Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
English
ArXiv:
DOI:
Libraries:
Datasets
Dask
License:
eltorio commited on
Commit
768a05f
·
verified ·
1 Parent(s): f2f7e7a

Shows the notebook used for generating the dataset

Browse files
Files changed (1) hide show
  1. generate.ipynb +1689 -0
generate.ipynb ADDED
@@ -0,0 +1,1689 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import os\n",
10
+ "os.environ['HF_TOKEN'] = 'hf_………………………'\n",
11
+ "train_file = 'source_dataset/train_captions.csv'\n",
12
+ "validation_file = 'source_dataset/valid_captions.csv'\n",
13
+ "train_concepts_file = 'source_dataset/train_concepts_manual.csv'\n",
14
+ "validation_concepts_file = 'source_dataset/valid_concepts_manual.csv'\n",
15
+ "test_file = 'source_dataset/test_captions.csv'\n",
16
+ "test_concepts_file = 'source_dataset/test_concepts_manual.csv'\n",
17
+ "dataset_name = 'eltorio/ROCOv2'"
18
+ ]
19
+ },
20
+ {
21
+ "cell_type": "markdown",
22
+ "metadata": {},
23
+ "source": [
24
+ "### Login to Hugging Face"
25
+ ]
26
+ },
27
+ {
28
+ "cell_type": "code",
29
+ "execution_count": 2,
30
+ "metadata": {},
31
+ "outputs": [
32
+ {
33
+ "name": "stdout",
34
+ "output_type": "stream",
35
+ "text": [
36
+ "Hugging Face token found in environment variable\n"
37
+ ]
38
+ },
39
+ {
40
+ "name": "stderr",
41
+ "output_type": "stream",
42
+ "text": [
43
+ "Note: Environment variable`HF_TOKEN` is set and is the current active token independently from the token you've just configured.\n"
44
+ ]
45
+ }
46
+ ],
47
+ "source": [
48
+ "from huggingface_hub import login\n",
49
+ "import os\n",
50
+ "\n",
51
+ "HF_TOKEN = \"\"\n",
52
+ "\n",
53
+ "if os.environ.get('HF_TOKEN') is not None:\n",
54
+ " HF_TOKEN = os.environ.get('HF_TOKEN')\n",
55
+ " print(f\"Hugging Face token found in environment variable\")\n",
56
+ "try:\n",
57
+ " import google.colab\n",
58
+ " from google.colab import userdata\n",
59
+ " if (userdata.get('HF_TOKEN') is not None) and (HF_TOKEN == \"\"):\n",
60
+ " HF_TOKEN = userdata.get('HF_TOKEN')\n",
61
+ " else:\n",
62
+ " raise ValueError(\"Please set your Hugging Face token in the user data panel, or pass it as an environment variable\")\n",
63
+ "except ModuleNotFoundError:\n",
64
+ " if HF_TOKEN is None:\n",
65
+ " raise ValueError(\"Please set your Hugging Face token in the user data panel, or pass it as an environment variable\")\n",
66
+ "\n",
67
+ "login(\n",
68
+ " token=HF_TOKEN,\n",
69
+ " add_to_git_credential=True\n",
70
+ ")"
71
+ ]
72
+ },
73
+ {
74
+ "cell_type": "code",
75
+ "execution_count": null,
76
+ "metadata": {},
77
+ "outputs": [],
78
+ "source": [
79
+ "from datasets import load_dataset, Dataset, Image as HFImage, concatenate_datasets\n",
80
+ "import datasets\n",
81
+ "from PIL import Image\n",
82
+ "import pandas as pd\n",
83
+ "import io\n",
84
+ "\n",
85
+ "# load image in the DataFrame\n",
86
+ "def load_image(image_id, image_path='train'):\n",
87
+ " image_path = os.path.join(f\"source_dataset/{image_path}\", f\"{image_id}.jpg\")\n",
88
+ " image_jpg= Image.open(image_path)\n",
89
+ " image_bytes = io.BytesIO()\n",
90
+ " image_jpg.save(image_bytes, format='PNG') # Save as PNG\n",
91
+ " # Replace PIL image with a new PNG image created from the bytes\n",
92
+ " return image_bytes.getvalue()\n",
93
+ "\n",
94
+ "# Function to apply load_cui with progress tracking\n",
95
+ "def apply_with_progress(df, func, column, nb, image_path='train'):\n",
96
+ " result = []\n",
97
+ " for i, value in enumerate(df[column]):\n",
98
+ " result.append(func(value, image_path))\n",
99
+ " if (i + 1) % nb == 0:\n",
100
+ " print(f\"Processed {i + 1} rows\")\n",
101
+ " return result\n"
102
+ ]
103
+ },
104
+ {
105
+ "cell_type": "markdown",
106
+ "metadata": {},
107
+ "source": [
108
+ "### Create the train split"
109
+ ]
110
+ },
111
+ {
112
+ "cell_type": "code",
113
+ "execution_count": null,
114
+ "metadata": {},
115
+ "outputs": [
116
+ {
117
+ "data": {
118
+ "text/plain": [
119
+ "'C1306645'"
120
+ ]
121
+ },
122
+ "execution_count": 6,
123
+ "metadata": {},
124
+ "output_type": "execute_result"
125
+ }
126
+ ],
127
+ "source": [
128
+ "# Load the CUI CSV file into a pandas DataFrame\n",
129
+ "train_concept_unique_identifier_df = pd.read_csv(train_concepts_file)\n",
130
+ "\n",
131
+ "# load CUI to the train_df DataFrame by looking up the CUI in the concept_unique_dentifier_df\n",
132
+ "# concept_unique_dentifier_df is a DataFrame that contains the mapping between the image ID and the CUIs\n",
133
+ "def load_train_cui(image_id, image_path='train'):\n",
134
+ " cuis = train_concept_unique_identifier_df[train_concept_unique_identifier_df['ID'] == image_id]['CUIs']\n",
135
+ " split = str(cuis.values[0]).split(';')\n",
136
+ " return split\n",
137
+ "\n",
138
+ "# Load a CSV file into a pandas DataFrame\n",
139
+ "train_df = pd.read_csv(train_file)\n",
140
+ "train_df.rename(columns={'ID': 'image_id', 'Caption': 'caption'}, inplace=True)\n",
141
+ "train_df['image'] = apply_with_progress(train_df, load_image, 'image_id',100)\n",
142
+ "train_df = train_df[['image', 'image_id', 'caption']]\n",
143
+ "train_df['cui'] = apply_with_progress(train_df, load_train_cui, 'image_id',1000)\n",
144
+ "train_dataset = Dataset.from_pandas(train_df).cast_column(\"image\", HFImage())\n",
145
+ "train_dataset.save_to_disk('train_dataset')\n",
146
+ "# train_dataset.push_to_hub(dataset_name)\n"
147
+ ]
148
+ },
149
+ {
150
+ "cell_type": "markdown",
151
+ "metadata": {},
152
+ "source": [
153
+ "### Create the validation split"
154
+ ]
155
+ },
156
+ {
157
+ "cell_type": "code",
158
+ "execution_count": 18,
159
+ "metadata": {},
160
+ "outputs": [
161
+ {
162
+ "name": "stdout",
163
+ "output_type": "stream",
164
+ "text": [
165
+ "Processed 100 rows\n",
166
+ "Processed 200 rows\n",
167
+ "Processed 300 rows\n",
168
+ "Processed 400 rows\n",
169
+ "Processed 500 rows\n",
170
+ "Processed 600 rows\n",
171
+ "Processed 700 rows\n",
172
+ "Processed 800 rows\n",
173
+ "Processed 900 rows\n",
174
+ "Processed 1000 rows\n",
175
+ "Processed 1100 rows\n",
176
+ "Processed 1200 rows\n",
177
