-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpastebin361.tex
218 lines (193 loc) · 8.04 KB
/
pastebin361.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
\documentclass{article}
\usepackage{texing361}
\title{CS 361 Formula Mega Thread}
\author{Anonymous Comp}
\date{January 11, 2021}
\begin{document}
\maketitle
\section{TeXing361 Commands}
\begin{itemize}
\item Set: $\set{1, 2, 3, \cdots}$
\item Vector (Arrow): $\avec{a}$
\item Vector (Bold): $\bvec{a}$
\item Matrix: $\mat{A}$
\item Eigenspace: $\eig_{2}\mat{A}$
\item Determinant: $\det\mat{A}$
\item Kernel: $\ker\mat{A}$
\item Diagonal Matrix: $\diag{(1, 2, 3)}$
\item Norm: $\norm{\bvec{a}}$
\item Inner Product: $\vecdot{\avec{a}}{\avec{b}}$
\item Expected Value: $\E{X}$
\item Variance: $\V{X}$
\item Covariance: $\Cov{X}$
\item Argmin/Argmax: $\argmin{x}{f(x)}$
\end{itemize}
\newpage
\section{Common Probability Distributions \protect\footnote{Excerpted from \emph{Probability and Statistical Inference, 9th Edition}}}
\subsection{Discrete}
\begin{enumerate}[(a)]
\item Bernoulli $(0 < p < 1)$
$$
\begin{aligned}
& p(x) = p^x(1 - p)^{1 - x}, \;\;\;\; x = 0, 1 \\
& M(t) = 1 - p + pe^t \\
& \mu = p, \; \sigma^2 = p(1 - p) \\
\end{aligned}
$$
\item Binomial $(0 < p < 1)$
$$
\begin{aligned}
& p(x) = \binom{n}{x} p^x(1 - p)^{n - x}, \;\;\;\; x = 0, 1, \cdots, n \\
& M(t) = (1 - p + pe^t )^n \\
& \mu = np, \; \sigma^2 = np(1 - p) \\
\end{aligned}
$$
\item Geometric $(0 < p < 1)$
$$
\begin{aligned}
& p(x) = (1 - p)^{x - 1}p, \;\;\;\; x = 1, 2, \cdots \\
& M(t) = \frac{pe^t}{1 - (1 - p)e^t}, \;\;\;\; t < -\ln{(1 - p)}\\
& \mu = \frac{1}{p}, \; \sigma^2 = \frac{1 - p}{p^2}
\end{aligned}
$$
\item Hypergeometric $(N_1 > 0, \; N_2 > 0, \; N = N_1 + N_2)$
$$
\begin{aligned}
& p(x) = \frac{\binom{N_1}{x}\binom{N_2}{n - x}}{\binom{N}{n}}, \;\;\;\; x < N_1, \; n - x < N_2 \\
& \mu = n\left(\frac{N_1}{N}\right), \; \sigma^2 = n\left(\frac{N_1}{N}\right)\left(\frac{N_2}{N}\right)\left(\frac{N - n}{N - 1}\right)
\end{aligned}
$$
\item Negativebinomial $(0 < p < 1, \; r = 1, 2, 3, \cdots)$
$$
\begin{aligned}
& p(x) = \binom{x - 1}{r - 1}p^r(1 - p)^{x - r}, \;\;\;\; x = r, r + 1, r + 2, \cdots \\
& M(t) = \frac{(pe^t)^r}{[1 - (1 - p)e^t]^r}, \;\;\;\; t < -\ln{(1 - p)} \\
& \mu = r\left(\frac{1}{p}\right), \; \sigma^2 = \frac{r(1 - p)}{p^2}
\end{aligned}
$$
\item Poisson $(\lambda > 0)$
$$
\begin{aligned}
& p(x) = \frac{\lambda^x e^{-\lambda}}{x!}, \;\;\;\; x = 0, 1, 2, \cdots \\
& M(t) = e^{\lambda(e^t - 1)} \\
& \mu = \lambda, \sigma^2 = \lambda
\end{aligned}
$$
\item Uniform $(m > 0)$
$$
\begin{aligned}
& p(x) = \frac{1}{m}, \;\;\;\; x = 1, 2, \cdots, m \\
& \mu = \frac{m + 1}{2}, \sigma^2 = \frac{m^2 - 1}{12}
\end{aligned}
$$
\end{enumerate}
\subsection{Continuous}
\begin{enumerate}[(a)]
\item Beta $(\alpha > 0, \beta > 0)$
$$
\begin{aligned}
& f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha - 1}(1 - x)^{\beta - 1}, \;\;\;\; 0 < x < 1 \\
& \mu = \frac{\alpha}{\alpha + \beta}, \sigma^2 = \frac{\alpha\beta}{(\alpha + \beta + 1)(\alpha + \beta)^2}
\end{aligned}
$$
\item Chi-square $(r = 1, 2, \cdots)$
$$
\begin{aligned}
