Skip to content

Latest commit

 

History

History
 
 

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Language modeling

The scripts run_clm.py, run_mlm.py and run_plm.py provide three quantization approaches (PostTrainingDynamic, PostTrainingStatic and QuantizationAwareTraining) based on Intel® Neural Compressor.

Here is how to run the scripts:

Causal Language modeling (CLM)

python run_clm.py \
    --model_name_or_path EleutherAI/gpt-neo-125M \
    --dataset_name wikitext \
    --dataset_config_name wikitext-2-raw-v1 \
    --tune \
    --quantization_approach PostTrainingStatic \
    --do_train \
    --do_eval \
    --output_dir ./tmp/clm_output \
    --overwrite_output_dir

Masked Language modeling (MLM)

python run_mlm.py \
    --model_name_or_path bert-base-uncased \
    --dataset_name wikitext \
    --dataset_config_name wikitext-2-raw-v1 \
    --tune \
    --quantization_approach PostTrainingStatic \
    --do_train \
    --do_eval \
    --output_dir ./tmp/mlm_output \
    --overwrite_output_dir

Permutation Language modeling (PLM)

    python run_plm.py \
    --model_name_or_path xlnet-base-cased \
    --dataset_name wikitext \
    --dataset_config_name wikitext-2-raw-v1 \
    --tune \
    --quantization_approach PostTrainingStatic \
    --do_train \
    --do_eval \
    --output_dir ./tmp/plm_output \
    --overwrite_output_dir

Validated model list

Type Pretrained model PostTrainingDynamic PostTrainingStatic QuantizationAwareTraining
CLM EleutherAI/gpt-neo-125M
CLM EleutherAI/gpt-j-6B Stay tuning
MLM bert-base-uncased
PLM xlnet-base-cased

Command

bash run_tuning.sh  --topology=topology
bash run_benchmark.sh --topology=topology --mode=benchmark