forked from bshoshany/thread-pool
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBS_thread_pool_test.cpp
1063 lines (963 loc) · 42 KB
/
BS_thread_pool_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* @file BS_thread_pool_test.cpp
* @author Barak Shoshany ([email protected]) (http://baraksh.com)
* @version 3.3.0
* @date 2022-08-03
* @copyright Copyright (c) 2022 Barak Shoshany. Licensed under the MIT license. If you found this project useful, please consider starring it on GitHub! If you use this library in software of any kind, please provide a link to the GitHub repository https://github.com/bshoshany/thread-pool in the source code and documentation. If you use this library in published research, please cite it as follows: Barak Shoshany, "A C++17 Thread Pool for High-Performance Scientific Computing", doi:10.5281/zenodo.4742687, arXiv:2105.00613 (May 2021)
*
* @brief BS::thread_pool: a fast, lightweight, and easy-to-use C++17 thread pool library. This program tests all aspects of the library, but is not needed in order to use the library.
*/
// Get rid of annoying MSVC warning.
#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#endif
#include <algorithm> // std::min, std::min_element, std::sort, std::unique
#include <atomic> // std::atomic
#include <chrono> // std::chrono
#include <cmath> // std::abs, std::cos, std::exp, std::llround, std::log, std::round, std::sin, std::sqrt
#include <condition_variable> // std::condition_variable
#include <ctime> // std::localtime, std::strftime, std::time, std::time_t
#include <exception> // std::exception
#include <fstream> // std::ofstream
#include <future> // std::future
#include <iomanip> // std::setprecision, std::setw
#include <ios> // std::fixed
#include <iostream> // std::cout
#include <limits> // std::numeric_limits
#include <memory> // std::make_unique, std::unique_ptr
#include <mutex> // std::mutex, std::scoped_lock, std::unique_lock
#include <random> // std::mt19937_64, std::random_device, std::uniform_int_distribution
#include <stdexcept> // std::runtime_error
#include <string> // std::string, std::to_string
#include <thread> // std::this_thread, std::thread
#include <utility> // std::pair
#include <vector> // std::begin, std::end, std::vector
// Include the header file for the thread pool library.
#include "BS_thread_pool.hpp"
// ================
// Global variables
// ================
// Whether to output to a log file in addition to the standard output.
constexpr bool output_log = true;
// Whether to perform the tests.
constexpr bool enable_tests = true;
// Whether to perform the benchmarks.
constexpr bool enable_benchmarks = true;
// Two global synced_streams objects. One prints to std::cout, and the other to a file.
BS::synced_stream sync_cout(std::cout);
std::ofstream log_file;
BS::synced_stream sync_file(log_file);
// A global thread pool object to be used throughout the test.
BS::thread_pool pool;
// A global random_device object to be used to seed some random number generators.
std::random_device rd;
// Global variables to measure how many checks succeeded and how many failed.
size_t tests_succeeded = 0;
size_t tests_failed = 0;
// ================
// Helper functions
// ================
/**
* @brief Print any number of items into both std::cout and the log file, syncing both independently.
*
* @tparam T The types of the items.
* @param items The items to print.
*/
template <typename... T>
void dual_print(T&&... items)
{
sync_cout.print(std::forward<T>(items)...);
if (output_log)
sync_file.print(std::forward<T>(items)...);
}
/**
* @brief Print any number of items into both std::cout and the log file, syncing both independently. Also prints a newline character, and flushes the stream.
*
* @tparam T The types of the items.
* @param items The items to print.
*/
template <typename... T>
void dual_println(T&&... items)
{
dual_print(std::forward<T>(items)..., BS::synced_stream::endl);
}
/**
* @brief Print a stylized header.
*
* @param text The text of the header. Will appear between two lines.
* @param symbol The symbol to use for the lines. Default is '='.
*/
void print_header(const std::string& text, const char symbol = '=')
{
dual_println();
dual_println(std::string(text.length(), symbol));
dual_println(text);
dual_println(std::string(text.length(), symbol));
}
/**
* @brief Get a string representing the current time.
*
* @return The string.
*/
std::string get_time()
{
const std::time_t t = std::time(nullptr);
char time_string[32];
std::strftime(time_string, sizeof(time_string), "%Y-%m-%d_%H.%M.%S", std::localtime(&t));
return time_string;
}
/**
* @brief Check if a condition is met, report the result, and keep count of the total number of successes and failures.
*
* @param condition The condition to check.
