc+XYAsLa2Zv8fGxuLOXPmoH79+pg5cyaSk5Nx/PhxfPjwAevXr2fTJSUlYcqUKdDX14e3tzcMDQ0RFRUFPz8/vHjxAmvWrPnXbFJFZdn74sULzJgxA+bm5vDx8QHDMPD398esWbOwY8eOcomnVSXq7A0JCcGVK1fQuHFjtdtHd+3ahcOHD6N///5wcHDAzZs3sXz5clAUhd69e1dJ+ctLZdq7e/du1K5dG40aNcK9e/eqpLwVpbLsDQgIwIULF9CjRw8MGjQIeXl5OHfuHKZNm4b169ejffv2VWZDeagse7OyspCSkgIXFxeYm5tDJBLhwYMHWLNmDd6/f4/JkydXmQ3loTKvZyn5+fn4+++/oaurW6llJXwGDKHSefToEePs7MxcvXpVZbp58+YxgwYNYnJzc9lj58+fZ5ydnZm7d++yxw4cOMA4Ozszr1+/5py/cuVKxtnZmcnOzq7U8peXyrZ3/vz5jKenJ5OZmckeS0lJYdzd3Zmff/650stfXspqb0pKCiMUChmGYZgFCxYww4YNU5guOTmZ6dmzJ7Nhwwb2GE3TzIwZM5jBgwczIpGo0sr+OVS2vQzDMB8/fmQYhmEyMjIYZ2dnZs+ePZVW3opS2fbGxMQweXl5nGOZmZlM//79menTp1dKmStCVbSvIhYuXMi4u7vXyOtZyvbt25kxY8Ywy5cvZ9zd3SujuITPhKy5qWLy8/MhEonkjufl5eHBgwdwd3eHnp4ee7xPnz7Q1dXF1atXOWkBwMTEhPMbpqam4PF40NCoPgNwlWFvZGQk2rdvDyMjI/ZYnTp10Lp1a9y+fRv5+flVa0Q5UGYvIClzWdrm5s2bEIlE8Pb2Zo9RFIVBgwYhJSUFUVFRlVbeilIZ9gKAlZVVZRaryqgMe5s0aSI37WpkZARHR0e5KK1fmspqX0VYWlqisLBQ6e9/CSrT3vfv3+Off/7BjBkzwOfzK6uIhM+k+jwVayBr1qxBQUEB+Hw+HB0dMW3aNHaO/fXr1xCLxXICbJqammjUqBFiY2PZY23atMGRI0ewbt06+Pr6wtDQEM+ePcPZs2cxZMiQajMEWln2CoVChQrrOjo6EAqFePPmDWcdz5dClb3lITY2Frq6unIqwdIh89jYWDg6OlZKmStCZdn7tVDV9qanp3Mc+C9NZdtbVFSEgoICFBQUICIiAhcvXkTz5s3Lre5cVVS2vX/++SfatGmDzp07c17WCF8G4txUARoaGujRowc6deoEIyMjvH37FsePH8fMmTPx119/oXHjxqzSqaK5XFNTUzx58oT93LFjR0yYMAGHDh3CrVu32OPjxo3DpEmTqt4gNVS2vfXq1UN0dDTEYjH7BiQUClnxNUWqs/8mZbG3PKSlpcHExERuoaW0rlJTUyut7J9DZdtb3fk37H3y5AmioqLw7bffVkKJK0ZV2fvPP/9g586d7Od27drhxx9/rKxifzZVYe/t27dx//597N27twpKTPgciHNTBbRs2RItW7ZkP3fr1g0uLi4YP348du7cid9//x1FRUUAJCMXpdHS0oJAIOAcs7KyQqtWrdCjRw8YGhri9u3bOHToEGrXro0hQ4ZUrUFqqGx7vb298ccff2DdunUYPXo0aJrGgQMHWAepdN3825TF3vJQVFSktF6k339JKtve6k5V25uRkYHly5fDysoKo0aNqmhxK0xV2evq6goHBwdkZmYiPDwcGRkZX7zvApVvr1AoxJ9//omBAweiQYMGlVxawudCnJt/CRsbG3Tr1g3Xr1+HWCxmh2aFQqFcWoFAwJmWCQ0Nxfr163H48GGYm5sDkCioMgyDHTt2wNXVtVoNbwMVs3fgwIFITk7G0aNHERQUBABwcHDAqFGjcPDgwWozDSdLaXvLM+eura2ttF6k31c3KmLv10hl2VtQUICFCxeioKAA69evl1uLU12oDHstLS1haWkJQOLorF+/HnPmzMHhw4er3TVdEXtPnDiBrKysahPKgCCBLCj+FzE3N4dQKERhYSE75SAdjZAlLS0NderUYT/7+/ujUaNGrGMjpWvXrigsLOSsV6lOfK69ADBp0iScPXsWW7duxd69e7Fz504wxTJo9erVq/rCfway9pYHU1NTpKens/ZJkdZV6bqpLnyuvV8rFbVXKBRi8eLFeP36NVavXg1bW9tKLmHlUtnt26NHDyQnJ3OmoKsTn2Nvbm4uDhw4AC8vL+Tl5eHTp0/49OkTCgoKwDAMPn36hIyMjCosNUEZxLn5F/n48SO0tLSgq6uLhg0bgs/n48WLF5w0QqEQsbGxsLe3Z49lZGSApmm535Ou8heLxVVb8M/kc+2VYmBgAEdHR9jZ2QEAHjx4ADMzs2oT56Y0svaWB3t7exQWFsrtnJGuMVJUN9WBz7X3a6Ui9tI0jVWrVuHRo0dYsmQJWrduXfkFrGQqu32l06u5ubmV8nuVzefYm5OTg4KCAhw9ehQjRoxg/8LCwlBYWIgRI0ZwYngR/j2Ic1MFZGZmyh2Li4vDrVu30KFDB/B4POjr66N9+/a4fPkyZ2vzpUuXUFBQgJ49e7LH6tWrh9jYWLx//57zm6GhoeDxeOzD/0tR2fYqIjQ0FDExMRg2bBh4vC972ZbF3vLQrVs3aGhowN/fnz3GMAzOnj0LMzMztGjRoqJFrhCVbW91pyrs3bRpE65cuYI5c+agR48elVDKyqOy7VX0ewBw4cIFUBT1xRegV6a9JiYmWLVqldxfmzZtoKWlhVWrVmHs2LGVWHpCWSFrbqqApUuXQltbGy1atICJiQnevn2L8+fPQ0dHB1OmTGHTTZw4ETNmzMD333+PAQMGsBF7O3TogI4dO7LpRo4cibt372LmzJkYPHgwDA0NER4ejrt378LLy+uLT1tUtr0RERHYv38/OnToAENDQ0RHR+PixYvo2LEjhg4d+iVM5FBWe1+9eoWbN28CABISEpCbm4v9+/cDkIzGdO3aFYBkOHzYsGE4evQoRCIRmjZtihs3biAyMhJLliz54utZKtteQOLUJiYmsm/zT548YdP26dOHXavxJahse0+cOIEzZ86gefPm0NHRweXLlzn5OTs7f9HRr8q298CBA3j27BmcnJxgYWGB7OxshIWFISYmBkOGDIGNjc2/b6QMlWmvjo4OnJ2d5fK4ceMGYmJiFH5H+HegmNIT/YQKc/LkSQQHByMhIQF5eXkwNjZGu3bt4OPjI9exIyMjWa2lWrVqoWfPnpgyZYrcQsPo6Gjs3bsXsbGxyM7OhpWVFTw8PDBq1KgvHsSvsu1NSEjAhg0b8PLlSxQUFMDS0hIeHh4YMWKEwl1F/zZltffixYtKpTE8PDywaNEi9jNN0zhy5AjOnTuHtLQ02NjYYMyYMXB3d69ye9RRFfbOmjULERERCtNu3rwZbdq0qVQbykNl27t69Wp2Ybwijh8//kWDGla2vffv38epU6fw8uVLZGZmQktLC3Z2dvDy8qoW2lJVcT2XZvXq1QgLCyPaUl8Q4twQCAQCgUCoUdSsyXICgUAgEAj/eYhzQyAQCAQCoUZBnBsCgUAgEAg1CuLcEAgEAoFAqFEQ54ZAIBAIBEKNgjg3BAKBQCAQahTEuSEQCAQCgVCjIM4NgUAgEAiEGgVxbgiEz+TTp0/o3r07Vq9ezTk+a9YsdO/e/QuVqnwMHz4cw4cP/9LFqJEwDIOJEydi7ty5nOPV7fqYOXMmR3aAQKgJEOeGUO2ROhGyf7169cKQIUOwfPlyvHr16ksXsVJZvXo1unfvjk+fPn3pohAqQFBQEF6+fIkJEyZUeV7Lly9H9+7dERISojJdXl4e3Nzc4Onpyep6jR8/Hs+fP0doaGiVl5NA+Lcgzg3hq8Ha2ho+Pj7w8fHBkCFDYGlpiZCQEEyZMgVPnz790sVj+fnnn3Hw4MEvXQzCF4SmaezduxeOjo5o3rx5lefXr18/AEBgYKDKdCEhISgqKkLv3r2hra0NAGjXrh0aN24MPz8/EDUeQk2BODeErwZra2v4+vrC19cXM2bMwLZt2zBu3DgIBALs2rXrSxePxcLCAvXr1//SxSB8Qe7evYvExER4eHj8K/m1bdsWVlZWePToEZKSkpSmkzo/UmdIiru7O96/f49Hjx5VaTkJhH+LLysnTSBUkCFDhuDgwYOIiYlhj3Xv3h2tW7fGkiVLsHPnTty/fx8ZGRnYtGkTqzYdERGBY8eOISoqCvn5+TA3N0evXr0wbtw46OjocPIQi8U4duwYAgICkJKSAjMzM/Tr1w+9evVSWCap4vX169flvrtx4wb8/f3x8uVLFBYWonbt2nB0dMTo0aNha2uL4cOHIzExEQAwYsQI9rzWrVtjy5Yt7OePHz/i4MGDrG0GBgZwcnKCr68vLC0tFeZ78OBBvH79Gnp6eujatSumTZtWjprm/pZU9VkgEMDa2hoeHh4YPnw4+Hw+m06qqvzTTz/B1NQUe/fuRVxcHLS1tdG5c2fMnDkTRkZGcr//6tUrHDx4EBEREcjOzoapqSm6du2K8ePHc9J/+vQJI0aMgIeHB0aPHo1du3bhyZMnyM7OZpW2CwsLsXfvXoSEhCArKwvW1tYYOnQobGxsMHv2bPj4+MDX1xe5ubkYPHgwLC0tceDAAbky0TSNkSNHIjc3F/7+/uyohzICAwNBURR69OhR5noNDQ3F6tWr8c0332D9+vWoU6cOgLJdqxRFwdPTE3v27EFgYCDGjx8v9/tv3rzB8+fPYWdnBwcHB853Li4u2Lp1Ky5evIh27dqVucwEQnWFODeEGgFFUZzPWVlZmDZtGgwNDdGrVy8IBALUqlULAHDmzBls3LgR+vr66NKlC0xMTPDixQscPHgQjx8/xubNm