+ "Processed 1300 rows\n",
178
+ "Processed 1400 rows\n",
179
+ "Processed 1500 rows\n",
180
+ "Processed 1600 rows\n",
181
+ "Processed 1700 rows\n",
182
+ "Processed 1800 rows\n",
183
+ "Processed 1900 rows\n",
184
+ "Processed 2000 rows\n",
185
+ "Processed 2100 rows\n",
186
+ "Processed 2200 rows\n",
187
+ "Processed 2300 rows\n",
188
+ "Processed 2400 rows\n",
189
+ "Processed 2500 rows\n",
190
+ "Processed 2600 rows\n",
191
+ "Processed 2700 rows\n",
192
+ "Processed 2800 rows\n",
193
+ "Processed 2900 rows\n",
194
+ "Processed 3000 rows\n",
195
+ "Processed 3100 rows\n",
196
+ "Processed 3200 rows\n",
197
+ "Processed 3300 rows\n",
198
+ "Processed 3400 rows\n",
199
+ "Processed 3500 rows\n",
200
+ "Processed 3600 rows\n",
201
+ "Processed 3700 rows\n",
202
+ "Processed 3800 rows\n",
203
+ "Processed 3900 rows\n",
204
+ "Processed 4000 rows\n",
205
+ "Processed 4100 rows\n",
206
+ "Processed 4200 rows\n",
207
+ "Processed 4300 rows\n",
208
+ "Processed 4400 rows\n",
209
+ "Processed 4500 rows\n",
210
+ "Processed 4600 rows\n",
211
+ "Processed 4700 rows\n",
212
+ "Processed 4800 rows\n",
213
+ "Processed 4900 rows\n",
214
+ "Processed 5000 rows\n",
215
+ "Processed 5100 rows\n",
216
+ "Processed 5200 rows\n",
217
+ "Processed 5300 rows\n",
218
+ "Processed 5400 rows\n",
219
+ "Processed 5500 rows\n",
220
+ "Processed 5600 rows\n",
221
+ "Processed 5700 rows\n",
222
+ "Processed 5800 rows\n",
223
+ "Processed 5900 rows\n",
224
+ "Processed 6000 rows\n",
225
+ "Processed 6100 rows\n",
226
+ "Processed 6200 rows\n",
227
+ "Processed 6300 rows\n",
228
+ "Processed 6400 rows\n",
229
+ "Processed 6500 rows\n",
230
+ "Processed 6600 rows\n",
231
+ "Processed 6700 rows\n",
232
+ "Processed 6800 rows\n",
233
+ "Processed 6900 rows\n",
234
+ "Processed 7000 rows\n",
235
+ "Processed 7100 rows\n",
236
+ "Processed 7200 rows\n",
237
+ "Processed 7300 rows\n",
238
+ "Processed 7400 rows\n",
239
+ "Processed 7500 rows\n",
240
+ "Processed 7600 rows\n",
241
+ "Processed 7700 rows\n",
242
+ "Processed 7800 rows\n",
243
+ "Processed 7900 rows\n",
244
+ "Processed 8000 rows\n",
245
+ "Processed 8100 rows\n",
246
+ "Processed 8200 rows\n",
247
+ "Processed 8300 rows\n",
248
+ "Processed 8400 rows\n",
249
+ "Processed 8500 rows\n",
250
+ "Processed 8600 rows\n",
251
+ "Processed 8700 rows\n",
252
+ "Processed 8800 rows\n",
253
+ "Processed 8900 rows\n",
254
+ "Processed 9000 rows\n",
255
+ "Processed 9100 rows\n",
256
+ "Processed 9200 rows\n",
257
+ "Processed 9300 rows\n",
258
+ "Processed 9400 rows\n",
259
+ "Processed 9500 rows\n",
260
+ "Processed 9600 rows\n",
261
+ "Processed 9700 rows\n",
262
+ "Processed 9800 rows\n",
263
+ "Processed 9900 rows\n",
264
+ "Processed 1000 rows\n",
265
+ "Processed 2000 rows\n",
266
+ "Processed 3000 rows\n",
267
+ "Processed 4000 rows\n",
268
+ "Processed 5000 rows\n",
269
+ "Processed 6000 rows\n",
270
+ "Processed 7000 rows\n",
271
+ "Processed 8000 rows\n",
272
+ "Processed 9000 rows\n"
273
+ ]
274
+ },
275
+ {
276
+ "data": {
277
+ "application/vnd.jupyter.widget-view+json": {
278
+ "model_id": "51d6b43247154559ab65ddb1cfe9fd95",
279
+ "version_major": 2,
280
+ "version_minor": 0
281
+ },
282
+ "text/plain": [
283
+ "Saving the dataset (0/6 shards): 0%| | 0/9904 [00:00<?, ? examples/s]"
284
+ ]
285
+ },
286
+ "metadata": {},
287
+ "output_type": "display_data"
288
+ }
289
+ ],
290
+ "source": [
291
+ "# Load the CUI CSV file into a pandas DataFrame\n",
292
+ "valid_concept_unique_identifier_df = pd.read_csv(validation_concepts_file)\n",
293
+ "\n",
294
+ "def load_valid_cui(image_id, image_path='train'):\n",
295
+ " cuis = valid_concept_unique_identifier_df[valid_concept_unique_identifier_df['ID'] == image_id]['CUIs']\n",
296
+ " split = str(cuis.values[0]).split(';')\n",
297
+ " return split\n",
298
+ "\n",
299
+ "valid_df = pd.read_csv(validation_file)\n",
300
+ "valid_df.rename(columns={'ID': 'image_id', 'Caption': 'caption'}, inplace=True)\n",
301
+ "valid_df['image'] = apply_with_progress(valid_df, load_image, 'image_id',100, 'valid')\n",
302
+ "valid_df = valid_df[['image', 'image_id', 'caption']]\n",
303
+ "valid_df['cui'] = apply_with_progress(valid_df, load_valid_cui, 'image_id',1000)\n",
304
+ "valid_dataset = Dataset.from_pandas(valid_df).cast_column(\"image\", HFImage())\n",
305
+ "valid_dataset.save_to_disk('valid_dataset')"
306
+ ]
307
+ },
308
+ {
309
+ "cell_type": "markdown",
310
+ "metadata": {},
311
+ "source": [
312
+ "### Create the test split"
313
+ ]
314
+ },
315
+ {
316
+ "cell_type": "code",
317
+ "execution_count": 22,
318
+ "metadata": {},
319
+ "outputs": [
320
+ {
321
+ "name": "stdout",
322
+ "output_type": "stream",
323
+ "text": [
324
+ "Processed 100 rows\n",
325
+ "Processed 200 rows\n",
326
+ "Processed 300 rows\n",
327
+ "Processed 400 rows\n",
328
+ "Processed 500 rows\n",
329
+ "Processed 600 rows\n",
330
+ "Processed 700 rows\n",
331
+ "Processed 800 rows\n",
332
+ "Processed 900 rows\n",
333
+ "Processed 1000 rows\n",
334
+ "Processed 1100 rows\n",
335
+ "Processed 1200 rows\n",
336
+ "Processed 1300 rows\n",
337
+ "Processed 1400 rows\n",
338
+ "Processed 1500 rows\n",
339
+ "Processed 1600 rows\n",
340
+ "Processed 1700 rows\n",
341
+ "Processed 1800 rows\n",
342
+ "Processed 1900 rows\n",
343
+ "Processed 2000 rows\n",
344
+ "Processed 2100 rows\n",
345
+ "Processed 2200 rows\n",
346
+ "Processed 2300 rows\n",
347
+ "Processed 2400 rows\n",
348
+ "Processed 2500 rows\n",
349
+ "Processed 2600 rows\n",
350
+ "Processed 2700 rows\n",
351
+ "Processed 2800 rows\n",
352
+ "Processed 2900 rows\n",
353
+ "Processed 3000 rows\n",
354
+ "Processed 3100 rows\n",
355
+ "Processed 3200 rows\n",
356
+ "Processed 3300 rows\n",
357
+ "Processed 3400 rows\n",
358
+ "Processed 3500 rows\n",
359
+ "Processed 3600 rows\n",
360
+ "Processed 3700 rows\n",
361
+ "Processed 3800 rows\n",
362
+ "Processed 3900 rows\n",
363
+ "Processed 4000 rows\n",
364
+ "Processed 4100 rows\n",
365
+ "Processed 4200 rows\n",
366
+ "Processed 4300 rows\n",
367
+ "Processed 4400 rows\n",
368
+ "Processed 4500 rows\n",
369
+ "Processed 4600 rows\n",
370
+ "Processed 4700 rows\n",
