|
| 1 | +function Create_benchmark_TestData_HR_LR() |
| 2 | +clear all; close all; clc |
| 3 | +path_original = './OriginalTestData'; |
| 4 | +dataset = {'Sun-Hays80'}; |
| 5 | +ext = {'*.jpg', '*.png', '*.bmp'}; |
| 6 | + |
| 7 | +degradation = 'BI'; % BI, BD, DN |
| 8 | +if strcmp(degradation, 'BI') |
| 9 | + scale_all = [2,3,4,8]; |
| 10 | +else |
| 11 | + scale_all = 3; |
| 12 | +end |
| 13 | + |
| 14 | +for idx_set = 1:length(dataset) |
| 15 | + fprintf('Processing %s:\n', dataset{idx_set}); |
| 16 | + filepaths = []; |
| 17 | + for idx_ext = 1:length(ext) |
| 18 | + filepaths = cat(1, filepaths, dir(fullfile(path_original, dataset{idx_set}, ext{idx_ext}))); |
| 19 | + end |
| 20 | + for idx_im = 1:length(filepaths) |
| 21 | + name_im = filepaths(idx_im).name; |
| 22 | + fprintf('%d. %s: ', idx_im, name_im); |
| 23 | + im_ori = imread(fullfile(path_original, dataset{idx_set}, name_im)); |
| 24 | + if size(im_ori, 3) == 1 |
| 25 | + im_ori = cat(3, im_ori, im_ori, im_ori); |
| 26 | + end |
| 27 | + for scale = scale_all |
| 28 | + fprintf('x%d ', scale); |
| 29 | + im_HR = modcrop(im_ori, scale); |
| 30 | + if strcmp(degradation, 'BI') |
| 31 | + im_LR = imresize(im_HR, 1/scale, 'bicubic'); |
| 32 | + elseif strcmp(degradation, 'BD') |
| 33 | + im_LR = imresize_BD(im_HR, scale, 'Gaussian', 1.6); % sigma=1.6 |
| 34 | + elseif strcmp(degradation, 'DN') |
| 35 | + randn('seed',0); % For test data, fix seed. But, DON'T fix seed, when preparing training data. |
| 36 | + im_LR = imresize_DN(im_HR, scale, 30); % noise level sigma=30 |
| 37 | + end |
| 38 | + % folder |
| 39 | + folder_HR = fullfile('./HR', dataset{idx_set}, ['x', num2str(scale)]); |
| 40 | + folder_LR = fullfile(['./LR/LR', degradation], dataset{idx_set}, ['x', num2str(scale)]); |
| 41 | + if ~exist(folder_HR) |
| 42 | + mkdir(folder_HR) |
| 43 | + end |
| 44 | + if ~exist(folder_LR) |
| 45 | + mkdir(folder_LR) |
| 46 | + end |
| 47 | + % fn |
| 48 | + fn_HR = fullfile('./HR', dataset{idx_set}, ['x', num2str(scale)], [name_im(1:end-4), '_HR_x', num2str(scale), '.png']); |
| 49 | + fn_LR = fullfile(['./LR/LR', degradation], dataset{idx_set}, ['x', num2str(scale)], [name_im(1:end-4), '_LR', degradation, '_x', num2str(scale), '.png']); |
| 50 | + imwrite(im_HR, fn_HR, 'png'); |
| 51 | + imwrite(im_LR, fn_LR, 'png'); |
| 52 | + end |
| 53 | + fprintf('\n'); |
| 54 | + end |
| 55 | + fprintf('\n'); |
| 56 | +end |
| 57 | +end |
| 58 | +function imgs = modcrop(imgs, modulo) |
| 59 | +if size(imgs,3)==1 |
| 60 | + sz = size(imgs); |
| 61 | + sz = sz - mod(sz, modulo); |
| 62 | + imgs = imgs(1:sz(1), 1:sz(2)); |
| 63 | +else |
| 64 | + tmpsz = size(imgs); |
| 65 | + sz = tmpsz(1:2); |
| 66 | + sz = sz - mod(sz, modulo); |
| 67 | + imgs = imgs(1:sz(1), 1:sz(2),:); |
| 68 | +end |
| 69 | +end |
| 70 | + |
| 71 | + |
| 72 | +function [LR] = imresize_BD(im, scale, type, sigma) |
| 73 | + |
| 74 | +if nargin ==3 && strcmp(type,'Gaussian') |
| 75 | + sigma = 1.6; |
| 76 | +end |
| 77 | + |
| 78 | +if strcmp(type,'Gaussian') && fix(scale) == scale |
| 79 | + if mod(scale,2)==1 |
| 80 | + kernelsize = ceil(sigma*3)*2+1; |
| 81 | + if scale==3 && sigma == 1.6 |
| 82 | + kernelsize = 7; |
| 83 | + end |
| 84 | + kernel = fspecial('gaussian',kernelsize,sigma); |
| 85 | + blur_HR = imfilter(im,kernel,'replicate'); |
| 86 | + |
| 87 | + if isa(blur_HR, 'gpuArray') |
| 88 | + LR = blur_HR(scale-1:scale:end-1,scale-1:scale:end-1,:); |
| 89 | + else |
| 90 | + LR = imresize(blur_HR, 1/scale, 'nearest'); |
| 91 | + end |
| 92 | + |
| 93 | + |
| 94 | + % LR = im2uint8(LR); |
| 95 | + elseif mod(scale,2)==0 |
| 96 | + kernelsize = ceil(sigma*3)*2+2; |
| 97 | + kernel = fspecial('gaussian',kernelsize,sigma); |
| 98 | + blur_HR = imfilter(im, kernel,'replicate'); |
| 99 | + LR= blur_HR(scale/2:scale:end-scale/2,scale/2:scale:end-scale/2,:); |
| 100 | + % LR = im2uint8(LR); |
| 101 | + end |
| 102 | +else |
| 103 | + LR = imresize(im, 1/scale, type); |
| 104 | +end |
| 105 | +end |
| 106 | + |
| 107 | +function ImLR = imresize_DN(ImHR, scale, sigma) |
| 108 | +% ImLR and ImHR are uint8 data |
| 109 | +% downsample by Bicubic |
| 110 | +ImDown = imresize(ImHR, 1/scale, 'bicubic'); % 0-255 |
| 111 | +ImDown = single(ImDown); % 0-255 |
| 112 | +ImDownNoise = ImDown + single(sigma*randn(size(ImDown))); % 0-255 |
| 113 | +ImLR = uint8(ImDownNoise); % 0-255 |
| 114 | +end |
| 115 | + |
| 116 | + |
| 117 | + |
| 118 | + |
| 119 | + |
| 120 | + |
| 121 | + |
| 122 | + |
| 123 | + |
| 124 | + |
0 commit comments