-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathttp-hgs.f
501 lines (480 loc) · 11.8 KB
/
ttp-hgs.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
c 6-7-2020
parameter(Nb=1000,Mdim=1000,Nff=100,Nc=Nb/Nff,Nt=2000)
implicit real*8(a-h,o-z)
complex*16 ci,cs,eta,czero,cx,CPOT,comPOT,coeff
real*8 X(Mdim,Mdim),T(Mdim,Mdim),X_grid(Mdim)
complex*16 H(nb,nb),E(nb),C(Nb,Nb),D(Nb,Nb)
real*8 Hr(Nb,Nb),Hi(Nb,Nb),Er(Nb),Ei(Nb)
real*8 VecR(Nb,Nb),VecI(Nb,Nb)
real*8 V1(Nb),v2(Nb),V3(Nb)
integer*4 space,Indx_i(Nb),Indx_ic(Nb)
complex*16 W(Nb,Nb),W2(Nb,Nb),EX(Nb,Nb)
complex*16 U0(Nff,Nff),U1(Nff,Nff)
real*8 Ur(Nff,Nff),Ui(Nff,Nff),QEr(Nff),QEi(Nff)
real*8 QEVR(Nff,Nff),QEVI(Nff,Nff),QEv1(Nff),QEv2(Nff),QEv3(Nff)
complex*16 CQE(Nff,Nff),QE(Nff)
write(60,*) 'Nb=1000,Mdim=Nb,Nff=100,Nc=Nb/Nff,Nt=2000)',
&Nb,Mdim,Nff,Nc,Nt
ci=(0.d0,1.d0)
czero=(0.d0,0.d0)
pi=4.d0*datan(1.d0)
theta=0.1d0
eta=cdexp(ci*theta)
omega=0.057d0*10
Time=2.d0*pi/omega
eps0=0.0015d0
c eps0=0.d0
Dt=Time/dfloat(Nt)
ispecFLOWUET=1
c =1 calculate spectrum of Floquet NOT by ttp and stop
c =0 do bot calculate spectrum of Floquet NOT by ttp
c
c DVRham
c DVR using sin as a basis set
hbar=1.d0
space=1
am=1.d0
facKIN=hbar**2/(2.d0*am)
write(6,*) 'facKIN=',fackin
Abox=50.d0
call GMAT(Mdim,Mdim,Pi,Abox,X)
write(6,*) ' GMAT was DONE'
ivec=1
call RS(Mdim,Mdim,X,X_grid,ivec,T,v1,v2,ierr)
if(ierr.ne.0) write(6,*) ' end of RS ierr = ',ierr
write(6,*) ' RS was done'
if(space.eq.1) then
do i=1,Mdim
X_grid(i)=X_grid(i)-Abox/2.d0
end do
end if
do k=1,Mdim
cx=x_grid(k)*(1.d0,0.d0)
cs=CPOT(cx)
write(100,*) x_grid(k),dreal(cs)
end do
c
do i=1,Nb
do j=1,i
cs=czero
do k=1,Mdim
cx=x_grid(k)*eta
TT=T(i,k)*T(j,k)
comPOT=CPOT(cx)
cs=cs+TT*comPOT
end do
H(i,j)=cs
c if(i.eq.j)H(i,j)=H(i,j)+facKIN*(dfloat(i)*pi/Abox/ETA)**2
if(i.eq.j)H(i,j)=H(i,j)+0.5d0*(dfloat(i)*pi/Abox/ETA)**2
H(j,i)=H(i,j)
end do
end do
c
ivec=1
call CEIGEN
&(H,C,E,Hr,Hi,Er,Ei,ivec,VecR,VecI,v1,v2,v3,Nb,Nb)
if(ivec.eq.0) then
call ORDERC(E,Nb,Nb)
do i=1,Nb
write(10,*) dreal(E(i)),dimag(E(i))
cs=cdexp(-ci*E(i)*Time/hbar)
write(11,*) dreal(cs),dimag(cs)
end do