6Gpqcn+1vr16xEYGAgrKysMGjQIAoEAx48fx7Nnz8pVxq1bt+LEiRMwNDREt27dYGJiguTkZDx48ACNGzeGra0thg4diqCgIMTFxWHo0KHQ19cHAFhZWbG/Ex0djXnz5qGgoABdunSBjY0NEhMTERwcjLt372L79u2oW7cumz4oKAirV6+Gnp4e+vTpA319fYSHh2POnDkQCoUcW9WxY8cOHD58GGZmZujevTv09fURGRmJ7du34/nz51i+fLncOTdv3sSdO3fQpUsXtGjRAk+ePMGlS5fw8eNHbNu2TS7tsmXLQFEUunXrBnNzc7x9+xanT5/GvXv3sGPHDhgYGHDOSUhIwLRp02BrawsPDw9kZ2dDU1MTYrEYCxcuxOPHj2FrawtXV1fk5ORg27ZtaN26Nec39PX10atXLwQGBuLp06do2bIl5/sHDx4gMTER3t7eah0bhmHw+PFj1KtXT66syjh16hS2bNkCR0dHrFmzhm338lyrHh4e2Lt3Ly5evAgfHx+5PqFs1AYAzM3NYW5ujocPH5apvARCdYc4N4SvmjNnzgCA3Jvomzdv4Onpifnz53NGE96+fYvNmzfDzs4OGzdu5IwEHDp0CDt37sSpU6cwcuRIAMDjx48RGBgIe3t7bNu2Dbq6ugCAcePGwdfXt8zlDA8Px4kTJ2Bra4vNmzdz8hWJRMjOzgYg2b0UFxeHuLg4DBs2jOPUSNMuW7YMNE1jx44daNy4MftdZGQkZs+ejS1btmDt2rUAJAtIN2/eDF1dXezcuRP16tUDAEyaNAlz5sxBWlqawpEeRdy/fx+HDx+Gk5MTVqxYwdYFwzDYsGEDzp49i2vXrsHFxUXO9i1btrAOg1gsxty5c/H48WNERUWxa1KysrKwatUqGBkZYdu2bZxyhYaG4tdff8WePXvwww8/cH7/6dOn7AiMLAEBAXj8+DE6duyItWvXstfB8OHDMXHiRDn7BgwYgMDAQAQEBMg5NwEBAQCA/v37q62n+Ph4ZGdno2PHjmrTAsCuXbtw8OBBODs745dffmGdp/JeqxYWFujQoQPu3r2LR48ecUZgRCIRgoODoaWlBXd3d4XlaNKkCW7cuIGPHz9ynGMC4WuErLkhfDUkJCTAz88Pfn5++OuvvzBz5kzs27cPWlpamDRpEietpqYmpk6dynFsAODs2bMQi8WYPXu23JTI6NGjYWxszNk1cunSJQDAd999xz7MAcDMzAxDhw4tc9n9/f0BSKasSueroaGB2rVrl+l3wsPDkZiYiFGjRnEcGwBwdHRE165dcefOHeTl5QGQTCHl5eXB09OTdWykeZauM3WcPn0aADB//nxOXVAUhSlTpoCiKIU7blxdXTnOAp/PZ9eiyE4nXrp0CXl5eZg8ebKcw9W7d280btxY4e/Xrl0b48aNkzseHBwMQOLIyV4HDRo0QJ8+feTSN2vWDI0aNcK1a9fY+gOAzMxM3Lp1Cw4ODrC3t5c7rzTJyckAABMTE5XpxGIx1q1bh4MHD6J///5Yvnw5Z1SovNcqUDIqc+HCBc7x27dvIz09HV27doWhoaHC8kivwZSUFLU2EgjVHTJyQ/hqSEhIwL59+wBIHs4mJiZwdXXFmDFjYGdnx0lrZWUFY2Njud+Ijo4GANy7d0/hELyGhgbevXvHfo6LiwMAtGrVSi6tomPKiImJgZaWltx0SHmJiooCALx79w5+fn5y36enp4Omabx//x4ODg5s+R0dHeXSNm/eXM75U0V0dDR0dXXlHpxStLW1OXUnpUmTJnLHzMzMAAC5ubnsMalt0dHRSEhIkDtHIBAgKysLmZmZnLa1t7dXOLUWFxcHXV1dOScQAFq2bInz58/LHR8wYAD++OMPhISEYODAgQAk03pCobBMozYA2FE4dVNSS5Yswc2bNzFu3DiFjmZ5r1UA6NatG4yNjXHjxg3k5uay01vSNlM0JSVF6vRkZWWpLDeB8DVAnBvCV4OTkxN+//33MqVV9tYsffCUdat2Xl4eeDyewoWv6t7MZcnNzYWZmRl4vIoNlubk5AAoGZVQRmFhIQCwIxCKysrn8xXapYzs7GyIxWLWwVREQUGB3DE9PT2FeQOS0QspUtuko1zKkNomRVk75Ofns05UaZSNlLm5ueGvv/5CQEAA69xcuHABurq66N27t8pySZGOvggEApXpnjx5Ai0tLXTq1Enh9+W9VgGJw+Pu7o4TJ04gJCQEgwYNQlpaGu7evQsLCwu0b99e6bnSuDelF9QTCF8jxLkh1EhKL6aUIn3QBgUFsQuMVaGnpweappGVlSU3EpSRkVHm8ujr67OjKhVxcKRlXrt2Lbp06aI2vdReRWUVi8XIyspS6gAo+i2KohSOeFQGUtv27dsHW1vbMp+nrK1r1aqldBQiPT1d6Tlubm44d+4cYmNjUVhYiPj4eHh5eZXpegHAXidS50QZGzduxNy5czF//nysX79ebp1Pea9VKV5eXjhx4gQuXLiAQYMG4fLlyxCLxejbt6/Ka09a3vI4vARCdYWsuSH8p2jWrBmAkikQdUjXWDx58kTuO0XHlNG0aVMIBAJERESoTSt9ANE0Lffd55Y/MjJS7ruoqCjOyIk6mjZtiqysLLx//77M55SH8tqmDnt7exQUFCA2NlbuO1U73QYMGAAAOH/+PLuQ2MvLq8z5NmjQADweT+EUnSyNGzfGpk2boKmpifnz58sFovzc+mjQoAGaN2+OFy9e4NWrV+y2dE9PT5XnvX//HhoaGiRGE6FGQJwbwn+KQYMGgc/nY/PmzQqDneXk5ODly5fsZ+nOkv3793OmXFJSUnDy5Mky5+vt7Q0A2LJli9wbvUgk4owkSNc+SBemytKtWzdYWFjg+PHjCh0lkUjEcWS6desGPT09BAYGcpwSkUiE3bt3l7n8ANgF1OvWrVM4IpKWloa3b9+W6zdl8fT0RK1atbBr1y68efNG7vvCwsJyPejd3NwAALt37+Y4ivHx8QgKClJ6XuPGjeHg4ICQkBBcu3YNdnZ2rKNRFgwMDGBnZ4cXL14odFBlsbe3Zx2cefPmcdquvNeqLNK1NRs2bEB8fDzatWunclecUChEbGwsmjRpQqalCDUCMi1F+E9ha2uLuXPnYsOGDRgzZgw6deoEa2tr5Ofn4+PHj3jy5Ak8PDwwb948AJLIr56enggMDISPjw+cnZ0hFApx5coVNG/eHOHh4WXKt3Pnzhg5ciSOHTuG0aNHw9nZGSYmJkhJScGjR48wYsQIVsCybdu2OHbsGNavX48ePXpAR0cHlpaW6NOnD7S0tLB8+XIsWLAAs2bNQtu2bWFrawuKopCYmIjIyEgYGRnh0KFDACTTYbNmzcKaNWswefJk9OrVi41zo62tDVNT0zLXXceOHfHdd99h//79GDVqFDp27AgLCwtkZ2cjISEBkZGRmDBhAho0aFC+RinG2NgYS5cuxS+//AJfX184OTnhm2++gVAoRGJiIiIiItCiRYsyr7vq27cvLl26hNu3b2PChAno2LEjcnJyEBoaivbt2yM8PFzpNM3AgQOxbt06AOUbtZHi7OwMPz8/REVFyU03lcbOzg6bNm3CnDlzMH/+fPz2229o1apVua9VWXr16oU///yTHQ1StZAYkIzsCQQCODs7l9tWAqE6Qpwbwn+O/v37w97eHidOnMCTJ08QHh4OPT09WFhYYNiwYXIh8+fPnw8bGxsEBATA398fZmZmGDFiBHr27Flm5wYApk+fjubNm+P06dMICwuDQCBA7dq10bZtW3To0IFN16lTJ0ybNg3nz5/H8ePHIRKJ0Lp1a3b7ctOmTeHn54ejR4/izp07ePbsGTQ1NVGnTh04OzvLLXzt27cv9PX1ceDAAVy6dIkTobi8oo4TJkxAq1atcPLkSTx8+BC5ubkwNDSElZUVfHx82NGSz6Vz587Ys2cPjh49iocPH+LBgwfQ0dGBmZkZ+vbtqzRGiyL4fD5+++03+Pn5ITQ0FCdPnkTdunUxY8YMGBgYIDw8XOlalt69e2Pjxo2gKKpceUrx8vLC/v37ERwcrNa5AbgOzoIFC7Bu3Tq0bt263NeqlFq1aqFnz54IDAyEoaGhWqfl8uXL0NTUVDt1RSB8LVAMUUojEAj/MaSB83777TeFu5ViYmIwefJk9OnTBz///PNn5bFy5Urcvn0b//zzT7kWBP/b5OTkYNiwYXBxccGPP/74pYtDIFQKZM0NgUCosaSmpsode/v2LU6dOgV9fX1Wa6w0R48eBQB2O/jnMHHiRBQVFeHUqVOf/Rv/BsePHwdN0+UexSMQqjNkWopAINRYNmzYgMTERDRt2hT6+vr4+PEjwsPDIRKJsHDhQk5E4KSkJAQHB+Pt27e4evUqnJyc0KJFi8/O29LSEosWLSpXyIAvgaGhIRYtWlTmkAAEwtcAmZYiEAg1lsuXL+PcuXOIj49Hbm4udHV14eDggJEjR8LJyYmT9vHjx5g9ezZ0dXXRpk0bzJ8/v1wLrgkEQvWBODcEAoFAIBBqFGTNDYFAIBAIhBoFcW4IBAKBQCDUKIhzQyAQCAQCoUZBnBsCgUAgEAg1CuLcEAgEAoFAqFEQ54ZAIBAIBEKNgjg3BAKBQCAQahTEuSEQCAQCgVCjIM4NgUAgEAiEGsX/AQ3CKlbLwP5/AAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -832,6 +901,7 @@
"plt.xlabel('Predicted energy (keV)')\n",
"plt.ylabel('Predicted line broadening (keV)')\n",
"plt.title('Unbinned RL Monte Carlo')\n",