371
+ "Processed 4800 rows\n",
372
+ "Processed 4900 rows\n",
373
+ "Processed 5000 rows\n",
374
+ "Processed 5100 rows\n",
375
+ "Processed 5200 rows\n",
376
+ "Processed 5300 rows\n",
377
+ "Processed 5400 rows\n",
378
+ "Processed 5500 rows\n",
379
+ "Processed 5600 rows\n",
380
+ "Processed 5700 rows\n",
381
+ "Processed 5800 rows\n",
382
+ "Processed 5900 rows\n",
383
+ "Processed 6000 rows\n",
384
+ "Processed 6100 rows\n",
385
+ "Processed 6200 rows\n",
386
+ "Processed 6300 rows\n",
387
+ "Processed 6400 rows\n",
388
+ "Processed 6500 rows\n",
389
+ "Processed 6600 rows\n",
390
+ "Processed 6700 rows\n",
391
+ "Processed 6800 rows\n",
392
+ "Processed 6900 rows\n",
393
+ "Processed 7000 rows\n",
394
+ "Processed 7100 rows\n",
395
+ "Processed 7200 rows\n",
396
+ "Processed 7300 rows\n",
397
+ "Processed 7400 rows\n",
398
+ "Processed 7500 rows\n",
399
+ "Processed 7600 rows\n",
400
+ "Processed 7700 rows\n",
401
+ "Processed 7800 rows\n",
402
+ "Processed 7900 rows\n",
403
+ "Processed 8000 rows\n",
404
+ "Processed 8100 rows\n",
405
+ "Processed 8200 rows\n",
406
+ "Processed 8300 rows\n",
407
+ "Processed 8400 rows\n",
408
+ "Processed 8500 rows\n",
409
+ "Processed 8600 rows\n",
410
+ "Processed 8700 rows\n",
411
+ "Processed 8800 rows\n",
412
+ "Processed 8900 rows\n",
413
+ "Processed 9000 rows\n",
414
+ "Processed 9100 rows\n",
415
+ "Processed 9200 rows\n",
416
+ "Processed 9300 rows\n",
417
+ "Processed 9400 rows\n",
418
+ "Processed 9500 rows\n",
419
+ "Processed 9600 rows\n",
420
+ "Processed 9700 rows\n",
421
+ "Processed 9800 rows\n",
422
+ "Processed 9900 rows\n",
423
+ "Processed 1000 rows\n",
424
+ "Processed 2000 rows\n",
425
+ "Processed 3000 rows\n",
426
+ "Processed 4000 rows\n",
427
+ "Processed 5000 rows\n",
428
+ "Processed 6000 rows\n",
429
+ "Processed 7000 rows\n",
430
+ "Processed 8000 rows\n",
431
+ "Processed 9000 rows\n"
432
+ ]
433
+ },
434
+ {
435
+ "data": {
436
+ "application/vnd.jupyter.widget-view+json": {
437
+ "model_id": "81c64f32e1e143fa8bcabe18df1571a1",
438
+ "version_major": 2,
439
+ "version_minor": 0
440
+ },
441
+ "text/plain": [
442
+ "Saving the dataset (0/6 shards): 0%| | 0/9927 [00:00<?, ? examples/s]"
443
+ ]
444
+ },
445
+ "metadata": {},
446
+ "output_type": "display_data"
447
+ }
448
+ ],
449
+ "source": [
450
+ "# Load the CUI CSV file into a pandas DataFrame\n",
451
+ "test_concept_unique_identifier_df = pd.read_csv(test_concepts_file)\n",
452
+ "\n",
453
+ "def load_test_cui(image_id, image_path='train'):\n",
454
+ " cuis = test_concept_unique_identifier_df[test_concept_unique_identifier_df['ID'] == image_id]['CUIs']\n",
455
+ " split = str(cuis.values[0]).split(';')\n",
456
+ " return split\n",
457
+ "\n",
458
+ "\n",
459
+ "test_df = pd.read_csv(test_file)\n",
460
+ "test_df.rename(columns={'ID': 'image_id', 'Caption': 'caption'}, inplace=True)\n",
461
+ "test_df['image'] = apply_with_progress(test_df, load_image, 'image_id',100, 'test')\n",
462
+ "test_df = test_df[['image', 'image_id', 'caption']]\n",
463
+ "test_df['cui'] = apply_with_progress(test_df, load_test_cui, 'image_id',1000)\n",
464
+ "test_dataset = Dataset.from_pandas(test_df).cast_column(\"image\", HFImage())\n",
465
+ "test_dataset.save_to_disk('test_dataset')"
466
+ ]
467
+ },
468
+ {
469
+ "cell_type": "markdown",
470
+ "metadata": {},
471
+ "source": [
472
+ "### Push the datasets to the Hugging Face hub"
473
+ ]
474
+ },
475
+ {
476
+ "cell_type": "code",
477
+ "execution_count": 24,
478
+ "metadata": {},
479
+ "outputs": [
480
+ {
481
+ "data": {
482
+ "application/vnd.jupyter.widget-view+json": {
483
+ "model_id": "ffcdafe74c434e5bbb52128a89a65654",
484
+ "version_major": 2,
485
+ "version_minor": 0
486
+ },
487
+ "text/plain": [
488
+ "Uploading the dataset shards: 0%| | 0/27 [00:00<?, ?it/s]"
489
+ ]
490
+ },
491
+ "metadata": {},
492
+ "output_type": "display_data"
493
+ },
494
+ {
495
+ "data": {
496
+ "application/vnd.jupyter.widget-view+json": {
497
+ "model_id": "1b109b6a96194f01af1ca7d31c304613",
498
+ "version_major": 2,
499
+ "version_minor": 0
500
+ },
501
+ "text/plain": [
502
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
503
+ ]
504
+ },
505
+ "metadata": {},
506
+ "output_type": "display_data"
507
+ },
508
+ {
509
+ "data": {
510
+ "application/vnd.jupyter.widget-view+json": {
511
+ "model_id": "2ed44b6dbb1e4373a17a3e99540fd11c",
512
+ "version_major": 2,
513
+ "version_minor": 0
514
+ },
515
+ "text/plain": [
516
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
517
+ ]
518
+ },
519
+ "metadata": {},
520
+ "output_type": "display_data"
521
+ },
522
+ {
523
+ "data": {
524
+ "application/vnd.jupyter.widget-view+json": {
525
+ "model_id": "0f603859ca804791b2b159de8a1883a1",
526
+ "version_major": 2,
527
+ "version_minor": 0
528
+ },
529
+ "text/plain": [
530
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
531
+ ]
532
+ },
533
+ "metadata": {},
534
+ "output_type": "display_data"
535
+ },
536
+ {
537
+ "data": {
538
+ "application/vnd.jupyter.widget-view+json": {
539
+ "model_id": "5259887bae534809aa7d7be186eeb994",
540
+ "version_major": 2,
541
+ "version_minor": 0
542
+ },
543
+ "text/plain": [
544
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
545
+ ]
546
+ },
547
+ "metadata": {},
548
+ "output_type": "display_data"
549
+ },
550
+ {
551
+ "data": {
552
+ "application/vnd.jupyter.widget-view+json": {
553
+ "model_id": "3c419c27910a47beb3dec732a6fc425d",
554
+ "version_major": 2,
555
+ "version_minor": 0
556
+ },
557
+ "text/plain": [
558
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
559
+ ]
560
+ },
561
+ "metadata": {},
562
+ "output_type": "display_data"
563
+ },
564
+ {
565
+ "data": {
566
+ "application/vnd.jupyter.widget-view+json": {
567
+ "model_id": "503fd5f3627e481893fba9285fd1600c",
568
+ "version_major": 2,
569
+ "version_minor": 0
570
+ },
571
+ "text/plain": [
572
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
573
+ ]
574
+ },
575
+ "metadata": {},
576
+ "output_type": "display_data"
577
+ },
578
+ {
579
+ "data": {
580
+ "application/vnd.jupyter.widget-view+json": {
581
