Skip to content

Latest commit

 

History

History
77 lines (60 loc) · 1.86 KB

pattern-recognition.md

File metadata and controls

77 lines (60 loc) · 1.86 KB

Pattern Recognition System

Overview

The Pattern Recognition module is a critical component of the DataHive pipeline that identifies, analyzes, and extracts meaningful patterns from legal documents using advanced machine learning and natural language processing techniques.

Core Components

Pattern Analysis Engine

class PatternAnalyzer:
    def __init__(self):
        self.nlp_processor = NLPProcessor()
        self.pattern_matcher = PatternMatcher()
        self.knowledge_graph = LegalKnowledgeGraph()

    async def analyze_document(self, legal_text):
        entities = self.nlp_processor.extract_entities(legal_text)
        patterns = self.pattern_matcher.find_patterns(entities)
        return self.knowledge_graph.update(patterns)

Recognition Capabilities

Legal Entity Recognition

  • Court names and jurisdictions
  • Legal citations and references
  • Party names and roles
  • Document types and classifications

Pattern Types

  • Precedent relationships
  • Legal arguments and reasoning
  • Regulatory requirements
  • Compliance obligations

Integration Points

Document Processing

  • Receives preprocessed documents from indexer
  • Validates document structure
  • Extracts relevant sections
  • Prepares text for analysis

Knowledge Graph

  • Updates legal knowledge models
  • Maps entity relationships
  • Tracks pattern evolution
  • Maintains citation networks

Quality Controls

Validation Process

  • Pattern verification against known models
  • Cross-reference checking
  • Consistency validation
  • Accuracy assessment

Performance Metrics

  • Pattern recognition accuracy
  • Processing speed
  • False positive rates
  • Coverage statistics

Security Measures

Data Protection

  • Pattern encryption
  • Access control
  • Audit logging
  • Version control

Compliance

  • Privacy preservation
  • Regulatory adherence
  • Data minimization
  • Retention policies