-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbaselines_pharmaco_variational.py
253 lines (226 loc) · 7.89 KB
/
baselines_pharmaco_variational.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import pickle
import argparse
from tqdm import trange
import torch
import torch.nn as nn
import pyro
import pyro.distributions as dist
import mlflow
from neural.baselines import BatchDesignBaseline
from neural.critics import CriticBA
from neural.aggregators import ConcatImplicitDAD
from neural.modules import Mlp
from experiment_tools.pyro_tools import auto_seed
from oed.design import OED
from estimators.bb_mi import BarberAgakov
from pharmacokinetic import Pharmacokinetic
def optimise_design_and_critic(
posterior_loc,
posterior_scale,
experiment_number,
device,
batch_size,
num_steps,
lr,
annealing_scheme,
):
design_init = torch.distributions.Uniform(-5.0, 5.0)
n = 1
latent_dim = 3
design_dim = (n, 1)
design_net = BatchDesignBaseline(
T=1, design_dim=design_dim, design_init=design_init
).to(device)
new_mean = posterior_loc
new_covmat = torch.diag(posterior_scale.reshape(-1) ** 2)
pharmaco = Pharmacokinetic(
design_net=design_net,
# Normal family -- new prior is stil MVN but with different params
theta_loc=new_mean,
theta_covmat=new_covmat,
T=1,
)
### Set up model networks ###
n = 1 # output dim/number of samples per design
design_dim = (n, 1) # design is t (time)
latent_dim = 3 # theta dimension is
observation_dim = n
hidden_dim = 512
encoding_dim = 8
hist_encoder_HD = [64, hidden_dim]
hist_enc_critic_head_HD = [
hidden_dim // 2,
hidden_dim,
]
###### CRITIC NETWORKS #######
## history encoder
critic_pre_pool_history_encoder = Mlp(
input_dim=[*design_dim, observation_dim],
hidden_dim=hist_encoder_HD,
output_dim=encoding_dim,
)
critic_history_enc_head = Mlp(
input_dim=encoding_dim,
hidden_dim=hist_enc_critic_head_HD,
output_dim=encoding_dim,
)
critic_history_encoder = ConcatImplicitDAD(
encoder_network=critic_pre_pool_history_encoder,
emission_network=critic_history_enc_head,
T=1,
empty_value=torch.ones(design_dim),
)
critic_net = CriticBA(
history_encoder_network=critic_history_encoder, latent_dim=latent_dim
).to(device)
### Set-up loss ###
mi_loss_instance = BarberAgakov(
model=pharmaco.model,
critic=critic_net,
batch_size=batch_size,
prior_entropy=pharmaco.log_theta_prior.entropy(),
)
### Set-up optimiser ###
optimizer = torch.optim.Adam
# Annealed LR. Set gamma=1 if no annealing required
annealing_freq, patience, factor = annealing_scheme
scheduler = pyro.optim.ReduceLROnPlateau(
{
"optimizer": optimizer,
"optim_args": {"lr": lr},
"factor": factor,
"patience": patience,
"verbose": False,
}
)
oed = OED(optim=scheduler, loss=mi_loss_instance)
### Optimise ###
loss_history = []
num_steps_range = trange(0, num_steps + 0, desc="Loss: 0.000 ")
for i in num_steps_range:
loss = oed.step()
# Log loss every 200 steps
if i % 100 == 0:
num_steps_range.set_description("Loss: {:.3f} ".format(loss))
loss_eval = oed.evaluate_loss()
if i % annealing_freq == 0:
scheduler.step(loss_eval)
return pharmaco, critic_net
def main_loop(
run, mlflow_run_id, device, T, batch_size, num_steps, lr, annealing_scheme,
):
pyro.clear_param_store()
latent_dim = 3
theta_loc = theta_prior_loc = torch.tensor([1, 0.1, 20], device=device).log()
theta_covmat = torch.eye(latent_dim, device=device) * 0.05
prior = torch.distributions.MultivariateNormal(theta_loc, theta_covmat)
# Sampling true theta from prior
true_theta = prior.sample(torch.Size([1]))