*/
void check(const bool condition)
{
if (condition)
{
dual_println("-> PASSED!");
++tests_succeeded;
}
else
{
dual_println("-> FAILED!");
++tests_failed;
}
}
/**
* @brief Check if the expected result has been obtained, report the result, and keep count of the total number of successes and failures.
*
* @param condition The condition to check.
*/
template <typename T1, typename T2>
void check(const T1 expected, const T2 obtained)
{
dual_print("Expected: ", expected, ", obtained: ", obtained);
if (expected == obtained)
{
dual_println(" -> PASSED!");
++tests_succeeded;
}
else
{
dual_println(" -> FAILED!");
++tests_failed;
}
}
// =========================================
// Functions to verify the number of threads
// =========================================
/**
* @brief Count the number of unique threads in the pool. Submits a number of tasks equal to twice the thread count into the pool. Each task stores the ID of the thread running it, and then waits until released by the main thread. This ensures that each thread in the pool runs at least one task. The number of unique thread IDs is then counted from the stored IDs.
*/
std::condition_variable ID_cv, total_cv;
std::mutex ID_mutex, total_mutex;
BS::concurrency_t count_unique_threads()
{
const BS::concurrency_t num_tasks = pool.get_thread_count() * 2;
std::vector<std::thread::id> thread_IDs(num_tasks);
std::unique_lock<std::mutex> total_lock(total_mutex);
BS::concurrency_t total_count = 0;
bool ID_release = false;
pool.wait_for_tasks();
for (std::thread::id& id : thread_IDs)
pool.push_task(
[&total_count, &id, &ID_release]
{
id = std::this_thread::get_id();
{
const std::scoped_lock total_lock_local(total_mutex);
++total_count;
}
total_cv.notify_one();
std::unique_lock<std::mutex> ID_lock_local(ID_mutex);
ID_cv.wait(ID_lock_local, [&ID_release] { return ID_release; });
});
total_cv.wait(total_lock, [&total_count] { return total_count == pool.get_thread_count(); });
{
const std::scoped_lock ID_lock(ID_mutex);
ID_release = true;
}
ID_cv.notify_all();
total_cv.wait(total_lock, [&total_count, &num_tasks] { return total_count == num_tasks; });
pool.wait_for_tasks();
std::sort(thread_IDs.begin(), thread_IDs.end());
return static_cast<BS::concurrency_t>(std::unique(thread_IDs.begin(), thread_IDs.end()) - thread_IDs.begin());
}
/**
* @brief Check that the constructor works.
*/
void check_constructor()
{
dual_println("Checking that the thread pool reports a number of threads equal to the hardware concurrency...");
check(std::thread::hardware_concurrency(), pool.get_thread_count());
dual_println("Checking that the manually counted number of unique thread IDs is equal to the reported number of threads...");
check(pool.get_thread_count(), count_unique_threads());
}
/**
* @brief Check that reset() works.
*/
void check_reset()
{
pool.reset(std::thread::hardware_concurrency() / 2);
dual_println("Checking that after reset() the thread pool reports a number of threads equal to half the hardware concurrency...");
check(std::thread::hardware_concurrency() / 2, pool.get_thread_count());
dual_println("Checking that after reset() the manually counted number of unique thread IDs is equal to the reported number of threads...");
check(pool.get_thread_count(), count_unique_threads());
pool.reset(std::thread::hardware_concurrency());
dual_println("Checking that after a second reset() the thread pool reports a number of threads equal to the hardware concurrency...");
check(std::thread::hardware_concurrency(), pool.get_thread_count());
dual_println("Checking that after a second reset() the manually counted number of unique thread IDs is equal to the reported number of threads...");
check(pool.get_thread_count(), count_unique_threads());
}
// =======================================
// Functions to verify submission of tasks
// =======================================
/**
* @brief Check that push_task() works.
*/
void check_push_task()
{
dual_println("Checking that push_task() works for a function with no arguments or return value...");
{
bool flag = false;
pool.push_task([&flag] { flag = true; });
pool.wait_for_tasks();
check(flag);
}
dual_println("Checking that push_task() works for a function with one argument and no return value...");
{
bool flag = false;
pool.push_task([](bool* flag_) { *flag_ = true; }, &flag);
pool.wait_for_tasks();
check(flag);
}
dual_println("Checking that push_task() works for a function with two arguments and no return value...");
{
bool flag1 = false;
bool flag2 = false;
pool.push_task([](bool* flag1_, bool* flag2_) { *flag1_ = *flag2_ = true; }, &flag1, &flag2);
pool.wait_for_tasks();
check(flag1 && flag2);
}
}
/**
* @brief Check that submit() works.