+ "plt.scatter(np.mean(a).value, np.sqrt(np.std(a).value**2 - sigma_rsp**2), marker='x', c='r')\n",
"plt.colorbar()\n",
"plt.show()"
]
@@ -1001,23 +1071,6 @@
"cell_type": "code",
"execution_count": 3,
"metadata": {},
- "outputs": [],
- "source": [
- "def get_interp_response(self, coord):\n",
- " pixels, weights = self.get_interp_weights(coord)\n",
- " dr = ListModeResponse(self.axes[1:],\n",
- " sparse=self._sparse,\n",
- " unit=self.unit)\n",
- " for p, w in zip(pixels, weights):\n",
- " dr += self[p]*w\n",
- "\n",
- " return dr"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
"outputs": [
{
"name": "stdout",
@@ -1034,28 +1087,7 @@
" dr = response[0]\n",
" data = response._file['DRM']['CONTENTS'][0]\n",
" dr = ListModeResponse(response.axes[1:], contents=data, unit=response.unit) \n",
- " dr = get_interp_response(response, SkyCoord(lon=0, lat=0, frame=SpacecraftFrame(), unit=u.deg))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "(array([399, 368, 400, 401]),\n",
- " array([0.05555556, 0.94444444, 0. , 0. ]))"
- ]
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "dr.axes['PsiChi'].interp_weights(SkyCoord(lon=5, lat=0, unit=u.deg, frame=SpacecraftFrame()))"
+ " dr = response.get_interp_response(SkyCoord(lon=0, lat=0, frame=SpacecraftFrame(), unit=u.deg), unbinned=True)"
]
},
{
@@ -1082,7 +1114,9 @@
"Em0 = 600*u.keV\n",
"Phi0 = 12*u.deg\n",
"PsiChi0 = 386\n",
- "interpolated_response_value = dr.get_interp_response({'Ei': Ei0, 'Em': Em0, 'Phi': Phi0, 'PsiChi': PsiChi0})\n",
+ "\n",
+ "target = {'Ei': Ei0, 'Em': Em0, 'Phi': Phi0, 'PsiChi': PsiChi0}\n",
+ "interpolated_response_value = dr.get_interp_response(target)\n",
"\n",
"interpolated_response_value"
]
@@ -1091,29 +1125,6 @@
"cell_type": "code",
"execution_count": 7,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "[,\n",
- " ,\n",
- " ,\n",
- " array([386.5, 387.5, 418.5, 419.5])]"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "dr.neighbors"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
"outputs": [
{
"data": {
@@ -1121,7 +1132,7 @@
"(, )"
]
},
- "execution_count": 8,
+ "execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -1132,7 +1143,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 8,
"metadata": {},
"outputs": [
{
@@ -1141,7 +1152,7 @@
"array([509.49 , 509.694, 509.898, 510.102, 510.306, 510.51 ])"
]
},
- "execution_count": 9,