+ "model_id": "f5c45013bb3f44108ecd62f7d46fd650",
582
+ "version_major": 2,
583
+ "version_minor": 0
584
+ },
585
+ "text/plain": [
586
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
587
+ ]
588
+ },
589
+ "metadata": {},
590
+ "output_type": "display_data"
591
+ },
592
+ {
593
+ "data": {
594
+ "application/vnd.jupyter.widget-view+json": {
595
+ "model_id": "9e05ebaa69524d94845806331eedae74",
596
+ "version_major": 2,
597
+ "version_minor": 0
598
+ },
599
+ "text/plain": [
600
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
601
+ ]
602
+ },
603
+ "metadata": {},
604
+ "output_type": "display_data"
605
+ },
606
+ {
607
+ "data": {
608
+ "application/vnd.jupyter.widget-view+json": {
609
+ "model_id": "567f2819b8494d519059e160f3e1d4a4",
610
+ "version_major": 2,
611
+ "version_minor": 0
612
+ },
613
+ "text/plain": [
614
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
615
+ ]
616
+ },
617
+ "metadata": {},
618
+ "output_type": "display_data"
619
+ },
620
+ {
621
+ "data": {
622
+ "application/vnd.jupyter.widget-view+json": {
623
+ "model_id": "5a44d8d64f03463487837d23a5d0256c",
624
+ "version_major": 2,
625
+ "version_minor": 0
626
+ },
627
+ "text/plain": [
628
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
629
+ ]
630
+ },
631
+ "metadata": {},
632
+ "output_type": "display_data"
633
+ },
634
+ {
635
+ "data": {
636
+ "application/vnd.jupyter.widget-view+json": {
637
+ "model_id": "16a6629711984db8af729a4aaacc2375",
638
+ "version_major": 2,
639
+ "version_minor": 0
640
+ },
641
+ "text/plain": [
642
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
643
+ ]
644
+ },
645
+ "metadata": {},
646
+ "output_type": "display_data"
647
+ },
648
+ {
649
+ "data": {
650
+ "application/vnd.jupyter.widget-view+json": {
651
+ "model_id": "78d19c0e4f6e41c19e17b63e59942e1d",
652
+ "version_major": 2,
653
+ "version_minor": 0
654
+ },
655
+ "text/plain": [
656
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
657
+ ]
658
+ },
659
+ "metadata": {},
660
+ "output_type": "display_data"
661
+ },
662
+ {
663
+ "data": {
664
+ "application/vnd.jupyter.widget-view+json": {
665
+ "model_id": "4381aecaf642483eb125f3f8e832e3b7",
666
+ "version_major": 2,
667
+ "version_minor": 0
668
+ },
669
+ "text/plain": [
670
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
671
+ ]
672
+ },
673
+ "metadata": {},
674
+ "output_type": "display_data"
675
+ },
676
+ {
677
+ "data": {
678
+ "application/vnd.jupyter.widget-view+json": {
679
+ "model_id": "baa8ef88a6a3453684378eb07377782e",
680
+ "version_major": 2,
681
+ "version_minor": 0
682
+ },
683
+ "text/plain": [
684
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
685
+ ]
686
+ },
687
+ "metadata": {},
688
+ "output_type": "display_data"
689
+ },
690
+ {
691
+ "data": {
692
+ "application/vnd.jupyter.widget-view+json": {
693
+ "model_id": "cb0ebcb8d3f94598ad466de1ab913901",
694
+ "version_major": 2,
695
+ "version_minor": 0
696
+ },
697
+ "text/plain": [
698
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
699
+ ]
700
+ },
701
+ "metadata": {},
702
+ "output_type": "display_data"
703
+ },
704
+ {
705
+ "data": {
706
+ "application/vnd.jupyter.widget-view+json": {
707
+ "model_id": "0dc206f92a2c4d019da45038c6389a26",
708
+ "version_major": 2,
709
+ "version_minor": 0
710
+ },
711
+ "text/plain": [
712
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
713
+ ]
714
+ },
715
+ "metadata": {},
716
+ "output_type": "display_data"
717
+ },
718
+ {
719
+ "data": {
720
+ "application/vnd.jupyter.widget-view+json": {
721
+ "model_id": "6f5e81a966f445b798c6ff83f90d4d86",
722
+ "version_major": 2,
723
+ "version_minor": 0
724
+ },
725
+ "text/plain": [
726
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
727
+ ]
728
+ },
729
+ "metadata": {},
730
+ "output_type": "display_data"
731
+ },
732
+ {
733
+ "data": {
734
+ "application/vnd.jupyter.widget-view+json": {
735
+ "model_id": "a658656545ed452080d4d5ba8f4453d0",
736
+ "version_major": 2,
737
+ "version_minor": 0
738
+ },
739
+ "text/plain": [
740
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
741
+ ]
742
+ },
743
+ "metadata": {},
744
+ "output_type": "display_data"
745
+ },
746
+ {
747
+ "data": {
748
+ "application/vnd.jupyter.widget-view+json": {
749
+ "model_id": "c2465c14fb4d442fbb94b3fb70283112",
750
+ "version_major": 2,
751
+ "version_minor": 0
752
+ },
753
+ "text/plain": [
754
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
755
+ ]
756
+ },
757
+ "metadata": {},
758
+ "output_type": "display_data"
759
+ },
760
+ {
761
+ "data": {
762
+ "application/vnd.jupyter.widget-view+json": {
763
+ "model_id": "d4f3c761b279499ba10975fdb9ffc6fd",
764
+ "version_major": 2,
765
+ "version_minor": 0
766
+ },
767
+ "text/plain": [
768
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
769
+ ]
770
+ },
771
+ "metadata": {},
772
+ "output_type": "display_data"
773
+ },
774
+ {
775
+ "data": {
776
+ "application/vnd.jupyter.widget-view+json": {
777
+ "model_id": "5e287385d1e1409da5ca9d7cfdbe7649",
778
+ "version_major": 2,
779
+ "version_minor": 0
780
+ },
781
+ "text/plain": [
782
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
783
+ ]
784
+ },
785
+ "metadata": {},
786
+ "output_type": "display_data"
787
+ },
788
+ {
789
+ "data": {
790
+ "application/vnd.jupyter.widget-view+json": {
791
+ "model_id": "dd2695406ab54756b1d06849f6886ea8",
792
+ "version_major": 2,
793
+ "version_minor": 0
794
+ },
795
+ "text/plain": [
796
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
797
+ ]
798
+ },
799
+ "metadata": {},
800
+ "output_type": "display_data"
801
+ },
802
+ {
803
+ "data": {
804
+ "application/vnd.jupyter.widget-view+json": {
805
+ "model_id": "300fe0a37ec64f72acaa0a45bf01789b",
806
+ "version_major": 2,
807
+ "version_minor": 0
808
+ },
809
+ "text/plain": [
810
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
811
+ ]
812
+ },
813
+ "metadata": {},
814
+ "output_type": "display_data"
815
+ },
816
+ {
817
+ "data": {
818
+ "application/vnd.jupyter.widget-view+json": {
819
+ "model_id": "cf1c81b3eca04925a54812b7db49b123",
820
+ "version_major": 2,
821
+ "version_minor": 0
822
+ },
