Skip to content

Latest commit

 

History

History
66 lines (50 loc) · 1.7 KB

validation-engine.md

File metadata and controls

66 lines (50 loc) · 1.7 KB

Validation Engine

Overview

The DataHive Validation Engine is a critical component of the LN1 pipeline that ensures data quality, accuracy, and reliability through automated validation processes and multi-node consensus.

Core Components

Engine Architecture

class ValidationEngine:
    def __init__(self):
        self.validators = []
        self.consensus_threshold = 0.67  # 2/3 majority required
        self.validation_rules = ValidationRules()

    async def process_validation(self, legal_data):
        initial_validation = await self.validate_content(legal_data)
        consensus_result = await self.achieve_consensus(initial_validation)
        return self.generate_validation_report(consensus_result)

Validation Process

Content Validation

  • Source authenticity verification
  • Document structure analysis
  • Legal reference validation
  • Metadata completeness checks

Consensus Mechanism

  • Multi-node validation distribution
  • Response aggregation
  • Threshold verification
  • Conflict resolution

Integration Points

Pipeline Components

  • Interfaces with document indexer
  • Connects to pattern recognition module
  • Feeds into storage system
  • Updates knowledge models

Cross-Node Operations

  • Validation request broadcasting
  • Result collection and aggregation
  • State synchronization
  • Error handling

Quality Metrics

Performance Monitoring

  • Validation success rates
  • Processing time tracking
  • Error frequency analysis
  • Consensus achievement rates

Quality Assurance

  • Automated validation checks
  • Manual review triggers
  • Performance benchmarking
  • Continuous improvement tracking

Note: This documentation is subject to updates as the validation engine evolves.