& f(x) = \frac{1}{\Gamma(r / 2) 2^{r / 2}}x^{r / 2 - 1}e^{-x/2}, \;\;\;\; 0 \leq x < \infty \\
& M(t) = \frac{1}{(1 - 2t)^{r / 2}}, \;\;\;\; t < \frac{1}{2} \\
& \mu = r, \sigma^2 = 2r
\end{aligned}
$$
\item Exponential $(\theta > 0)$
$$
\begin{aligned}
& f(x) = \frac{1}{\theta}e^{-x/\theta}, \;\;\;\; 0 \leq x < \infty \\
& M(t) = \frac{1}{1 - \theta t}, \;\;\;\; t < \frac{1}{\theta} \\
& \mu = \theta, \sigma^2 = \theta^2
\end{aligned}
$$
\item Gamma $(\alpha > 0, \beta > 0)$
$$
\begin{aligned}
& f(x) = \frac{1}{\Gamma(\alpha)\theta^\alpha}x^{\alpha - 1}e^{-x/\theta}, \;\;\;\; 0 \leq x < \infty \\
& M(t) = \frac{1}{(1 - \theta t)^\alpha}, \;\;\;\; t < \frac{1}{\theta} \\
& \mu = \alpha\theta, \sigma^2 = \alpha\theta^2
\end{aligned}
$$
\item Normal $(-\infty < \mu < \infty, \sigma > 0)$
$$
\begin{aligned}
& f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x - \mu)^2 / 2\sigma^2}, \;\;\;\; -\infty < x < \infty \\
& M(t) = e^{\mu t + \sigma^2t^2 / 2} \\
& \E{X} = \mu, \V{X} = \sigma^2
\end{aligned}
$$
\item Uniform $(a < b)$
$$
\begin{aligned}
& f(x) = \frac{1}{b - a}, \;\;\;\; a < x < b \\
& M(t) = \frac{e^{tb} - e^{ta}}{t(b - a)}, \;\;\;\; t \neq 0; \; M(0) = 1 \\
& \mu = \frac{a + b}{2}, \sigma^2 = \frac{(b - a)^2}{12}
\end{aligned}
$$
\end{enumerate}
\newpage
\section{Boilerplate}
\subsection{Maximum Likelihood Estimation}
\begin{itemize}
\item Finding the likelihood function,
$$
\begin{aligned}
\mathcal{L}(\Psi) &= \prod_{i = 1}^n f(x_i; \Psi)\\
&= \prod_{i = 1}^n \frac{2}{\sqrt{\pi\Psi}}e^{-x_i^2/\Psi}\\
&= \left(\frac{2}{\sqrt{\pi\Psi}}\right)^n\prod_{i = 1}^n e^{-x_i^2 / \Psi}.
\end{aligned}
$$
\item Taking the natural log of both sides,
$$
\ln\mathcal{L}(\Psi) = n\ln\frac{2}{\sqrt{\pi\Psi}} - \frac{1}{\Psi}\sum_{i = 1}^n x_i^2.
$$
\item Taking derivative w.r.t $\Psi$ and set to zero,
$$
\frac{\text{d}}{\text{d}\Psi} \ln\mathcal{L}(\Psi) = \frac{2 \sum_{i = 1}^n x_i^2 - n \Psi }{2 \Psi ^2} = 0.
$$
\item Solving for $\Psi$,
$$
\boxed{\hat{\Psi} = \frac{2\sum_{i = 1}^n x_i^2}{n}}.
$$
\end{itemize}
\subsection{Hypothesis Testing for Population Mean}
\begin{itemize}
\item Calculate test statistic
If the population standard deviation is known,
$$
Z = \frac{\Bar{X} - \mu_0}{\sigma / n}.
$$
If population standard deviation is unknown,
$$
T = \frac{\Bar{X} - \mu_0}{s / n}
$$
where $s$ is the sample standard deviation.
\item Determine the $p$-value by integration, table, or technology (or rejection region). Be careful with the underlying distribution you are choosing.
\item Compare and reach a conclusion (reject or fail to reject).
\end{itemize}
\subsection{Code Highlight}
\begin{itemize}
\item Insert Code Block Directly
\usemintedstyle{vs} % Or choose your own favourite
\begin{minted}{python}
import numpy as np
def incmatrix(genl1, genl2):
m = len(genl1)
n = len(genl2)
M = None # to become the incidence matrix
VT = np.zeros((n * m, 1), int) # dummy variable
# compute the bitwise xor matrix
M1 = bitxormatrix(genl1)
M2 = np.triu(bitxormatrix(genl2), 1)
...
\end{minted}
\item Insert Code Block from External File
\inputminted{python}{minted_example.py}
\end{itemize}
\end{document}