+ "execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -1153,7 +1164,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 11,
"metadata": {},
"outputs": [
{
@@ -1168,15 +1179,25 @@
}
],
"source": [
+ "label1 = 'Ei'\n",
+ "label2 = 'Em'\n",
+ "\n",
"fig, ax = plt.subplots()\n",
- "dr.project('Ei', 'Em').draw(ax=ax)\n",
- "ax.scatter(Ei0, dr.transform_Em_to_eps(Em0, Ei0), marker='*')\n",
- "for e1 in dr.neighbors[0]:\n",
- " for e2 in dr.neighbors[1]:\n",
- " ax.scatter(e1, dr.transform_Em_to_eps(e2, Ei0), c='r')\n",
+ "dr.project(label1, label2).draw(ax=ax)\n",
+ "ax.scatter(target[label1], target[label2], marker='*')\n",
+ "for e1 in dr.neighbors[label1]:\n",
+ " for e2 in dr.neighbors[label2]:\n",
+ " ax.scatter(e1, e2, c='r')\n",
"plt.show()"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Setting up HealpixBase (2)"
+ ]
+ },
{
"cell_type": "code",
"execution_count": null,
From 8f2ca26bc3c89b3116ee82d2c1aa2e3b7707f1ed Mon Sep 17 00:00:00 2001
From: avalluvan <62253557+avalluvan@users.noreply.github.com>
Date: Sat, 9 Nov 2024 04:02:33 -0800
Subject: [PATCH 07/15] Added comments to get_point_source_response()
---
cosipy/response/FullDetectorResponse.py | 114 ++--
cosipy/response/ListModeResponse.py | 9 +-
cosipy/response/PointSourceResponse.py | 3 +-
cosipy/spacecraftfile/SpacecraftFile.py | 2 +-
docs/tutorials/response/LMDR.ipynb | 754 +++++++++++++++---------
5 files changed, 538 insertions(+), 344 deletions(-)
diff --git a/cosipy/response/FullDetectorResponse.py b/cosipy/response/FullDetectorResponse.py
index 57a6b993..2f8a0285 100644
--- a/cosipy/response/FullDetectorResponse.py
+++ b/cosipy/response/FullDetectorResponse.py
@@ -1,6 +1,7 @@
from .PointSourceResponse import PointSourceResponse
from .DetectorResponse import DetectorResponse
from .ListModeResponse import ListModeResponse
+from .ListModePSR import ListModePSR
from astromodels.core.model_parser import ModelParser
import matplotlib.pyplot as plt
from astropy.time import Time
@@ -815,12 +816,13 @@ def get_interp_response(self, coord, unbinned=False):
def get_point_source_response(self,
exposure_map = None,
coord = None,
- scatt_map = None):
+ scatt_map = None,
+ unbinned = False):
"""
Convolve the all-sky detector response with exposure for a source at a given
sky location.
- Provide either a exposure map (aka dweel time map) or a combination of a
+ Provide either a exposure map (aka dwell time map) or a combination of a
sky coordinate and a spacecraft attitude map.