*/
void check_submit()
{
dual_println("Checking that submit() works for a function with no arguments or return value...");
{
bool flag = false;
pool.submit([&flag] { flag = true; }).wait();
check(flag);
}
dual_println("Checking that submit() works for a function with one argument and no return value...");
{
bool flag = false;
pool.submit([](bool* flag_) { *flag_ = true; }, &flag).wait();
check(flag);
}
dual_println("Checking that submit() works for a function with two arguments and no return value...");
{
bool flag1 = false;
bool flag2 = false;
pool.submit([](bool* flag1_, bool* flag2_) { *flag1_ = *flag2_ = true; }, &flag1, &flag2).wait();
check(flag1 && flag2);
}
dual_println("Checking that submit() works for a function with no arguments and a return value...");
{
bool flag = false;
std::future<int> flag_future = pool.submit(
[&flag]
{
flag = true;
return 42;
});
check(flag_future.get() == 42 && flag);
}
dual_println("Checking that submit() works for a function with one argument and a return value...");
{
bool flag = false;
std::future<int> flag_future = pool.submit(
[](bool* flag_)
{
*flag_ = true;
return 42;
},
&flag);
check(flag_future.get() == 42 && flag);
}
dual_println("Checking that submit() works for a function with two arguments and a return value...");
{
bool flag1 = false;
bool flag2 = false;
std::future<int> flag_future = pool.submit(
[](bool* flag1_, bool* flag2_)
{
*flag1_ = *flag2_ = true;
return 42;
},
&flag1, &flag2);
check(flag_future.get() == 42 && flag1 && flag2);
}
}
class flag_class
{
public:
void set_flag_no_args()
{
flag = true;
}
void set_flag_one_arg(const bool arg)
{
flag = arg;
}
int set_flag_no_args_return()
{
flag = true;
return 42;
}
int set_flag_one_arg_return(const bool arg)
{
flag = arg;
return 42;
}
bool get_flag() const
{
return flag;
}
void push_test_flag_no_args()
{
pool.push_task(&flag_class::set_flag_no_args, this);
pool.wait_for_tasks();
check(get_flag());
}
void push_test_flag_one_arg()
{
pool.push_task(&flag_class::set_flag_one_arg, this, true);
pool.wait_for_tasks();
check(get_flag());
}
void submit_test_flag_no_args()
{
pool.submit(&flag_class::set_flag_no_args, this).wait();
check(get_flag());
}
void submit_test_flag_one_arg()
{
pool.submit(&flag_class::set_flag_one_arg, this, true).wait();
check(get_flag());
}
void submit_test_flag_no_args_return()
{
std::future<int> flag_future = pool.submit(&flag_class::set_flag_no_args_return, this);
check(flag_future.get() == 42 && get_flag());
}
void submit_test_flag_one_arg_return()
{
std::future<int> flag_future = pool.submit(&flag_class::set_flag_one_arg_return, this, true);
check(flag_future.get() == 42 && get_flag());
}
private:
bool flag = false;
};
/**
* @brief Check that submitting member functions works.
*/
void check_member_function()
{
dual_println("Checking that push_task() works for a member function with no arguments or return value...");
{
flag_class flag;
pool.push_task(&flag_class::set_flag_no_args, &flag);
pool.wait_for_tasks();
check(flag.get_flag());
}
dual_println("Checking that push_task() works for a member function with one argument and no return value...");
{
flag_class flag;
pool.push_task(&flag_class::set_flag_one_arg, &flag, true);
pool.wait_for_tasks();
check(flag.get_flag());
}
dual_println("Checking that submit() works for a member function with no arguments or return value...");
{
flag_class flag;
pool.submit(&flag_class::set_flag_no_args, &flag).wait();
check(flag.get_flag());
}
dual_println("Checking that submit() works for a member function with one argument and no return value...");
{
flag_class flag;
pool.submit(&flag_class::set_flag_one_arg, &flag, true).wait();
check(flag.get_flag());
}
dual_println("Checking that submit() works for a member function with no arguments and a return value...");
{
flag_class flag;
std::future<int> flag_future = pool.submit(&flag_class::set_flag_no_args_return, &flag);
check(flag_future.get() == 42 && flag.get_flag());
}
dual_println("Checking that submit() works for a member function with one argument and a return value...");
{
flag_class flag;
std::future<int> flag_future = pool.submit(&flag_class::set_flag_one_arg_return, &flag, true);
check(flag_future.get() == 42 && flag.get_flag());
}
}
/**
* @brief Check that submitting member functions within an object works.
