-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathb_matching_test.py
188 lines (159 loc) · 5.8 KB
/
b_matching_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright 2022 The social_b_matching Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for b-matching."""
from absl.testing import absltest
from absl.testing import parameterized
from social_b_matching import b_matching
class BMatchingTest(absltest.TestCase):
"""Unit Tests for b-matching."""
# With three nodes, only one pair can be matched.
def testThreeNodesB1(self):
b_maxs = [1, 1, 1]
weights = {(0, 1): 1, (1, 2): 1, (2, 0): 1}
result = b_matching.maximize_weighted_b_matching(b_maxs, weights)
self.assertLen(result, 1)
self.assertContainsSubset(result, [(0, 1), (1, 2), (2, 0)])
with self.assertRaises(b_matching.SolverError,
msg='The solver could not solve the problem.'):
b_matching.maximize_weighted_b_matching(b_maxs, weights, b_min=1)
result = b_matching.inclusive_matching(b_maxs, weights)
self.assertLen(result, 1)
self.assertContainsSubset(result, [(0, 1), (1, 2), (2, 0)])
def testThreeNodesB2(self):
result = b_matching.maximize_weighted_b_matching([2, 2, 2], {
(0, 1): 1,
(1, 2): 1,
(2, 0): 1
})
self.assertListEqual([(0, 1), (1, 2), (2, 0)], result)
def testFourNodesB1(self):
result = b_matching.maximize_weighted_b_matching([1, 1, 1, 1], {
(0, 1): 1,
(0, 2): 1,
(0, 3): 1,
(1, 2): 1,
(1, 3): 1,
(2, 3): 1
})
self.assertLen(result, 2)
self.assertContainsSubset(result, [(0, 1), (0, 2), (0, 3), (1, 2),
(1, 3), (2, 3)])
def testFourNodesB2(self):
result = b_matching.maximize_weighted_b_matching([2, 2, 2, 2], {
(0, 1): 1,
(0, 2): 1,
(0, 3): 1,
(1, 2): 1,
(1, 3): 1,
(2, 3): 1
})
self.assertLen(result, 4)
self.assertContainsSubset(result, [(0, 1), (0, 2), (0, 3), (1, 2),
(1, 3), (2, 3)])
def testFourNodesB3(self):
result = b_matching.maximize_weighted_b_matching([3, 3, 3, 3], {
(0, 1): 1,
(0, 2): 1,
(0, 3): 1,
(1, 2): 1,
(1, 3): 1,
(2, 3): 1
})
self.assertListEqual(result, [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3),
(2, 3)])
# This case shows how one node (3) can be left out of the maximum b-matching.
def testFourNodesB1B2(self):
b_maxs = [2, 1, 1, 1]
weights = {
(0, 1): 3,
(0, 2): 2,
(0, 3): 1,
(1, 2): 1,
(1, 3): 1,
(2, 3): 1,
}
result = b_matching.maximize_weighted_b_matching(b_maxs, weights)
self.assertListEqual(result, [(0, 1), (0, 2)])
result = b_matching.maximize_weighted_b_matching(b_maxs, weights, b_min=1)
self.assertListEqual(result, [(0, 1), (2, 3)])
result = b_matching.inclusive_matching(b_maxs, weights)
self.assertListEqual(result, [(0, 1), (2, 3)])
# Test input validation
def testBadBMax(self):
with self.assertRaises(ValueError):
b_matching.maximize_weighted_b_matching([1, 2, 3, 0], {})
with self.assertRaises(ValueError):
b_matching.maximize_weighted_b_matching([1, -2, 3, 1], {})
def testBadEdges(self):
with self.assertRaises(ValueError):
b_matching.maximize_weighted_b_matching([1, 1, 1], {
(0, 1): 1,
(-1, 2): 1,
(2, 0): 1
})
with self.assertRaises(ValueError):
b_matching.maximize_weighted_b_matching([1, 1, 1], {
(0, 1): 1,
(1, 3): 1,
(2, 0): 1
})
def testSelfEdges(self):
# Self-edges are only invalid for inclusive matching.
with self.assertRaises(ValueError):
b_matching.inclusive_matching([1, 1], {
(0, 1): 1,
(1, 1): 1
})
def testDupEdges(self):
# Duplicate edges are only invalid for inclusive matching.
with self.assertRaises(ValueError):
b_matching.inclusive_matching([1, 1, 1], {
(0, 1): 1,
(1, 0): 1,
(1, 2): 1,
})
def testBadWeight(self):
with self.assertRaises(ValueError):
b_matching.maximize_weighted_b_matching([1, 1, 1], {
(0, 1): 1,
(1, 2): -0.5,
(2, 0): 1
})
class CheckInclusiveTest(parameterized.TestCase):
@parameterized.named_parameters(
dict(testcase_name='good_one_edge',
b_maxs=[1, 1, 1], edges=[(0, 1)],
success=True, not_max=[2]),
dict(testcase_name='good_two_edges',
b_maxs=[1, 2, 1], edges=[(0, 1), (1, 2)],
success=True, not_max=[]),
dict(testcase_name='bad_extra_edge',
b_maxs=[1, 1, 1], edges=[(0, 1), (1, 2)],
success=False, not_max=[1]),
dict(testcase_name='bad_missing_edge',
b_maxs=[1, 2, 1], edges=[(0, 1)],
success=False, not_max=[1, 2]))
def testCheckInclusive(self, b_maxs, edges, success, not_max):
result = b_matching.check_inclusive(b_maxs, edges)
self.assertTupleEqual(result, (success, not_max))
@parameterized.named_parameters(
dict(testcase_name='high',
b_maxs=[1, 1, 1], edges=[(0, 1), (1, 2), (2, 3)]),
dict(testcase_name='low',
b_maxs=[1, 1, 1], edges=[(0, -1), (1, 2)]))
def testCheckInclusiveBadInput(self, b_maxs, edges):
with self.assertRaises(ValueError):
b_matching.check_inclusive(b_maxs, edges)
if __name__ == '__main__':
absltest.main()