823
+ "text/plain": [
824
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
825
+ ]
826
+ },
827
+ "metadata": {},
828
+ "output_type": "display_data"
829
+ },
830
+ {
831
+ "data": {
832
+ "application/vnd.jupyter.widget-view+json": {
833
+ "model_id": "2b0eb4a7d8114d6a9be4d28e25e44ba4",
834
+ "version_major": 2,
835
+ "version_minor": 0
836
+ },
837
+ "text/plain": [
838
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
839
+ ]
840
+ },
841
+ "metadata": {},
842
+ "output_type": "display_data"
843
+ },
844
+ {
845
+ "data": {
846
+ "application/vnd.jupyter.widget-view+json": {
847
+ "model_id": "79800fa634ea410a864453ecca712b91",
848
+ "version_major": 2,
849
+ "version_minor": 0
850
+ },
851
+ "text/plain": [
852
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
853
+ ]
854
+ },
855
+ "metadata": {},
856
+ "output_type": "display_data"
857
+ },
858
+ {
859
+ "data": {
860
+ "application/vnd.jupyter.widget-view+json": {
861
+ "model_id": "5f4d073cc9214712aaa706d78788aaa0",
862
+ "version_major": 2,
863
+ "version_minor": 0
864
+ },
865
+ "text/plain": [
866
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
867
+ ]
868
+ },
869
+ "metadata": {},
870
+ "output_type": "display_data"
871
+ },
872
+ {
873
+ "data": {
874
+ "application/vnd.jupyter.widget-view+json": {
875
+ "model_id": "d5161f48cd574135bcd66d12355cdd76",
876
+ "version_major": 2,
877
+ "version_minor": 0
878
+ },
879
+ "text/plain": [
880
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
881
+ ]
882
+ },
883
+ "metadata": {},
884
+ "output_type": "display_data"
885
+ },
886
+ {
887
+ "data": {
888
+ "application/vnd.jupyter.widget-view+json": {
889
+ "model_id": "55d4abab6cb34b15a0acb50a710d4c19",
890
+ "version_major": 2,
891
+ "version_minor": 0
892
+ },
893
+ "text/plain": [
894
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
895
+ ]
896
+ },
897
+ "metadata": {},
898
+ "output_type": "display_data"
899
+ },
900
+ {
901
+ "data": {
902
+ "application/vnd.jupyter.widget-view+json": {
903
+ "model_id": "d169add51649473b8d0074c436b6ba1a",
904
+ "version_major": 2,
905
+ "version_minor": 0
906
+ },
907
+ "text/plain": [
908
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
909
+ ]
910
+ },
911
+ "metadata": {},
912
+ "output_type": "display_data"
913
+ },
914
+ {
915
+ "data": {
916
+ "application/vnd.jupyter.widget-view+json": {
917
+ "model_id": "33c2040cf20c48b1955f7c3b03184961",
918
+ "version_major": 2,
919
+ "version_minor": 0
920
+ },
921
+ "text/plain": [
922
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
923
+ ]
924
+ },
925
+ "metadata": {},
926
+ "output_type": "display_data"
927
+ },
928
+ {
929
+ "data": {
930
+ "application/vnd.jupyter.widget-view+json": {
931
+ "model_id": "c19422b529434a9888dd9cc27488d155",
932
+ "version_major": 2,
933
+ "version_minor": 0
934
+ },
935
+ "text/plain": [
936
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
937
+ ]
938
+ },
939
+ "metadata": {},
940
+ "output_type": "display_data"
941
+ },
942
+ {
943
+ "data": {
944
+ "application/vnd.jupyter.widget-view+json": {
945
+ "model_id": "7e8faed8cd004721ba11126814012bc4",
946
+ "version_major": 2,
947
+ "version_minor": 0
948
+ },
949
+ "text/plain": [
950
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
951
+ ]
952
+ },
953
+ "metadata": {},
954
+ "output_type": "display_data"
955
+ },
956
+ {
957
+ "data": {
958
+ "application/vnd.jupyter.widget-view+json": {
959
+ "model_id": "821cef25ae9f43149a85d8b3ec91d11b",
960
+ "version_major": 2,
961
+ "version_minor": 0
962
+ },
963
+ "text/plain": [
964
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
965
+ ]
966
+ },
967
+ "metadata": {},
968
+ "output_type": "display_data"
969
+ },
970
+ {
971
+ "data": {
972
+ "application/vnd.jupyter.widget-view+json": {
973
+ "model_id": "c555c144644341cc9bbc9c80eabc3805",
974
+ "version_major": 2,
975
+ "version_minor": 0
976
+ },
977
+ "text/plain": [
978
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
979
+ ]
980
+ },
981
+ "metadata": {},
982
+ "output_type": "display_data"
983
+ },
984
+ {
985
+ "data": {
986
+ "application/vnd.jupyter.widget-view+json": {
987
+ "model_id": "a8bde7b9085a45adb1f3157a64c2b569",
988
+ "version_major": 2,
989
+ "version_minor": 0
990
+ },
991
+ "text/plain": [
992
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
993
+ ]
994
+ },
995
+ "metadata": {},
996
+ "output_type": "display_data"
997
+ },
998
+ {
999
+ "data": {
1000
+ "application/vnd.jupyter.widget-view+json": {
1001
+ "model_id": "6ae6989908a6475797f7441abb1ec134",
1002
+ "version_major": 2,
1003
+ "version_minor": 0
1004
+ },
1005
+ "text/plain": [
1006
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
1007
+ ]
1008
+ },
1009
+ "metadata": {},
1010
+ "output_type": "display_data"
1011
+ },
1012
+ {
1013
+ "data": {
1014
+ "application/vnd.jupyter.widget-view+json": {
1015
+ "model_id": "822a43fb501e4ceaa9c44ad596b43ec0",
1016
+ "version_major": 2,
1017
+ "version_minor": 0
1018
+ },
1019
+ "text/plain": [
1020
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
1021
+ ]
1022
+ },
1023
+ "metadata": {},
1024
+ "output_type": "display_data"
1025
+ },
1026
+ {
1027
+ "data": {
1028
+ "application/vnd.jupyter.widget-view+json": {
1029
+ "model_id": "ddab310f6ef944ce803ed6090573a37a",
1030
+ "version_major": 2,
1031
+ "version_minor": 0
1032
+ },
1033
+ "text/plain": [
1034
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
1035
+ ]
1036
+ },
1037
+ "metadata": {},
1038
+ "output_type": "display_data"
1039
+ },
1040
+ {
1041
+ "data": {
1042
+ "application/vnd.jupyter.widget-view+json": {
1043
+ "model_id": "22ee2d56563c41f98c22d2635567d064",
1044
+ "version_major": 2,
1045
+ "version_minor": 0
1046
+ },
1047
+ "text/plain": [
1048
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
1049
+ ]
1050
+ },
1051
+ "metadata": {},
1052
+ "output_type": "display_data"
1053
+ },
1054
+ {
1055
+ "data": {
1056
+ "application/vnd.jupyter.widget-view+json": {
1057
+ "model_id": "53975ee35e6343a289dc954d4b78267b",
1058
+ "version_major": 2,
1059
+ "version_minor": 0
1060
+ },
1061
+ "text/plain": [
1062
