forked from yikangshen/Ordered-Neurons
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
80 lines (66 loc) · 2.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
import torch.nn as nn
from embed_regularize import embedded_dropout
from locked_dropout import LockedDropout
from weight_drop import WeightDrop
from ON_LSTM import ONLSTMStack
class RNNModel(nn.Module):
"""Container module with an encoder, a recurrent module, and a decoder."""
def __init__(self, rnn_type, ntoken, ninp, nhid, chunk_size, nlayers, dropout=0.5, dropouth=0.5, dropouti=0.5, dropoute=0.1, wdrop=0, tie_weights=False):
super(RNNModel, self).__init__()
self.lockdrop = LockedDropout()
self.idrop = nn.Dropout(dropouti)
self.hdrop = nn.Dropout(dropouth)
self.drop = nn.Dropout(dropout)
self.encoder = nn.Embedding(ntoken, ninp)
assert rnn_type in ['LSTM'], 'RNN type is not supported'
self.rnn = ONLSTMStack(
[ninp] + [nhid] * (nlayers - 1) + [ninp],
chunk_size=chunk_size,
dropconnect=wdrop,
dropout=dropouth
)
self.decoder = nn.Linear(ninp, ntoken)
# Optionally tie weights as in:
# "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016)
# https://arxiv.org/abs/1608.05859
# and
# "Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling" (Inan et al. 2016)
# https://arxiv.org/abs/1611.01462
if tie_weights:
#if nhid != ninp:
# raise ValueError('When using the tied flag, nhid must be equal to emsize')
self.decoder.weight = self.encoder.weight
self.init_weights()
self.rnn_type = rnn_type
self.ninp = ninp
self.nhid = nhid
self.nlayers = nlayers
self.dropout = dropout
self.dropouti = dropouti
self.dropouth = dropouth
self.dropoute = dropoute
self.tie_weights = tie_weights
def reset(self):
if self.rnn_type == 'QRNN': [r.reset() for r in self.rnns]
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.fill_(0)
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, input, hidden, return_h=False):
emb = embedded_dropout(
self.encoder, input,
dropout=self.dropoute if self.training else 0
)
emb = self.lockdrop(emb, self.dropouti)
raw_output, hidden, raw_outputs, outputs, distances = self.rnn(emb, hidden)
self.distance = distances
output = self.lockdrop(raw_output, self.dropout)
result = output.view(output.size(0)*output.size(1), output.size(2))
if return_h:
return result, hidden, raw_outputs, outputs
else:
return result, hidden
def init_hidden(self, bsz):
return self.rnn.init_hidden(bsz)