*/
void check_member_function_within_object()
{
dual_println("Checking that push_task() works within an object for a member function with no arguments or return value...");
{
flag_class flag;
flag.push_test_flag_no_args();
}
dual_println("Checking that push_task() works within an object for a member function with one argument and no return value...");
{
flag_class flag;
flag.push_test_flag_one_arg();
}
dual_println("Checking that submit() works within an object for a member function with no arguments or return value...");
{
flag_class flag;
flag.submit_test_flag_no_args();
}
dual_println("Checking that submit() works within an object for a member function with one argument and no return value...");
{
flag_class flag;
flag.submit_test_flag_one_arg();
}
dual_println("Checking that submit() works within an object for a member function with no arguments and a return value...");
{
flag_class flag;
flag.submit_test_flag_no_args_return();
}
dual_println("Checking that submit() works within an object for a member function with one argument and a return value...");
{
flag_class flag;
flag.submit_test_flag_one_arg_return();
}
}
/**
* @brief Check that wait_for_tasks() works.
*/
void check_wait_for_tasks()
{
const BS::concurrency_t n = pool.get_thread_count() * 10;
std::unique_ptr<std::atomic<bool>[]> flags = std::make_unique<std::atomic<bool>[]>(n);
for (BS::concurrency_t i = 0; i < n; ++i)
pool.push_task(
[&flags, i]
{
std::this_thread::sleep_for(std::chrono::milliseconds(10));
flags[i] = true;
});
dual_println("Waiting for tasks...");
pool.wait_for_tasks();
bool all_flags = true;
for (BS::concurrency_t i = 0; i < n; ++i)
all_flags = all_flags && flags[i];
check(all_flags);
}
// ========================================
// Functions to verify loop parallelization
// ========================================
/**
* @brief Check that push_loop() or parallelize_loop() work for a specific range of indices split over a specific number of tasks, with no return value.
*
* @param random_start The first index in the loop.
* @param random_end The last index in the loop plus 1.
* @param num_tasks The number of tasks.
* @param use_push Whether to check push_loop() instead of parallelize_loop().
*/
template <typename T>
void check_parallelize_loop_no_return(const int64_t random_start, T random_end, const BS::concurrency_t num_tasks, const bool use_push = false)
{
if (random_start == random_end)
++random_end;
dual_println("Verifying that ", use_push ? "push_loop()" : "parallelize_loop()", " from ", random_start, " to ", random_end, " with ", num_tasks, num_tasks == 1 ? " task" : " tasks", " modifies all indices...");
const size_t num_indices = static_cast<size_t>(std::abs(random_end - random_start));
const int64_t offset = std::min(random_start, static_cast<int64_t>(random_end));
std::unique_ptr<std::atomic<bool>[]> flags = std::make_unique<std::atomic<bool>[]>(num_indices);
const auto loop = [&flags, offset](const int64_t start, const int64_t end)
{
for (int64_t i = start; i < end; ++i)
flags[static_cast<size_t>(i - offset)] = true;
};
if (use_push)
{
if (random_start == 0)
pool.push_loop(random_end, loop, num_tasks);
else
pool.push_loop(random_start, random_end, loop, num_tasks);
pool.wait_for_tasks();
}
else
{
if (random_start == 0)
pool.parallelize_loop(random_end, loop, num_tasks).wait();
else
pool.parallelize_loop(random_start, random_end, loop, num_tasks).wait();
}
bool all_flags = true;
for (size_t i = 0; i < num_indices; ++i)
all_flags = all_flags && flags[i];
check(all_flags);
}
/**
* @brief Check that parallelize_loop() works for a specific range of indices split over a specific number of tasks, with a return value.
*
* @param random_start The first index in the loop.
* @param random_end The last index in the loop plus 1.
* @param num_tasks The number of tasks.
*/
void check_parallelize_loop_return(const int64_t random_start, int64_t random_end, const BS::concurrency_t num_tasks)
{
if (random_start == random_end)
++random_end;
dual_println("Verifying that parallelize_loop() from ", random_start, " to ", random_end, " with ", num_tasks, num_tasks == 1 ? " task" : " tasks", " correctly sums all indices...");
const auto loop = [](const int64_t start, const int64_t end)
{
int64_t total = 0;
for (int64_t i = start; i < end; ++i)
total += i;
return total;
};
const std::vector<int64_t> sums_vector = (random_start == 0) ? pool.parallelize_loop(random_end, loop, num_tasks).get() : pool.parallelize_loop(random_start, random_end, loop, num_tasks).get();
int64_t sum = 0;
for (const int64_t& s : sums_vector)
sum += s;
check(std::abs(random_start - random_end) * (random_start + random_end - 1), sum * 2);
}
/**
* @brief Check that push_loop() and parallelize_loop() work using several different random values for the range of indices and number of tasks.