else
call CORDER2(E,C,nb,nb)
do i=1,Nb
write(10,*) dreal(E(i)),dimag(E(i))
cs=cdexp(-ci*E(i)*Time/hbar)
write(11,*) dreal(cs),dimag(cs)
end do
call ProdXrealMat(X,C,W,Nb)
call ProdTranMat(C,W,D,Nb)
c D dipole transiton matrix
end if
c END SPECTRUM OF FIELD FREE HAMILTONIAN
if(ivec.eq.0) stop
do i=1,Nff
write(200,*) dreal(E(i)),dimag(E(i))
end do
c
c below calculation of Floquet matrix
c
do i=1,Nb
do j=1,Nb
H(i,j)=czero
end do
end do
ii=0
do ic=-Nc/2+1,+Nc/2
do i=1,Nff
ii=ii+1
H(ii,ii)=E(i)+ic*hbar*omega
Indx_i(ii)=i
Indx_ic(ii)=ic
write(300,*) dreal(H(ii,ii)),dimag(H(ii,ii))
jj=0
do icp=-Nc/2+1,+Nc/2
do ip=1,Nff
jj=jj+1
iii=icp-ic
if(iii.lt.0) iii=-iii
if(iii.eq.1) then
H(ii,jj)=eps0*eta*D(i,ip)/2.d0
end if
end do
end do
end do
end do
c
if(ii.ne.jj.and.ii.ne.Nb) then
write(12,*) 'GEVALD AND STOP'
stop
end if
if(ivec.eq.0) stop
c
c BELOW CALCULATE SPECTRUM of FLOQUET not by ttp
if(ispecFLOWUET.eq.1) then
ivec=0
call CEIGEN
&(H,C,E,Hr,Hi,Er,Ei,ivec,VecR,VecI,v1,v2,v3,Nb,Nb)
if(ivec.eq.0) then
call ORDERC(E,Nb,Nb)
do i=1,Nb
write(12,*) dreal(E(i)),dimag(E(i))
cs=cdexp(-ci*E(i)*Time/hbar)
write(13,*) dreal(cs),dimag(cs)
end do
else
call CORDER2(E,C,nb,nb)
do i=1,Nb
write(12,*) dreal(E(i)),dimag(E(i))
cs=cdexp(-ci*E(i)*Time/hbar)
write(13,*) dreal(cs),dimag(cs)
end do
end if
stop
end if
c
c BELOW CALCULATE Exp(-iH_floquet*dt/hbar)
cfac=-ci*dt/hbar
do i=1,Nb
do j=1,Nb
EX(i,j)=czero
W(i,j)=H(i,j)
if(i.eq.j) EX(i,i)=1.d0
end do
end do
kk=1
do k=1,20
kk=kk*k
coeff=cfac**k/dfloat(kk)
if(cdabs(coeff).lt.1.d-10) then
write(500,*) k,coeff
if(k.eq.20) stop
go to 9999
end if
call AddMat(EX,W,coeff,Nb)
call ProdMat(W,H,W2,Nb)
do i=1,Nb
do j=1,Nb
W(i,j)=W2(i,j)
end do
end do
9999 continue
end do
c above end EXPONENT of FLOQUET - Floquet evolution operator
do i=1,Nff
U0(i,j)=0.d0
if(i.eq.j) U0(i,i)=1.d0
end do
tt=0.d0
do it=1,Nt
tt=tt+dt
do j=1,Nff
do ii=1,Nb
i=Indx_i(ii)
ic=Indx_ic(ii)
cs=czero
do jj=1,Nb
ip=Indx_i(jj)
icp=Indx_ic(jj)
if(icp.eq.0) then
cs=cs+cdexp(ci*omega*ic*tt)*EX(ii,jj)*U0(ip,j)
end if
end do
U1(i,j)=cs
end do
do i=1,Nff
U0(i,j)=U1(i,j)
end do
end do
c
end do