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
1063
+ ]
1064
+ },
1065
+ "metadata": {},
1066
+ "output_type": "display_data"
1067
+ },
1068
+ {
1069
+ "data": {
1070
+ "application/vnd.jupyter.widget-view+json": {
1071
+ "model_id": "88462662ff864760b63d53bab7fe90fb",
1072
+ "version_major": 2,
1073
+ "version_minor": 0
1074
+ },
1075
+ "text/plain": [
1076
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
1077
+ ]
1078
+ },
1079
+ "metadata": {},
1080
+ "output_type": "display_data"
1081
+ },
1082
+ {
1083
+ "data": {
1084
+ "application/vnd.jupyter.widget-view+json": {
1085
+ "model_id": "f3a55e1957d24495b0e0d77dda1151b2",
1086
+ "version_major": 2,
1087
+ "version_minor": 0
1088
+ },
1089
+ "text/plain": [
1090
+ "Map: 0%| | 0/2221 [00:00<?, ? examples/s]"
1091
+ ]
1092
+ },
1093
+ "metadata": {},
1094
+ "output_type": "display_data"
1095
+ },
1096
+ {
1097
+ "data": {
1098
+ "application/vnd.jupyter.widget-view+json": {
1099
+ "model_id": "8f1adc73f13140ffbabd1cc321c986d1",
1100
+ "version_major": 2,
1101
+ "version_minor": 0
1102
+ },
1103
+ "text/plain": [
1104
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
1105
+ ]
1106
+ },
1107
+ "metadata": {},
1108
+ "output_type": "display_data"
1109
+ },
1110
+ {
1111
+ "data": {
1112
+ "application/vnd.jupyter.widget-view+json": {
1113
+ "model_id": "b8da629c4a794dfaad126c04a62c3f3e",
1114
+ "version_major": 2,
1115
+ "version_minor": 0
1116
+ },
1117
+ "text/plain": [
1118
+ "Map: 0%| | 0/2220 [00:00<?, ? examples/s]"
1119
+ ]
1120
+ },
1121
+ "metadata": {},
1122
+ "output_type": "display_data"
1123
+ },
1124
+ {
1125
+ "data": {
1126
+ "application/vnd.jupyter.widget-view+json": {
1127
+ "model_id": "da353431a3554a89abdf34a26d4c3b5c",
1128
+ "version_major": 2,
1129
+ "version_minor": 0
1130
+ },
1131
+ "text/plain": [
1132
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
1133
+ ]
1134
+ },
1135
+ "metadata": {},
1136
+ "output_type": "display_data"
1137
+ },
1138
+ {
1139
+ "data": {
1140
+ "application/vnd.jupyter.widget-view+json": {
1141
+ "model_id": "10b0bcfb017848a39cf127cb9fd23628",
1142
+ "version_major": 2,
1143
+ "version_minor": 0
1144
+ },
1145
+ "text/plain": [
1146
+ "Map: 0%| | 0/2220 [00:00<?, ? examples/s]"
1147
+ ]
1148
+ },
1149
+ "metadata": {},
1150
+ "output_type": "display_data"
1151
+ },
1152
+ {
1153
+ "data": {
1154
+ "application/vnd.jupyter.widget-view+json": {
1155
+ "model_id": "641cceb1050c4cfe8ecd471e5a34a6f8",
1156
+ "version_major": 2,
1157
+ "version_minor": 0
1158
+ },
1159
+ "text/plain": [
1160
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
1161
+ ]
1162
+ },
1163
+ "metadata": {},
1164
+ "output_type": "display_data"
1165
+ },
1166
+ {
1167
+ "data": {
1168
+ "application/vnd.jupyter.widget-view+json": {
1169
+ "model_id": "29927ccebc33455d90101f02ef6a921a",
1170
+ "version_major": 2,
1171
+ "version_minor": 0
1172
+ },
1173
+ "text/plain": [
1174
+ "Map: 0%| | 0/2220 [00:00<?, ? examples/s]"
1175
+ ]
1176
+ },
1177
+ "metadata": {},
1178
+ "output_type": "display_data"
1179
+ },
1180
+ {
1181
+ "data": {
1182
+ "application/vnd.jupyter.widget-view+json": {
1183
+ "model_id": "ca83db580b3745f89b04b7ad72c851da",
1184
+ "version_major": 2,
1185
+ "version_minor": 0
1186
+ },
1187
+ "text/plain": [
1188
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
1189
+ ]
1190
+ },
1191
+ "metadata": {},
1192
+ "output_type": "display_data"
1193
+ },
1194
+ {
1195
+ "data": {
1196
+ "application/vnd.jupyter.widget-view+json": {
1197
+ "model_id": "18d6be07140e4569b63c4fbd930763a5",
1198
+ "version_major": 2,
1199
+ "version_minor": 0
1200
+ },
1201
+ "text/plain": [
1202
+ "Map: 0%| | 0/2220 [00:00<?, ? examples/s]"
1203
+ ]
1204
+ },
1205
+ "metadata": {},
1206
+ "output_type": "display_data"
1207
+ },
1208
+ {
1209
+ "data": {
1210
+ "application/vnd.jupyter.widget-view+json": {
1211
+ "model_id": "47915fd9a33243a1937c57cec93b3b89",
1212
+ "version_major": 2,
1213
+ "version_minor": 0
1214
+ },
1215
+ "text/plain": [
1216
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
1217
+ ]
1218
+ },
1219
+ "metadata": {},
1220
+ "output_type": "display_data"
1221
+ },
1222
+ {
1223
+ "data": {
1224
+ "application/vnd.jupyter.widget-view+json": {
1225
+ "model_id": "8f2b21b80d1943a8ab1162b6f9a3d362",
1226
+ "version_major": 2,
1227
+ "version_minor": 0
1228
+ },
1229
+ "text/plain": [
1230
+ "Map: 0%| | 0/2220 [00:00<?, ? examples/s]"
1231
+ ]
1232
+ },
1233
+ "metadata": {},
1234
+ "output_type": "display_data"
1235
+ },
1236
+ {
1237
+ "data": {
1238
+ "application/vnd.jupyter.widget-view+json": {
1239
+ "model_id": "2802dddbac1b4c088bbc94c375ab72cb",
1240
+ "version_major": 2,
1241
+ "version_minor": 0
1242
+ },
1243
+ "text/plain": [
1244
+ "Creating parquet from Arrow format: 0%| | 0/23 [00:00<?, ?ba/s]"
1245
+ ]
1246
+ },
1247
+ "metadata": {},
1248
+ "output_type": "display_data"
1249
+ },
1250
+ {
1251
+ "data": {
1252
+ "application/vnd.jupyter.widget-view+json": {
1253
+ "model_id": "0f76f56d118c44c3a0ecdebe1a0f1c40",
1254
+ "version_major": 2,
1255
+ "version_minor": 0
1256
+ },
1257
+ "text/plain": [
1258
+ "Uploading the dataset shards: 0%| | 0/6 [00:00<?, ?it/s]"
1259
+ ]
1260
+ },
1261
+ "metadata": {},
1262
+ "output_type": "display_data"
1263
+ },
1264
+ {
1265
+ "data": {
1266
+ "application/vnd.jupyter.widget-view+json": {
1267
+ "model_id": "503b7715533a45c7af2f38cee2c0dcfd",
1268
+ "version_major": 2,
1269
+ "version_minor": 0
1270
+ },
1271
+ "text/plain": [
1272
+ "Map: 0%| | 0/1651 [00:00<?, ? examples/s]"
1273
+ ]
1274
+ },
1275
+ "metadata": {},
1276
+ "output_type": "display_data"
1277
+ },
1278
+ {
1279
+ "data": {
1280
+ "application/vnd.jupyter.widget-view+json": {
1281
+ "model_id": "df533a28a5d34fcf850d4f48f1997376",
1282
+ "version_major": 2,
1283
+ "version_minor": 0
1284
+ },
1285
+ "text/plain": [
1286
+ "Creating parquet from Arrow format: 0%| | 0/17 [00:00<?, ?ba/s]"
1287
+ ]
1288
+ },
1289
+ "metadata": {},
1290
+ "output_type": "display_data"
1291
+ },
1292
+ {
1293
+ "data": {
1294
+ "application/vnd.jupyter.widget-view+json": {
1295