*/
void check_parallelize_loop()
{
std::mt19937_64 mt(rd());
std::uniform_int_distribution<int64_t> index_dist(-1000000, 1000000);
std::uniform_int_distribution<BS::concurrency_t> task_dist(1, pool.get_thread_count());
constexpr uint64_t n = 10;
for (uint64_t i = 0; i < n; ++i)
check_parallelize_loop_no_return(index_dist(mt), index_dist(mt), task_dist(mt), true);
for (uint64_t i = 0; i < n; ++i)
check_parallelize_loop_no_return(index_dist(mt), index_dist(mt), task_dist(mt));
for (uint64_t i = 0; i < n; ++i)
check_parallelize_loop_return(index_dist(mt), index_dist(mt), task_dist(mt));
dual_println("Verifying that parallelize_loop() with identical start and end indices does nothing...");
bool flag = true;
const int64_t index = index_dist(mt);
pool.parallelize_loop(index, index, [&flag](const int64_t, const int64_t) { flag = false; }).wait();
check(flag);
dual_println("Trying parallelize_loop() with start and end indices of different types:");
const int64_t start = index_dist(mt);
const uint32_t end = static_cast<uint32_t>(std::abs(index_dist(mt)));
check_parallelize_loop_no_return(start, end, task_dist(mt));
dual_println("Trying the overloads for push_loop() and parallelize_loop() for the case where the first index is equal to 0:");
check_parallelize_loop_no_return(0, index_dist(mt), task_dist(mt), true);
check_parallelize_loop_no_return(0, index_dist(mt), task_dist(mt));
check_parallelize_loop_return(0, index_dist(mt), task_dist(mt));
}
// ===============================================
// Functions to verify task monitoring and control
// ===============================================
/**
* @brief Check that task monitoring works.
*/
void check_task_monitoring()
{
BS::concurrency_t n = std::min<BS::concurrency_t>(std::thread::hardware_concurrency(), 4);
dual_println("Resetting pool to ", n, " threads.");
pool.reset(n);
dual_println("Submitting ", n * 3, " tasks.");
std::unique_ptr<std::atomic<bool>[]> release = std::make_unique<std::atomic<bool>[]>(n * 3);
for (BS::concurrency_t i = 0; i < n * 3; ++i)
pool.push_task(
[&release, i]
{
while (!release[i])
std::this_thread::yield();
dual_println("Task ", i, " released.");
});
constexpr std::chrono::milliseconds sleep_time(300);
std::this_thread::sleep_for(sleep_time);
dual_println("After submission, should have: ", n * 3, " tasks total, ", n, " tasks running, ", n * 2, " tasks queued...");
dual_print("Result: ", pool.get_tasks_total(), " tasks total, ", pool.get_tasks_running(), " tasks running, ", pool.get_tasks_queued(), " tasks queued ");
check(pool.get_tasks_total() == n * 3 && pool.get_tasks_running() == n && pool.get_tasks_queued() == n * 2);
for (BS::concurrency_t i = 0; i < n; ++i)
release[i] = true;
std::this_thread::sleep_for(sleep_time);
dual_println("After releasing ", n, " tasks, should have: ", n * 2, " tasks total, ", n, " tasks running, ", n, " tasks queued...");
dual_print("Result: ", pool.get_tasks_total(), " tasks total, ", pool.get_tasks_running(), " tasks running, ", pool.get_tasks_queued(), " tasks queued ");
check(pool.get_tasks_total() == n * 2 && pool.get_tasks_running() == n && pool.get_tasks_queued() == n);
for (BS::concurrency_t i = n; i < n * 2; ++i)
release[i] = true;
std::this_thread::sleep_for(sleep_time);
dual_println("After releasing ", n, " more tasks, should have: ", n, " tasks total, ", n, " tasks running, ", 0, " tasks queued...");
dual_print("Result: ", pool.get_tasks_total(), " tasks total, ", pool.get_tasks_running(), " tasks running, ", pool.get_tasks_queued(), " tasks queued ");
check(pool.get_tasks_total() == n && pool.get_tasks_running() == n && pool.get_tasks_queued() == 0);
for (BS::concurrency_t i = n * 2; i < n * 3; ++i)
release[i] = true;
std::this_thread::sleep_for(sleep_time);
dual_println("After releasing the final ", n, " tasks, should have: ", 0, " tasks total, ", 0, " tasks running, ", 0, " tasks queued...");
dual_print("Result: ", pool.get_tasks_total(), " tasks total, ", pool.get_tasks_running(), " tasks running, ", pool.get_tasks_queued(), " tasks queued ");
check(pool.get_tasks_total() == 0 && pool.get_tasks_running() == 0 && pool.get_tasks_queued() == 0);
dual_println("Resetting pool to ", std::thread::hardware_concurrency(), " threads.");
pool.reset(std::thread::hardware_concurrency());
}
/**
* @brief Check that pausing works.