if(tt.ne.TIME)then
write(6,*) 'GEVALD tt NE Time'
stop
end if
c BELOW CALCULATE FLOQUET SPECTRUM BY ttp
ivec=0
call CEIGEN
&(U1,CQE,QE,Ur,Ui,QEr,QEi,ivec,QEVR,QEVI,QEv1,QEv2,QEv3,Nff,Nff)
if(ivec.eq.0) then
call ORDERC(QE,Nff,Nff)
do i=1,Nff
write(130,*) dreal(QE(i)),dimag(QE(i))
end do
else
call CORDER2(QE,CQE,nb,nb)
CMAX=-1.d+10
do i=1,Nff
write(130,*) dreal(QE(i)),dimag(QE(i))
if(cdabs(CQE(1,i)).gt.CMAX) then
CMAX=cdabs(CQE(1,i))
imax=i
end if
end do
write(131,*) imax,QE(imax),CMAX
end if
c
stop
end
SUBROUTINE GMAT(MDIM,M,PI,A,GR)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION GR(MDIM,MDIM)
write(6,*) ' Abox pi ',a,pi
do i=1,m
do j=1,m
gr(I,J)=0.D0
END DO
END DO
C=2.D0*A/PI**2
DO 1 I=1,M
GR(I,I) =A/2.D0
IF(I.NE.1) THEN
DO 2 J=1,I-1
GR(I,J)= 0.D0
IJ=I+J
IJM=I-J
K=MOD(IJ,2)
IF(K.NE.0) THEN
BB = 1.D0/IJ**2 - 1.D0/IJM**2
GR(I,J)=C*BB
END IF
GR(J,I)=GR(I,J)
2 CONTINUE
END IF
1 CONTINUE
RETURN
END
function CPOT(cx)
implicit real*8 (a-h,o-z)
complex*16 CPOT,cx
cpot=-0.63d0*cdexp(-0.142d0*cx**2)
c cpot=(cx**2/2.d0-0.8d0)*cdexp(-0.1d0*cx**2)
return
end
subroutine ProdXrealMat(A,B,C,N)
implicit real*8(a-h,o-z)
real*8 A(N,N)
complex*16 B(N,N),C(N,N),cs
do i=1,N
do j=1,N
cs=(0.d0,0.d0)
do k=1,N
cs=cs+A(i,k)*B(k,j)
end do
C(i,j)=cs
end do
end do
return
end
subroutine ProdMat(A,B,C,N)
implicit real*8(a-h,o-z)
complex*16 A(N,N)
complex*16 B(N,N),C(N,N),cs
do i=1,N
do j=1,N
cs=(0.d0,0.d0)
do k=1,N
cs=cs+A(i,k)*B(k,j)
end do
C(i,j)=cs
end do
end do
return
end
subroutine ProdTranMat(A,B,C,N)
implicit real*8(a-h,o-z)
complex*16 A(N,N),B(N,N),C(N,N),cs
do i=1,N
do j=1,N
cs=(0.d0,0.d0)
do k=1,N
cs=cs+A(k,i)*B(k,j)
end do
C(i,j)=cs
end do
end do
return
end
subroutine AddMat(A,B,c,N)
implicit real*8(a-h,o-z)
complex*16 A(N,N),B(N,N),c
do i=1,N
do j=1,N
A(i,j)=A(i,j)+c*B(i,j)
end do
end do
return
end
SUBROUTINE ORDERC(E,n,Ndim)
IMPLICIT REAL*8(A-H,O-Z)
complex*16 E(Ndim),ww,e1,e2
C ********SMALL TO BIG **********************
1 IX=0
I=1
2 E1= E(i)
E2= E(i+1)
c IF(dreal(E2).GE.dreal(E1)) GO TO 5
de1=dabs(dimag(E1))
de2=dabs(dimag(E2))
de1=cdabs(E1)
de2=cdabs(E2)
de1=dreal(E1)