Parameters
@@ -839,77 +841,81 @@ def get_point_source_response(self,
# TODO: deprecate exposure_map in favor of coords + scatt map for both local
# and interntial coords
-
- if exposure_map is not None:
- if not self.conformable(exposure_map):
- raise ValueError(
- "Exposure map has a different grid than the detector response")
- psr = PointSourceResponse(self.axes[1:],
- sparse=self._sparse,
- unit=u.cm*u.cm*u.s)
+ if unbinned:
+ pass
- for p in range(self.npix):
+ else:
+ if exposure_map is not None:
+ if not self.conformable(exposure_map):
+ raise ValueError(
+ "Exposure map has a different grid than the detector response")
- if exposure_map[p] != 0:
- psr += self[p]*exposure_map[p]
+ psr = PointSourceResponse(self.axes[1:],
+ sparse=self._sparse,
+ unit=u.cm*u.cm*u.s)
- return psr
+ for p in range(self.npix):
- else:
+ if exposure_map[p] != 0:
+ psr += self[p]*exposure_map[p]
- # Rotate to inertial coordinates
+ return psr
- if coord is None or scatt_map is None:
- raise ValueError("Provide either exposure map or coord + scatt_map")
-
- if isinstance(coord.frame, SpacecraftFrame):
- raise ValueError("Local coordinate + scatt_map not currently supported")
+ else:
- if self.is_sparse:
- raise ValueError("Coord + scatt_map currently only supported for dense responses")
+ # Rotate to inertial coordinates
- axis = "PsiChi"
+ if coord is None or scatt_map is None:
+ raise ValueError("Provide either exposure map or coord + scatt_map")
+
+ if isinstance(coord.frame, SpacecraftFrame):
+ raise ValueError("Local coordinate + scatt_map not currently supported")
- coords_axis = Axis(np.arange(coord.size+1), label = 'coords')
+ if self.is_sparse:
+ raise ValueError("Coord + scatt_map currently only supported for dense responses")
- psr = Histogram([coords_axis] + list(deepcopy(self.axes[1:])),
- unit = self.unit * scatt_map.unit)
-
- psr.axes[axis].coordsys = coord.frame
+ axis_label = "PsiChi"
- for i,(pixels, exposure) in \
- enumerate(zip(scatt_map.contents.coords.transpose(),
- scatt_map.contents.data)):
+ coords_axis = Axis(np.arange(coord.size+1), label = 'coords') # Create axis of length number of input coords + 1
- #gc.collect() # HDF5 cache issues
+ psr = Histogram([coords_axis] + list(deepcopy(self.axes[1:])), # Create new "NuLambda" axis
+ unit = self.unit * scatt_map.unit)
- att = Attitude.from_axes(x = scatt_map.axes['x'].pix2skycoord(pixels[0]),
- y = scatt_map.axes['y'].pix2skycoord(pixels[1]))
+ psr.axes[axis_label].coordsys = coord.frame # Set coordinate system of PsiChi axis to input coordinate frame. Axis coordsys was set when response file was opened and initialized using HealpixBase.__init__
- coord.attitude = att
+ for i,(pixels, exposure) in \
+ enumerate(zip(scatt_map.contents.coords.transpose(),
+ scatt_map.contents.data)):
- #TODO: Change this to interpolation
- loc_nulambda_pixels = np.array(self.axes['NuLambda'].find_bin(coord),
- ndmin = 1)
-
- dr_pix = Histogram.concatenate(coords_axis, [self[i] for i in loc_nulambda_pixels])
+ #gc.collect() # HDF5 cache issues
+
+ att = Attitude.from_axes(x = scatt_map.axes['x'].pix2skycoord(pixels[0]),
+ y = scatt_map.axes['y'].pix2skycoord(pixels[1]))
- dr_pix.axes['PsiChi'].coordsys = SpacecraftFrame(attitude = att)
+ coord.attitude = att
- self._sum_rot_hist(dr_pix, psr, exposure)
+ #TODO: Change this to interpolation
+ loc_nulambda_pixels = np.array(self.axes['NuLambda'].find_bin(coord),
+ ndmin = 1)
+
+ dr_pix = Histogram.concatenate(coords_axis, [self[i] for i in loc_nulambda_pixels])
- # Convert to PSR
- psr = tuple([PointSourceResponse(psr.axes[1:],
- contents = data,
- sparse = psr.is_sparse,
- unit = psr.unit)
- for data in psr[:]])
-
- if coord.size == 1:
- return psr[0]
- else:
- return psr
+ dr_pix.axes['PsiChi'].coordsys = SpacecraftFrame(attitude = att)
+
+ self._sum_rot_hist(dr_pix, psr, exposure)
+
+ # Convert to PSR
+ psr = tuple([PointSourceResponse(psr.axes[1:],
+ contents = data,
+ sparse = psr.is_sparse,
+ unit = psr.unit)
+ for data in psr[:]])
+
+ if coord.size == 1:
+ return psr[0]
+ else:
+ return psr
@staticmethod
def _sum_rot_hist(h, h_new, exposure, axis = "PsiChi"):
diff --git a/cosipy/response/ListModeResponse.py b/cosipy/response/ListModeResponse.py
index 8baf5491..16e05b7d 100644
--- a/cosipy/response/ListModeResponse.py
+++ b/cosipy/response/ListModeResponse.py
@@ -22,7 +22,7 @@ class ListModeResponse(Histogram):
def __init__(self, *args, **kwargs):