*/
void check_pausing()
{
BS::concurrency_t n = std::min<BS::concurrency_t>(std::thread::hardware_concurrency(), 4);
dual_println("Resetting pool to ", n, " threads.");
pool.reset(n);
dual_println("Checking that the pool correctly reports that it is not paused.");
check(pool.is_paused() == false);
dual_println("Pausing pool.");
pool.pause();
dual_println("Checking that the pool correctly reports that it is paused.");
check(pool.is_paused() == true);
dual_println("Submitting ", n * 3, " tasks, each one waiting for 200ms.");
for (BS::concurrency_t i = 0; i < n * 3; ++i)
pool.push_task(
[i]
{
std::this_thread::sleep_for(std::chrono::milliseconds(200));
dual_println("Task ", i, " done.");
});
dual_println("Immediately after submission, should have: ", n * 3, " tasks total, ", 0, " tasks running, ", n * 3, " tasks queued...");
dual_print("Result: ", pool.get_tasks_total(), " tasks total, ", pool.get_tasks_running(), " tasks running, ", pool.get_tasks_queued(), " tasks queued ");
check(pool.get_tasks_total() == n * 3 && pool.get_tasks_running() == 0 && pool.get_tasks_queued() == n * 3);
std::this_thread::sleep_for(std::chrono::milliseconds(300));
dual_println("300ms later, should still have: ", n * 3, " tasks total, ", 0, " tasks running, ", n * 3, " tasks queued...");
dual_print("Result: ", pool.get_tasks_total(), " tasks total, ", pool.get_tasks_running(), " tasks running, ", pool.get_tasks_queued(), " tasks queued ");
check(pool.get_tasks_total() == n * 3 && pool.get_tasks_running() == 0 && pool.get_tasks_queued() == n * 3);
dual_println("Unpausing pool.");
pool.unpause();
dual_println("Checking that the pool correctly reports that it is not paused.");
check(pool.is_paused() == false);
std::this_thread::sleep_for(std::chrono::milliseconds(300));
dual_println("300ms later, should have: ", n * 2, " tasks total, ", n, " tasks running, ", n, " tasks queued...");
dual_print("Result: ", pool.get_tasks_total(), " tasks total, ", pool.get_tasks_running(), " tasks running, ", pool.get_tasks_queued(), " tasks queued ");
check(pool.get_tasks_total() == n * 2 && pool.get_tasks_running() == n && pool.get_tasks_queued() == n);
dual_println("Pausing pool and using wait_for_tasks() to wait for the running tasks.");
pool.pause();
pool.wait_for_tasks();
dual_println("After waiting, should have: ", n, " tasks total, ", 0, " tasks running, ", n, " tasks queued...");
dual_print("Result: ", pool.get_tasks_total(), " tasks total, ", pool.get_tasks_running(), " tasks running, ", pool.get_tasks_queued(), " tasks queued ");
check(pool.get_tasks_total() == n && pool.get_tasks_running() == 0 && pool.get_tasks_queued() == n);
std::this_thread::sleep_for(std::chrono::milliseconds(200));
dual_println("200ms later, should still have: ", n, " tasks total, ", 0, " tasks running, ", n, " tasks queued...");
dual_print("Result: ", pool.get_tasks_total(), " tasks total, ", pool.get_tasks_running(), " tasks running, ", pool.get_tasks_queued(), " tasks queued ");
check(pool.get_tasks_total() == n && pool.get_tasks_running() == 0 && pool.get_tasks_queued() == n);
dual_println("Unpausing pool and using wait_for_tasks() to wait for all tasks.");
pool.unpause();
pool.wait_for_tasks();
dual_println("After waiting, should have: ", 0, " tasks total, ", 0, " tasks running, ", 0, " tasks queued...");
dual_print("Result: ", pool.get_tasks_total(), " tasks total, ", pool.get_tasks_running(), " tasks running, ", pool.get_tasks_queued(), " tasks queued ");
check(pool.get_tasks_total() == 0 && pool.get_tasks_running() == 0 && pool.get_tasks_queued() == 0);
dual_println("Resetting pool to ", std::thread::hardware_concurrency(), " threads.");
pool.reset(std::thread::hardware_concurrency());
}
// ======================================
// Functions to verify exception handling
// ======================================
/**
* @brief Check that exception handling works.