de2=dreal(E2)
IF(dE2.GE.dE1) GO TO 5
IX=1
WW=E(I)
E(I)=E(I+1)
E(I+1)=WW
5 I=I+1
IF((I+1).LE.N)GO TO 2
IF(IX.GT.0)GO TO 1
RETURN
END
SUBROUTINE CORDER2(E,V,n,ndim)
IMPLICIT REAL*8(C-H,O-Z)
complex*16 E(Ndim),V(Ndim,Ndim),ww
real*8 E1,E2
C ********SMALL TO BIG **********************
1 IX=0
I=1
2 E1= dreal(E(i))
E2= dreal(E(i+1))
IF(E2.GE.E1) GO TO 5
IX=1
WW=E(I)
E(I)=E(I+1)
E(I+1)=WW
do j=1,n
ww=V(j,i)
V(j,i)=V(j,i+1)
V(j,i+1)=ww
end do
5 I=I+1
IF((I+1).LE.N)GO TO 2
IF(IX.GT.0)GO TO 1
RETURN
END
SUBROUTINE ORDER1(E,n,ndim)
IMPLICIT REAL*8(C-H,O-Z)
real*8 E(Ndim),ww
real*8 E1,E2
C ******** BIG to small **********************
1 IX=0
I=1
2 E1= E(i)
E2= E(i+1)
IF(E1.GE.E2) GO TO 5
IX=1
WW=E(I)
E(I)=E(I+1)
E(I+1)=WW
5 I=I+1
IF((I+1).LE.N)GO TO 2
IF(IX.GT.0)GO TO 1
RETURN
END
SUBROUTINE ORDER2(E,V,n,ndim)
IMPLICIT REAL*8(C-H,O-Z)
real*8 E(Ndim),ww
complex*16 V(Ndim),wc
real*8 E1,E2
C ******** BIG to SMALL **********************
1 IX=0
I=1
2 E1= E(i)
E2= E(i+1)
IF(E1.GE.E2) GO TO 5
IX=1
WW=E(I)
E(I)=E(I+1)
E(I+1)=WW
wc=V(i)
V(i)=V(i+1)
V(i+1)=wc
5 I=I+1
IF((I+1).LE.N)GO TO 2
IF(IX.GT.0)GO TO 1
RETURN
END
subroutine CEIGEN
&(H,T,E,Hr,Hi,Er,Ei,ivec,VecR,VecI,w1,w2,w3,N,Ndim)
implicit real*8(a-h,o-z)
complex*16 H(Ndim,Ndim),T(Ndim,Ndim)
complex*16 E(Ndim),S,V
real*8 Hr(Ndim,Ndim),Hi(Ndim,Ndim),VecR(Ndim,Ndim)
real*8 VecI(Ndim,Ndim),w1(Ndim),W2(Ndim),w3(Ndim)
real*8 Er(Ndim),Ei(Ndim)
integer C_prod
do i=1,n
do j=1,n
a=dreal(H(i,j))
b=dimag(H(i,j))
Hr(i,j)=a
Hi(i,j)=b
end do
end do
call CG
& (Ndim,N,Hr,Hi,Er,Ei,Ivec,VecR,VecI,w1,w2,w3,ierr)
write(6,*) ' end of CG ierr = ',ierr
if(ivec.eq.0) then
do i=1,n
a=er(i)
b=ei(i)
E(i)=dcmplx(a,b)
end do
else
c write(6,*) ' number of calculated eigevecotrs',N
c write(6,*) ((i,er(i),ei(i)),i=1,n)
do i=1,n
a=er(i)
b=ei(i)
E(i)=dcmplx(a,b)
end do
DO 1 K=1,N
S=(0.D0,0.D0)
DO 2 I=1,N
a=VecR(i,K)
b=VecI(i,K)
V=dcmplx(a,b)
T(i,K)=V
S=S+V*V
2 CONTINUE
S=CDSQRT(S)
DO 3 I=1,N
V=T(i,k)/S
T(i,k)=V
3 CONTINUE
1 CONTINUE
end if
RETURN
END
function dconjug(Z)
implicit real*8(a-h,o-z)
complex*16 z,dconjug
a=dreal(z)
b=dimag(z)
dconjug=dcmplx(a,-b)
return
end