-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunMinicontest.py
57 lines (45 loc) · 2.22 KB
/
runMinicontest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# runMinicontest.py
# -----------------
# Licensing Information: Please do not distribute or publish solutions to this
# project. You are free to use and extend these projects for educational
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
# John DeNero ([email protected]) and Dan Klein ([email protected]).
# For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html
# This file is for running the minicontest submission.
import minicontest
import samples
import sys
import util
import pickle
from dataClassifier import DIGIT_DATUM_HEIGHT,DIGIT_DATUM_WIDTH,contestFeatureExtractorDigit
TEST_SIZE = 1000
MINICONTEST_PATH = "minicontest_output.pickle"
if __name__ == '__main__':
print "Loading training data"
rawTrainingData = samples.loadDataFile("digitdata/trainingimages", 5000,DIGIT_DATUM_WIDTH,DIGIT_DATUM_HEIGHT)
trainingLabels = samples.loadLabelsFile("digitdata/traininglabels", 5000)
rawValidationData = samples.loadDataFile("digitdata/validationimages", 100,DIGIT_DATUM_WIDTH,DIGIT_DATUM_HEIGHT)
validationLabels = samples.loadLabelsFile("digitdata/validationlabels", 100)
rawTestData = samples.loadDataFile("digitdata/testimages", TEST_SIZE,DIGIT_DATUM_WIDTH,DIGIT_DATUM_HEIGHT)
featureFunction = contestFeatureExtractorDigit
legalLabels = range(10)
classifier = minicontest.contestClassifier(legalLabels)
print "Extracting features..."
trainingData = map(featureFunction, rawTrainingData)
validationData = map(featureFunction, rawValidationData)
testData = map(featureFunction, rawTestData)
print "Training..."
classifier.train(trainingData, trainingLabels, validationData, validationLabels)
print "Validating..."
guesses = classifier.classify(validationData)
correct = [guesses[i] == validationLabels[i] for i in range(len(validationLabels))].count(True)
print str(correct), ("correct out of " + str(len(validationLabels)) + " (%.1f%%).") % (100.0 * correct / len(validationLabels))
print "Testing..."
guesses = classifier.classify(testData)
print "Writing classifier output..."
outfile = open(MINICONTEST_PATH,'w')
output = {}
output['guesses'] = guesses;
pickle.dump(output,outfile)
outfile.close()
print "Write successful."