designs_so_far = []
observations_so_far = []
# Set posterior equal to the prior
posterior_loc = theta_loc
posterior_scale = torch.sqrt(theta_covmat.diag())
for t in range(0, T):
print(f"Step {t + 1}/{T} of Run {run + 1}")
pyro.clear_param_store()
pharmaco, critic = optimise_design_and_critic(
posterior_loc=posterior_loc,
posterior_scale=posterior_scale,
experiment_number=t,
device=device,
batch_size=batch_size,
num_steps=num_steps,
lr=lr,
annealing_scheme=annealing_scheme,
)
design, observation = pharmaco.forward(log_theta=true_theta)
posterior_loc, posterior_scale = critic.get_variational_params(
*zip(design, observation)
)
posterior_loc, posterior_scale = (
posterior_loc.detach(),
posterior_scale.detach(),
)
designs_so_far.append(design[0])
observations_so_far.append(observation[0])
print(f"Fitted posterior: mean = {posterior_loc}, sd = {posterior_scale}")
print("True theta = ", true_theta.reshape(-1))
data_dict = {}
for i, xi in enumerate(designs_so_far):
data_dict[f"xi{i + 1}"] = xi.cpu()
for i, y in enumerate(observations_so_far):
data_dict[f"y{i + 1}"] = y.cpu()
data_dict["theta"] = true_theta.cpu()
return data_dict
def main(
seed, mlflow_experiment_name, num_histories, device, T, batch_size, num_steps, lr,
):
pyro.clear_param_store()
seed = auto_seed(seed)
pyro.set_rng_seed(seed)
mlflow.set_experiment(mlflow_experiment_name)
# Log everything
mlflow.log_param("seed", seed)
mlflow.log_param("num_steps", num_steps)
mlflow.log_param("lr", lr)
mlflow.log_param("num_histories", num_histories)
mlflow.log_param("num_experiments", T)
annealing_scheme = [100, 5, 0.8]
mlflow.log_param("annealing_scheme", str(annealing_scheme))
results_vi = {
"loop": [],
"seed": seed,
"meta": {"num_histories": num_histories, "model": "pharmacokinetic"},
}
for i in range(num_histories):
results = main_loop(
run=i,
mlflow_run_id=mlflow.active_run().info.run_id,
device=device,
T=T,
batch_size=batch_size,
num_steps=num_steps,
lr=lr,
annealing_scheme=annealing_scheme,
)
results_vi["loop"].append(results)
# Log the results dict as an artifact
if not os.path.exists("./mlflow_outputs"):
os.makedirs("./mlflow_outputs")
with open("./mlflow_outputs/results_pharmaco_vi.pickle", "wb") as f:
pickle.dump(results_vi, f)
mlflow.log_artifact("mlflow_outputs/results_pharmaco_vi.pickle")
print("Done.")
ml_info = mlflow.active_run().info
path_to_artifact = "mlruns/{}/{}/artifacts/results_pharmaco_vi.pickle".format(
ml_info.experiment_id, ml_info.run_id
)
print("Path to artifact - use this when evaluating:\n", path_to_artifact)
# --------------------------------------------------------------------------
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="VI baseline: Pharmacokinetic model")
parser.add_argument("--seed", default=-1, type=int)
parser.add_argument(
"--num-histories", help="Number of histories/rollouts", default=128, type=int
)
parser.add_argument("--num-experiments", default=10, type=int)
parser.add_argument("--batch-size", default=1024, type=int)
parser.add_argument("--device", default="cuda", type=str)
parser.add_argument(
"--mlflow-experiment-name", default="pharmaco_variational", type=str
)
parser.add_argument("--lr", default=0.001, type=float)
parser.add_argument("--num-steps", default=5000, type=int)
args = parser.parse_args()
main(
seed=args.seed,
num_histories=args.num_histories,
device=args.device,
T=args.num_experiments,
lr=args.lr,
batch_size=args.batch_size,
num_steps=args.num_steps,
mlflow_experiment_name=args.mlflow_experiment_name,
)