*/
void check_exceptions()
{
dual_println("Checking that exceptions are forwarded correctly by submit()...");
bool caught = false;
auto throws = []
{
dual_println("Throwing exception...");
throw std::runtime_error("Exception thrown!");
};
std::future<void> my_future = pool.submit(throws);
try
{
my_future.get();
}
catch (const std::exception& e)
{
if (e.what() == std::string("Exception thrown!"))
caught = true;
}
check(caught);
dual_println("Checking that exceptions are forwarded correctly by BS::multi_future...");
caught = false;
BS::multi_future<void> my_future2;
my_future2.push_back(pool.submit(throws));
my_future2.push_back(pool.submit(throws));
try
{
void(my_future2.get());
}
catch (const std::exception& e)
{
if (e.what() == std::string("Exception thrown!"))
caught = true;
}
check(caught);
}
// =====================================
// Functions to verify vector operations
// =====================================
/**
* @brief Check that parallelized vector operations work as expected by calculating the sum of two randomized vectors of a specific size in two ways, single-threaded and multithreaded, and comparing the results.
*/
void check_vector_of_size(const size_t vector_size, const BS::concurrency_t num_tasks)
{
std::vector<int64_t> vector_1(vector_size);
std::vector<int64_t> vector_2(vector_size);
std::mt19937_64 mt(rd());
std::uniform_int_distribution<int64_t> vector_dist(-1000000, 1000000);
for (size_t i = 0; i < vector_size; ++i)
{
vector_1[i] = vector_dist(mt);
vector_2[i] = vector_dist(mt);
}
dual_println("Adding two vectors with ", vector_size, " elements using ", num_tasks, " tasks...");
std::vector<int64_t> sum_single(vector_size);
for (size_t i = 0; i < vector_size; ++i)
sum_single[i] = vector_1[i] + vector_2[i];
std::vector<int64_t> sum_multi(vector_size);
pool.parallelize_loop(
0, vector_size,
[&sum_multi, &vector_1, &vector_2](const size_t start, const size_t end)
{
for (size_t i = start; i < end; ++i)
sum_multi[i] = vector_1[i] + vector_2[i];
},
num_tasks)
.wait();
bool vectors_equal = true;
for (size_t i = 0; i < vector_size; ++i)
vectors_equal = vectors_equal && (sum_single[i] == sum_multi[i]);
check(vectors_equal);
}
/**
* @brief Check that parallelized vector operations work as expected by calculating the sum of two randomized vectors in two ways, single-threaded and multithreaded, and comparing the results.
*/
void check_vectors()
{
pool.reset();
std::mt19937_64 mt(rd());
std::uniform_int_distribution<size_t> size_dist(0, 1000000);
std::uniform_int_distribution<BS::concurrency_t> task_dist(1, pool.get_thread_count());
for (size_t i = 0; i < 10; ++i)
check_vector_of_size(size_dist(mt), task_dist(mt));
}
// ==================
// Main test function
// ==================
/**
* @brief Test that various aspects of the library are working as expected.
*/
void do_tests()
{
print_header("Checking that the constructor works:");
check_constructor();
print_header("Checking that reset() works:");
check_reset();
print_header("Checking that push_task() works:");
check_push_task();
print_header("Checking that submit() works:");
check_submit();
print_header("Checking that submitting member functions works:");
check_member_function();
print_header("Checking that submitting member functions from within an object works:");
check_member_function_within_object();
print_header("Checking that wait_for_tasks() works...");
check_wait_for_tasks();
print_header("Checking that push_loop() and parallelize_loop() work:");
check_parallelize_loop();
print_header("Checking that task monitoring works:");
check_task_monitoring();
print_header("Checking that pausing works:");
check_pausing();
print_header("Checking that exception handling works:");
check_exceptions();
print_header("Testing that vector operations produce the expected results:");
check_vectors();
}
// ==========================
// Functions for benchmarking
// ==========================
/**
* @brief Print the timing of a specific test.
*
* @param num_tasks The number of tasks.
* @param mean_sd An std::pair containing the mean as the first member and standard deviation as the second member.
*/
void print_timing(const BS::concurrency_t num_tasks, const std::pair<double, double>& mean_sd)
{
if (num_tasks == 0)
dual_print("Single-threaded");
else if (num_tasks == 1)
dual_print("With 1 task");
else
dual_print("With ", std::setw(4), num_tasks, " tasks");
dual_println(", mean execution time was ", std::setw(6), mean_sd.first, " ms with standard deviation ", std::setw(4), mean_sd.second, " ms.");
}
/**
* @brief Calculate and print the speedup obtained by multithreading.