+ "model_id": "07aa2bd51f054ac2a73ad1b858540459",
1296
+ "version_major": 2,
1297
+ "version_minor": 0
1298
+ },
1299
+ "text/plain": [
1300
+ "Map: 0%| | 0/1651 [00:00<?, ? examples/s]"
1301
+ ]
1302
+ },
1303
+ "metadata": {},
1304
+ "output_type": "display_data"
1305
+ },
1306
+ {
1307
+ "data": {
1308
+ "application/vnd.jupyter.widget-view+json": {
1309
+ "model_id": "e60e57bc93b5496ebfba34c98c4da645",
1310
+ "version_major": 2,
1311
+ "version_minor": 0
1312
+ },
1313
+ "text/plain": [
1314
+ "Creating parquet from Arrow format: 0%| | 0/17 [00:00<?, ?ba/s]"
1315
+ ]
1316
+ },
1317
+ "metadata": {},
1318
+ "output_type": "display_data"
1319
+ },
1320
+ {
1321
+ "data": {
1322
+ "application/vnd.jupyter.widget-view+json": {
1323
+ "model_id": "8e7d54666af5484fa1b06afb4aadccaf",
1324
+ "version_major": 2,
1325
+ "version_minor": 0
1326
+ },
1327
+ "text/plain": [
1328
+ "Map: 0%| | 0/1651 [00:00<?, ? examples/s]"
1329
+ ]
1330
+ },
1331
+ "metadata": {},
1332
+ "output_type": "display_data"
1333
+ },
1334
+ {
1335
+ "data": {
1336
+ "application/vnd.jupyter.widget-view+json": {
1337
+ "model_id": "cd7f563063404df78ce9ef819d0931a0",
1338
+ "version_major": 2,
1339
+ "version_minor": 0
1340
+ },
1341
+ "text/plain": [
1342
+ "Creating parquet from Arrow format: 0%| | 0/17 [00:00<?, ?ba/s]"
1343
+ ]
1344
+ },
1345
+ "metadata": {},
1346
+ "output_type": "display_data"
1347
+ },
1348
+ {
1349
+ "data": {
1350
+ "application/vnd.jupyter.widget-view+json": {
1351
+ "model_id": "282b961d0a2b4969a6bb75b9b7182923",
1352
+ "version_major": 2,
1353
+ "version_minor": 0
1354
+ },
1355
+ "text/plain": [
1356
+ "Map: 0%| | 0/1651 [00:00<?, ? examples/s]"
1357
+ ]
1358
+ },
1359
+ "metadata": {},
1360
+ "output_type": "display_data"
1361
+ },
1362
+ {
1363
+ "data": {
1364
+ "application/vnd.jupyter.widget-view+json": {
1365
+ "model_id": "660815e944a94801a567be3dffbcd2a8",
1366
+ "version_major": 2,
1367
+ "version_minor": 0
1368
+ },
1369
+ "text/plain": [
1370
+ "Creating parquet from Arrow format: 0%| | 0/17 [00:00<?, ?ba/s]"
1371
+ ]
1372
+ },
1373
+ "metadata": {},
1374
+ "output_type": "display_data"
1375
+ },
1376
+ {
1377
+ "data": {
1378
+ "application/vnd.jupyter.widget-view+json": {
1379
+ "model_id": "36c63544b6924eb7b5ffccd02e6cfba7",
1380
+ "version_major": 2,
1381
+ "version_minor": 0
1382
+ },
1383
+ "text/plain": [
1384
+ "Map: 0%| | 0/1650 [00:00<?, ? examples/s]"
1385
+ ]
1386
+ },
1387
+ "metadata": {},
1388
+ "output_type": "display_data"
1389
+ },
1390
+ {
1391
+ "data": {
1392
+ "application/vnd.jupyter.widget-view+json": {
1393
+ "model_id": "78f3fac73048449e8952d20eaf887cf7",
1394
+ "version_major": 2,
1395
+ "version_minor": 0
1396
+ },
1397
+ "text/plain": [
1398
+ "Creating parquet from Arrow format: 0%| | 0/17 [00:00<?, ?ba/s]"
1399
+ ]
1400
+ },
1401
+ "metadata": {},
1402
+ "output_type": "display_data"
1403
+ },
1404
+ {
1405
+ "data": {
1406
+ "application/vnd.jupyter.widget-view+json": {
1407
+ "model_id": "e514e86ff8d54f4da81be08515964910",
1408
+ "version_major": 2,
1409
+ "version_minor": 0
1410
+ },
1411
+ "text/plain": [
1412
+ "Map: 0%| | 0/1650 [00:00<?, ? examples/s]"
1413
+ ]
1414
+ },
1415
+ "metadata": {},
1416
+ "output_type": "display_data"
1417
+ },
1418
+ {
1419
+ "data": {
1420
+ "application/vnd.jupyter.widget-view+json": {
1421
+ "model_id": "8932fe4adf03458194ef68b46ff16231",
1422
+ "version_major": 2,
1423
+ "version_minor": 0
1424
+ },
1425
+ "text/plain": [
1426
+ "Creating parquet from Arrow format: 0%| | 0/17 [00:00<?, ?ba/s]"
1427
+ ]
1428
+ },
1429
+ "metadata": {},
1430
+ "output_type": "display_data"
1431
+ },
1432
+ {
1433
+ "data": {
1434
+ "application/vnd.jupyter.widget-view+json": {
1435
+ "model_id": "942db90f1a3545f5a997f79d133b2d53",
1436
+ "version_major": 2,
1437
+ "version_minor": 0
1438
+ },
1439
+ "text/plain": [
1440
+ "README.md: 0%| | 0.00/401 [00:00<?, ?B/s]"
1441
+ ]
1442
+ },
1443
+ "metadata": {},
1444
+ "output_type": "display_data"
1445
+ },
1446
+ {
1447
+ "data": {
1448
+ "application/vnd.jupyter.widget-view+json": {
1449
+ "model_id": "996f4cc67c154a02bd150c83014510dc",
1450
+ "version_major": 2,
1451
+ "version_minor": 0
1452
+ },
1453
+ "text/plain": [
1454
+ "Uploading the dataset shards: 0%| | 0/6 [00:00<?, ?it/s]"
1455
+ ]
1456
+ },
1457
+ "metadata": {},
1458
+ "output_type": "display_data"
1459
+ },
1460
+ {
1461
+ "data": {
1462
+ "application/vnd.jupyter.widget-view+json": {
1463
+ "model_id": "74853adabe144eb0a4d4d140644d2eb5",
1464
+ "version_major": 2,
1465
+ "version_minor": 0
1466
+ },
1467
+ "text/plain": [
1468
+ "Map: 0%| | 0/1655 [00:00<?, ? examples/s]"
1469
+ ]
1470
+ },
1471
+ "metadata": {},
1472
+ "output_type": "display_data"
1473
+ },
1474
+ {
1475
+ "data": {
1476
+ "application/vnd.jupyter.widget-view+json": {
1477
+ "model_id": "5ca90c5c41f94c099dceb5ab9922d17f",
1478
+ "version_major": 2,
1479
+ "version_minor": 0
1480
+ },
1481
+ "text/plain": [
1482
+ "Creating parquet from Arrow format: 0%| | 0/17 [00:00<?, ?ba/s]"
1483
+ ]
1484
+ },
1485
+ "metadata": {},
1486
+ "output_type": "display_data"
1487
+ },
1488
+ {
1489
+ "name": "stderr",
1490
+ "output_type": "stream",
1491
+ "text": [
1492
+ "'(MaxRetryError(\"HTTPSConnectionPool(host='hf-hub-lfs-us-east-1.s3-accelerate.amazonaws.com', port=443): Max retries exceeded with url: /repos/0c/b0/0cb0f6820132af26830970ad86609d1f6804b03c7dd65ababd05546d4cbdab40/e6cb01b149566e971debf7d0bd7508125ae803821611511346b543bda7a3b875?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA2JU7TKAQLC2QXPN7%2F20241112%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20241112T083433Z&X-Amz-Expires=86400&X-Amz-Signature=e77f5d49b7be4a0ede506ef2ba135cae5409cc5e52d3393be040290ea5b5b3cc&X-Amz-SignedHeaders=host&partNumber=6&uploadId=oO1PLiGgJUbmKmebYSE_ddfO1yGN6PM9grmjEKjG35voIKgOYLzCO0wQZfszljmzzygKHNa5cEh3RVhZk3mE26g68sCFbRP411IoI.Ci55F6HYj7MoU.dfus742eOQws&x-id=UploadPart (Caused by SSLError(SSLEOFError(8, 'EOF occurred in violation of protocol (_ssl.c:2417)')))\"), '(Request ID: 192b94c4-25c9-40d3-b796-0ef087c5c758)')' thrown while requesting PUT https://hf-hub-lfs-us-east-1.s3-accelerate.amazonaws.com/repos/0c/b0/0cb0f6820132af26830970ad86609d1f6804b03c7dd65ababd05546d4cbdab40/e6cb01b149566e971debf7d0bd7508125ae803821611511346b543bda7a3b875?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA2JU7TKAQLC2QXPN7%2F20241112%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20241112T083433Z&X-Amz-Expires=86400&X-Amz-Signature=e77f5d49b7be4a0ede506ef2ba135cae5409cc5e52d3393be040290ea5b5b3cc&X-Amz-SignedHeaders=host&partNumber=6&uploadId=oO1PLiGgJUbmKmebYSE_ddfO1yGN6PM9grmjEKjG35voIKgOYLzCO0wQZfszljmzzygKHNa5cEh3RVhZk3mE26g68sCFbRP411IoI.Ci55F6HYj7MoU.dfus742eOQws&x-id=UploadPart\n",