# Overload parent init. Called in class methods.
super().__init__(*args, **kwargs)
- self.mapping = {'Ei': 'Ei', 'Em': 'Em', 'Phi': 'Phi', 'PsiChi': 'PsiChi'} # key_target : label
+ self.mapping = {'Ei': 'Ei', 'Em': 'eps', 'Phi': 'Phi', 'PsiChi': 'PsiChi'} # key_target : label
def _get_all_interp_weights(self, target: dict):
@@ -50,11 +50,11 @@ def _get_all_interp_weights(self, target: dict):
else:
raise ValueError(f'Axis type: {axis_type} is not supported')
- elif axis_scale == 'nonlinear':
- pass
+ # elif axis_scale == 'nonlinear':
+ # pass
else:
- raise ValueError(f'Scale: {axis_scale} is not supported')
+ raise ValueError(f'{axis_scale} binning / scale scheme is not supported')
indices.append(idx)
weights.append(w)
@@ -103,7 +103,6 @@ def get_interp_response(self, target: dict):
for idx, w in zip(perm_indices, perm_weights):
i = (Ellipsis,) + idx # XXX: Assuming 'Ei' is the first index
interpolated_response_value += np.prod(w) * self.contents[i]
- # raise NotImplementedError('Support for len(target) < len(axes) is yet to be implemented')
self.neighbors = self.get_nearest_neighbors(target, indices)
diff --git a/cosipy/response/PointSourceResponse.py b/cosipy/response/PointSourceResponse.py
index e16ca234..db48df69 100644
--- a/cosipy/response/PointSourceResponse.py
+++ b/cosipy/response/PointSourceResponse.py
@@ -68,6 +68,7 @@ def get_expectation(self, spectrum):
spectrum_unit = getattr(spectrum, item).unit
break
+ # Set overall spectrum unit based on model PDF
if spectrum_unit == None:
if isinstance(spectrum, Constant):
spectrum_unit = spectrum.k.unit
@@ -85,7 +86,7 @@ def get_expectation(self, spectrum):
except:
raise RuntimeError("Spectrum not yet supported because units of spectrum are unknown.")
- if isinstance(spectrum, DiracDelta):
+ if isinstance(spectrum, DiracDelta): # Special numerical handling for DiracDelta type spectral profiles
flux = Quantity([spectrum.value.value * spectrum_unit * lo_lim.unit if spectrum.zero_point.value >= lo_lim/lo_lim.unit and spectrum.zero_point.value <= hi_lim/hi_lim.unit else 0 * spectrum_unit * lo_lim.unit
for lo_lim,hi_lim
in zip(eaxis.lower_bounds, eaxis.upper_bounds)])
diff --git a/cosipy/spacecraftfile/SpacecraftFile.py b/cosipy/spacecraftfile/SpacecraftFile.py
index ce2e3d69..6aa0d634 100644
--- a/cosipy/spacecraftfile/SpacecraftFile.py
+++ b/cosipy/spacecraftfile/SpacecraftFile.py
@@ -201,7 +201,7 @@ def source_interval(self, start, stop):
Parameters
----------
start : astropy.time.Time
- The star time of the orientation period.
+ The start time of the orientation period.
stop : astropy.time.Time
The end time of the orientation period.
diff --git a/docs/tutorials/response/LMDR.ipynb b/docs/tutorials/response/LMDR.ipynb
index 2b49e90d..97c6392c 100644
--- a/docs/tutorials/response/LMDR.ipynb
+++ b/docs/tutorials/response/LMDR.ipynb
@@ -8,12 +8,12 @@
{
"data": {
"text/html": [
- "
08:03:32 WARNING The naima package is not available. Models that depend on it will not be functions.py:48\n",
+ "
03:43:36 WARNING The naima package is not available. Models that depend on it will not be functions.py:48\n",
"available \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m08:03:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=404984;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=903207;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m03:43:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=733256;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=244793;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -28,7 +28,7 @@
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=77238;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=503129;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=210502;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=260040;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -46,12 +46,12 @@
{
"data": {
"text/html": [
- "
08:03:33 WARNING The ebltable package is not available. Models that depend on it will not be absorption.py:33\n",
+ "
WARNING The ebltable package is not available. Models that depend on it will not be absorption.py:33\n",
"available \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m08:03:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=862806;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=971302;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=726293;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=504207;file:///Users/penguin/miniconda3/envs/cosipy/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -69,11 +69,11 @@
{
"data": {
"text/html": [
- "