*
* @param timings A vector of the timings corresponding to different numbers of tasks.
*/
void print_speedup(const std::vector<double>& timings, const BS::concurrency_t try_tasks[])
{
const std::vector<double>::const_iterator min_el = std::min_element(std::begin(timings), std::end(timings));
const double max_speedup = std::round(timings[0] / *min_el * 10) / 10;
const BS::concurrency_t num_tasks = try_tasks[min_el - std::begin(timings)];
dual_println("Maximum speedup obtained by multithreading vs. single-threading: ", max_speedup, "x, using ", num_tasks, " tasks.");
}
/**
* @brief Calculate the mean and standard deviation of a set of integers.
*
* @param timings The integers.
* @return An std::pair containing the mean as the first member and standard deviation as the second member.
*/
std::pair<double, double> analyze(const std::vector<std::chrono::milliseconds::rep>& timings)
{
double mean = 0;
for (size_t i = 0; i < timings.size(); ++i)
mean += static_cast<double>(timings[i]) / static_cast<double>(timings.size());
double variance = 0;
for (size_t i = 0; i < timings.size(); ++i)
variance += (static_cast<double>(timings[i]) - mean) * (static_cast<double>(timings[i]) - mean) / static_cast<double>(timings.size());
const double sd = std::sqrt(variance);
return {mean, sd};
}
/**
* @brief A function to generate vector elements. Chosen arbitrarily to simulate a typical numerical calculation.
*
* @param i The vector number.
* @param j The element index.
* @return The value of the element.
*/
double generate_element(const size_t i, const size_t j)
{
return std::log(std::sqrt(std::exp(std::sin(i) + std::cos(j))));
}
/**
* @brief Benchmark multithreaded performance.
*/
void check_performance()
{
// Reset the pool to ensure that we have a fresh start.
pool.reset();
// Set the formatting of floating point numbers.
dual_print(std::fixed, std::setprecision(1));
// Initialize a timer object to measure execution time.
BS::timer tmr;
// Store the number of available hardware threads for easy access.
const BS::concurrency_t thread_count = pool.get_thread_count();
dual_println("Using ", thread_count, " threads.");
// Define the number of tasks to try in each run of the test (0 = single-threaded).
const BS::concurrency_t try_tasks[] = {0, thread_count / 4, thread_count / 2, thread_count, thread_count * 2, thread_count * 4};
// How many times to repeat each run of the test in order to collect reliable statistics.
constexpr size_t repeat = 20;
dual_println("Each test will be repeated ", repeat, " times to collect reliable statistics.");
// The target execution time, in milliseconds, of the multi-threaded test with the number of blocks equal to the number of threads. The total time spent on that test will be approximately equal to repeat * target_ms.
constexpr std::chrono::milliseconds::rep target_ms = 50;
// Test how many vectors we need to generate, and of what size, to roughly achieve the target execution time.
dual_println("Determining the number and size of vectors to generate in order to achieve an approximate mean execution time of ", target_ms, " ms with ", thread_count, " tasks...");
size_t num_vectors = 64;
size_t vector_size = 64;
std::vector<std::vector<double>> vectors;
auto loop = [&vectors, &vector_size](const size_t start, const size_t end)
{
for (size_t i = start; i < end; ++i)
{
for (size_t j = 0; j < vector_size; ++j)
vectors[i][j] = generate_element(i, j);
}
};
do
{
num_vectors *= 2;
vector_size *= 2;
vectors = std::vector<std::vector<double>>(num_vectors, std::vector<double>(vector_size));
tmr.start();
pool.push_loop(num_vectors, loop);
pool.wait_for_tasks();
tmr.stop();
} while (tmr.ms() < target_ms);
num_vectors = thread_count * static_cast<size_t>(std::llround(static_cast<double>(num_vectors) * static_cast<double>(target_ms) / static_cast<double>(tmr.ms()) / thread_count));
// Initialize the desired number of vectors.
vectors = std::vector<std::vector<double>>(num_vectors, std::vector<double>(vector_size));
// Define vectors to store statistics.
std::vector<double> different_n_timings;
std::vector<std::chrono::milliseconds::rep> same_n_timings;
// Perform the test.
dual_println("Generating ", num_vectors, " vectors with ", vector_size, " elements each:");
for (BS::concurrency_t n : try_tasks)
{
for (size_t r = 0; r < repeat; ++r)
{
tmr.start();