1493
+ "Retrying in 1s [Retry 1/5].\n"
1494
+ ]
1495
+ },
1496
+ {
1497
+ "data": {
1498
+ "application/vnd.jupyter.widget-view+json": {
1499
+ "model_id": "ef8b3f82293047a8a5184b7762b512a1",
1500
+ "version_major": 2,
1501
+ "version_minor": 0
1502
+ },
1503
+ "text/plain": [
1504
+ "Map: 0%| | 0/1655 [00:00<?, ? examples/s]"
1505
+ ]
1506
+ },
1507
+ "metadata": {},
1508
+ "output_type": "display_data"
1509
+ },
1510
+ {
1511
+ "data": {
1512
+ "application/vnd.jupyter.widget-view+json": {
1513
+ "model_id": "98ac9e62d3a34a2681336e2f97c69e1e",
1514
+ "version_major": 2,
1515
+ "version_minor": 0
1516
+ },
1517
+ "text/plain": [
1518
+ "Creating parquet from Arrow format: 0%| | 0/17 [00:00<?, ?ba/s]"
1519
+ ]
1520
+ },
1521
+ "metadata": {},
1522
+ "output_type": "display_data"
1523
+ },
1524
+ {
1525
+ "data": {
1526
+ "application/vnd.jupyter.widget-view+json": {
1527
+ "model_id": "32aa57b5c39a46d3a3e23c819c4b7f84",
1528
+ "version_major": 2,
1529
+ "version_minor": 0
1530
+ },
1531
+ "text/plain": [
1532
+ "Map: 0%| | 0/1655 [00:00<?, ? examples/s]"
1533
+ ]
1534
+ },
1535
+ "metadata": {},
1536
+ "output_type": "display_data"
1537
+ },
1538
+ {
1539
+ "data": {
1540
+ "application/vnd.jupyter.widget-view+json": {
1541
+ "model_id": "e44a6ee5972f463a815fe1951920d8e3",
1542
+ "version_major": 2,
1543
+ "version_minor": 0
1544
+ },
1545
+ "text/plain": [
1546
+ "Creating parquet from Arrow format: 0%| | 0/17 [00:00<?, ?ba/s]"
1547
+ ]
1548
+ },
1549
+ "metadata": {},
1550
+ "output_type": "display_data"
1551
+ },
1552
+ {
1553
+ "data": {
1554
+ "application/vnd.jupyter.widget-view+json": {
1555
+ "model_id": "b05a97df2f1d450ba3a343abfb37e19a",
1556
+ "version_major": 2,
1557
+ "version_minor": 0
1558
+ },
1559
+ "text/plain": [
1560
+ "Map: 0%| | 0/1654 [00:00<?, ? examples/s]"
1561
+ ]
1562
+ },
1563
+ "metadata": {},
1564
+ "output_type": "display_data"
1565
+ },
1566
+ {
1567
+ "data": {
1568
+ "application/vnd.jupyter.widget-view+json": {
1569
+ "model_id": "623a3287572f44819f27fa3d58a5b449",
1570
+ "version_major": 2,
1571
+ "version_minor": 0
1572
+ },
1573
+ "text/plain": [
1574
+ "Creating parquet from Arrow format: 0%| | 0/17 [00:00<?, ?ba/s]"
1575
+ ]
1576
+ },
1577
+ "metadata": {},
1578
+ "output_type": "display_data"
1579
+ },
1580
+ {
1581
+ "data": {
1582
+ "application/vnd.jupyter.widget-view+json": {
1583
+ "model_id": "dc2df7ad43a94d89b8f41962d2fe42b9",
1584
+ "version_major": 2,
1585
+ "version_minor": 0
1586
+ },
1587
+ "text/plain": [
1588
+ "Map: 0%| | 0/1654 [00:00<?, ? examples/s]"
1589
+ ]
1590
+ },
1591
+ "metadata": {},
1592
+ "output_type": "display_data"
1593
+ },
1594
+ {
1595
+ "data": {
1596
+ "application/vnd.jupyter.widget-view+json": {
1597
+ "model_id": "d6421819a52f47218a255743bcbe9837",
1598
+ "version_major": 2,
1599
+ "version_minor": 0
1600
+ },
1601
+ "text/plain": [
1602
+ "Creating parquet from Arrow format: 0%| | 0/17 [00:00<?, ?ba/s]"
1603
+ ]
1604
+ },
1605
+ "metadata": {},
1606
+ "output_type": "display_data"
1607
+ },
1608
+ {
1609
+ "data": {
1610
+ "application/vnd.jupyter.widget-view+json": {
1611
+ "model_id": "bbfd55e0026e4d3289ec50c253e5ca7d",
1612
+ "version_major": 2,
1613
+ "version_minor": 0
1614
+ },
1615
+ "text/plain": [
1616
+ "Map: 0%| | 0/1654 [00:00<?, ? examples/s]"
1617
+ ]
1618
+ },
1619
+ "metadata": {},
1620
+ "output_type": "display_data"
1621
+ },
1622
+ {
1623
+ "data": {
1624
+ "application/vnd.jupyter.widget-view+json": {
1625
+ "model_id": "700a60fabfaa4712941bb771ceb2dca7",
1626
+ "version_major": 2,
1627
+ "version_minor": 0
1628
+ },
1629
+ "text/plain": [
1630
+ "Creating parquet from Arrow format: 0%| | 0/17 [00:00<?, ?ba/s]"
1631
+ ]
1632
+ },
1633
+ "metadata": {},
1634
+ "output_type": "display_data"
1635
+ },
1636
+ {
1637
+ "data": {
1638
+ "application/vnd.jupyter.widget-view+json": {
1639
+ "model_id": "5c2dd754317b4b0cb674f19015d71c2d",
1640
+ "version_major": 2,
1641
+ "version_minor": 0
1642
+ },
1643
+ "text/plain": [
1644
+ "README.md: 0%| | 0.00/523 [00:00<?, ?B/s]"
1645
+ ]
1646
+ },
1647
+ "metadata": {},
1648
+ "output_type": "display_data"
1649
+ },
1650
+ {
1651
+ "data": {
1652
+ "text/plain": [
1653
+ "CommitInfo(commit_url='https://huggingface.co/datasets/eltorio/ROCOv2/commit/49c74bfdc49365b9ac1792f22914211aff5ba534', commit_message='Upload dataset', commit_description='', oid='49c74bfdc49365b9ac1792f22914211aff5ba534', pr_url=None, repo_url=RepoUrl('https://huggingface.co/datasets/eltorio/ROCOv2', endpoint='https://huggingface.co', repo_type='dataset', repo_id='eltorio/ROCOv2'), pr_revision=None, pr_num=None)"
1654
+ ]
1655
+ },
1656
+ "execution_count": 24,
1657
+ "metadata": {},
1658
+ "output_type": "execute_result"
1659
+ }
1660
+ ],
1661
+ "source": [
1662
+ "train_dataset.push_to_hub(dataset_name, split='train')\n",
1663
+ "valid_dataset.push_to_hub(dataset_name, split='validation')\n",
1664
+ "test_dataset.push_to_hub(dataset_name, split='test')"
1665
+ ]
1666
+ }
1667
+ ],
1668
+ "metadata": {
1669
+ "kernelspec": {
1670
+ "display_name": "base",
1671
+ "language": "python",
1672
+ "name": "python3"
1673
+ },
1674
+ "language_info": {
1675
+ "codemirror_mode": {
1676
+ "name": "ipython",
1677
+ "version": 3
1678
+ },
1679
+ "file_extension": ".py",
1680
+ "mimetype": "text/x-python",
1681
+ "name": "python",
1682
+ "nbconvert_exporter": "python",
1683
+ "pygments_lexer": "ipython3",
1684
+ "version": "3.12.7"
1685
+ }
1686
+ },
1687
+ "nbformat": 4,
1688
+ "nbformat_minor": 2
1689
+ }