Skip to content

Commit 7c1e61f

Browse files
committed
add_results_link
1 parent 66c5c1a commit 7c1e61f

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

README.md

+5-5
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
# Second-order Attention Network for Single Image Super-resolution (CVPR-2019)
2-
2+
[]()
33
"[Second-order Attention Network for Single Image Super-resolution](http://openaccess.thecvf.com/content_CVPR_2019/html/Dai_Second-Order_Attention_Network_for_Single_Image_Super-Resolution_CVPR_2019_paper.html)" is published on CVPR-2019.
44
The code is built on [RCAN(pytorch)](https://github.com/yulunzhang/RCAN) and tested on Ubuntu 16.04 (Pytorch 0.4.0)
55

@@ -34,18 +34,18 @@ Recently, deep convolutional neural networks (CNNs) have been widely explored in
3434
>
3535
3636
### 3. Test code
37-
- 1. You can Download the pretrained model first
37+
- 1. You can [Download the pretrained model first](https://pan.baidu.com/s/1aTYG4Wy72MI-gCRGnJgkvQ), password: eq1v
3838
- 2. CD to 'TestCode/code', run the following scripts
3939

4040
>
4141
> ## BI degradation, scale 2, 3, 4,8
4242
> ## SAN_2x
4343
>
44-
> python main.py --model san --data_test MyImage --save `save_name` --scale 2 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --test_only --testpath 'your path' --testset Set5 --pre_train ../model/SAN_BIX2.pt
44+
> python main.py --model san --data_test MyImage --save `save_name` --scale 2 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --test_only --testpath 'your path' --testset Set5 --pre_train ../model/SAN_BIX2.pt
4545
>
4646
> # SAN_3x
4747
>
48-
> python main.py --model san --data_test MyImage --save `save_name` --scale 3 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --test_only --testpath 'your path' --testset Set5 --pre_train ../model/SAN_BIX3.pt
48+
> python main.py --model san --data_test MyImage --save `save_name` --scale 3 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --test_only --testpath 'your path' --testset Set5 --pre_train ../model/SAN_BIX3.pt
4949
>
5050
> # SAN_4x
5151
> python main.py --model san --data_test MyImage --save `save_name` --scale 4 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --test_only --testpath 'your path' --testset Set5 --pre_train ../model/SAN_BIX4.pt
@@ -55,7 +55,7 @@ Recently, deep convolutional neural networks (CNNs) have been widely explored in
5555
> python main.py --model san --data_test MyImage --save `save_name` --scale 8 --n_resgroups 20 --n_resblocks 10 --n_feats 64 --reset --chop --save_results --test_only --testpath 'your path' --testset Set5 --pre_train ../model/SAN_BIX8.pt
5656
>
5757
### 4. Results
58-
- Some of the test results can be downloaded.
58+
- Some of [the test results can be downloaded.](https://pan.baidu.com/s/1j0ZgfbGKyYZqsSCLOb3nUg) Password:w3da
5959

6060
### 5. Citation
6161
If the the work or the code is helpful, please cite the following papers

0 commit comments

Comments
 (0)